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Eukaryotic cells are mechanically supported by a polymer network called the cytoskeleton, which
consumes chemical energy to dynamically remodel its structure. Recent experiments in vivo have
revealed that this remodeling occasionally happens through anomalously large displacements, rem-
iniscent of earthquakes or avalanches. These cytoskeletal avalanches might indicate that the cy-
toskeleton’s structural response to a changing cellular environment is highly sensitive, and they
are therefore of significant biological interest. However, the physics underlying “cytoquakes” is
poorly understood. Here, we use agent-based simulations of cytoskeletal self-organization to study
fluctuations in the network’s mechanical energy. We robustly observe non-Gaussian statistics and
asymmetrically large rates of energy release compared to accumulation in a minimal cytoskeletal
model. The large events of energy release are found to correlate with large, collective displace-
ments of the cytoskeletal filaments. We also find that the changes in the localization of tension
and the projections of the network motion onto the vibrational normal modes are asymmetrically
distributed for energy release and accumulation. These results imply an avalanche-like process of
slow energy storage punctuated by fast, large events of energy release involving a collective network
rearrangement. We further show that mechanical instability precedes cytoquake occurrence through
a machine learning model that dynamically forecasts cytoquakes using the vibrational spectrum as
input. Our results provide the first connection between the cytoquake phenomenon and the net-
work’s mechanical energy and can help guide future investigations of the cytoskeleton’s structural
susceptibility.

INTRODUCTION

The actin-based cytoskeleton is an active biopoly-
mer network that plays a central role in cell biology,
providing the cell with a means to control its shape
and produce mechanical forces during processes such
as migration and cytokinesis [1–5]. These cellular-
level forces arise from the collective non-equilibrium
activity of molecular motors interacting with the
actin filament scaffold, enabling dynamic, driven-
dissipative cytoskeletal remodeling [6–8]. Recent
experimental efforts have uncovered a remarkable
phenomenon exhibited by cytoskeletal networks in
vivo: these networks undergo large, sudden struc-
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tural rearrangements significantly more frequently
than predicted by a Gaussian distribution [9, 10].
Heavy-tailed distributions of event sizes are well-
known in seismology, where the Gutenberg-Richter
law describes the power-law relationship between
the energy released by an earthquake and such an
earthquake’s frequency [11, 12]. Due to this anal-
ogy the term “cytoquake,” which we adopt here,
has been coined by experimenters to describe large
cytoskeletal remodeling events. In previous work
we have reported the first in silico observations of
this phenomenon, appearing as heavy tails in the
distributions of mechanical energy released by cy-
toskeletal networks [13]. These findings suggest that
avalanche-like processes may play a fundamental role
in cytoskeletal dynamics.

The physics underlying cytoquakes is not well un-
derstood, as current explanations based on experi-
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mental data are mostly speculative and rely on quali-
tative comparisons to systems amenable to computa-
tional study which similarly exhibit non-exponential
relaxation, such as jammed granular packings and
spin glasses [9, 10, 14, 15]. In particular, it is not
known whether large cytoskeletal displacements ac-
tually arise from an avalanche-like process of slow
energy storage and fast, large events of energy re-
lease. Alternative explanations of heavy-tailed dis-
tributions of cytoskeletal displacements that do not
involve avalanche-like dynamics have also been con-
sidered. For instance, heterogeneity in the spatial
distribution of molecular motors has been proposed
as a possible mechanism for non-Gaussian distribu-
tions of displacements [7]. Here, we describe the first
detailed numerical study focused on the mechani-
cal energy of cytoskeletal networks exhibiting large
displacements. We find that the statistics of en-
ergy accumulation and release support the hypothe-
sis of avalanche-like dynamics occurring in cytoskele-
tal networks, and thus that avalanche-like dynamics
do at least contribute to the observed heavy-tailed
distributions of cytoskeletal displacements.

In addition, in previous studies little emphasis has
been given to the possible biological roles played by
cytoquakes. We propose one such role, that these
large mechanical fluctuations are concomitant with
a large susceptibility to mechanical forces or chem-
ical perturbations, allowing the cytoskeleton to be
highly sensitive to physiological cues arriving via
various cell signaling pathways [16]. Dynamic insta-
bility is already an acknowledged feature of certain
cytoskeletal components such as microtubules and
filopodia [17]. A similar design principle may also
apply to larger cytoskeletal structures to allow fast
remodeling. For instance, avalanche-like dynamics
may serve a useful purpose in the lamellipodia of
migrating cells, which probe local chemical gradients
and must quickly collapse protrusions in unsuccess-
ful search directions as well as adaptively remodel
their structure in response to changing mechanical
loads [2, 18]. However, to investigate such possible
biological roles we first need a more detailed account
of the underlying causes of the observed large struc-
tural rearrangements, which is the subject of this
paper.

Here, we perform detailed simulations of a min-
imal cytoskeletal model system using the software
package MEDYAN (Mechanochemical Dynamics of
Active Networks) [19]. Our main qualitative re-
sult is that there is a significant asymmetry between
how cytoskeletal networks accumulate and release
mechanical energy. While both accumulation and
release statistics are heavy-tailed, the magnitudes
of energy release are more broadly distributed than
those of energy accumulation. Several measures of

network dynamics are also found to be distributed
asymmetrically for energy release and accumulation,
including the network displacement, the localization
of tension, and the projection of the network motion
onto the vibrational normal modes. These results
support an avalanche-like picture of slow energy ac-
cumulation punctuated by fast, broadly-distributed
events of energy release that involve a collective
structural rearrangement of the network. The asym-
metric energy fluctuations are found to be robust
against changes in chemical concentrations and sys-
tem size, suggesting that avalanches are intrinsic to
cytoskeletal network dynamics. We further estab-
lish a connection between cytoquakes and mechani-
cal stability, both through the observed spatial delo-
calization of tension during cytoquakes and the ma-
chine learning-assisted ability to dynamically fore-
cast cytoquakes using the Hessian eigenspectrum of
the mechanical energy function. This implies that
mechanical instability, as encoded in the Hessian
eigenspectrum, precedes incipient cytoquakes which
then act to homogenize tension in the network. At
the end of the paper we pose several open questions
based on these results, which can help to guide fu-
ture investigations into cytoquakes and their possi-
ble physiological functions.

