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ABSTRACT

In recent years, many incidents have been reported where machine
learning models exhibited discrimination among people based on
race, sex, age, etc. Research has been conducted to measure and
mitigate unfairness in machine learning models. For a machine
learning task, it is a common practice to build a pipeline that in-
cludes an ordered set of data preprocessing stages followed by a
classifier. However, most of the research on fairness has consid-
ered a single classifier based prediction task. What are the fairness
impacts of the preprocessing stages in machine learning pipeline?
Furthermore, studies showed that often the root cause of unfairness
is ingrained in the data itself, rather than the model. But no research
has been conducted to measure the unfairness caused by a specific
transformation made in the data preprocessing stage. In this paper,
we introduced the causal method of fairness to reason about the
fairness impact of data preprocessing stages in ML pipeline. We
leveraged existing metrics to define the fairness measures of the
stages. Then we conducted a detailed fairness evaluation of the
preprocessing stages in 37 pipelines collected from three differ-
ent sources. Our results show that certain data transformers are
causing the model to exhibit unfairness. We identified a number of
fairness patterns in several categories of data transformers. Finally,
we showed how the local fairness of a preprocessing stage com-
poses in the global fairness of the pipeline. We used the fairness
composition to choose appropriate downstream transformer that
mitigates unfairness in the machine learning pipeline.
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1 INTRODUCTION

Fairness of machine learning (ML) predictions is becoming more im-
portant with the rapid increase of ML software usage in important
decision making [5, 22, 30, 50], and the black-box nature of ML algo-
rithms [3, 27]. There is a rich body of work on measuring fairness
of ML models [15, 19, 23, 25, 32, 65, 72, 74] and mitigate the bias
[15, 19, 29, 32, 42, 55, 72, 75]. Recent work [10, 13, 17, 26, 33, 35] has
shown that more software engineering effort is required towards
detecting bias in complex environment and support developers in
building fairer models.

The majority of work on ML fairness has focused on classification
task with single classifier [3, 12, 25, 27]. However, real-world ma-
chine learning software operate in a complex environment [12, 21].
In an ML task, the prediction is made after going through a series
of stages such as data cleaning, feature engineering, etc., which
build the machine learning pipeline [4, 71]. Studying only the fair-
ness of the classifiers (e.g., Decision Tree, Logistic Regression) fails
to capture the fairness impact made by other stages in ML pipeline.
In this paper, we conducted a detailed analysis on how the data
preprocessing stages affect fairness in ML pipelines.

Prior research observed that bias can be encoded in the data
itself and missing the opportunity to detect bias in earlier stage
of ML pipeline can make it difficult to achieve fairness algorith-
mically [22, 31, 35, 44]. Additionally, bias mitigation algorithms
operating in the preprocessing stage were shown to be successful
[25, 41]. Therefore, it is evident that the preprocessing stages of ML
pipeline can introduce bias. However, no study has been conducted
to measure the fairness of the preprocessing stages and show how it
impacts the overall fairness of the pipeline. In this paper, we used the
causal method of fairness to reason about the fairness impact of pre-
processing stages in ML pipeline. Then, we leveraged existing fair-
ness metrics to measure fairness of the preprocessing stages. Using
the measures, we conducted a thorough analysis on a benchmark
of 37 real-world ML pipelines collected from three different sources,
which operate on five datasets. These ML pipelines allowed us to
evaluate fairness of a wide selection of preprocessing stages from
different categories such as data standardization, feature selection,
encoding, over/under-sampling, imputation, etc. For comparative
analysis, we also collected data transformers e.g., StandardScaler,
MinMaxScaler, PCA, 11-normalizer, QuantileTransformer, etc.,
from the pipelines as well as corresponding ML libraries, and eval-
uated fairness. Finally, we investigated how fairness of these pre-
processing techniques (local fairness) composes with other prepro-
cessing stages, and the whole pipeline (global fairness). Specifically,
we answered the following three research questions.

ROQ1 (fairness of preprocessing stages): What are the fairness
measures of each preprocessing stage in ML pipeline? RQ2 (fair
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transformers): What are the fair (and biased) data transformers
among the commonly used ones? RQ3 (fairness composition): How
fairness of data preprocessing stages composes in ML pipeline?

e How local fairness compose into global fairness?
e Does choosing a downstream transformer depend on the
fairness of an upstream transformer?

To the best of our knowledge, we are the first to evaluate the
fairness of preprocessing stages in ML pipeline. Our results show
that by measuring the fairness impact of the stages, the developers
would be able to build fairer predictions effectively. Furthermore,
the libraries can provide fairness monitoring into the data trans-
formers, similar to the performance monitoring for the classifiers.
Our evaluation on real-world ML pipelines also suggests opportuni-
ties to build automated tool to detect unfairness in the preprocessing
stages, and instrument those stages to mitigate bias. We have made
the following contributions in this paper:

(1) We created a fairness benchmark of ML pipelines with several
stages. The benchmark, code and results are shared in our repli-
cation package' in GitHub repository, that can be leveraged in
further research on building fair ML pipeline.

(2) We introduced the notion of causality in ML pipeline and lever-
aged existing metrics to measure the fairness of preprocessing
stages in ML pipeline.

(3) Unfairness patterns have been identified for a number of stages.

(4) We identified alternative data transformers which can mitigate
bias in the pipeline.

(5) Finally, we showed the composition of stage-specific fairness
into overall fairness, which is used to choose appropriate down-
stream transformer that mitigates bias.

The paper is organized as follows: §2 describes the motivating
examples, §3 describes the existing metrics and our approach. In
§4, we described the benchmark and experiments. §5 explores the
results, §6 provides a comparative study among transformers, and
§7 evaluates the fairness composition. Finally, §9 describes the
threats to validity, §10 discusses related work, and §11 concludes.

2 MOTIVATION

In this section, we present two ML pipelines which show that
the preprocessing stage affects the fairness of the model and it is
important to study the bias induced by certain data transformers.

2.1

Yang et al. [71] studied the following ML pipeline which was origi-
nally outlined by Propublica for recidivism prediction on Compas
dataset [5]. The goal is predict future crimes based on the data
of defendants. The fairness values, in terms of statistical parity
difference (SPD: -0.102) and equal opportunity difference (EOD:
-0.027), suggest that the prediction is biased towards® Caucasian
defendants when race is considered as sensitive attribute. The
pipeline consists of several preprocessing stages before applying
LogisticRegression classifier. Data preprocessing includes clean-
ing, encoding categorical features, and missing value imputation.
Recent research [71] showed that the data transformation in this

Motivating Example 1

!https://github.com/sumonbis/FairPreprocessing
?Bias towards a group connotes that the prediction favours that group.
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pipeline is not symmetric across gender groups i.e., male defendants
are filtered more than the female. Do these data transformations in-
troduce unfairness in the prediction? If yes, what are the unfairness
measures of these transformers? Is it possible to leverage existing
metrics to measure the unfairness of each component? If we can
understand the effect of each data transformer, it would be possible
to choose data preprocessing technique wisely to avoid introducing
bias as well as mitigate the inherent bias in data or classifier.

