
Fair Preprocessing: Towards Understanding Compositional
Fairness of Data Transformers in Machine Learning Pipeline

Sumon Biswas
Dept. of Computer Science, Iowa State University

Ames, IA, USA
sumon@iastate.edu

Hridesh Rajan
Dept. of Computer Science, Iowa State University

Ames, IA, USA
hridesh@iastate.edu

ABSTRACT

In recent years, many incidents have been reported where machine

learning models exhibited discrimination among people based on

race, sex, age, etc. Research has been conducted to measure and

mitigate unfairness in machine learning models. For a machine

learning task, it is a common practice to build a pipeline that in-

cludes an ordered set of data preprocessing stages followed by a

classifier. However, most of the research on fairness has consid-

ered a single classifier based prediction task. What are the fairness

impacts of the preprocessing stages in machine learning pipeline?

Furthermore, studies showed that often the root cause of unfairness

is ingrained in the data itself, rather than the model. But no research

has been conducted to measure the unfairness caused by a specific

transformation made in the data preprocessing stage. In this paper,

we introduced the causal method of fairness to reason about the

fairness impact of data preprocessing stages in ML pipeline. We

leveraged existing metrics to define the fairness measures of the

stages. Then we conducted a detailed fairness evaluation of the

preprocessing stages in 37 pipelines collected from three differ-

ent sources. Our results show that certain data transformers are

causing the model to exhibit unfairness. We identified a number of

fairness patterns in several categories of data transformers. Finally,

we showed how the local fairness of a preprocessing stage com-

poses in the global fairness of the pipeline. We used the fairness

composition to choose appropriate downstream transformer that

mitigates unfairness in the machine learning pipeline.

CCS CONCEPTS

· Software and its engineering→ Software creation andman-

agement; · Computing methodologies→Machine learning.
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1 INTRODUCTION

Fairness of machine learning (ML) predictions is becoming more im-

portant with the rapid increase of ML software usage in important

decision making [5, 22, 30, 50], and the black-box nature of ML algo-

rithms [3, 27]. There is a rich body of work on measuring fairness

of ML models [15, 19, 23, 25, 32, 65, 72, 74] and mitigate the bias

[15, 19, 29, 32, 42, 55, 72, 75]. Recent work [10, 13, 17, 26, 33, 35] has

shown that more software engineering effort is required towards

detecting bias in complex environment and support developers in

building fairer models.

Themajority of work onML fairness has focused on classification

task with single classifier [3, 12, 25, 27]. However, real-world ma-

chine learning software operate in a complex environment [12, 21].

In an ML task, the prediction is made after going through a series

of stages such as data cleaning, feature engineering, etc., which

build the machine learning pipeline [4, 71]. Studying only the fair-

ness of the classifiers (e.g., Decision Tree, Logistic Regression) fails

to capture the fairness impact made by other stages in ML pipeline.

In this paper, we conducted a detailed analysis on how the data

preprocessing stages affect fairness in ML pipelines.

Prior research observed that bias can be encoded in the data

itself and missing the opportunity to detect bias in earlier stage

of ML pipeline can make it difficult to achieve fairness algorith-

mically [22, 31, 35, 44]. Additionally, bias mitigation algorithms

operating in the preprocessing stage were shown to be successful

[25, 41]. Therefore, it is evident that the preprocessing stages of ML

pipeline can introduce bias. However, no study has been conducted

to measure the fairness of the preprocessing stages and show how it

impacts the overall fairness of the pipeline. In this paper, we used the

causal method of fairness to reason about the fairness impact of pre-

processing stages in ML pipeline. Then, we leveraged existing fair-

ness metrics to measure fairness of the preprocessing stages. Using

the measures, we conducted a thorough analysis on a benchmark

of 37 real-world ML pipelines collected from three different sources,

which operate on five datasets. These ML pipelines allowed us to

evaluate fairness of a wide selection of preprocessing stages from

different categories such as data standardization, feature selection,

encoding, over/under-sampling, imputation, etc. For comparative

analysis, we also collected data transformers e.g., StandardScaler,

MinMaxScaler, PCA, l1-normalizer, QuantileTransformer, etc.,

from the pipelines as well as corresponding ML libraries, and eval-

uated fairness. Finally, we investigated how fairness of these pre-

processing techniques (local fairness) composes with other prepro-

cessing stages, and the whole pipeline (global fairness). Specifically,

we answered the following three research questions.

RQ1 (fairness of preprocessing stages): What are the fairness

measures of each preprocessing stage in ML pipeline? RQ2 (fair
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transformers): What are the fair (and biased) data transformers

among the commonly used ones?RQ3 (fairness composition): How

fairness of data preprocessing stages composes in ML pipeline?

• How local fairness compose into global fairness?

• Does choosing a downstream transformer depend on the

fairness of an upstream transformer?

To the best of our knowledge, we are the first to evaluate the

fairness of preprocessing stages in ML pipeline. Our results show

that by measuring the fairness impact of the stages, the developers

would be able to build fairer predictions effectively. Furthermore,

the libraries can provide fairness monitoring into the data trans-

formers, similar to the performance monitoring for the classifiers.

Our evaluation on real-world ML pipelines also suggests opportuni-

ties to build automated tool to detect unfairness in the preprocessing

stages, and instrument those stages to mitigate bias. We have made

the following contributions in this paper:

(1) We created a fairness benchmark of ML pipelines with several

stages. The benchmark, code and results are shared in our repli-

cation package1 in GitHub repository, that can be leveraged in

further research on building fair ML pipeline.

(2) We introduced the notion of causality in ML pipeline and lever-

aged existing metrics to measure the fairness of preprocessing

stages in ML pipeline.

(3) Unfairness patterns have been identified for a number of stages.

(4) We identified alternative data transformers which can mitigate

bias in the pipeline.

(5) Finally, we showed the composition of stage-specific fairness

into overall fairness, which is used to choose appropriate down-

stream transformer that mitigates bias.

The paper is organized as follows: ğ2 describes the motivating

examples, ğ3 describes the existing metrics and our approach. In

ğ4, we described the benchmark and experiments. ğ5 explores the

results, ğ6 provides a comparative study among transformers, and

ğ7 evaluates the fairness composition. Finally, ğ9 describes the

threats to validity, ğ10 discusses related work, and ğ11 concludes.

2 MOTIVATION

In this section, we present two ML pipelines which show that

the preprocessing stage affects the fairness of the model and it is

important to study the bias induced by certain data transformers.

2.1 Motivating Example 1

Yang et al. [71] studied the following ML pipeline which was origi-

nally outlined by Propublica for recidivism prediction on Compas

dataset [5]. The goal is predict future crimes based on the data

of defendants. The fairness values, in terms of statistical parity

difference (SPD: -0.102) and equal opportunity difference (EOD:

-0.027), suggest that the prediction is biased towards2 Caucasian

defendants when race is considered as sensitive attribute. The

pipeline consists of several preprocessing stages before applying

LogisticRegression classifier. Data preprocessing includes clean-

ing, encoding categorical features, and missing value imputation.

Recent research [71] showed that the data transformation in this

1https://github.com/sumonbis/FairPreprocessing
2Bias towards a group connotes that the prediction favours that group.

pipeline is not symmetric across gender groups i.e., male defendants

are filtered more than the female. Do these data transformations in-

troduce unfairness in the prediction? If yes, what are the unfairness

measures of these transformers? Is it possible to leverage existing

metrics to measure the unfairness of each component? If we can

understand the effect of each data transformer, it would be possible

to choose data preprocessing technique wisely to avoid introducing

bias as well as mitigate the inherent bias in data or classifier.