RESULTS

Energy fluctuations are asymmetric,
heavy-tailed, and self-affine

We study a subsystem of the full cytoskeleton
called an actomyosin network. This consists of
semi-flexible actin filaments and associated proteins,
including active molecular motors (e.g. minifila-
ments of non-muscle myosin IIA) and passive cross-
linkers (e.g. α-actinin). An actomyosin network
as represented in simulation is visualized in Figure
1. The actin filaments hydrolyze ATP molecules in
a directed polymerization process which reaches a
steady state called “treadmilling” [20]. The myosin
minifilaments (∼200 nm in length) transiently bind
to pairs of actin filaments and also hydrolyze ATP
as fuel to walk along the filaments, generating mo-
tion and mechanical stresses. These active process
drive the network away from equilibrium. The cross-
linkers (∼35 nm) bind more stably to nearby fila-
ments, serving to transmit the force produced by
motors and to both store and through unbinding dis-
sipate the resulting energy, heating the environment
[21–27]. Dissipation of stored mechanical energy also
occurs as filaments relax out of strained configura-
tions, in a manner which depends on mutual con-
straints filaments exert on each other through bound
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cross-linkers and motors. Additionally, the rates of
motor walking and unbinding as well as of cross-
linker unbinding depend exponentially on the forces
sustained by these molecules, giving rise to nonlinear
coupling between the mechanical state of the net-
work and its chemical propensities [28, 29]. These
processes by which the ability of the network to me-
chanically relax depends on its current state set the
stage for avalanche-like dynamics.

FIG. 1. A snapshot from a MEDYAN trajectory of an
actomyosin network in a 1 µm3 box for the condition
C3,3 (see Materials and Methods). Actin filaments are
shown in red, α-actinin is shown in green, and myosin
motors are shown in blue. Beads representing the joined
points (i.e. hinges) of thin cylinders (at most 54 nm
long) are visualized as red spheres. The cyan filaments
represent motion of the network corresponding to a soft,
delocalized vibrational mode determined from Hessian
analysis, as described in the main text. In the inset we
zoom in on part of the network and exclude associated
proteins to show greater detail of this vibrational motion.

Using MEDYAN, we performed simulations of
small cytoskeletal networks consisting of 50 actin fil-
aments in 1 µm3 hard-walled cubic boxes with vary-
ing concentrations of α-actinin cross-linkers ([α])
and of NMIIA myosin motor minifilaments ([M ])

[13, 19, 30–32]. We omit here other associated pro-
teins, such as the branching agent Arp2/3, finding
that our minimal system is sufficient to produce
heavy-tailed distributions of event sizes, although
it has recently been discovered that branching acts
to enhance avalanche-like processes [33]. MEDYAN
simulations combine stochastic chemical dynamics
with a mechanical representation of filaments and
associated proteins (see the SI Appendix, Descrip-
tion of MEDYAN simulation platform for a detailed
outline of the MEDYAN model). Simulations pro-
ceed iteratively in a cycle of four steps: 1) stochas-
tic chemical simulation for a time δt (here 0.05 s), 2)
computation of the resulting new forces, 3) equilibra-
tion via minimization of the mechanical energy, and
4) updating of force-sensitive reaction rates such the
as slip-bonds of cross-linkers, catch-bonds of motors,
and motor stalling. Recent extensions to the ME-
DYAN platform allow calculation of the change in
the system’s Gibbs free energy during each of these
steps [13, 34], originally applied to study the ther-
modynamic efficiency of myosin motors in convert-
ing chemical free energy to mechanical energy under
various conditions of cross-linker and motor concen-
tration. We employ this methodology here and focus
on the statistics of the system’s mechanical energy
U as it self-organizes.

We first characterize the observed occurrence of
avalanche-like dynamics in these simulations. The
simulations begin with short seed filaments that
quickly polymerize (tens of seconds) to their steady-
state lengths. Following this, the slower process
(hundreds of seconds) of primarily myosin-driven
self-organization occurs which for most conditions
results in geometric contraction to a percolated net-
work (see Movie 1) [25, 35]. The mechanical en-
ergy U(t) fluctuates near a quasi-steady state (QSS)
value, which we analyze as a stochastic process. In
Figure 2.A we display the trajectory of U(t) for con-
dition C3,3 (with α-actinin concentration [α] = 2.82
µM , and motor concentration [M ] = 0.04 µM ;
see the Materials and Methods for a description of
the experimental conditions). We tracked the net
changes of the mechanical energy ∆U (t) = U(t +
δt)−U(t) resulting from each complete cycle of sim-
ulation steps 1) - 4). For the purpose of analyz-
ing the observed asymmetric heavy tails in the dis-
tribution of ∆U , we treat the negative increments
∆U− (energy release) and positive increments ∆U+

(energy accumulation) as samples from separate dis-
tributions with semi-infinite domains. The comple-
mentary cumulative distribution functions (CCDFs
or “tail distribution”, the probability P (X ≥ x) of
observing a value of the random variable X above
a threshold x, as a function of x) of the observed
samples collected from all five runs at QSS are il-
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lustrated in Figure 2.B. Both distributions display
striking heavy tails relative to a fitted half-normal
distribution. The CCDFs are better fit by stretched
exponential (Weibull) functions of the form [36]

P (X ≥ x) = e−(x/λ)k . (1)

We justify this choice of distribution by construct-
ing Weibull plots, as discussed in the SI Appendix,
Weibull plots. We find k = 0.60 ± 0.06 for |∆U−|
and k = 0.83 ± 0.07 for ∆U+ with uncertainty
taken over the five runs, indicating shallower tails
for energy release compared to energy accumulation.
We also measured parameter η that indicates non-
Gaussianity:

η =
〈x4〉

3〈x2〉2
− 1, (2)

where 〈xm〉 is the mth moment about zero; for a
half-normal distribution η = 0, and η > 0 quanti-
fies heavy-tailedness. We find η = 11.37 ± 5.37 for
|∆U−| and η = 1.96±0.58 for ∆U+. This, along with
the shallower tails of the fitted stretched exponen-
tial functions, indicates greater deviation from Gaus-
sianity for energy release compared to energy accu-
mulation. These results support the picture that
typically energy accumulates comparatively slowly
and is released via large occasional events.