1 df = pd.read_csv(f_path)

2 df = df[(df.days_b_screening_arrest <= 30)

3 & (df.days_b_screening_arrest >= —30)

4 & (df.is_recid !'= —1) & (df.c_charge_degree != 'O")
& (df.score_text != 'N/A")]

6 df = df.replace('Medium', 'Low')

7 labels = LabelEncoder (). fit_transform (df.score_text)

8 imputel_onehot = Pipeline ([

9 ('imputerl ', SimpleImputer(strategy="'most_frequent ")),

10 ('onehot', OneHotEncoder (handle_unknown="ignore '))])

11 impute2_bin = Pipeline ([

12 ('imputer2 ', SimpleImputer(strategy="mean')),

13 ('discretizer ', KBinsDiscretizer (n_bins=4, encode='ordinal ',
strategy="uniform'))])

14 featurizer = ColumnTransformer(transformers=[

15 ('imputel_onehot', imputel_onehot, ['is_recid']),

16 ('impute2_bin', impute2_bin, ['age'])])

17 pipeline = Pipeline ([( 'features', featurizer),

18 ('classifier ', LogisticRegression())])

2.2 Motivating Example 2

The following ML pipeline is collected from the benchmark used
by Biswas and Rajan [10] for studying fairness of ML models. This
pipeline operates on German Credit dataset. Here, the goal is to pre-
dict the credit risk (good/bad) of individuals based on their personal
data such as age, sex, income, etc. In this pipeline, before training
the classifier, data has been processed using two transformers: PCA
for principal component analysis, and SelectKBest for selecting
high-scoring features. The fairness value (SPD: 0.005) shows that
prediction is slightly biased towards female candidates. However, if
the transformers are not applied, then prediction becomes biased
towards male (SPD: -0.117). By applying one transformer at a time,
we observed that PCA alone is not causing the change of fairness. In
this case, SelectBest is causing bias towards female, which in turn
mitigating the overall fairness of the pipeline. Therefore, in addition
to study the fairness of transformers in isolation, it is important to
understand how fairness of components composes in the pipeline.

1 features = []

» features.append(( 'pca’, PCA(n_components=2)))

5 features.append (( 'select_best', SelectKBest(6)))

1 feature_union = FeatureUnion(features)

5 estimators = []

6 estimators.append(( 'feature union', feature_union))
7 estimators.append(( 'RF', RandomForestClassifier()))
s model = Pipeline(estimators)

9 model. fit (X _train, y_train)

10 y_pred = model.predict (X_test)

Our key idea is to leverage causal reasoning and observe fairness
impact of a stage on prediction. To do that we create alternative
pipeline by removing a stage. For example, from the above pipeline,
we remove the SelectKBest and compare the predictions with
original pipeline. We observe that SelectKBest is causing 1.1% of
the female and 3.6% of the male participants to change predictions
from favorable (good credit) to unfavorable (bad credit). Since the
stage is causing more unfavorable decisions to male, the stage is
biased towards female. Thus, we used existing fairness criteria to
measure fairness impact of a stage and propose novel metrics.
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Figure 1: ML pipelines for the motivating examples, having
a sequence of preprocessing stages followed by a classifier.

3 METHODOLOGY

In this section, first, we describe the background of ML pipeline, fo-
cussing on the data preprocessing stages. Second, we formulate the
method and metrics to measure fairness of a certain preprocessing
stage with respect to the pipeline it is used within.

3.1 ML Pipeline

Amershi et al. proposed a nine-stage machine learning pipeline
with data-oriented (collection, cleaning, and labeling) and model-
oriented (model requirements, feature engineering, training, evalu-
ation, deployment, and monitoring) stages [4]. Other research [1, 7]
also described data preprocessing as an integral part of the ML
pipeline. The pipelines in the motivating examples are depicted in
Figure 1, which follows the representation provided by Yang et al.
[71]. In this paper, we adapted the canonical definition of pipeline
from Scikit-Learn pipeline specification [14, 63], which is aligned
with the ML models studied in the literature for fair classification
tasks [3, 8, 10, 26, 27, 71]. We are interested in investigating the
fairness of the data preprocessing stages in the pipeline, which is
depicted with grey boxes in Figure 1.

To summarize, a canonical ML pipeline is an ordered set of m
stages with a set of preprocessing stages (S1, S2, . . . Sm—1) and a fi-
nal classifier (S;;). Each preprocessing stage, Sy operates on the
data already processed by preceding stages Si,...Si_;. A data
preprocessing stage Si can be a data transformer or a set of cus-
tom operations. A data transformer is a well-known algorithm or
method to perform a specific operation such as variable encoding,
feature selection, feature extraction, dimensionality reduction, etc.
on the data [14]. For example, in the second motivating example,
two transformers (PCA and SelectKBest) have been used. Custom
transformation includes data/task-specific contextual operations on
the dataset. For example, in §2.1 (line 2-3), the data instances that
do not contain a value in the range [-30, 30] for the feature days_-
b_screening_arrest, have been filtered. This means the pipeline
ignored the data of the defendants with more than 30 days between
their screening and arrest. This formulation of ML pipeline allowed
us to evaluate fairness of the preprocessing stages in real-world ML
tasks.

3.2 Existing Fairness Metrics

We have leveraged existing fairness metrics to measure the fairness
of the whole pipeline. Many fairness metrics have been proposed in
the literature for measuring fairness of classification tasks [8, 9, 22].
In general, the fairness metrics compute group-specific classifica-
tion rates (e.g., true positives, false positives), and calculates the
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difference between groups to measure the fairness. In this paper, we
adopted the representative group fairness metrics used by [10, 26].
Specifically, we leveraged the following metrics: statistical parity
difference (SPD) [25, 41, 72], equal opportunity difference (EOD)
[32], average odds difference (AOD) [32], and error rate difference
(ERD) [19]. Given a dataset D with n instances, let, actual classifi-
cation label be Y, predicted classification label be f/, and sensitive
attribute be A. Here, Y = 1 if the label is favorable to the individ-
uals, otherwise Y = 0. For example, classification task on German
Credit dataset predicts the credit risk (good/bad credit) of individ-
uals. In this case, Y = 1 if the prediction is good credit, otherwise
Y = 0. Suppose, for privileged group (e.g., White), A = 1 and for
unprivileged group (e.g., non-White), A = 0. SPD is computed by
observing the probability of giving favorable label to each group
and taking the difference. EOD measures the true-positive rate dif-
ference between groups. AOD calculates both true positive rate
and false positive rate difference and then takes the average. ERD
calculates the sum of false positive rate difference and false negative
rate difference between groups. The definitions of these metrics are
as follows:

SPD=P[Y =1|A =0]-P[Y =1|A =1]

EOD=P[Y=1|Y =1, A=0]-P[Y =1]Y =1, A = 1]

AOD = (1/2){(P[Y =1]Y =1, A=0]-P[Y =1|]Y = 1, A = 1])
+(P[Y=1]Y =0, A=0]-P[Y =1]Y =0, A = 1])}

ERD=(P[Y =1]Y =0, A=0]-P[Y =1|]Y =0, A = 1])}

+(P[Y=0lY=1,A=0]-P[Y =0]Y =1, A =1])} (1)

Disparate impact (DI) and statistical parity difference (SPD) both
measure the same rate i.e., probability of classifying data instance as
favorable, but DI computes the ratio of privileged and unprivileged
groups’ rate, whereas SPD computes the difference. Therefore, from
DI and SPD, we only used SPD in our evaluation.