1 d f = pd . r e ad_c sv ( f _p a th )
2 d f = d f [ ( d f . d a y s _ b _ s c r e e n i n g _ a r r e s t <= 3 0 )
3 & ( d f . d a y s _ b _ s c r e e n i n g _ a r r e s t >= −30)
4 & ( d f . i s _ r e c i d != −1) & ( d f . c _ cha rge_deg r e e != 'O ' )
5 & ( d f . s c o r e _ t e x t != 'N/A ' ) ]
6 d f = d f . r e p l a c e ( ' Medium ' , ' Low ' )
7 l a b e l s = Labe lEncode r ( ) . f i t _ t r a n s f o rm ( d f . s c o r e _ t e x t )
8 impute1_onehot = P i p e l i n e ( [
9 ( ' impute r1 ' , S imp le Impute r ( s t r a t e g y = ' mos t_ f r equen t ' ) ) ,
10 ( ' onehot ' , OneHotEncoder ( handle_unknown= ' i gno r e ' ) ) ] )
11 impute2_b in = P i p e l i n e ( [
12 ( ' impute r2 ' , S imp le Impute r ( s t r a t e g y = 'mean ' ) ) ,
13 ( ' d i s c r e t i z e r ' , K B i n sD i s c r e t i z e r ( n_b ins =4 , encode= ' o r d i n a l ' ,

s t r a t e g y = ' uni form ' ) ) ] )
14 f e a t u r i z e r = ColumnTransformer ( t r a n s f o rme r s =[
15 ( ' impute1_onehot ' , impute1_onehot , [ ' i s _ r e c i d ' ] ) ,
16 ( ' impute2_b in ' , impute2_b in , [ ' age ' ] ) ] )
17 p i p e l i n e = P i p e l i n e ( [ ( ' f e a t u r e s ' , f e a t u r i z e r ) ,
18 ( ' c l a s s i f i e r ' , L o g i s t i c R e g r e s s i o n ( ) ) ] )

2.2 Motivating Example 2

The following ML pipeline is collected from the benchmark used

by Biswas and Rajan [10] for studying fairness of ML models. This

pipeline operates on German Credit dataset. Here, the goal is to pre-

dict the credit risk (good/bad) of individuals based on their personal

data such as age, sex, income, etc. In this pipeline, before training

the classifier, data has been processed using two transformers: PCA

for principal component analysis, and SelectKBest for selecting

high-scoring features. The fairness value (SPD: 0.005) shows that

prediction is slightly biased towards female candidates. However, if

the transformers are not applied, then prediction becomes biased

towards male (SPD: -0.117). By applying one transformer at a time,

we observed that PCA alone is not causing the change of fairness. In

this case, SelectBest is causing bias towards female, which in turn

mitigating the overall fairness of the pipeline. Therefore, in addition

to study the fairness of transformers in isolation, it is important to

understand how fairness of components composes in the pipeline.

1 f e a t u r e s = [ ]
2 f e a t u r e s . append ( ( ' pca ' , PCA( n_components =2 ) ) )
3 f e a t u r e s . append ( ( ' s e l e c t _ b e s t ' , S e l e c t KB e s t ( 6 ) ) )
4 f e a t u r e _un i on = Fea tu reUn ion ( f e a t u r e s )
5 e s t im a t o r s = [ ]
6 e s t im a t o r s . append ( ( ' f e a t u r e _un i on ' , f e a t u r e _un i on ) )
7 e s t im a t o r s . append ( ( ' RF ' , R a n d omFo r e s tC l a s s i f i e r ( ) ) )
8 model = P i p e l i n e ( e s t im a t o r s )
9 model . f i t ( X_ t ra in , y _ t r a i n )
10 y_pred = model . p r e d i c t ( X_ t e s t )

Our key idea is to leverage causal reasoning and observe fairness

impact of a stage on prediction. To do that we create alternative

pipeline by removing a stage. For example, from the above pipeline,

we remove the SelectKBest and compare the predictions with

original pipeline. We observe that SelectKBest is causing 1.1% of

the female and 3.6% of the male participants to change predictions

from favorable (good credit) to unfavorable (bad credit). Since the

stage is causing more unfavorable decisions to male, the stage is

biased towards female. Thus, we used existing fairness criteria to

measure fairness impact of a stage and propose novel metrics.
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Figure 1: ML pipelines for the motivating examples, having

a sequence of preprocessing stages followed by a classifier.

3 METHODOLOGY

In this section, first, we describe the background of ML pipeline, fo-

cussing on the data preprocessing stages. Second, we formulate the

method and metrics to measure fairness of a certain preprocessing

stage with respect to the pipeline it is used within.

3.1 ML Pipeline

Amershi et al. proposed a nine-stage machine learning pipeline

with data-oriented (collection, cleaning, and labeling) and model-

oriented (model requirements, feature engineering, training, evalu-

ation, deployment, and monitoring) stages [4]. Other research [1, 7]

also described data preprocessing as an integral part of the ML

pipeline. The pipelines in the motivating examples are depicted in

Figure 1, which follows the representation provided by Yang et al.

[71]. In this paper, we adapted the canonical definition of pipeline

from Scikit-Learn pipeline specification [14, 63], which is aligned

with the ML models studied in the literature for fair classification

tasks [3, 8, 10, 26, 27, 71]. We are interested in investigating the

fairness of the data preprocessing stages in the pipeline, which is

depicted with grey boxes in Figure 1.

To summarize, a canonical ML pipeline is an ordered set ofm

stages with a set of preprocessing stages (S1, S2, . . . Sm−1) and a fi-

nal classifier (Sm ). Each preprocessing stage, Sk operates on the

data already processed by preceding stages S1, . . . Sk−1. A data

preprocessing stage Sk can be a data transformer or a set of cus-

tom operations. A data transformer is a well-known algorithm or

method to perform a specific operation such as variable encoding,

feature selection, feature extraction, dimensionality reduction, etc.

on the data [14]. For example, in the second motivating example,

two transformers (PCA and SelectKBest) have been used. Custom

transformation includes data/task-specific contextual operations on

the dataset. For example, in ğ2.1 (line 2-3), the data instances that

do not contain a value in the range [-30, 30] for the feature days_-

b_screening_arrest, have been filtered. This means the pipeline

ignored the data of the defendants with more than 30 days between

their screening and arrest. This formulation of ML pipeline allowed

us to evaluate fairness of the preprocessing stages in real-world ML

tasks.

3.2 Existing Fairness Metrics

We have leveraged existing fairness metrics to measure the fairness

of the whole pipeline. Many fairness metrics have been proposed in

the literature for measuring fairness of classification tasks [8, 9, 22].

In general, the fairness metrics compute group-specific classifica-

tion rates (e.g., true positives, false positives), and calculates the

difference between groups to measure the fairness. In this paper, we

adopted the representative group fairness metrics used by [10, 26].