We next analyze the temporal correlations of U(t)
at QSS. A self-affine stochastic time series G(t), for
which G(t) and |ζ|HaG(t/ζ) have the same statistics
for any scaling parameter ζ, has a power spectral
density S(f) exhibiting a power-law dependence on
frequency f : S(f) ∝ f−β , where the spectral ex-
ponent β is the persistence strength, related to the
color of the signal [37, 38]. We find β = 1.72± 0.02
for U(t), as shown in Figure 2.C. With this value of
β, U(t) is classified as a pinkish-brown signal, im-
plying it is non-stationary and has temporally anti-
correlated increments ∆U . Self-affine time series
further obey the theoretical relationship β = 2Ha+1
when 1 ≤ β ≤ 3, whereHa is the Hausdorff exponent
determined from the scaling of the semivariogram

γ(τ) =
1

2
(G(t+ τ)−G(t))

2 ∼ τ2Ha , (3)

and where the overbar represents temporal averag-
ing [39, 40]. We find that this relationship is sat-
isfied by U(t), as shown in Figure 2.D, yielding
Ha = 0.36 ± 0.01 and confirming that U(t) is self-
affine. Such non-Markovian and self-affine time se-
ries and spatial patterns commonly arise in various
complex geophysical processes (e.g. the temporal
variation of river bed elevation), further supporting
the analogy between the cytoskeleton and earth sys-
tems [41, 42].
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FIG. 2. Statistics of ∆U . A: Trajectory of the network’s
mechanical energy U(t) for condition C3,3 (see Materi-
als and Methods). Inset: A blow-up of the trajectory to
show instances of rare events of energy release (∆U <
−100 kBT , blue) and accumulation (∆U > 100 kBT ,
green). B: CCDFs of |∆U−| (blue) and ∆U+ (green)
collected from five runs when the system is at QSS after
1000 s. Dotted lines in lighter colors represent fits to the
data of a half-normal CCDF, and dashed lines represent
fits of stretched exponentials. C: The normalized power
spectral density of U(t) for a single run at QSS from
which the spectral exponent β = 1.72 is determined by
fitting a power-law, shown offset in red. D: The semi-
variogram obeys the scaling relationship γ ∼ τ2Ha over
the scaling range.

Distinguishing features of cytoquakes

We find that cytoquakes, defined throughout as
simulation cycles for which ∆U < −100 kbT (cho-
sen to lie well in the tail of the distribution of ∆U ,
see Figure 2), are correlated with several changes
in the state of the network. In Figure 3 we show
that rare large events of energy accumulation cor-
respond to a greater than usual number of myosin
motor steps whereas rare large events of energy re-
lease correspond to greater than usual total displace-
ment of the actin filaments and a slightly greater
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number of linker unbinding events. The displace-
ment between filaments from t to t+ δt is calculated
by triangulating the area between the two filament
configurations and dividing the area by the filament
length, as described in SI Appendix, Filament dis-
placements. The total filament displacement at time
t is computed as the sum of displacements over all fil-
aments during the time interval (t, t+δt). This quan-
tity is found to be largest during cytoquake events.
Furthermore, these large total displacements do not
come from highly localized motions. Instead, they
depend on many filaments each displacing an unusu-
ally large amount, as shown in Figure 4 where the
filaments are ranked according to their displacement
during a cycle. For cytoquake events, the typical dis-
placement at almost every rank is greater than the
corresponding displacement at that rank for other
cycle types. This agrees with the notion of cyto-
quakes as a large and collective structural rearrange-
ment of the network.

We also observe cytoquakes to induce a spatial
homogenization of the tension sustained by the net-
work during large events of energy release, as quan-
tified by changes in the Shannon entropy of the spa-
tial tension distribution H(t) (see Figure 3.D). The
tension distribution Pijk is constructed by discretiz-
ing the simulation volume of 1 µm3 into a grid of
103 voxels indexed by i, j, k, and computing the pro-
portion of the total network tension belonging to
the mechanical elements (filament cylinders, cross-
linkers, and motors) inside each voxel. Additional
details for the calculation of H(t) can be found in
Materials and Methods. The combination of large,
collective rearrangement and a spatial homogeniza-
tion of tension supports the interpretation of cyto-
quakes as an avalanche-like event of energy release.

Asymmetric statistics are robust across
concentrations and system-size

We next discuss how these results generalize to dif-
ferent concentrations of associated proteins and dif-
ferent system sizes. Five concentrations of α-actinin
(ranging from 0.17 to 5.48 µM) and five concen-
trations of myosin miniflaments (ranging from 0.003
to 0.08 µM) were tested with a constant G-actin
monomer concentration of 13.3 µM , in the regime
of physiological concentrations [44]. At the lowest
concentrations of cross-linkers and motors, the net-
work did not contract, representing a very differ-
ent actomyosin phase to which we omit comparisons.
For all of the conditions producing contracting net-
works, we found that asymmetric heavy-tailed dis-
tributions of ∆U persist, with large values of the
non-Gaussian parameter for |∆U−| (η ∼ 5−20) and
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FIG. 3. A: Differences in the total filament displacement
between simulation cycles for which ∆U < −100 kBT ,
cycles for which ∆U ∈ (−100 kBT, 0 kBT ), cycles for
which ∆U ∈ (0 kBT, 100 kBT ), and finally cycles for
which ∆U > 100 kBT . To compare these distributions,
the two-sided p-value of the Wilcoxon rank-sum test be-
tween pairs of cycle types is reported as being either
not significant: - (p ≥ 0.05), significant at level 1: *
(p < 0.05), at level 2: ** (p < 0.01), or at level 3:
*** (p < 0.001) [43]. Since there many more simula-
tion cycles for the categories ∆U ∈ (−100 kBT, 0 kBT )
and ∆U ∈ (0 kBT, 100 kBT ), we took a random sub-
sample (∼ 300 each) of all events for these categories
to be roughly equal to the number of events for which
∆U < −100 kBT and for which ∆U > 100 kBT . In
these combination violin and box-and-whisker plots, the
red circle represents the mean, the red bar represents
the median, and the notches in the box represent the
95% confidence interval of the median. B: Differences
in the number of motor walking events between the dif-
ferent cycle types as just described. C: Differences in
the number of α-actinin unbinding events between the
different cycle types. D: Differences in the changes in
Shannon entropy ∆H of the spatial tension distribution
of network tension between the different cycle types.