3.3 Fairness of Preprocessing Stages

Suppose, P is a pipeline with m stages and our goal is to evaluate
the fairness of the stage Si, where 1 < k < m. In other words, we
want to measure the fairness impact of Sy on the prediction made
by #. To achieve that we applied the causal reasoning for evaluating
fairness. The causality theorem was proposed by Pearl [53, 54] and
further studied extensively to reason about fairness in many sce-
narios [27, 47, 57, 59, 76]. Causality notion of fairness captures that
everything else being equal, the prediction would not be changed
in the counterfactual world where only an intervention happens
on a variable [27, 47, 57]. For example, Galhotra et al. proposed
causal discrimination score for fairness testing [27]. The authors
created test inputs by altering original protected attribute values
of each data instance, and observed whether prediction is changed
for those test inputs. If the intervention causes the prediction to
be changed, we call the software causally unfair with respect to
that intervention. In our case, if a preprocessing stage Sy be the
intervention, to measure the fairness of Sy, we have to capture
the prediction disparity caused by the intervention Sg. This causal
reasoning of fairness is a stronger notion since it provides causality
in software by observing changes in the outcome made by a specific
stage in the pipeline [27, 54].
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3.3.1 Causal Method to Measure Fairness of Preprocessing Stage.
From pipeline P, we construct another pipeline £* by only exclud-
ing the stage Sy from P. After applying the stage Sy in P, to what
extent the prediction of P* changes, and whether the change is
favorable to any group? Broadly, this can be measured by observing
the prediction difference between £ and £* and computing the
fairness of these changes using the fairness metrics from (1).

Suppose, the predictions made by the two pipelines are Y(#) and
Y(P*). Let, I be the impact set for Sy, which denotes the prediction
parity between Y(#) and Y(#*) such that for i th data instance, if
Yi(P) = Y;(P*), then I; = 0, otherwise 1. By causality, the fairness
of preprocessing stage (denoted by SF) is calculated based on [Y(P),
Y(#*)]1=1 with respect to a fairness metric M, which is shown in
(2a). We noticed that a few preprocessing stages, specifically the
encoders can not be removed without replacing with an alternative
stage. For such situations, we have defined the fairness of Sy with
reference to another stage S, denoted by SF(S|S; ) in (2b).

Zelaya also used the similar method for quantifying the effect
of a preprocessing stage with a goal of computing volatility of a
stage [73]. Volatility quantifies how much impact a preprocessing
stage has on the outcome by computing the probability of prediction
changes. However, it does not capture the fairness of the stage, since
a stage can cause high change in the prediction by maintaining
the predictions fair. Next in §3.3.2, we have extended our causality
based formulation of (2a) for each fairness metric in (1) to capture
the fairness impact of each preprocessing stage. Similar to [27], the
benefit of this formulation is, the measures do not require an oracle,
since the prediction equivalence of pipelines  and P* serves the
goal of evaluating fairness of the stage. Note that the rest of the
definitions in §3.3.2 are independent of (2a) and (2b).

0 if Yi(P) = Y(PY)

1= 1 otherwise Jforalli € {1...n}

SF(Sk) = M[Y(P), Y(P*)]1=1 where P* = P\ S
SF(SkISy) = M[Y(P), Y(P")];=1 where P* = (P \ Sx) U S},

(2a)
(2b)

3.3.2  Fairness Metircs for Preprocessing Stage. We have leveraged
the definition of metrics SPD, EOD, AOD, and ERD from (1) to
capture the stage-specific fairness of Si.. Essentially, the new metrics
will identify the disparities between Yi(?) and Y;(£*) and use
corresponding fairness criteria to measure how much S favors a
specific group with respect to other group(s).

Suppose, among n data instances, n;, are from the unprivileged
group and ny, from the privileged group. SFCspp computes how
many of the data instances have been changed from unfavorable to
favorable after applying the stage Si.. To do that we count changes
in both directions (unfavorable to favorable and favorable to un-
favorable), and take the difference. The sign of SFCspp preserves
the direction of changes. Finally, the metric SFspp is computed
by taking the difference of rates (SFRspp) between unprivileged
and privileged groups. Note that the metric captures fairness by
measuring the difference of favorable change rates between groups.
Simply counting the mismatches between Yi(P) and Y;(P*) could
provide degree of changes in SFCspp but would not capture fair-
ness. Furthermore, computing favorable changes to both groups
separately and evaluating the disparity between them captures
fairness according to the original definition of SPD.
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1 ifYi(P)=1and ¥;(P*)=0
SFCispp = {—1 if ¥;(P) = 0 and V;(P*) = 1
0 otherwise

n
SFCspp = Z SFCispp
i=1
SFRspp(u) = SFCspp(u)/ny, SFRspp(p) = SFCspp(p)/np
SFspp = SFRspp(u) — SFRspp (p) )

Similarly, SFgop is defined using the following equation. In this
case, only the true-positive changes are considered as suggested by
the definition of EOD from (1).

1 ifY; = Y(P)=1and ¥;(P*) =0
SFCirop = -1 if ¥i(P)=0and Y; = V;(P*) =1
0 otherwise

n
SFCop = ) SFCikop
=
SFReop (1) = SFCeop(4)/nu, y=1, SFReop(p) = SFCeon (P)/np, =1

SFeop = SFReop (1) — SFReop(p) (4)

Since AOD computes the average of true positive (TP) rate and
false positive (FP) rate, first the change set for TP and FP predictions
is computed. Then averaging the probability of changes for TP and
FP, the change rates are computed for both groups. Finally, SFAop
is calculated by taking the difference of rates between privileged

and unprivileged groups.
if Y; = ¥;(P) = 1and ¥;(P*) = 0

1
SFCitp = -1 if Vi(P)=0and ¥; = V;(P*) =1
0 otherwise
1 if¥i(P)=1andY; = Yi(P*) =0
SFCipp = 4—1 if Y; = ¥;(P) = 0and ¥;(P*) = 1
0 otherwise

n n
SFCrp = Z SFCitp , SFCpp = Z SFCrp

i=1

SFRaop (1) = (1/2){SFCrp(u)/nu, y=1 + SFCrp(u)/nu, y=0}

SFRaop(p) = (1/2){SFCtp(p)/np,y=1 + SFCep(p)/np,y=0}
SFaop = SFRaop(#) — SFRaop(p)

i=1

)

Finally, SFErp is computed using the change of count in both
false positives (FP) and false negatives (FN) as mentioned in the
definition of ERD in (1).

