Reducing III-V avalanche photodiode noise through the introduction of boron

Rasha H. El-Jaroudi¹, Adam A. Dadey², Xingjun Xue², Andrew H. Jones², Bingtian Guo², Joe C. Campbell² and Seth R. Bank¹

¹University of Texas at Austin, Department of Electrical and Computer Engineering, Austin, TX, 78758, USA ²University of Virginia, Department of Electrical and Computer Engineering, Charlottesville, VA 22904, USA Email:reljaroudi@utexas.edu/Phone: (512) 471-5383

Avalanche photodiodes (APDs) are important for applications requiring detectors with high sensitivity at elevated bandwidths, such as communications and laser radar. III-V APDs are advantageous for these applications due to the existence of robust fabrication processes for III-V devices, compositional uniformity, and compositional control over cutoff wavelengths. However, impact ionization gain is a stochastic process that results in an excess noise factor, F, which increases with the multiplication gain, M, and reduces the signal-to-noise ratio. Despite intense activity over the past >40 years, InAs is one of the only III-V materials/alloys that has been found to exhibit intrinsically low excess noise. Consequently, much recent effort has focused on artificially reducing excess noise though heterojunction band engineering with conventional materials. For example, digital alloy, or short period superlattice, growth can reduce excess noise, but this approach is only effective in a limited set of material systems.

Highly-mismatched alloys have been proposed as a path towards bulk materials with intrinsically low noise as the addition of the highly-mismatched element perturbs the conduction band (nitrogen, boron) or valence band (bismuth), which theoretically should suppress impact ionization in that band.^{5,6} This is exciting as it could provide a universal approach for reducing the impact ionization noise of III-V materials. Unfortunately, the addition of nitrogen into (In)GaAs was found to *increase* the excess noise factor.⁷ By contrast, we report for the first time that the introduction of boron not only *reduces* the excess noise, but also *increases* the strength of impact ionization initiated by electrons, potentially increasing the achievable levels of multiplication for a given applied electric field.

All-BGaInAs p-i-n APDs (structures shown in Fig. 1a) were grown by solid-source molecular beam epitaxy (MBE) in an EPI Mod. Gen II system with boron, gallium, and indium compositions lattice-matched to the n-type Sidoped (100) GaAs substrates with 400-nm and 800-nm thick intrinsic regions. As shown in Fig. 1b, excellent latticematching and crystal quality were evident in (224) high-resolution X-ray diffraction (HR-XRD) reciprocal space mapping (RSM) of a p-i-n structure with an 800-nm thick intrinsic region. Room-temperature photocurrent, dark current, and excess noise measurements were performed on 100 and 150-um diameter devices with a 543-nm He-Ne continuous wave laser. As seen in Fig. 2, low dark currents and strong photoresponse were obtained for both B_{0.01}Ga_{0.97}In_{0.02}As and B_{0.03}Ga_{0.91}In_{0.06}As p-i-n diodes with a 400-nm intrinsic region, resulting in clear avalanche multiplication beginning at ~15 V reverse bias. As shown in Fig. 3a, the excess noise factor decreased with increasing boron concentration compared to a GaAs p-i-n with an i-region of 0.5 µm;8 the addition of just 1% boron reduced the noise by suppressing $k = \beta/\alpha$ compared to GaAs. Increasing the boron incorporation to 3% decreased the k-factor further, suggesting that increasing the boron incorporation could further decrease device noise. Impact ionization coefficients for electrons, α , and holes, β , were determined using the method similar to Yuan et al. While highly mismatched alloys like dilute-nitrides and -borides were theorized to suppress the electron-initiated impact ionization coefficient due to perturbation in the conduction bandedge,^{5,6} we observed an increase in the electron-initiated ionization coefficient and a decrease in the hole ionization coefficient compared to GaAs¹⁰ (Fig. 3b).