Specifically, we leveraged the following metrics: statistical parity

difference (SPD) [25, 41, 72], equal opportunity difference (EOD)

[32], average odds difference (AOD) [32], and error rate difference

(ERD) [19]. Given a dataset D with n instances, let, actual classifi-

cation label be Y , predicted classification label be Ŷ , and sensitive

attribute be A. Here, Y = 1 if the label is favorable to the individ-

uals, otherwise Y = 0. For example, classification task on German

Credit dataset predicts the credit risk (good/bad credit) of individ-

uals. In this case, Y = 1 if the prediction is good credit, otherwise

Y = 0. Suppose, for privileged group (e.g., White), A = 1 and for

unprivileged group (e.g., non-White), A = 0. SPD is computed by

observing the probability of giving favorable label to each group

and taking the difference. EOD measures the true-positive rate dif-

ference between groups. AOD calculates both true positive rate

and false positive rate difference and then takes the average. ERD

calculates the sum of false positive rate difference and false negative

rate difference between groups. The definitions of these metrics are

as follows:

SPD = P[Ŷ = 1 |A = 0] − P[Ŷ = 1 |A = 1]

EOD = P[Ŷ = 1 |Y = 1, A = 0] − P[Ŷ = 1 |Y = 1, A = 1]

AOD = (1/2){(P[Ŷ = 1 |Y = 1, A = 0] − P[Ŷ = 1 |Y = 1, A = 1])

+ (P[Ŷ = 1 |Y = 0, A = 0] − P[Ŷ = 1 |Y = 0, A = 1])}

ERD = (P[Ŷ = 1 |Y = 0, A = 0] − P[Ŷ = 1 |Y = 0, A = 1])}

+ (P[Ŷ = 0 |Y = 1, A = 0] − P[Ŷ = 0 |Y = 1, A = 1])} (1)

Disparate impact (DI) and statistical parity difference (SPD) both

measure the same rate i.e., probability of classifying data instance as

favorable, but DI computes the ratio of privileged and unprivileged

groups’ rate, whereas SPD computes the difference. Therefore, from

DI and SPD, we only used SPD in our evaluation.

3.3 Fairness of Preprocessing Stages

Suppose, P is a pipeline withm stages and our goal is to evaluate

the fairness of the stage Sk , where 1 ≤ k < m. In other words, we

want to measure the fairness impact of Sk on the prediction made

byP. To achieve that we applied the causal reasoning for evaluating

fairness. The causality theorem was proposed by Pearl [53, 54] and

further studied extensively to reason about fairness in many sce-

narios [27, 47, 57, 59, 76]. Causality notion of fairness captures that

everything else being equal, the prediction would not be changed

in the counterfactual world where only an intervention happens

on a variable [27, 47, 57]. For example, Galhotra et al. proposed

causal discrimination score for fairness testing [27]. The authors

created test inputs by altering original protected attribute values

of each data instance, and observed whether prediction is changed

for those test inputs. If the intervention causes the prediction to

be changed, we call the software causally unfair with respect to

that intervention. In our case, if a preprocessing stage Sk be the

intervention, to measure the fairness of Sk , we have to capture

the prediction disparity caused by the intervention Sk . This causal

reasoning of fairness is a stronger notion since it provides causality

in software by observing changes in the outcome made by a specific

stage in the pipeline [27, 54].
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3.3.1 Causal Method to Measure Fairness of Preprocessing Stage.

From pipeline P, we construct another pipeline P∗ by only exclud-

ing the stage Sk from P. After applying the stage Sk in P∗, to what

extent the prediction of P∗ changes, and whether the change is

favorable to any group? Broadly, this can be measured by observing

the prediction difference between P and P∗ and computing the

fairness of these changes using the fairness metrics from (1).

Suppose, the predictions made by the two pipelines are Ŷ (P) and

Ŷ (P∗). Let, I be the impact set for Sk , which denotes the prediction

parity between Ŷ (P) and Ŷ (P∗) such that for ith data instance, if

Ŷi (P) = Ŷi (P
∗), then Ii = 0, otherwise 1. By causality, the fairness

of preprocessing stage (denoted by SF) is calculated based on [Ŷ (P),

Ŷ (P∗)]I=1 with respect to a fairness metricM , which is shown in

(2a). We noticed that a few preprocessing stages, specifically the

encoders can not be removed without replacing with an alternative

stage. For such situations, we have defined the fairness of Sk with

reference to another stage S ′
k
, denoted by SF(Sk |S

′
k
) in (2b).

Zelaya also used the similar method for quantifying the effect

of a preprocessing stage with a goal of computing volatility of a

stage [73]. Volatility quantifies how much impact a preprocessing

stage has on the outcome by computing the probability of prediction

changes. However, it does not capture the fairness of the stage, since

a stage can cause high change in the prediction by maintaining

the predictions fair. Next in ğ3.3.2, we have extended our causality

based formulation of (2a) for each fairness metric in (1) to capture

the fairness impact of each preprocessing stage. Similar to [27], the

benefit of this formulation is, the measures do not require an oracle,

since the prediction equivalence of pipelines P and P∗ serves the

goal of evaluating fairness of the stage. Note that the rest of the

definitions in ğ3.3.2 are independent of (2a) and (2b).

I =
0 if Ŷi (P) = Ŷi (P

∗)

1 otherwise
, for all i ∈ {1 . . . n }

SF(Sk ) = M [Ŷ (P ), Ŷ (P ∗)]I=1 where P∗
= P \ Sk (2a)

SF(Sk |S
′
k ) = M [Ŷ (P ), Ŷ (P ∗)]I=1 where P∗

= (P \ Sk ) ∪ S ′k (2b)

3.3.2 Fairness Metircs for Preprocessing Stage. We have leveraged

the definition of metrics SPD, EOD, AOD, and ERD from (1) to

capture the stage-specific fairness of Sk . Essentially, the newmetrics

will identify the disparities between Ŷi (P) and Ŷi (P
∗) and use

corresponding fairness criteria to measure how much Sk favors a

specific group with respect to other group(s).

Suppose, among n data instances, nu are from the unprivileged

group and np from the privileged group. SFCSPD computes how

many of the data instances have been changed from unfavorable to

favorable after applying the stage Sk . To do that we count changes

in both directions (unfavorable to favorable and favorable to un-

favorable), and take the difference. The sign of SFCSPD preserves

the direction of changes. Finally, the metric SFSPD is computed

by taking the difference of rates (SFRSPD) between unprivileged

and privileged groups. Note that the metric captures fairness by

measuring the difference of favorable change rates between groups.

Simply counting the mismatches between Ŷi (P) and Ŷi (P
∗) could

provide degree of changes in SFCSPD but would not capture fair-

ness. Furthermore, computing favorable changes to both groups

separately and evaluating the disparity between them captures

fairness according to the original definition of SPD.

SFCiSPD =




1 if Ŷi (P) = 1 and Ŷi (P
∗) = 0

−1 if Ŷi (P) = 0 and Ŷi (P
∗) = 1

0 otherwise

SFCSPD =

nÕ

i=1

SFCiSPD

SFRSPD(u) = SFCSFD(u)/nu , SFRSPD(p) = SFCSPD(p)/np

SFSPD = SFRSPD(u) − SFRSPD(p) (3)

Similarly, SFEOD is defined using the following equation. In this

case, only the true-positive changes are considered as suggested by

the definition of EOD from (1).