1 ifVi(P)=0andV; = V;(P*) =1
SFCien =1—1 ifY; = ¥i(P)=1and Vi(P*) =0
0 otherwise

n
SFCrn = ) SFCipx
i=1
SFRerr(u) = SFCrp(u)/ Ny, y=0 + SFCen(U) /Ny, y=1
SFRerr(P) = SFCrp(p)/np, y=0 + SFCen(P)/np, y=1

SFerr = SFRerr(u) — SFReRrr(p) (6)

Thus far, we have four fairness metrics (SFspp, SFEop, SFAODS
and SFgrp) to measure the fairness of the stage. In general, the
rates computed by each metric (SFR) follow the same range of the
original metrics [-1, 1]. Therefore, the above metrics have a range
[-2, 2]. Positive values indicate bias towards unprivileged group,
negative values indicate bias towards privileged group, and values
very close to 0 indicate fair preprocessing stage.
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4 EVALUATION

In this section, we describe the benchmark dataset and pipelines
that we used for evaluation. Then we present the experiment design
and results for answering the research questions.

4.1 Benchmark

We collected ML pipelines used in prior studies for fairness evalua-
tion. First, Biswas and Rajan collected a benchmark of 40 ML models
collected from Kaggle that operate on 5 different datasets e.g., Ger-
man Credit [34], Adult Census [45], Bank Marketing [49], Home
Credit [39] and Titanic [40]. However, the authors did not study
the fairness at the component level, rather the ultimate fairness of
the classifiers e.g., RandomForest, DecisionTree, etc. We revisited
these Kaggle kernels and collected the preprocessing stages used
in the pipelines. We noticed that Home Credit dataset [39] in this
benchmark is not unified like the other datasets, distributed over
multiples CSV files, and the models under this dataset do not oper-
ate on the same data files. Hence, these models (8 out of 40) are not
suitable for comparing fairness of data preprocessing stages.

Second, we collected the pipelines provided by Yang et al. [71].
The authors released 3 pipelines on two different datasets - Adult
Census and Compas. Third, Zelaya [73] studied the volatility of
the preprocessing stages using two pipelines on a fairness dataset
i.e., German Credit. We included these pipelines in our benchmark.
Thus, we created a benchmark of 37 ML pipelines that operate on
five datasets. The pipelines with the stages in each dataset category
and their performances are shown in Table 1. Below we present a
brief description of the datasets and associated tasks.

Table 1: The preprocessing stages and performance mea-
sures (accuracy, f1 score) of the pipelines in the benchmark

German Stages ‘Acc F1 Adult Stages |Acc F1 |
GC1 PCA, SB 0.64|0.76 | AC1 SS,LE 0.850.66
GC2 SMOTE, SS 0.74|0.81| AC2 MV 0.850.68
GC3  |PCA 0.73|0.83|AC3 | Custom(l) 0.87]0.66
GC4 LE, SS 0.73]0.82| AC4 PCA, SS 0.850.66
GC5 SS 0.74]0.83| AC5 LE 0.87(0.71
GC6 PCA, SS, LE 0.73(0.83| AC6 Custom(f), Custom(c) 0.85[0.65
GC7 PCA, SB 0.66|0.77| AC7 PCA, SS, Custom(f) 0.78]0.51
GC8 SS 0.72/0.81| AC8 SS, Custom(f), Stratify 0.85/0.67
GC9 SMOTE 0.67|0.77| AC9 SS 0.81(0.61
GC10 Usamp 0.6(0.81| ACP10 |Impute 0.810.62
[Bank  Stages Acc F1 Titanic Stages |Acc F1
BM1 Custom, LE, SS 0.9(0.56|TT1 MYV, Custom(f), Encode 0.77(0.83
BM2 LE 0.91]0.61|TT2 MYV, Custom(f) 0.780.72
BM3 LE, SS, Custom(f)| 0.9/0.48| TT3 Custom(f), Impute 0.8]0.72
BM4 SS 0.89/0.33| TT4 Custom(f), Impute, RFECV |0.810.73
BM5 SS 0.88 0.23|TT5 Custom(f) 0.830.76
BM6 FS, Stratify, SS 0.91/0.58| TT6 Custom(f) 0.820.74
BM7 FS 0.91| 0.6|TT7 _ |SS, LE, Custom(f) 0.82[0.77
BM8 Stratify 0.9]0.56| TT8 Custom(f) 0.830.76
Compas Stages Acc F1 |
CP1 Filter, Imputel, Encode, Impute2, Kbins, Binarize 0.97/0.97
SB: SelectBest, SS: StandardScaler, LE*: LabelEncoder, Usamp: Undersampling, Cus-
tom(f/c): Custom feature engineering or cleaning, FS: Feature selection, MV: Missing
value processing, RFECV: Feature selection method

* Fairness is measured with respect to a reference stage.

German Credit. The dataset contains 1000 data instances and 20
features of individuals who take credit from a bank [34]. The target
is to classify whether the person has a good/bad credit risk.
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Adult Census. The dataset is extracted by Becker [45] from 1994
census of United States. It contains 32,561 data instances and 12
features including demographic data of individuals. The task is to
predict whether the person earns over 50K in a year.

Bank Marketing. This dataset contains a bank’s marketing cam-
paign data of 41,188 individuals with 20 features [49]. The goal is
to classify whether a client will subscribe to a term deposit.

Titanic. The dataset contains information about 891 passengers
of Titanic [40]. The task is to predict the survival of the individuals
on Titanic. The sensitive attribute of this dataset is sex.

Compas. The dataset contains data of 6,889 criminal defendants in
Florida. Propublica used this dataset and showed that the recidivism
prediction software used in US courts discriminates between White
and non-White [5]. The task is to classify whether the defendants
will re-offend where race is considered as the sensitive attribute.

4.2 Experiment Design

Each pipeline in the benchmark consists of one or more preprocess-
ing stages followed by the classifier. In this paper, our main goal is
to evaluate the fairness of different preprocessing stages using the
fairness metrics described in §3. The benchmark, code and results
are released in the replication package [11].

The experiment design for evaluating the pipelines is shown in
Figure 2. First, for each pipeline, we identified the preprocessing
stages. For example, the pipeline in §2.1 contains six preprocessing
stages. To evaluate the fairness of a stage Sy in a pipeline P, we
create an alternative pipeline £* by removing the stage Si. For
stages that can not be removed, we replaced Si with a reference
stage SI/C. Among the preprocessing stages shown in Table 1, we
found only the encoders can not be removed. We experimented with
all the encoders in Scikit-Learn library [61], i.e., OneHotEncoder,
LabelEncoder, OrdinalEncoder, and found that OneHotEncoder
does not exhibit any bias. Therefore, we used OneHotEncoder as
the reference stage for the encoders in our experiment.