∆U+ (η ∼ 2 − 5), although η for negative incre-
ments was observed to decrease with the motor con-
centration (SI Appendix, Figure S1). We conclude
that the avalanche-like energy fluctuations discussed
above are not highly sensitive to associated protein
concentrations. These fluctuations may depend on
the parameters of the force-sensitive reaction rates
(which are taken here to correspond to experimen-
tal values), but we leave this interesting question for
future work.

We performed a finite-size scaling study by hold-
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FIG. 4. Rank-size distribution of the displacements
experienced by each of the 50 filaments during simu-
lation cycles when ∆U is in different ranges, in units
of kBT . For each cycle, the filaments are ranked ac-
cording to their displacement and these ranks are plot-
ted against the corresponding displacement. The aver-
age and standard deviation of these rank-displacement
curves are taken over each cycle in a given category. The
curves for the categories ∆U ∈ (−100 kBT, 0 kBT ) and
∆U ∈ (0 kBT, 100 kBT ) are nearly coincident. This
data is collected from one run of condition C3,3 at QSS.

ing the concentrations of condition C3,3 fixed (with
α-actinin concentration [α] = 2.82 µM and motor
concentration [M ] = 0.04 µM) and varying the sys-
tem volume V . Larger systems reach QSS at later
times, and our simulations of larger systems did not
reach QSS in the allotted computational time. As a
result, we collected samples of ∆U for these systems
on the approach to QSS, from 300 to 800 s, once the
networks had all nearly fully percolated (i.e. nearly
all filaments belonged to a single component con-
nected by cross-linkers), trusting that the relevant
scaling behavior could still be observed. Stretched
exponential functions approximately fit the distri-
butions of ∆U+ and |∆U−| for all system sizes (see
Figure 5.A for the fits of |∆U−|). Larger systems
displayed steeper tails as indicated by the observed
power-law decay of η for |∆U−| and ∆U+ (Figure
5.B), although interestingly η for |∆U−| is larger
than that for ∆U+ by a constant factor of roughly 3
for all systems sizes. The steeper tails are also evi-
denced by the slow growth of the Kohlrausch expo-
nents k with V (Figure 5.C). Thus, the distributions
of energy release and accumulation across the en-
tire network become narrower and more Gaussian for
large systems. This, in contrast to driven-dissipative
systems that exhibit self-organized criticality, sug-
gests the existence of some intrinsic and finite scale
for avalanche-like releases of energy in cytoskeletal

networks. By summing over many local energy fluc-
tuations of this finite scale, the distribution of the
fluctuations in the total energy U becomes increas-
ingly Gaussian for large systems owing to the central
limit theorem. This intrinsic scale may be partly de-
termined by the non-conservative transfer (dissipa-
tion) of mechanical energy as it spreads through the
network during avalanches [23, 45].
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FIG. 5. A: CCDFs of |∆U−| normalized by the sys-
tem volume V collected for 5 runs for increasing sys-
tem sizes plotted against the fitted stretched exponential
functions. B: The non-Gaussian parameter η for |∆U−|
and ∆U+ are plotted with uncertainty taken over the dif-
ferent runs. C: The Kohlrausch exponents k for |∆U−|
and ∆U+.

Local vs. global metrics

Existing experimental studies of cytoquakes define
them as large local displacements of the cytoskeleton
probed using transmembrane attached microbeads
or flexible micropost arrays, rather than as large
changes in the cytoskeleton’s total energy U as done
here [9, 10]. To roughly compare our results to ex-
periments, we make the corresponding local mea-
surements of the displacements of individual fila-
ments. Rather than summing over all filaments,
we track each filament individually and measure the

set {ηf}
Nf
f=1 (where Nf = 50 is the number of fil-

aments) of the non-Gaussian parameter ηf corre-
sponding to each filament f ’s distribution of dis-
placements from 300 to 800 s. The calculation of
filament displacements is described in SI Appendix,
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Filament displacements. We find that the result-
ing distributions are heavy-tailed with values of the
non-Gaussian parameter for most filaments in the
range η ∼ 1− 5 (Figure 6). This finding is in semi-
quantitative agreement with in vivo measurements
on micropost arrays, whose displacements have dis-
tributions characterized by η ∼ 0 − 7 [10]. In ad-
dition, we find the distribution of ηf itself to be
heavy-tailed, also in agreement with the microp-
ost experiments. We next estimated the instanta-
neous filament speed as the filament displacement
divided by δt. We find the typical actin filament
displacement speeds (∼ 10 nm/s) to be consistent
in order of magnitude with separate in vitro experi-
ments on disordered, contractile networks which es-
timate this speed as ∼ 10 − 50 nm/s [46]. These
corroborations with existing measurements suggest
that our simulations of a minimal cytoskeletal model
system can approximately reproduce experimentally
observed cytoskeletal dynamics. We finally men-
tion in connection to experiments that it has re-
cently been argued that more detailed understand-
ing of mechanical dissipation by cytoskeletal net-
works should help to precisely control traction-based
measurements of cellular force production [27]. The
discovery of avalanche-like dynamics in cytoskeletal
networks reported in this and previous studies may
help to resolve this experimental difficulty.

The local measurements {ηf}
Nf
f=1, obtained by

tracking each filament individually, can be compared
to global measurements, obtained by summing over
every filament to obtain the total displacement. The
distribution of total displacements is closer to Gaus-
sian, characterized by η ≈ 0 for most volumes tested
(Figure 6). As with the increasing Gaussianity of
∆U for large systems, this can be attributed to
the central limit theorem since many filaments were
summed over to determine the total displacement.
We conclude that in large systems, metrics can be
heavy-tailed when measured locally but Gaussian
when measured globally. This distinction between
local and global measurements may be important in
interpreting future studies of anomalous statistics in
cytoskeletal self-organization.