SFCiEOD =




1 if Yi = Ŷi (P) = 1 and Ŷi (P
∗) = 0

−1 if Ŷi (P) = 0 and Yi = Ŷi (P
∗) = 1

0 otherwise

SFCEOD =

nÕ

i=1

SFCiEOD

SFREOD(u) = SFCEOD(u)/nu,Y=1 , SFREOD(p) = SFCEOD(p)/np,Y=1

SFEOD = SFREOD(u) − SFREOD(p) (4)

Since AOD computes the average of true positive (TP) rate and

false positive (FP) rate, first the change set for TP and FP predictions

is computed. Then averaging the probability of changes for TP and

FP, the change rates are computed for both groups. Finally, SFAOD
is calculated by taking the difference of rates between privileged

and unprivileged groups.

SFCiTP =




1 if Yi = Ŷi (P) = 1 and Ŷi (P
∗) = 0

−1 if Ŷi (P) = 0 and Yi = Ŷi (P
∗) = 1

0 otherwise

SFCiFP =




1 if Ŷi (P) = 1 and Yi = Ŷi (P
∗) = 0

−1 if Yi = Ŷi (P) = 0 and Ŷi (P
∗) = 1

0 otherwise

SFCTP =

nÕ

i=1

SFCiTP , SFCFP =

nÕ

i=1

SFCiFP

SFRAOD(u) = (1/2){SFCTP(u)/nu,Y=1 + SFCFP(u)/nu,Y=0 }

SFRAOD(p) = (1/2){SFCTP(p)/np,Y=1 + SFCFP(p)/np,Y=0 }

SFAOD = SFRAOD(u) − SFRAOD(p) (5)

Finally, SFERD is computed using the change of count in both

false positives (FP) and false negatives (FN) as mentioned in the

definition of ERD in (1).

SFCiFN =




1 if Ŷi (P) = 0 and Yi = Ŷi (P
∗) = 1

−1 if Yi = Ŷi (P) = 1 and Ŷi (P
∗) = 0

0 otherwise

SFCFN =

nÕ

i=1

SFCiFN

SFRERR(u) = SFCFP(u)/nu,Y=0 + SFCFN(u)/nu,Y=1

SFRERR(p) = SFCFP(p)/np,Y=0 + SFCFN(p)/np,Y=1

SFERR = SFRERR(u) − SFRERR(p) (6)

Thus far, we have four fairness metrics (SFSPD, SFEOD, SFAOD,

and SFERD) to measure the fairness of the stage. In general, the

rates computed by each metric (SFR) follow the same range of the

original metrics [-1, 1]. Therefore, the above metrics have a range

[-2, 2]. Positive values indicate bias towards unprivileged group,

negative values indicate bias towards privileged group, and values

very close to 0 indicate fair preprocessing stage.
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4 EVALUATION

In this section, we describe the benchmark dataset and pipelines

that we used for evaluation. Then we present the experiment design

and results for answering the research questions.

4.1 Benchmark

We collected ML pipelines used in prior studies for fairness evalua-

tion. First, Biswas and Rajan collected a benchmark of 40MLmodels

collected from Kaggle that operate on 5 different datasets e.g., Ger-

man Credit [34], Adult Census [45], Bank Marketing [49], Home

Credit [39] and Titanic [40]. However, the authors did not study

the fairness at the component level, rather the ultimate fairness of

the classifiers e.g., RandomForest, DecisionTree, etc. We revisited

these Kaggle kernels and collected the preprocessing stages used

in the pipelines. We noticed that Home Credit dataset [39] in this

benchmark is not unified like the other datasets, distributed over

multiples CSV files, and the models under this dataset do not oper-

ate on the same data files. Hence, these models (8 out of 40) are not

suitable for comparing fairness of data preprocessing stages.

Second, we collected the pipelines provided by Yang et al. [71].

The authors released 3 pipelines on two different datasets - Adult

Census and Compas. Third, Zelaya [73] studied the volatility of

the preprocessing stages using two pipelines on a fairness dataset

i.e., German Credit. We included these pipelines in our benchmark.

Thus, we created a benchmark of 37 ML pipelines that operate on

five datasets. The pipelines with the stages in each dataset category

and their performances are shown in Table 1. Below we present a

brief description of the datasets and associated tasks.

Table 1: The preprocessing stages and performance mea-

sures (accuracy, f1 score) of the pipelines in the benchmark

German Stages Acc F1 Adult Stages Acc F1

GC1 PCA, SB 0.64 0.76 AC1 SS, LE 0.85 0.66
GC2 SMOTE, SS 0.74 0.81 AC2 MV 0.85 0.68
GC3 PCA 0.73 0.83 AC3 Custom(f) 0.87 0.66
GC4 LE, SS 0.73 0.82 AC4 PCA, SS 0.85 0.66
GC5 SS 0.74 0.83 AC5 LE 0.87 0.71
GC6 PCA, SS, LE 0.73 0.83 AC6 Custom(f), Custom(c) 0.85 0.65
GC7 PCA, SB 0.66 0.77 AC7 PCA, SS, Custom(f) 0.78 0.51
GC8 SS 0.72 0.81 AC8 SS, Custom(f), Stratify 0.85 0.67
GC9 SMOTE 0.67 0.77 AC9 SS 0.81 0.61
GC10 Usamp 0.6 0.81 ACP10 Impute 0.81 0.62
Bank Stages Acc F1 Titanic Stages Acc F1

BM1 Custom, LE, SS 0.9 0.56 TT1 MV, Custom(f), Encode 0.77 0.83
BM2 LE 0.91 0.61 TT2 MV, Custom(f) 0.78 0.72
BM3 LE, SS, Custom(f) 0.9 0.48 TT3 Custom(f), Impute 0.8 0.72
BM4 SS 0.89 0.33 TT4 Custom(f), Impute, RFECV 0.81 0.73
BM5 SS 0.88 0.23 TT5 Custom(f) 0.83 0.76
BM6 FS, Stratify, SS 0.91 0.58 TT6 Custom(f) 0.82 0.74
BM7 FS 0.91 0.6 TT7 SS, LE, Custom(f) 0.82 0.77
BM8 Stratify 0.9 0.56 TT8 Custom(f) 0.83 0.76
Compas Stages Acc F1

CP1 Filter, Impute1, Encode, Impute2, Kbins, Binarize 0.97 0.97
SB: SelectBest, SS: StandardScaler, LE*: LabelEncoder, Usamp: Undersampling, Cus-
tom(f/c): Custom feature engineering or cleaning, FS: Feature selection, MV: Missing
value processing, RFECV: Feature selection method

* Fairness is measured with respect to a reference stage.

German Credit. The dataset contains 1000 data instances and 20

features of individuals who take credit from a bank [34]. The target

is to classify whether the person has a good/bad credit risk.

Adult Census. The dataset is extracted by Becker [45] from 1994

census of United States. It contains 32,561 data instances and 12

features including demographic data of individuals. The task is to

predict whether the person earns over 50K in a year.

Bank Marketing. This dataset contains a bank’s marketing cam-

paign data of 41,188 individuals with 20 features [49]. The goal is

to classify whether a client will subscribe to a term deposit.

Titanic. The dataset contains information about 891 passengers

of Titanic [40]. The task is to predict the survival of the individuals

on Titanic. The sensitive attribute of this dataset is sex.

Compas.The dataset contains data of 6,889 criminal defendants in

Florida. Propublica used this dataset and showed that the recidivism

prediction software used in US courts discriminates between White

and non-White [5]. The task is to classify whether the defendants

will re-offend where race is considered as the sensitive attribute.