Second, the original dataset is split into training (70%) and test
set (30%). Then two copies of training data are used to train pipeline
P and P*. After training the classifiers, two models predict the
label for the same set of test data instances. Then, similar to the
experimentation of [73], for each prediction label we compare the
two predictions ¥;(?) and ¥;(©*) with the true prediction label Y;.
This comparison provides the necessary data to compute the four
fairness metrics. Similar to [10, 26], for each stage in a pipeline,
we run this experiment ten times, and then report the mean and
standard deviation of the metrics, to avoid inconsistency of the
randomness in the ML classifiers. Finally, we followed the ML best
practices so that noise is not introduced evaluating the fairness of
preprocessing stages. For example, while applying some transforma-
tion, lack of data isolation might introduce noise in the evaluation,
e.g., when applying PCA on dataset, it is important to train the PCA
only using the training data. If we use the whole dataset to train the
PCA and transform data, then information from the test-set might
leak. Third, since a stage operates on the data processed by the
preceding stage(s), there are interdependencies between them. We
always maintained the order of the stages while removing or replac-
ing a stage (§5). To observe fairness of data transformers without
interdependencies, we applied them on vanilla pipelines (§6).
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Figure 2: Experiment design to measure fairness of preprocessing stages in machine learning pipeline.

5 FAIRNESS OF PREPROCESSING STAGES

In this paper, we used a diverse set of metrics, to evaluate fairness
of preprocessing stages. While developing an ML pipelines, if the
developer has a comprehensive idea of the fairness of preprocessing
stages, it would be convenient to build a fair pipeline. The evaluation
has been done on 69 preprocessing stages in 37 ML pipelines from 5
dataset categories. For Compas dataset, we found one pipeline (§2.1).
Five out of six stages in this pipeline exhibit no bias, which has
been discussed later. For other 4 dataset categories, the evaluation
has been shown in Figure 3. In this section, first, we discuss how
we can interpret the metrics. Second, we answer the first research
question and discuss the findings from our evaluation.

5.1 What Do the Metrics Imply?

We investigated the fairness of the preprocessing stages using four
metrics: SFspp, SFEoD, SFAoD, and SFerp. These metrics measure
the fairness of the stages by using the existing fairness criteria, e.g.,
SFspp measures the fairness of a stage with respect to statistical
parity difference (SPD) criteria. These fairness criteria evaluate
algorithmic fairness of ML pipelines [15, 25, 72]. The unfairness
characterized by these criteria is measured based on the predic-
tion disparities, although the root cause can be the training data
or the algorithm (e.g., data preprocessing, classifier) itself. There-
fore, when an ML model is identified as unfair, it implies that in
the given predictive scenario, the outcome is biased. Similarly,
the metrics proposed in this paper measure algorithmic unfair-
ness caused by a specific preprocessing stage with respect to its
pipeline. For instance, in Figure 3, pipeline GC4 has two stages:
LabelEncoder and StandardScaler. The fairness metrics suggest
that LabelEncoder is biased towards unprivileged group (positive
value), and StandardScaler is biased towards privileged group
(negative value). The stages for which the measures are very close
to zero, can be considered as fair preprocessing.

The metrics can provide different fairness signals for a certain
stage. For example, in AC4, SFgrp shows positive fairness, whereas
the other metrics suggest negative fairness for both the stages
PCA and StandardScaler. This disparity occurs because different
metrics accounts for different fairness criteria. In this case, SFggrp,
depends on the false positive and false negative rate difference. No
other metric is concerned about the false negative rate difference,
and hence SFgrp provides a different fairness signal than other
metrics. In practice, appropriate fairness criteria can vary depending
on the task, usage scenario, or involved stakeholders. Study suggests
that developers need to be aware of different fairness indicators
to build fairer pipelines [26]. Therefore, we defined and evaluated
fairness of stages with respect to multiple metrics.
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5.2 Fairness Analysis of Stages

The pipelines used both built-in algorithm imported from libraries
i.e., data transformers [14], as well as custom preprocessing stages.
The stages found in each pipeline are shown in Table 1, and the
fairness measures of those stages are plotted in Figure 3. Although
the unfairness exhibited by a stage is with respect to the pipeline,
we found fairness patterns of some stages and investigated them
further. In general, our findings show that the stages which change
the underlying data distribution significantly, or modify minority
data are responsible for increasing bias in the pipelines.

Finding 1: Data filtering and missing value removal change the
data distribution and hence introduce bias in ML pipeline.

Most of the real-world datasets contain missing values (MV) for
several reasons such as data creation errors, not-applicable (N/A)
attributes, incomplete data collection, etc. In our benchmark, Adult
Census and Titanic contain MV that required further processing in
the pipeline. 7.4% rows in Adult Census and 20.2% rows in Titanic
have at least one missing feature in the dataset. The pipelines either
remove the rows with MV or apply certain imputation [62] tech-
nique that replaces the MV with mean, median or most frequently
occurred values. Removal of rows with MV can significantly change
the data distribution, which introduces bias in the pipeline. For ex-
ample, both TT1 and TT2 removed data items with MV by applying
df.dropna() method, which introduces bias in the prediction (Fig-
ure 3). Research has shown that MV are not uniformly distributed
over all groups and data items from minority groups often contain
more MV [22]. If those data items are entirely removed, the repre-
sentation of minority groups in the dataset becomes scarce. On the
other hand, TT3 applied mean-imputation and TT4 applied both
median- and mode-imputation using df . fillna(), which exhibits
fairness compared to data removal. While our findings suggest that
removing data items with MV introduces bias, the most popular
fairness tools AIF 360 [8], Aequitas [58], Themis-ML [6] ignore
these data items and remove entire row/column. Our evaluation
strategy confirms that the tools can integrate existing imputation
methods [62] in the pipeline and allow users to choose appropri-
ate ones. Additionally, more research is needed to understand and
develop imputation techniques that are fairness aware.

Finding 2: New feature generation or feature transformation can
have large impact on fairness.

We found that most of the feature engineering stages, especially
the custom transformations exhibit bias in the pipeline. For example,
the pipelines in Titanic dataset used custom feature engineering,
since the dataset contains composite features which may provide
additional information about the individuals. For instance, TT8
operates on the feature name to create a new feature title e.g., Mr,
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Figure 3: Fairness measures (Y-axis) of preprocessing stages in pipelines (X-axis). Grey lines above bars indicate standard error.

Mrs, Dr, etc. This transformation aims at better prediction of the
survival of passengers by extracting the social status, but creates
high bias between male and female.

In Adult Census, the feature eduction of individuals contain values
such as preschool, 10th, 1st-4th, prof-school, etc., which have been
replaced by broad categories such Dropout, HighGrad, Masters in
the pipeline AC7. In addition, instead of using age as continuous
value, the feature has been discretized into n number of bins. In both
cases, the original data values have been modified, which has caused
unfairness in the pipeline. Nevertheless, some pipelines (AC3, AC8)
have custom feature transformations that are fair. Previous studies
showed that certain features contribute more to the predictive
quality of the model [28, 56]. Feature importance in prediction
and corelation of features with the sensitive attribute also led to
bias detection [16, 31] in ML models. However, does creating new
features (by removing certain semantics) from a potentially biased
feature increase the fairness, is an open question. Our method to
quantify the fairness of such changes can guide further research in
this direction.

Finding 3: Encoding techniques should be chosen cautiosly based
| on the classifier.