Normal mode decomposition probes network’s
mechanical state

Having described the statistics of the increments
∆U , we next aim to connect the occurrence of cy-
toquakes, defined as large values of |∆U−|, to the
cytoskeletal network’s mechanical stability. To this
end we implemented a method to compute the Hes-
sian matrix H of the mechanical energy function
U . The eigen-decomposition of H is Λ = {λk}3Nk=1,
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25

FIG. 6. Plots for different simulation volumes V of the
distributions of non-Gaussian parameter ηf of the dis-
tributions of individual filament displacements. The box
and whisker plots summarize the distribution of ηf for
all filaments in the system, with the median shown as
a red bar, the box extending from the first to the third
quartiles, and the whiskers extending across the range
of η, omitting outliers. The black diamonds indicate the
value of η obtained when instead of tracking each fila-
ment’s displacement individually, the total summed dis-
placement of all filaments from time point to time point
is tracked. These global measurements of displacement
are more Gaussian (with η ≈ 0) than the corresponding
local measurements obtained from tracking filaments in-
dividually.

where 3N is the number of mechanical degrees of
freedom in the system, which comprises N “beads”
that are used to discretize the actin filaments. Λ is
related to the mechanical stability of the cytoskele-
tal network: the eigenvectors vk are the normal
vibrational modes of the network, and the eigen-
values λk indicate the stiffness (|λk|) and stabil-
ity (sgn(λk)) of the corresponding mode. Exam-
ple vibrational modes are illustrated in Movies 2-
5. We draw inspiration for studying Λ in the cur-
rent context from several sources: in single-molecule
molecular dynamics studies, the saddle-points of U
(i.e. points in the landscape with some imaginary
frequencies) are associated with transition states
[47, 48]; studies of polymer networks show that in-
ternal stresses produce non-floppy vibrational modes
even below the isostatic threshold [49]; in simula-
tions of glass-forming liquids, the instantaneous nor-
mal mode spectrum allows inference about proxim-
ity to the glass transition and determination of in-
cipient plastic deformation regions [50–52]; in deep
learning models for predicting earthquake aftershock
distributions, it was found that certain metrics also
related to stability (e.g. the von-Mises criterion) are
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informative model inputs [53, 54].
We briefly digress from the results on cytoquakes

to describe some interesting observed trends of met-
rics defined on Λ. We distinguish between unsta-
ble, stable, soft, and stiff modes: for unstable modes
λk < 0, for stable modes λk ≥ 0, for soft modes
0 ≤ λk < λT , and for stiff modes λk ≥ λT , where we
define the threshold λT = 40 pN/nm to discriminate
between the twin peaks in the density of states (Fig-
ure 7.B). The set {λk}3Nk=1 is visualized with these
modes labeled in Figure 7.A for a QSS time point
of condition C3,3. A very small number of unstable
modes persist after each minimization cycle, later
iterations stopping once the maximum force on any
bead in the network is below a threshold FT (here 1
pN). Thus the minimized configurations are in fact
saddle-points of U ; this is expected as it is known
from the theory of minimizing loss functions that the
ratio of saddle-points to true local minima increases
exponentially with the dimensionality of the domain
[55]. We expect that in the space of all possible net-
work topologies (i.e. patterns of cross-linkers and
motors binding to filaments), the energy landscape
will be rugged, leading to the well-appreciated glassy
dynamics of non-equilibrium cross-linked networks
[56, 57]. For a fixed topology, however, which is the
result of the chemical reactions occurring during step
1) of the iterative simulation cycle, the energy land-
scape should be smooth (i.e. not rugged) with re-
spect to the beads’ positions, with a single nearby lo-
cal minimum being sought during mechanical mini-
mization in step 3). The residual unstable modes are
therefore thought to be an unimportant artifact of
thresholded stopping in the conjugate-gradient min-
imization routine, and not representative of some
physical feature of cytoskeletal networks. The ob-
served quantitative dependence of the number of
residual unstable modes on FT supports this con-
clusion and is illustrated in SI Appendix, Figure S7.

We quantify the number of degrees of freedom in-
volved in a given normalized eigenvector vk using
the inverse participation ratio [50]:

rk =

(
N∑
i=1

3∑
µ=1

(vk,iµ)4

)−1

. (4)

If the eigenmode involves only one degree of freedom,
then one component of vk will be one and the rest
will be zero, and rk = 1. On the other hand, if
the eigenmode is evenly spread over all 3N degrees
of freedom, then each component vk,iµ = (3N)−1/2,
and rk = 3N . In Figure 7.B we plot rk for the
unstable, soft, and stiff modes along with the density
of states, showing that the soft modes involve many
degrees of freedom while the stiff and unstable modes
are comparatively localized.

We find that the mean value 〈rk〉 varies non-
monotonically with myosin motor concentration [M ]
and α-actinin concentration [α] (Figure 7.C). To un-
derstand this trend we implemented a mapping from
the cytoskeletal network into a graph and measured
its mean node connectivity, a purely topological
measure of network percolation. The graph is con-
structed to capture the cross-linker binding topology
of cytoskeletal networks. Nodes in the graph corre-
spond to actin filaments, and weighted edges (which
may be thresholded and converted to binary edges
in an unweighted graph) correspond to the num-
ber of cross-linkers connecting the pair of filaments.
The mean node connectivity is defined as the aver-
age over all pairs of nodes in the unweighted graph
of the number of edges necessary to remove in or-
der to disconnect them, thus quantifying the typical
number of force chains between filaments, or equiv-
alently the extent of network percolation [58, 59].
Revealingly, the mean node connectivity correlates
closely with 〈rk〉 for the stable modes across the var-
ious conditions Ci,j (Figures 7.C and 7.D). We also
find the number of connected components of H and
of the graph’s adjacency matrix to match for most
time points, supporting this connection between net-
work topology and stable mode delocalization. In-
termediate concentrations of myosin motors enhance
the network percolation, but as [M ] continues to in-
crease the motors act to disconnect cross-linked net-
work structures causing the mean node connectivity
and 〈rk〉 to decrease.

We observe that as a network contracts and be-
comes percolated during the process of myosin-
driven self-organization, the stable modes steadily
delocalize (〈rk〉 increases) and stiffen (the geomet-
ric mean 〈λk〉g increases), as shown in Figures 7.E
and Figures 7.F. During this process we also wit-
ness a qualitative change in the level spacing statis-
tics of the very soft and delocalized modes (λk <
10 pN/nm, rk > 100) from a Poisson to a Wigner-
Dyson distribution (SI Appendix, Figure S2). This
indicates that in the percolated state these vibra-
tional modes interact and exhibit level repulsion,
similar to soft particles near the jamming transi-
tion [10, 14, 60, 61]. Future studies may reveal
further similarities between these systems and other
marginally stable solids [57, 62].