4.2 Experiment Design

Each pipeline in the benchmark consists of one or more preprocess-

ing stages followed by the classifier. In this paper, our main goal is

to evaluate the fairness of different preprocessing stages using the

fairness metrics described in ğ3. The benchmark, code and results

are released in the replication package [11].

The experiment design for evaluating the pipelines is shown in

Figure 2. First, for each pipeline, we identified the preprocessing

stages. For example, the pipeline in ğ2.1 contains six preprocessing

stages. To evaluate the fairness of a stage Sk in a pipeline P, we

create an alternative pipeline P∗ by removing the stage Sk . For

stages that can not be removed, we replaced Sk with a reference

stage S ′
k
. Among the preprocessing stages shown in Table 1, we

found only the encoders can not be removed.We experimented with

all the encoders in Scikit-Learn library [61], i.e., OneHotEncoder,

LabelEncoder, OrdinalEncoder, and found that OneHotEncoder

does not exhibit any bias. Therefore, we used OneHotEncoder as

the reference stage for the encoders in our experiment.

Second, the original dataset is split into training (70%) and test

set (30%). Then two copies of training data are used to train pipeline

P and P∗. After training the classifiers, two models predict the

label for the same set of test data instances. Then, similar to the

experimentation of [73], for each prediction label we compare the

two predictions Ŷi (P) and Ŷi (P
∗) with the true prediction label Yi .

This comparison provides the necessary data to compute the four

fairness metrics. Similar to [10, 26], for each stage in a pipeline,

we run this experiment ten times, and then report the mean and

standard deviation of the metrics, to avoid inconsistency of the

randomness in the ML classifiers. Finally, we followed the ML best

practices so that noise is not introduced evaluating the fairness of

preprocessing stages. For example, while applying some transforma-

tion, lack of data isolation might introduce noise in the evaluation,

e.g., when applying PCA on dataset, it is important to train the PCA

only using the training data. If we use the whole dataset to train the

PCA and transform data, then information from the test-set might

leak. Third, since a stage operates on the data processed by the

preceding stage(s), there are interdependencies between them. We

always maintained the order of the stages while removing or replac-

ing a stage (ğ5). To observe fairness of data transformers without

interdependencies, we applied them on vanilla pipelines (ğ6).
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Figure 2: Experiment design to measure fairness of preprocessing stages in machine learning pipeline.

5 FAIRNESS OF PREPROCESSING STAGES

In this paper, we used a diverse set of metrics, to evaluate fairness

of preprocessing stages. While developing an ML pipelines, if the

developer has a comprehensive idea of the fairness of preprocessing

stages, it would be convenient to build a fair pipeline. The evaluation

has been done on 69 preprocessing stages in 37 ML pipelines from 5

dataset categories. For Compas dataset, we found one pipeline (ğ2.1).

Five out of six stages in this pipeline exhibit no bias, which has

been discussed later. For other 4 dataset categories, the evaluation

has been shown in Figure 3. In this section, first, we discuss how

we can interpret the metrics. Second, we answer the first research

question and discuss the findings from our evaluation.

5.1 What Do the Metrics Imply?

We investigated the fairness of the preprocessing stages using four

metrics: SFSPD, SFEOD, SFAOD, and SFERD. These metrics measure

the fairness of the stages by using the existing fairness criteria, e.g.,

SFSPD measures the fairness of a stage with respect to statistical

parity difference (SPD) criteria. These fairness criteria evaluate

algorithmic fairness of ML pipelines [15, 25, 72]. The unfairness

characterized by these criteria is measured based on the predic-

tion disparities, although the root cause can be the training data

or the algorithm (e.g., data preprocessing, classifier) itself. There-

fore, when an ML model is identified as unfair, it implies that in

the given predictive scenario, the outcome is biased. Similarly,

the metrics proposed in this paper measure algorithmic unfair-

ness caused by a specific preprocessing stage with respect to its

pipeline. For instance, in Figure 3, pipeline GC4 has two stages:

LabelEncoder and StandardScaler. The fairness metrics suggest

that LabelEncoder is biased towards unprivileged group (positive

value), and StandardScaler is biased towards privileged group

(negative value). The stages for which the measures are very close

to zero, can be considered as fair preprocessing.

The metrics can provide different fairness signals for a certain

stage. For example, in AC4, SFERD shows positive fairness, whereas

the other metrics suggest negative fairness for both the stages

PCA and StandardScaler. This disparity occurs because different

metrics accounts for different fairness criteria. In this case, SFERD,

depends on the false positive and false negative rate difference. No

other metric is concerned about the false negative rate difference,

and hence SFERD provides a different fairness signal than other

metrics. In practice, appropriate fairness criteria can vary depending

on the task, usage scenario, or involved stakeholders. Study suggests

that developers need to be aware of different fairness indicators

to build fairer pipelines [26]. Therefore, we defined and evaluated

fairness of stages with respect to multiple metrics.

5.2 Fairness Analysis of Stages

The pipelines used both built-in algorithm imported from libraries

i.e., data transformers [14], as well as custom preprocessing stages.

The stages found in each pipeline are shown in Table 1, and the

fairness measures of those stages are plotted in Figure 3. Although

the unfairness exhibited by a stage is with respect to the pipeline,

we found fairness patterns of some stages and investigated them

further. In general, our findings show that the stages which change

the underlying data distribution significantly, or modify minority

data are responsible for increasing bias in the pipelines.

Finding 1: Data filtering and missing value removal change the

data distribution and hence introduce bias in ML pipeline.

Most of the real-world datasets contain missing values (MV) for

several reasons such as data creation errors, not-applicable (N/A)

attributes, incomplete data collection, etc. In our benchmark, Adult

Census and Titanic contain MV that required further processing in

the pipeline. 7.4% rows in Adult Census and 20.2% rows in Titanic

have at least one missing feature in the dataset. The pipelines either

remove the rows with MV or apply certain imputation [62] tech-

nique that replaces the MV with mean, median or most frequently

occurred values. Removal of rows with MV can significantly change

the data distribution, which introduces bias in the pipeline. For ex-

ample, both TT1 and TT2 removed data items with MV by applying

df.dropna() method, which introduces bias in the prediction (Fig-

ure 3). Research has shown that MV are not uniformly distributed

over all groups and data items from minority groups often contain

more MV [22]. If those data items are entirely removed, the repre-

sentation of minority groups in the dataset becomes scarce. On the

other hand, TT3 applied mean-imputation and TT4 applied both

median- and mode-imputation using df.fillna(), which exhibits

fairness compared to data removal. While our findings suggest that

removing data items with MV introduces bias, the most popular

fairness tools AIF 360 [8], Aequitas [58], Themis-ML [6] ignore

these data items and remove entire row/column. Our evaluation

strategy confirms that the tools can integrate existing imputation

methods [62] in the pipeline and allow users to choose appropri-

ate ones. Additionally, more research is needed to understand and

develop imputation techniques that are fairness aware.

Finding 2: New feature generation or feature transformation can

have large impact on fairness.

We found that most of the feature engineering stages, especially

the custom transformations exhibit bias in the pipeline. For example,

the pipelines in Titanic dataset used custom feature engineering,

since the dataset contains composite features which may provide

additional information about the individuals. For instance, TT8

operates on the feature name to create a new feature title e.g., Mr,
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Figure 3: Fairnessmeasures (Y-axis) of preprocessing stages in pipelines (X-axis). Grey lines above bars indicate standard error.

Mrs, Dr, etc. This transformation aims at better prediction of the

survival of passengers by extracting the social status, but creates

high bias between male and female.