Two most used encoding techniques for converting categorical
feature to numerical feature are OneHotEncoder and LabelEncoder.
OneHotEncoder creates n new columns by replacing one column for
each of the n categories. LabelEncoder does not increase the num-
ber of the columns, and gives each category an integer label between
0 and (n — 1). In our evaluation, we found that LabelEncoder intro-
duces bias in German Credit and Titanic dataset but OneHotEncoder
does not change fairness. Since LabelEncoder imposes a sequen-
tial order between the categories, it might create a linear relation
with the target value, and hence have an impact on the classifier to
change fairness. For example, pipelines TT7 creates a new feature
called Family based on the surname of the person. This feature has
alarge number of unique categories (667 unique ones in 891 data in-
stances). Therefore, the non-sparse representation in LabelEncoder
adds additional weight to the feature, which is causing unfairness
in TT7. Developers might avoid OneHotEncoder because it suffers
from the curse of dimensionality and the ordinal relation of data is
lost. In that case, developers should be aware of the fairness impact
of the encoder. One solution might be using PCA for dimensionality
reduction, which has been done in GC7.
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Finding 4: The variability of fairness of preprocessing stages depend
on the dataset size and overall prediction rate of the pipelines.

We have plotted the standard error of the metrics as error bars
in Figure 3. Firstly, it shows that the metrics in German Credit and
Titanic dataset are more unstable. The reason is that the size of
these two datasets is less than the other three datasets. German
Credit dataset has 1000 instances, and Titanic has 891 instances.
Adult Census and Bank Marketing dataset have more than 30K
instances. If the sample size is large, data distribution tends to be
similar even after taking a random train-test split [26]. However,
when the dataset size is smaller, the distribution is changed among
different train-test splitting. Furthermore, we have found that SFgrp
is more unstable than other metrics. SFErp depends on the change
of false positive and false negative rates. However, in most cases,
the pipelines are optimized for accuracy and precision, since these
are some best performing ones collected from Kaggle. Therefore,
before deploying preprocessing stages, it would be desirable to test
the stability of over multiples executions.

Finding 5: The unfairness of a preprocessing stage can be domi-
nated by dataset or the classifier used in the pipeline.

For the Compas dataset, we evaluated the six stages shown in
§2.1. All the stages exhibited data filtering show bias. The data
filtering also showed bias close to zero (less than .005) with respect
to all the metrics. Although Yang et al. [71] argued that this pipeline
filters data in different proportions from male and female group,
our evaluation confirms it does not cause unfairness. This pipeline
has been used by Propublica [5] to show the bias in the prediction.
Therefore, it is understandable that they did not employ any pre-
processing that introduces bias in the pipelines. Other than that,
almost all the preprocessing stages in Bank Marketing pipelines also
exhibit very little unfairness, which suggest that the preprocessing
on this dataset are fair in general.

A few stages show different behavior when they are used in com-
position with different classifiers. For example, StandardScaler
has been applied on both GC6 and GC8. While GC6 employs a
RandomForest classifier, GC8 uses K-Neighbors classifier. We have
observed the opposite fairness measures for StandardScaler in these
two pipelines. Therefore, fairness can be dominated by the under-
lying properties of data or the pipeline where it is applied. We have
further investigated this phenomenon by applying transformers on
different classifiers in the next section.
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Figure 4: Performance changes (green) are plotted with fairness (red) of the preprocessing stages. A positive or negative per-
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5.3 Fairness-Performance Tradeoff Table 2: Transformers collected from pipelines and libraries
In this section, we investigated the fairness-performance tradeoff
for the preprocessing stages. The original performances of each e i ransformers :

MYV processing |Imputation SimpleImputer, Iterativelmputer
pipeline have been reported in Table 1. To investigate fairness of a Categorical en{Encoder Binarizer, KBinsDiscretizer, LabelBina|
stage, we created pipeline P* by removing the stage from original coding i rizer, LabelEncoder, OneHotEncoder

. . . Scaling StandardScaler, MaxAbsScaler, MinMaxS-
pipeline # (§2). To understand fairness-performance tradeoff, we Standardizationl caler, RobustScaler
evaluated performance (both accuracy and f1 score) of £* and  in Normalization 11-normalizer, 12-normalizer
the same experimental setup. Then we Computed the performance Feature Non—linegr transformation QuantiIeTransformer., EowerTransformer

X . Polynomial feature gener{PCA, SparsePCA, MiniBatchSparsePCA,|
difference to observe the impact of the stage on performance. For engineering  |ation KernelPCA
example, ACC(P) —ACC(P*) gives the accuracy increase (or decrease, Feature selection SelectKBest, SelectFpr, SelectPercentile
if negative) after applying a stage. We plotted the performance Ot SO
impacts of the stages with their fairness measures in Figure 4. Sampling gﬁ:ﬁﬁﬁﬂﬁ“g RA;I:;I;IE’ Stratified

First, many preprocessing stages have negligible performance
impact. In Figure 4, 19 out 63 stages exhibits accuracy and f1 score
change in the range [-0.005, 0.005], which indicates performance been only applied on German Credit dataset. What is the fairness of
change < 0.05%. We found that in all of these cases, except AC9 this transformer when used on other datasets and classifier? In this
and AC10, the preprocessing stages are fair with a very small de- section, we setup experiments to evaluate the fairness of commonly
gree of bias. Second, tradeoff between performance and fairness is used data transformers on different datasets and classifiers.
observed for the stages which improve performance. 17 stages im- First, we collected the classifiers used in each dataset category
prove accuracy or f1 score more than 0.05%, which further exhibits from the benchmark. Then, for each dataset, we created a set of
moderate to high degree of bias. Overall, the most biased stages vanilla pipelines. A vanilla pipeline is a classification pipeline which
- TT7(LE), TT8(CT), TT4(CT), TT1(MV), GC8(SS), are improving contain only one classifier. Second, we found a few categories of
performance. This stage-specific tradeoff is aligned with the overall preprocessing stages from our benchmark shown in Table 2. For
performance-fairness tradeoff discussed in prior work [10, 17, 26], each transformer used in each stage, we collected the alternative
which can be compared quantitatively by the work of Hort et al. transformers from corresponding library. For example, in our bench-
[36]. Third, we found that some stages decrease the performance, mark, StandardScaler from Scikit-Learn library has been used for
either accuracy or f1 score. Surprisingly, most of these stages also scaling data distribution in many pipelines. We collected other stan-
exhibit high degree of bias. For instance, the most performance- dardizing algorithms available in Scikit-Learn. We found that be-
decreasing stages - BM4(SS), AC7(PCA), GC10 (Undersampling), sides StandardScaler, Scikit-Learn also provides MaxAbsScaler,
are showing more bias. Our fairness evaluation would facilitate MinMaxScaler, and Normalizer standardize data [61]. Similarly, a
developers to identify and remove such stages in the pipeline. data oversampling technique SMOTE has been used in the bench-
mark, we collected another undersampling technique ALLKNN and