Cytoquakes are preceded by mechanical
instability and deform along soft modes

Can the eigen-decomposition of the Hessian ma-
trix be used to forecast cytoquake occurrence? In-
tuition suggests that, by analogy with the connec-
tion between imaginary frequencies (i.e. unstable
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FIG. 7. Metrics defined on Hessian eigen-decomposition.
A: Ordered eigenspectrum {λk}3Nk=1 at a QSS time point
for condition C3,3. B: Scatter plot of the pairs |λk|, rk
(circles) plotted against the density of states (solid line),
i.e. the proportion of eigenvalues between λ and λ+ dλ.
C: The mean value at QSS of 〈rk〉 for the stable modes
for various conditions Ci,j . The conditions C1,j with low
linker concentrations are not visualized as these networks
did not percolate and obscure visualization for the re-
maining conditions. The mean is taken over the last 500
s and over different runs. D: The mean value of the mean
node connectivity for various conditions. E: Trajectories
of 〈rk〉 of the stable modes as the network self-organizes
for the conditions C2,3, C3,3, C4,3, and C5,3, where the
color indicates the α-actinin concentration as in the leg-
end of D, and with the mean and standard deviation
taken over the different runs. F: Similar trajectories of
the geometric mean of the stable modes 〈λk〉g.

modes) and molecular transition states, the vibra-
tional modes of the cytoskeletal network may con-
tain information that a large structural rearrange-
ment is poised to occur [47, 48]. To test this
idea, and without detailed a priori knowledge about
which features in Λ would be informative, we imple-
mented a machine learning model using the eigen-
decomposition as the input and outputting the pre-
dicted probability of observing a large event of en-

ergy release (∆U < −100 kBT ) occurring within the
next 0.15 s. As detailed in SI Appendix, Machine
learning model, we found that, indeed, the Hessian
eigenspectrum Λ contains sufficient information to
forecast cytoquake occurrence with significant accu-
racy compared to a random model. We first reduced
the dimensionality of Λ(t) using principal compo-
nent analysis, finding that 30 dimensions sufficed to
explain > 95% of the variance across time points,
and then used the reduced input in a three layer feed-
forward neural network. We validated our model us-
ing receiver operating characteristic curves, achiev-
ing an area under the curve (AUC) of 0.70 when
using data from five runs of condition C3,3. This
improvement in prediction performance over a ran-
dom model (which would have an AUC of 0.5) im-
plies that mechanical instability, as encoded in the
Hessian eigenspectrum, precedes the occurrence of
cytoquakes.

To further study the connection between cyto-
quakes and mechanical stability, we measured the
projections of the network’s displacements onto the
vibrational normal modes {vk}3Nk=1. Network dis-
placements d(t) were found by tracking the move-
ment of each of the N(t) beads during simulation
cycles. As a working approximation, beads that de-
polymerized during a cycle were assigned a displace-
ment of 0, and beads that newly polymerized were
not assigned elements in d(t). The 3N -dimensional
displacement vectors d were then normalized to have
unit length. We define

dk = d · vk (5)

as the projections of d onto the eigenmodes vk,
which obey

∑
k d

2
k = 1 owing to the normalization

of d and vk. Thus the quantity d2
k is the weight of

the displacement d along the kth eigenmode. With
this we define the effective stiffness

λP =
∑
k

d2
kλk (6)

as the displacement-weighted average of the eigen-
values. In Figure 8 we display a scatter plot of the
pairs ∆U(t), λP (t) measured during QSS for a run of
condition C3,3, along with a kernel density estimate
of their joint probability density function (PDF). We
again distinguish between soft (0 ≤ λk < λT ) and
stiff (λk ≥ λT ) eigenmodes, where λT = 40 pN/nm
separates the twin peaks in the density of states
(see Figure 7.B). The structure of the joint PDF is
markedly asymmetric about ∆U = 0 and shows that
λP during cytoquake events is almost always soft,
whereas for all other simulation cycles λP could be
soft or stiff with similar probabilities. Because soft
modes inherently involve a large number of degrees
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of freedom as illustrated in Figure 7.B, we also con-
sider

nk =
d2
k

rk
(7)

as the weight of the displacement along eigenmode
k per degree of freedom involved in the eigenmode,
where rk is the inverse participation ratio defined
in Equation 4. We define nsoft and nstiff as the
mean of nk over the soft and stiff subsets. Val-
ues of nsoft/nstiff for different simulation cycle types
are displayed in the inset of Figure 8, showing
that nsoft > nstiff typically only during cytoquakes.
Based on this analysis, we conclude that during
the large collective rearrangements corresponding to
cytoquakes, cytoskeletal networks exhibit enhanced
displacement along the soft vibrational modes. We
qualify these results by observing that, since cyto-
quakes involve particularly large network displace-
ments, it may be inappropriate to interpret them us-
ing the local harmonic approximation to U implicit
in Hessian analysis [52]. In addition, changes in net-
work topology from linker and motor (un)binding
cannot be captured using normal mode decomposi-
tion of instantaneous network configurations. The
eigenspectrum Λ(t) still informs on the stability of
the energy minimized configuration before a cyto-
quake, but caution should be used in interpreting
the cytoquake motion from t to t+ δt as decompos-
ing cleanly into non-interacting motions along the
normal modes vk. We leave a detailed analysis of
the anharmonicity of cytoquake deformations to fu-
ture work.

DISCUSSION

We have presented evidence supporting the fol-
lowing picture of active cytoskeletal network self-
organization: cytoskeletal networks explore a rugged
mechanical energy landscape in a stochastic process
characterized by occasional, sudden jumps out of
metastable configurations [56, 57]. These jumps en-
tail non-Gaussian dissipation of mechanical energy
and are accomplished by an avalanche-like process
of spreading destabilization, resulting in a collective
structural rearrangement and a homogenization of
tension. These collective motions have large projec-
tions along the soft, delocalized vibrational modes,
and, furthermore, properties of these modes can be
used to predict when such relaxation events will
occur. The key finding supporting the interpreta-
tion of cytoskeletal dynamics as avalanche-like is the
marked asymmetry about 0 in the distribution of
∆U (Figures 2.B, 5.B, and 5.C). In addition, several
key quantities including filament displacements (Fig-

800 600 400 200 0 200 400

∆U (kBT)

10
0

10
1

10
2

10
3

λ
P

(p
N

/n
m

)

10
5

10
4

10
3

10
2

P
ro

b
a
b
ility

 D
e
n
sity

(
,

100)
( 100, 0)

(0, 100)
(100, )

0

1

2

3

4

5

n
so

ft
/n

st
if
f

FIG. 8. Scatter plot of the pairs ∆U, λP measured dur-
ing QSS for a run of condition C3,3. From these points, a
Gaussian kernel density estimate of the joint PDF (treat-
ing λP on a log-scale) is constructed and shown as a
contour plot. Red guidelines demarcate regions of in-
terest. Inset: Combination violin and box-and-whisker
plots showing the ratio nsoft/nstiff for different categories
of simulation cycles, c.f. Figure 3. The inset is not block-
ing any of the scatter plot data.

ures 3.A and Figure 4), tension delocalization (Fig-
ure 3.D), and effective stiffness of the motion (Figure
8) are distributed asymmetrically about ∆U = 0,
supporting the picture described above.