InAdult Census, the feature eduction of individuals contain values

such as preschool, 10th, 1st-4th, prof-school, etc., which have been

replaced by broad categories such Dropout, HighGrad, Masters in

the pipeline AC7. In addition, instead of using age as continuous

value, the feature has been discretized inton number of bins. In both

cases, the original data values have beenmodified, which has caused

unfairness in the pipeline. Nevertheless, some pipelines (AC3, AC8)

have custom feature transformations that are fair. Previous studies

showed that certain features contribute more to the predictive

quality of the model [28, 56]. Feature importance in prediction

and corelation of features with the sensitive attribute also led to

bias detection [16, 31] in ML models. However, does creating new

features (by removing certain semantics) from a potentially biased

feature increase the fairness, is an open question. Our method to

quantify the fairness of such changes can guide further research in

this direction.

Finding 3: Encoding techniques should be chosen cautiosly based

on the classifier.

Two most used encoding techniques for converting categorical

feature to numerical feature are OneHotEncoder and LabelEncoder.

OneHotEncoder createsn new columns by replacing one column for

each of the n categories. LabelEncoder does not increase the num-

ber of the columns, and gives each category an integer label between

0 and (n − 1). In our evaluation, we found that LabelEncoder intro-

duces bias inGerman Credit and Titanic dataset but OneHotEncoder

does not change fairness. Since LabelEncoder imposes a sequen-

tial order between the categories, it might create a linear relation

with the target value, and hence have an impact on the classifier to

change fairness. For example, pipelines TT7 creates a new feature

called Family based on the surname of the person. This feature has

a large number of unique categories (667 unique ones in 891 data in-

stances). Therefore, the non-sparse representation in LabelEncoder

adds additional weight to the feature, which is causing unfairness

in TT7. Developers might avoid OneHotEncoder because it suffers

from the curse of dimensionality and the ordinal relation of data is

lost. In that case, developers should be aware of the fairness impact

of the encoder. One solution might be using PCA for dimensionality

reduction, which has been done in GC7.

Finding 4: The variability of fairness of preprocessing stages depend

on the dataset size and overall prediction rate of the pipelines.

We have plotted the standard error of the metrics as error bars

in Figure 3. Firstly, it shows that the metrics in German Credit and

Titanic dataset are more unstable. The reason is that the size of

these two datasets is less than the other three datasets. German

Credit dataset has 1000 instances, and Titanic has 891 instances.

Adult Census and Bank Marketing dataset have more than 30K

instances. If the sample size is large, data distribution tends to be

similar even after taking a random train-test split [26]. However,

when the dataset size is smaller, the distribution is changed among

different train-test splitting. Furthermore, we have found that SFERD
is more unstable than other metrics. SFERD depends on the change

of false positive and false negative rates. However, in most cases,

the pipelines are optimized for accuracy and precision, since these

are some best performing ones collected from Kaggle. Therefore,

before deploying preprocessing stages, it would be desirable to test

the stability of over multiples executions.

Finding 5: The unfairness of a preprocessing stage can be domi-

nated by dataset or the classifier used in the pipeline.

For the Compas dataset, we evaluated the six stages shown in

ğ2.1. All the stages exhibited data filtering show bias. The data

filtering also showed bias close to zero (less than .005) with respect

to all the metrics. Although Yang et al. [71] argued that this pipeline

filters data in different proportions from male and female group,

our evaluation confirms it does not cause unfairness. This pipeline

has been used by Propublica [5] to show the bias in the prediction.

Therefore, it is understandable that they did not employ any pre-

processing that introduces bias in the pipelines. Other than that,

almost all the preprocessing stages in Bank Marketing pipelines also

exhibit very little unfairness, which suggest that the preprocessing

on this dataset are fair in general.

A few stages show different behavior when they are used in com-

position with different classifiers. For example, StandardScaler

has been applied on both GC6 and GC8. While GC6 employs a

RandomForest classifier, GC8 uses K-Neighbors classifier. We have

observed the opposite fairness measures for StandardScaler in these

two pipelines. Therefore, fairness can be dominated by the under-

lying properties of data or the pipeline where it is applied. We have

further investigated this phenomenon by applying transformers on

different classifiers in the next section.
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5.3 Fairness-Performance Tradeoff

In this section, we investigated the fairness-performance tradeoff

for the preprocessing stages. The original performances of each

pipeline have been reported in Table 1. To investigate fairness of a

stage, we created pipeline P∗ by removing the stage from original

pipeline P (ğ2). To understand fairness-performance tradeoff, we

evaluated performance (both accuracy and f1 score) of P∗ and P in

the same experimental setup. Then we computed the performance

difference to observe the impact of the stage on performance. For

example,Acc(P)−Acc(P∗) gives the accuracy increase (or decrease,

if negative) after applying a stage. We plotted the performance

impacts of the stages with their fairness measures in Figure 4.

First, many preprocessing stages have negligible performance

impact. In Figure 4, 19 out 63 stages exhibits accuracy and f1 score

change in the range [-0.005, 0.005], which indicates performance

change ≤ 0.05%. We found that in all of these cases, except AC9

and AC10, the preprocessing stages are fair with a very small de-

gree of bias. Second, tradeoff between performance and fairness is

observed for the stages which improve performance. 17 stages im-

prove accuracy or f1 score more than 0.05%, which further exhibits

moderate to high degree of bias. Overall, the most biased stages

- TT7(LE), TT8(CT), TT4(CT), TT1(MV), GC8(SS), are improving

performance. This stage-specific tradeoff is aligned with the overall

performance-fairness tradeoff discussed in prior work [10, 17, 26],

which can be compared quantitatively by the work of Hort et al.

[36]. Third, we found that some stages decrease the performance,

either accuracy or f1 score. Surprisingly, most of these stages also

exhibit high degree of bias. For instance, the most performance-

decreasing stages - BM4(SS), AC7(PCA), GC10 (Undersampling),

are showing more bias. Our fairness evaluation would facilitate

developers to identify and remove such stages in the pipeline.

6 FAIR DATA TRANSFORMERS

In ğ5, we found that many data preprocessing stages are biased.

Many bias mitigation techniques applied in preprocessing stage

have been shown successful [25, 41]. If we process data with ap-

propriate transformer, then it might be possible to avoid bias and

mitigate inherent bias in data or classifier. Even if a data transformer

is biased towards a specific group, it could be useful to mitigate bias

if original data or model exhibits bias towards the opposite group.

To that end, we want to investigate the fairness pattern of the data

transformers. However, in our evaluation (Figure 3), some trans-

formers have been used only in specific situations e.g., SMOTE has

Table 2: Transformers collected from pipelines and libraries

Categories Stages Transformers
MV processing Imputation SimpleImputer, IterativeImputer
Categorical en-
coding

Encoder Binarizer, KBinsDiscretizer, LabelBina-
rizer, LabelEncoder, OneHotEncoder

Standardization
Scaling StandardScaler, MaxAbsScaler, MinMaxS-

caler, RobustScaler
Normalization l1-normalizer, l2-normalizer

Feature
engineering

Non-linear transformation QuantileTransformer, PowerTransformer
Polynomial feature gener-
ation

PCA, SparsePCA, MiniBatchSparsePCA,
KernelPCA

Feature selection SelectKBest, SelectFpr, SelectPercentile

Sampling

Oversampling SMOTE
Undersampling AllKNN
Stratification Random, Stratified

been only applied on German Credit dataset. What is the fairness of

this transformer when used on other datasets and classifier? In this

section, we setup experiments to evaluate the fairness of commonly

used data transformers on different datasets and classifiers.