6 FAIR DATA TRANSFORMERS a combination of over- and undersampling sampling technique
In §5, we found that many data preprocessing stages are biased. SMOTENN from IMBLearn library [48]. Third, in each of the vanilla
Many bias mitigation techniques applied in preprocessing stage pipelines, we applied the transformers and evaluated fairness using
have been shown successful [25, 41]. If we process data with ap- the method used in §4.2 with respect to four metrics. We found that
propriate transformer, then it might be possible to avoid bias and pipelines under Titanic uses custom transformation, and most of
mitigate inherent bias in data or classifier. Even if a data transformer the built-in transformers are not appropriate for this dataset. So,
is biased towards a specific group, it could be useful to mitigate bias to be able to make the comparison consistent, we conducted this
if original data or model exhibits bias towards the opposite group. evaluation on four datasets: German Credit, Adult Census, Bank
To that end, we want to investigate the fairness pattern of the data Marketing, Compas. Finally, we did not use transformers for impu-
transformers. However, in our evaluation (Figure 3), some trans- tation and encoder stages. Encoding transformers (LabelEncoder,
formers have been used only in specific situations e.g., SMOTE has OneHotEncoder), have been applied on most of the pipelines and
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Figure 5: Fairness of transformers on classifiers, D: DecisionTree, R: RandomForest, X: XGBoost, S: SupportVector, K: KNeighbors

their behavior has been understood. The fairness measures of each
transformer on different classifiers have been plotted in Figure 5.

Fairness among the datasets follows a similar pattern. This fur-
ther confirms that the unfairness is rooted in data. The Compas
dataset shows the least bias. Although racial discrimination has
been reported for this dataset [5], this is a more curated dataset
than the other three. By looking at the overall trend of fairness,
we observe that sampling techniques have the most biased impact
on prediction. Other than that feature selection transformers have
more impact than other ones.

Finding 6: Among all the transformers, applying sampling tech-
nique exhibits most unfairness.

Sampling techniques are often used in ML tasks when dataset
is class-imbalanced. Unlike the other transformers, sampling tech-
niques make horizontal transformation to the training data. The
oversampling technique SMOTE creates new data instances for the
minority class by choosing the nearest data points in the feature
space. Undersampling techniques balance dataset by removing data
items from majority class. Although balancing dataset has been
shown to increase fairness [22], our evaluation suggest that in three
out of four datasets, it increases bias.

From Figure 5, we can see that sampling techniques exhibit the
most unfairness. In German Credit dataset, different classifier reacts
differently when sampling is done. DecisionTree classifier exhibits
most unfairness for both oversampling and undersampling towards
privileged group i.e., male. Interestingly, the combination of over-
and undersampling also fails to show fairness. Furthermore, both
German Credit and Bank Marketing pipelines exhibit bias towards
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unprivileged group, which might be desired when compared to bias
towards privileged.

Finding 7: Selecting subset of features often increase unfairness. ‘

Selecting the best performing feature can give performance im-
provement of the pipeline. However, unfairness can be encoded in
specific features [31]. While selecting best features, some features
which encodes unfairness, can dominate the outcome. Thus, many
classifiers in German Credit, Adult Census, and Bank Marketing
show unfairness because of reduced number of features, which
has been also observed by Zhang and Harman [76]. Surprisingly,
SelectFpr exhibited very little or no bias compared to the other
feature selection methods. A detailed investigation suggests that
SelectBest and SelectPercentile select only the k most con-
tributing features. However, SelectFpr performs false positive rate
test on each feature, and if it falls below a threshold, the feature is
removed [60]. Therefore, it does not apply harsh pruning, which
contributes to the fairness of the prediction.

Finding 8: In most of the pipelines, feature standardization and
| non-linear transformers are fair transformers.

These transformers modify the mean and variance of the data
by applying linear or non-linear transformation. However, they do
not change the feature importance on the classifiers. Therefore, in
most of the cases, these transformers (especially, StandardScaler
and RobustScaler) are fair. Some classifiers show bias after apply-
ing these transformers such as, KNC in Compas. The unfairness
exhibited by those pipelines are introduced by the classifiers, since
these classifiers show similar bias pattern for other transformers
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Figure 6: Comparison of global fairness change and local
fairness for Adult Census dataset pipelines.

as well. The scalers can impact the fairness significantly if there
are many outliers in data. That is why we see more bias for the
scalers in German Credit dataset. Therefore, although standardizing
transformers are fair in general, they can be biased in composition
with specific classifier or data property.

7 FAIRNESS COMPOSITION OF STAGES

From our evaluation, we found that many data transformers have
fairness impact on ML pipeline. In this section, we compare the local
fairness (fairness measures of preprocessing stages) with the global
fairness (fairness measures of whole pipeline). First, we answer
whether the local fairness composes in the global fairness. Second,
we investigate if we can leverage the composition to mitigate bias
by choosing appropriate transformers.

7.1 Composition of Local and Global Fairness

We evaluated the global fairness of Adult Census pipelines (Table 1)
using the four existing metrics from (1). We calculated the fairness
difference of these pipelines before and after applying the prepro-
cessing stages. Additionally, we have evaluated the stage-specific
fairness metrics. Both the local fairness and difference in global
fairness of those pipelines have been plotted in Figure 6.

We can see that local and global fairness follow the same trend
in most of the pipelines. This confirms that local fairness is directly
contributing to the global fairness. However, the global fairness is
computed based on the overall change in the prediction, whereas
the local fairness considers the predictions for only those data
instances which have been altered after applying a transformer
(3). For example, in Figure 6, for some pipelines (e.g., AC9, AC10),
global and local fairness exhibit different trends. In these cases,
the overall classification rate difference is not similar to the rate
difference of altered labels. This means that the stages changed the
labels such that it shows bias towards privileged. But when those
changes in the labels are considered in addition to all the labels
(global fairness), the bias difference could not capture the actual
impact of that stage. We have verified this observation by manually
inspecting the altered prediction labels. Thus, we can conclude that
the local fairness composes to the global fairness. Specifically, if a
preprocessing stage shows bias for privileged group, it pulls the
global fairness towards the fairness direction of privileged group.
However, only observing the global fairness difference, we can not
measure the fairness of a given stage or transformer.
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7.2 Bias Mitigation Using Appropriate
Transformers

For a given transformer in an ML pipeline, a downstream trans-
former operates on data already processed by the given transformer
and an upstream transformer is applied before the given one. Since
the fairness of a preprocessing stage composes to the global fairness,
can we choose a downstream transformer to mitigate bias in ML
pipeline? In this section, we empirically show that the global un-
fairness can be mitigated by choosing the appropriate downstream
transformer.

XGB Classifier
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Figure 7: Global fairness after applying the upstream trans-
former (left), and after applying both the upstream and one
downstream transformer (right). Usamp: undersampling,.

Consider the use-case of classification task on German Credit
dataset with different classifiers similar to Figure 5. Suppose, the
original pipeline is constructed using undersampling technique.
Since this pipeline exhibits bias, as shown in Figure 5, can we choose
a downstream data standardizing transformer that mitigates that
bias? In this use case, undersampling is the upstream transformer,
and any standardizing transformer is the downstream transformer.