An interesting possible interpretation of the heavy
tails of |∆U−| is that cytoskeletal networks are at a
point of self-organized criticality (SOC) [39, 40, 63–
65]. Technical definitions of what constitutes SOC
behavior are not universally agreed upon, but we
may follow the definition of Ref. 40 which states
that SOC systems must have event size distributions
that tend to a power-law in the limit of an infinite
system size, and a temporal signal that integrates
a pink noise process, giving β = 3 for the signal.
The observed distribution of |∆U−| for this system
size is fit by a stretched exponential function and
has β = 1.72. Further, the distributions of |∆U−|
become increasingly Gaussian for large system sizes
(Figure 5). We thus conclude that cytoskeletal net-
works for these physiological conditions display non-
critical dynamics, at least as measured using the
global energy release |∆U−|. The motor walking
in the system may not be sufficiently slow to yield
SOC behavior, which requires a sharp separation of
time scales between slow driving and fast dissipa-
tion, and the non-conservative transfer of mechan-
ical energy between network components may also
play a role [13, 23, 45, 65, 66]. We note, however,
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that recent studies have indicated that branched cy-
toskeletal networks polymerizing against a flexible
membrane can produce shape fluctuations of the
membrane that exhibit true SOC, leaving open the
question of whether criticality is an inherent feature
of cytoskeletal dynamics [67, 68].

Instead of scale-free fluctuations, we conjecture
that there exists a finite and intrinsic scale for
avalanche-like releases of energy that, when summed
over sufficiently large systems to obtain the global
measure |∆U |−, yields an approximately Gaussian
distribution. An important next question is then
what sets this scale and how it may be measured. We
expect that the non-conservative transfer of mechan-
ical energy through the network is one factor that
attenuates the avalanches. This non-conservation
of mechanical energy arises from damping by the
cytosol, accounted for in simulation through peri-
odic minimization of the energy following stochastic
chemical activity (see SI Appendix, Description of
MEDYAN simulation platform). In the lattice-based
Olami-Feder-Christensen model of earthquake sys-
tems, non-conservation of energy was shown to in-
troduce a stretched exponential cutoff to the power-
law distribution of event-sizes, supporting this idea
[45, 69]. A rough estimate of the intrinsic energy
scale of avalanches can be obtained from the stan-
dard deviation of the approximately Gaussian distri-
butions of |∆U |− for large systems. However, a de-
tailed measurement of the spatio-temporal scale will
require spatially resolving the measured energy fluc-
tuations, which was not done in this study. In addi-
tion, in this study the temporal extent of avalanches
is assumed fixed at the smallest resolved time inter-
val δt = 0.05 s (see SI Appendix, Dependence on
δt and FT for a discussion of how varying δt affects
the distribution of |∆U−|). Characterizing in-depth
the spatio-temporal scales of avalanches is thus an
important avenue for future work.

In addition to the question of what characterizes
the spatio-temporal scale of cytoskeletal avalanches,
several other open questions can be posed based
on the results presented here. First, we may ask
about the role of force-sensitive reaction rates, in-
cluding cross-linker unbinding and motor walking
and unbinding, in modulating cytoquakes (see SI
Appendix, Description of MEDYAN simulation plat-
form for details of these reactions). The nonlinear
coupling introduced by this force-sensitivity between
the local tensions in the network and the local re-
laxation propensities are expected to strongly ac-
centuate avalanche-like dynamics, but in this study
we held the force-sensitive reaction rate parame-
ters fixed at their physiological values. Second, we
may ask whether the harmonic approximation to
the energy implicit in Hessian analysis is sufficient

to describe the energy landscape and how it leads
to avalanches. The information on cytoquake dy-
namics obtained by projecting the network motion
onto the Hessian eigenmodes revealed an asymme-
try between energy release events and energy accu-
mulation events (Figure 8), and a neural network
model detected correlations between the Hessian
eigenspectrum and the time-varying likelihood for
a cytoquake to occur (SI Appendix, Machine learn-
ing model). However, as cytoquakes are by defini-
tion large deformations of the network, we expect
that the quadratic approximation will fail to accu-
rately describe the energy landscape around a cy-
toquake event. Higher order terms in the energy
expansion or recently introduced nonlinear metrics
of the local energy landscape such as the “flatness
parameter” may be used in future computational in-
vestigations [52, 70]. Third, we may ask about the
role of thermal noise in inducing cytoquake events.
In this study thermal noise enters in the stochastic
non-equilibrium chemical dynamics which are simu-
lated using a variant of the Gillespie algorithm over
a reaction-diffusion compartment grid [13]. How-
ever, the mechanical minimization routine is deter-
ministic given the instantaneous chemical state of
the network. Chemical reactions including motor
walking and filament polymerization are expected
to contribute the dominant structural fluctuations
in these far-from-equilibrium networks, but the ne-
glected diffusive motion of the filaments should also
help the network escape from metastable configu-
rations and modulate the frequency and scale of
avalanches. Elucidating whether cytoquakes can
be thermally activated in this way remains another
open direction for future work.

Finally, perhaps the most interesting open ques-
tion regarding cytoquakes pertains to their possi-
ble physiological role in cell biology. We proposed
here that cytoquakes may be concomitant with a
large structural susceptibility, by analogy with well-
studied systems like the Ising model that have large
susceptibilities to applied fields near their critical
point [16, 71]. In this argument, the cytoskeleton
may undergo large structural changes in response to
small changes in the relevant mechanical or chemical
signals, an amplification that would serve to enhance
cellular sensitivity during dynamic processes such
as chemotaxis. This could also enhance mechani-
cal adaptivity, an increasingly well-documented fea-
ture of cytoskeletal networks [18, 72–74]. This con-
nection between large cytoskeletal fluctuations and
large susceptibility remains speculative at this stage,
however, and would benefit from dedicated study.
Recent work has suggested that the branching agent
Arp2/3, which was not included in the minimal
model studied here, can enhance cytoquake sizes
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[33]. One can ask if by tuning the strength of this
or other cytoquake-modulating factors the network
is more or less responsive to external perturbation.
This perturbation could be introduced either me-
chanically, for example through a simulated or real
force microscopy experiment, or chemically, through
a variation of the chemical boundary conditions [32].
Such studies should clarify whether large events in
cytoskeletal dynamics serve a biologically useful pur-
pose.