First, we collected the classifiers used in each dataset category

from the benchmark. Then, for each dataset, we created a set of

vanilla pipelines. A vanilla pipeline is a classification pipeline which

contain only one classifier. Second, we found a few categories of

preprocessing stages from our benchmark shown in Table 2. For

each transformer used in each stage, we collected the alternative

transformers from corresponding library. For example, in our bench-

mark, StandardScaler from Scikit-Learn library has been used for

scaling data distribution in many pipelines. We collected other stan-

dardizing algorithms available in Scikit-Learn. We found that be-

sides StandardScaler, Scikit-Learn also provides MaxAbsScaler,

MinMaxScaler, and Normalizer standardize data [61]. Similarly, a

data oversampling technique SMOTE has been used in the bench-

mark, we collected another undersampling technique ALLKNN and

a combination of over- and undersampling sampling technique

SMOTENN from IMBLearn library [48]. Third, in each of the vanilla

pipelines, we applied the transformers and evaluated fairness using

the method used in ğ4.2 with respect to four metrics. We found that

pipelines under Titanic uses custom transformation, and most of

the built-in transformers are not appropriate for this dataset. So,

to be able to make the comparison consistent, we conducted this

evaluation on four datasets: German Credit, Adult Census, Bank

Marketing, Compas. Finally, we did not use transformers for impu-

tation and encoder stages. Encoding transformers (LabelEncoder,

OneHotEncoder), have been applied on most of the pipelines and
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Figure 5: Fairness of transformers on classifiers, D: DecisionTree, R: RandomForest, X: XGBoost, S: SupportVector, K: KNeighbors

their behavior has been understood. The fairness measures of each

transformer on different classifiers have been plotted in Figure 5.

Fairness among the datasets follows a similar pattern. This fur-

ther confirms that the unfairness is rooted in data. The Compas

dataset shows the least bias. Although racial discrimination has

been reported for this dataset [5], this is a more curated dataset

than the other three. By looking at the overall trend of fairness,

we observe that sampling techniques have the most biased impact

on prediction. Other than that feature selection transformers have

more impact than other ones.

Finding 6: Among all the transformers, applying sampling tech-

nique exhibits most unfairness.

Sampling techniques are often used in ML tasks when dataset

is class-imbalanced. Unlike the other transformers, sampling tech-

niques make horizontal transformation to the training data. The

oversampling technique SMOTE creates new data instances for the

minority class by choosing the nearest data points in the feature

space. Undersampling techniques balance dataset by removing data

items from majority class. Although balancing dataset has been

shown to increase fairness [22], our evaluation suggest that in three

out of four datasets, it increases bias.

From Figure 5, we can see that sampling techniques exhibit the

most unfairness. In German Credit dataset, different classifier reacts

differently when sampling is done. DecisionTree classifier exhibits

most unfairness for both oversampling and undersampling towards

privileged group i.e., male. Interestingly, the combination of over-

and undersampling also fails to show fairness. Furthermore, both

German Credit and Bank Marketing pipelines exhibit bias towards

unprivileged group, which might be desired when compared to bias

towards privileged.

Finding 7: Selecting subset of features often increase unfairness.

Selecting the best performing feature can give performance im-

provement of the pipeline. However, unfairness can be encoded in

specific features [31]. While selecting best features, some features

which encodes unfairness, can dominate the outcome. Thus, many

classifiers in German Credit, Adult Census, and Bank Marketing

show unfairness because of reduced number of features, which

has been also observed by Zhang and Harman [76]. Surprisingly,

SelectFpr exhibited very little or no bias compared to the other

feature selection methods. A detailed investigation suggests that

SelectBest and SelectPercentile select only the k most con-

tributing features. However, SelectFpr performs false positive rate

test on each feature, and if it falls below a threshold, the feature is

removed [60]. Therefore, it does not apply harsh pruning, which

contributes to the fairness of the prediction.

Finding 8: In most of the pipelines, feature standardization and

non-linear transformers are fair transformers.

These transformers modify the mean and variance of the data

by applying linear or non-linear transformation. However, they do

not change the feature importance on the classifiers. Therefore, in

most of the cases, these transformers (especially, StandardScaler

and RobustScaler) are fair. Some classifiers show bias after apply-

ing these transformers such as, KNC in Compas. The unfairness

exhibited by those pipelines are introduced by the classifiers, since

these classifiers show similar bias pattern for other transformers
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Figure 6: Comparison of global fairness change and local

fairness for Adult Census dataset pipelines.

as well. The scalers can impact the fairness significantly if there

are many outliers in data. That is why we see more bias for the

scalers in German Credit dataset. Therefore, although standardizing

transformers are fair in general, they can be biased in composition

with specific classifier or data property.

7 FAIRNESS COMPOSITION OF STAGES

From our evaluation, we found that many data transformers have

fairness impact onML pipeline. In this section, we compare the local

fairness (fairness measures of preprocessing stages) with the global

fairness (fairness measures of whole pipeline). First, we answer

whether the local fairness composes in the global fairness. Second,

we investigate if we can leverage the composition to mitigate bias

by choosing appropriate transformers.

7.1 Composition of Local and Global Fairness

We evaluated the global fairness of Adult Census pipelines (Table 1)

using the four existing metrics from (1). We calculated the fairness

difference of these pipelines before and after applying the prepro-

cessing stages. Additionally, we have evaluated the stage-specific

fairness metrics. Both the local fairness and difference in global

fairness of those pipelines have been plotted in Figure 6.

We can see that local and global fairness follow the same trend

in most of the pipelines. This confirms that local fairness is directly

contributing to the global fairness. However, the global fairness is

computed based on the overall change in the prediction, whereas

the local fairness considers the predictions for only those data

instances which have been altered after applying a transformer

(3). For example, in Figure 6, for some pipelines (e.g., AC9, AC10),

global and local fairness exhibit different trends. In these cases,

the overall classification rate difference is not similar to the rate

difference of altered labels. This means that the stages changed the

labels such that it shows bias towards privileged. But when those

changes in the labels are considered in addition to all the labels

(global fairness), the bias difference could not capture the actual

impact of that stage. We have verified this observation by manually

inspecting the altered prediction labels. Thus, we can conclude that

the local fairness composes to the global fairness. Specifically, if a

preprocessing stage shows bias for privileged group, it pulls the

global fairness towards the fairness direction of privileged group.

However, only observing the global fairness difference, we can not

measure the fairness of a given stage or transformer.

7.2 Bias Mitigation Using Appropriate
Transformers

For a given transformer in an ML pipeline, a downstream trans-

former operates on data already processed by the given transformer

and an upstream transformer is applied before the given one. Since

the fairness of a preprocessing stage composes to the global fairness,

can we choose a downstream transformer to mitigate bias in ML

pipeline? In this section, we empirically show that the global un-

fairness can be mitigated by choosing the appropriate downstream

transformer.

-0.1
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0.1

Usamp SS MM MA RO NO QT PT

K-Neighbors Classifier

SPD EOD AOD ERD

-0.1

0

0.1
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Figure 7: Global fairness after applying the upstream trans-

former (left), and after applying both the upstream and one

downstream transformer (right). Usamp: undersampling.