Here we demonstrate the potential for engineering low-noise APDs with the addition of boron into conventional III-V materials. The result is a materials approach that simultaneously reduces the excess noise factor by suppressing the k-factor and increases the strength of α , potentially enabling a new class of APDs that produce higher gains with lower excess noise.

This work was supported by the National Science Foundation (Award Nos. ECCS-1838984 and ECCS-1933836)

References:

- [1] A. R. J. Marshall et al., Appl. Phys. Lett. vol. 93, p. 111107 (2008).
- [2] K. Matsuo et al., Lightwave Tech., vol. 3, p. 1223, (1985).
- [3] M.E. Woodson et al., Appl. Phys. Lett., vol. 108, p. 081102, (2016).
- [4] A.K. Rockwell et al., Appl. Phys. Lett., vol. 113, p. 102106, (2018).
- [5] A. R. Adams, *Elec. Lett.*, vol. 40, p. 1086, (2004).
- [6] A. Lindsay et al. Phys. Stat. Sol., vol. 5 p. 454 (2008)
- [7] S.L. Tan et al., Appl. Phys. Lett., vol. 103, p. 102101, (2013).
- [8] C. Hu et al., Appl. Phys. Lett. 69, 3734 (1996)
- [9] Y. Yuan et al., Phot. Res., vol. 6, p. 794, (2018).
- [10] G.E. Bulman et al. IEEE Trans. Electrons Devices, vol. 35, p. 2454, (1985).

Fig. 1 (a) Layer structures of the all-BGaInAs p-i-n diodes. (b) Representative (224) high-resolution X-ray diffraction (HR-XRD) reciprocal space map (RSM) of an all-B_{0.03}Ga_{0.91}In_{0.06}As p-i-n with an 800 nm i-region showing excellent lattice-matching and crystal quality.

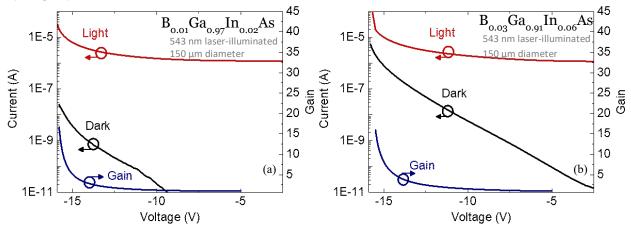


Fig. 2 300K dark and light current-voltage characteristics and multiplication gain for (a) B_{0.01}Ga_{0.97}In_{0.02}As and (b) B_{0.03}Ga_{0.91}In_{0.06}As p-i-n APDs with a 400-nm intrinsic region, grown lattice-matched to GaAs. Both exhibited strong optical response relative to the dark current, with clear avalanche multiplication gain beginning at -15V, indicating BGaInAs alloys are excellent candidates for APDs.

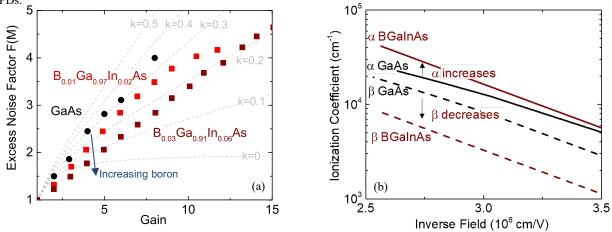


Fig. 3 (a) Measured 300K excess noise factor versus multiplication gain (solid squares) with calculations with McIntyre's model for different k factors (blue dashes). The k-factor of 400-nm intrinsic region BGaInAs APDs improved *monotonically* with increasing boron concentration, with a $1.5 \times$ reduction observed at 3% B as compared to a GaAs APD with an 500-nm intrinsic region.⁸ (b) The impact ionization coefficient for electrons (α) in B_{0.03}Ga_{0.91}In_{0.06}As increased compared to GaAs,¹⁰ while the impact ionization coefficient for holes (β) decreased. This resulted in both a decrease in the excess noise factor, as well as an increase in the achievable multiplication gain at a given electric field.