We showed the evaluation for XGB classifier and KNC classifier,
since these two exhibits most bias when the upstream transformer
was applied in §6. We plotted the global fairness after applying only
the upstream transformer in the left of Figure 7. We also reported
the local fairness of the standardizing transformers in Table 3. Now,
since undersampling method exhibits bias towards privileged group
for XGB, we look for the transformer that is biased towards privi-
leged group. In Figure 7, among other transformers, Normalizer is
the most successful to mitigate bias of the upstream transformer.
Similarly, for KNC, the upstream operator exhibits bias towards
privileged group. From Table 3, we can see that MinMaxScaler is
the most biased transformer towards the opposite direction. As a
result, applying MinMaxScaler mitigates bias the most. Note that
the other downstream transformers also follow the fairness com-
position with its upstream transformer. Therefore, by measuring
fairness of the preprocessing stages, developers would be able to
instrument the biased transformers and build fair ML pipelines.

8 DISCUSSION

We took the first step to understand the fairness of components in
ML pipelines. Our method helps to provide causality in software and
reason about behavior of components based on the impact on out-
come. This method can be extended further to evaluate the fairness
of other software modules [52] in ML pipeline and localize faults
[70]. Moreover, we found most of the stages exhibited bias, to a low
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Table 3: Local fairness of stages as downstream transformer.

Model Stage SF_SPD SF_EOD SF_AOD SF_ERD
SS 0.001 0.021 -0.016 ~0.073
MM -0.006 0.031 -0.029 -0.12
MA -0.036 0.005 -0.059 -0.128
XGB | RO 0.051 0.082 0.025 -0.113
NO -0.014 -0.056 0.012 0.135
QT 0.011 0.062 -0.02 -0.165
PT -0.029 0.011 -0.055 -0.132
SS 0.035 0.025 0.055 0.059
MM 0.095 0.12 0.096 -0.05
MA 0.079 0.114 0.075 -0.078
KkNC | RO 0.052 0.074 0.056 -0.036
NO 0.045 0.010 0.077 0.134
QT 0.077 0.104 0.078 -0.052
PT 0.035 0.032 0.050 0.036

SS: StandardScaler, MM: MinMaxScaler, MA: MaxAbsScaler, RO: RobustScaler,
NO: Normalizer, QT: QuantileTransformer, PT: PowerTransformer

or higher degree. The fairness measures of different components
can be leveraged towards fairness-aware pipeline optimization to
satisfy fairness constraints. For example, US Equal Employment
Commission suggests selection-rate difference between groups less
than 20% [68]. Also, pipeline optimization techniques, e.g., TPOT
[51], Lara [46] can be potentially utilized for pipeline optimization.

Furthermore, research has been conducted to understand the
impact of preprocessing stages with respect to performance im-
provement [18, 20, 69]. This paper will open research directions
to develop preprocessing techniques that improve performance by
keeping the fairness intact. We also reported a number of fairness
patterns of preprocessing stages that inducing bias in the pipeline
such as missing value processing, custom feature generation, fea-
ture selection. Moreover, instrumentation of the stages can mitigate
the inherent bias of the classifiers. It shows opportunities to build
automated tools for identifying fairness bugs in Al systems and
recommending fixes [37, 38]. Finally, current fairness tools (e.g.,
ATF 360 [8], Aequitas [58]) can be augmented by incorporating
data preprocessing stages into the pipelines and letting users have
control over the data transformers and observe or mitigate bias.
Similarly, the libraries can provide API support to monitor fairness
of the transformers.

9 THREATS TO VALIDITY

Internal validity refers to whether the fairness measures used in
this paper actually captures the fairness of preprocessing stages.
To mitigate this threat, we used existing concepts and metrics to
build new set of metrics. Causality in software [53, 54] has been
well-studied, and causal reasoning in fairness has also been popular
[47, 57, 59, 76], since it can provide explanation with respect to
change in the outcome. Besides, this method do not require an oracle
because the prediction equivalences provide necessary information
to measure the impact of the intervention [27]. Furthermore, in
§7, we conducted experiments on local and global fairness to show
how new metrics composes in the pipeline.

External validity is concerned about the extent the findings of
this study can be generalized. To alleviate this threat, we conducted
experiments on a large number of pipeline variations. We collected
the pipelines from three different sources. Moreover, we collected
alternative transformers from the ML libraries for comparative
analysis. Finally, for the same dataset categories, we used multiple
classifiers and fairness metrics so that the findings are persistent.

991

ESEC/FSE "21, August 23-28, 2021, Athens, Greece

10 RELATED WORKS

Fairness in ML Classification. The machine learning community
has defined different fairness criteria and proposed metrics to mea-
sure the fairness of classification tasks [15, 19, 22, 23, 25, 32, 54,
65, 72, 74]. Following the measurement of fairness in ML models,
many mitigation techniques have also been proposed to remove
bias [15, 19, 22, 25, 29, 32, 41-43, 55, 72, 75]. This body of work
mostly concentrates on the theoretical aspect of fairness in a sin-
gle classification task. Recently, software engineering community
has also focused on the fairness in ML, mostly on fairness testing
[3, 27, 66, 67]. These works propose methods to generate appropri-
ate test data inputs for the model and prediction on those inputs
characterizes fairness. Some research has been conducted to build
automated tools [2, 64, 67] and libraries [8] for fairness. In addi-
tion, empirical studies have been conducted to compare, contrast
between fairness aspects, interventions, tradeoffs, developers con-
cerns, and human aspects of fairness [10, 26, 33, 35, 77].

Fairness in Composition. Dwork and Ilvento argued that fairness
is dynamic in a multi-component environment [24]. They showed
that when multiple classifiers work in composition, even if the
classifiers are fair in isolation, the overall system is not necessarily
fair. Bower et al. discussed fairness in ML pipeline, where they
considered pipeline as sequence of multiple classification tasks
[12]. They also showed that when decisions of fair components
are compounded, the final decision might not be fair. For example,
while interviewing candidates in two stages, fair decision in each
stage may not guarantee a fair selection. D’Amour et al. studied the
dynamics of fairness in multi-classification environnement using
simulation [21]. In these research, fairness composition is shown
over multiple tasks and the authors did not consider fairness of
components in single ML pipeline. We position our paper here
to study the impact of preprocessing stages in ML pipeline and
evaluate the fairness composition.

11 CONCLUSION

Data preprocessing techniques are used in most of the machine
learning pipelines in composition with the classifier. Studies showed
that fairness of machine learning predictions depends largely on
the data. In this paper, we investigated how the data preprocess-
ing stages affect fairness of classification tasks. We proposed the
causal method and leveraged existing metrics to measure the fair-
ness of data preprocessing stages. The results showed that many
stages induce bias in the prediction. By observing fairness of these
data transformers, fairer ML pipelines can be built. In addition, we
showed that existing bias can be mitigated by selecting appropri-
ate transformers. We released the pipeline benchmark, code, and
results to make our techniques available for further usages. Future
research can be conducted towards developing automated tools to
detect bias in ML pipeline stages and instrument that accordingly.
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