Consider the use-case of classification task on German Credit

dataset with different classifiers similar to Figure 5. Suppose, the

original pipeline is constructed using undersampling technique.

Since this pipeline exhibits bias, as shown in Figure 5, can we choose

a downstream data standardizing transformer that mitigates that

bias? In this use case, undersampling is the upstream transformer,

and any standardizing transformer is the downstream transformer.

We showed the evaluation for XGB classifier and KNC classifier,

since these two exhibits most bias when the upstream transformer

was applied in ğ6. We plotted the global fairness after applying only

the upstream transformer in the left of Figure 7. We also reported

the local fairness of the standardizing transformers in Table 3. Now,

since undersampling method exhibits bias towards privileged group

for XGB, we look for the transformer that is biased towards privi-

leged group. In Figure 7, among other transformers, Normalizer is

the most successful to mitigate bias of the upstream transformer.

Similarly, for KNC, the upstream operator exhibits bias towards

privileged group. From Table 3, we can see that MinMaxScaler is

the most biased transformer towards the opposite direction. As a

result, applying MinMaxScaler mitigates bias the most. Note that

the other downstream transformers also follow the fairness com-

position with its upstream transformer. Therefore, by measuring

fairness of the preprocessing stages, developers would be able to

instrument the biased transformers and build fair ML pipelines.

8 DISCUSSION

We took the first step to understand the fairness of components in

ML pipelines. Ourmethod helps to provide causality in software and

reason about behavior of components based on the impact on out-

come. This method can be extended further to evaluate the fairness

of other software modules [52] in ML pipeline and localize faults

[70]. Moreover, we found most of the stages exhibited bias, to a low
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Table 3: Local fairness of stages as downstream transformer.

Model Stage SF_SPD SF_EOD SF_AOD SF_ERD

XGB

SS 0.001 0.021 -0.016 -0.073
MM -0.006 0.031 -0.029 -0.12
MA -0.036 0.005 -0.059 -0.128
RO 0.051 0.082 0.025 -0.113
NO -0.014 -0.056 0.012 0.135
QT 0.011 0.062 -0.02 -0.165
PT -0.029 0.011 -0.055 -0.132

KNC

SS 0.035 0.025 0.055 0.059
MM 0.095 0.12 0.096 -0.05
MA 0.079 0.114 0.075 -0.078
RO 0.052 0.074 0.056 -0.036
NO 0.045 0.010 0.077 0.134
QT 0.077 0.104 0.078 -0.052
PT 0.035 0.032 0.050 0.036

SS: StandardScaler, MM: MinMaxScaler, MA: MaxAbsScaler, RO: RobustScaler,
NO: Normalizer, QT: QuantileTransformer, PT: PowerTransformer

or higher degree. The fairness measures of different components

can be leveraged towards fairness-aware pipeline optimization to

satisfy fairness constraints. For example, US Equal Employment

Commission suggests selection-rate difference between groups less

than 20% [68]. Also, pipeline optimization techniques, e.g., TPOT

[51], Lara [46] can be potentially utilized for pipeline optimization.

Furthermore, research has been conducted to understand the

impact of preprocessing stages with respect to performance im-

provement [18, 20, 69]. This paper will open research directions

to develop preprocessing techniques that improve performance by

keeping the fairness intact. We also reported a number of fairness

patterns of preprocessing stages that inducing bias in the pipeline

such as missing value processing, custom feature generation, fea-

ture selection. Moreover, instrumentation of the stages can mitigate

the inherent bias of the classifiers. It shows opportunities to build

automated tools for identifying fairness bugs in AI systems and

recommending fixes [37, 38]. Finally, current fairness tools (e.g.,

AIF 360 [8], Aequitas [58]) can be augmented by incorporating

data preprocessing stages into the pipelines and letting users have

control over the data transformers and observe or mitigate bias.

Similarly, the libraries can provide API support to monitor fairness

of the transformers.

9 THREATS TO VALIDITY

Internal validity refers to whether the fairness measures used in

this paper actually captures the fairness of preprocessing stages.

To mitigate this threat, we used existing concepts and metrics to

build new set of metrics. Causality in software [53, 54] has been

well-studied, and causal reasoning in fairness has also been popular

[47, 57, 59, 76], since it can provide explanation with respect to

change in the outcome. Besides, this method do not require an oracle

because the prediction equivalences provide necessary information

to measure the impact of the intervention [27]. Furthermore, in

ğ7, we conducted experiments on local and global fairness to show

how new metrics composes in the pipeline.

External validity is concerned about the extent the findings of

this study can be generalized. To alleviate this threat, we conducted

experiments on a large number of pipeline variations. We collected

the pipelines from three different sources. Moreover, we collected

alternative transformers from the ML libraries for comparative

analysis. Finally, for the same dataset categories, we used multiple

classifiers and fairness metrics so that the findings are persistent.

10 RELATED WORKS

Fairness in ML Classification. The machine learning community

has defined different fairness criteria and proposed metrics to mea-

sure the fairness of classification tasks [15, 19, 22, 23, 25, 32, 54,

65, 72, 74]. Following the measurement of fairness in ML models,

many mitigation techniques have also been proposed to remove

bias [15, 19, 22, 25, 29, 32, 41ś43, 55, 72, 75]. This body of work

mostly concentrates on the theoretical aspect of fairness in a sin-

gle classification task. Recently, software engineering community

has also focused on the fairness in ML, mostly on fairness testing

[3, 27, 66, 67]. These works propose methods to generate appropri-

ate test data inputs for the model and prediction on those inputs

characterizes fairness. Some research has been conducted to build

automated tools [2, 64, 67] and libraries [8] for fairness. In addi-

tion, empirical studies have been conducted to compare, contrast

between fairness aspects, interventions, tradeoffs, developers con-

cerns, and human aspects of fairness [10, 26, 33, 35, 77].

Fairness in Composition. Dwork and Ilvento argued that fairness

is dynamic in a multi-component environment [24]. They showed

that when multiple classifiers work in composition, even if the

classifiers are fair in isolation, the overall system is not necessarily

fair. Bower et al. discussed fairness in ML pipeline, where they

considered pipeline as sequence of multiple classification tasks

[12]. They also showed that when decisions of fair components

are compounded, the final decision might not be fair. For example,

while interviewing candidates in two stages, fair decision in each

stage may not guarantee a fair selection. D’Amour et al. studied the

dynamics of fairness in multi-classification environnement using

simulation [21]. In these research, fairness composition is shown

over multiple tasks and the authors did not consider fairness of

components in single ML pipeline. We position our paper here

to study the impact of preprocessing stages in ML pipeline and

evaluate the fairness composition.

11 CONCLUSION

Data preprocessing techniques are used in most of the machine

learning pipelines in compositionwith the classifier. Studies showed

that fairness of machine learning predictions depends largely on

the data. In this paper, we investigated how the data preprocess-

ing stages affect fairness of classification tasks. We proposed the

causal method and leveraged existing metrics to measure the fair-

ness of data preprocessing stages. The results showed that many

stages induce bias in the prediction. By observing fairness of these

data transformers, fairer ML pipelines can be built. In addition, we

showed that existing bias can be mitigated by selecting appropri-

ate transformers. We released the pipeline benchmark, code, and

results to make our techniques available for further usages. Future

research can be conducted towards developing automated tools to

detect bias in ML pipeline stages and instrument that accordingly.
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