MATERIALS AND METHODS

Simulation setup and conditions

To computationally study cytoskeletal networks
at high spatio-temporal resolution, we use the simu-
lation platform MEDYAN [13, 19, 30–32]. We pro-
vide an in-depth discussion of how MEDYAN works
in SI Appendix, Description of MEDYAN simulation
platform. MEDYAN simulations combine stochastic
chemical dynamics with a mechanical representation
of filaments and associated proteins. Simulations
move forward in time by iterating through a cycle
of four steps: 1) a short bust of stochastic chemical
simulation using a variant of the Gillespie algorithm
for a time δt, 2) computation of the new forces re-
sulting from the reactions in step 1), 3) equilibration
of the network via minimization of the mechanical
energy, and 4) updating of force-sensitive reaction
rates. This protocol reflects an assumed separation
of timescales between the slow chemical dynamics
and the fast mechanical response, such that the me-
chanical subsystem is assumed to always remain near
equilibrium and to adiabatically follow the chemi-
cal changes in the network. As argued in Ref. 19,
supported using experimental evidence from Refs.
21, 75, 76, this timescale separation holds for typi-
cal cytoskeletal networks which experience localized
force deformations with fast relaxation times com-
pared to the typical waiting time between myosin
motor walking steps and filament growth-induced
deformations.

We performed MEDYAN simulations of small cy-
toskeletal networks consisting of 50 actin filaments
in 1 µm3 cubic boxes with varying concentrations of
α-actinin cross-linkers ([α]) and of NMIIA minifila-
ments ([M ]). The boundaries of the box exert an
exponentially repulsive force against the filaments
with a short screening length of 2.7 nm. Five con-
centrations of α-actinin (ranging from 0.17 to 5.48
µM) and five concentrations of myosin miniflaments
(ranging from 0.003 to 0.08 µM) were used with
a constant G-actin monomer concentration of 13.3
µM , in the regime of physiological concentrations

[44]. This led to a steady-state filament length dis-
tribution with mean 0.48 µm and standard devia-
tion 0.26 µm. We label these conditions Ci,j , where
i = 1, ..., 5 represents the rank of the cross-linker
concentration and j = 1, ..., 5 represents the rank
of the myosin motor concentration. Five runs of
each condition Ci,j were simulated, each for 2000 s.
The length of the simulation cycle δt was chosen as
0.05 s for the results presented in this paper, al-
though we explore dependence on this parameter in
SI Appendix, Dependence on δt and FT .

Entropy of spatial tension distribution

The simulation volume of 1 µm3 is discretized into
103 cubic voxels, each 0.1 µm in linear dimension.
Let i, j, k = 1, ..., 10 index these voxels, which are an
analysis tool and not related to the reaction-diffusion
compartments used in MEDYAN. After each simu-
lation cycle, the mechanical components of the cy-
toskeletal network (i.e. the filament cylinders, the
myosin motors, and the passive cross-linkers) are
each under some compressive or tensile force Tn,
where n indexes the mechanical component. There
are other mechanical potentials involving these com-
ponents, but we focus here only on the tensions Tn.
Each mechanical component has a center of mass rn,
and we define the indicator function χijk(rn) which
is equal to 1 if rn is inside voxel i, j, k and 0 other-
wise. The total tension magnitude inside voxel i, j, k
is

|T |ijk =
∑
n

|Tn|χijk(rn). (8)

The discrete non-negative scalar field |T |ijk is con-
verted to a distribution Pijk by normalization:

Pijk =
|T |ijk∑
ijk|T |ijk

. (9)

Finally, we introduce the discrete Shannon entropy
of this distribution at time t as

H(t) = −
∑
ijk

Pijk(t) lnPijk(t). (10)

The units of H are nats, and large values indicate
a homogeneous spatial distribution of tension mag-
nitudes throughout the network. Reported trends
using this metric are found to be essentially inde-
pendent of the discretization length.

Constructing the Hessian matrix

In MEDYAN, semi-flexible filaments are repre-
sented as a connected sequence of thin cylinders
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whose joined endpoints (i.e. hinges) are called
beads. The set of potentials defining the mechan-
ical energy of the filaments and associated proteins
is outlined in the SI Appendix, Description of ME-
DYAN simulation platform. The mechanical energy
U is a function of these beads’ positions, and ele-
ments of the Hessian matrix are defined as

Hiµ,jν =
∂2U

∂xiµ∂xjν
= −∂Fiµ

∂xjν
= −∂Fjν

∂xiµ
, (11)

where xiµ is the µth Cartesian component of the
position of the ith bead. We have µ = x, y, z
and i = 1, ..., N where N is the number of beads
in the network, so H is a square symmetric 3N -
dimensional matrix. The number of beads N(t) will
change as filaments (de)polymerize; in these simu-
lations, at QSS a single filament of length 0.5 µm
comprises ∼ 10 cylinders (11 beads), each ∼ 50 nm
in length. After each mechanical minimization, H(t)
is constructed by numerically computing the deriva-
tives on the right of Equation 11. The derivative
∂Fiµ
∂xjν

is found using a second-order central difference

approximation by moving the jth bead in the ±ν
directions by a small amount and determining the
changes in the force component Fiµ [77]. Due to
issues of numerical accuracy, we do not assume the
symmetry of the matrix H, but instead directly com-
pute each component Hiµ,jν and then symmetrize
the result: 1

2 (Hᵀ + H)→H.
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FIG. 9. Plots of the non-Gaussian parameter η for the distributions of |∆U−| (solid lines) and of ∆U+ (dashed lines)
at QSS for various concentrations of myosin motor ([M ]) and α-actinin cross-linkers ([α]). The mean and standard
deviation is shown over five runs of each condition. A small horizontal offset is added to the points to ease visibility.
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II. WEIBULL PLOTS

The degree to which the plots of Q(u) = ln (− ln (P (x ≥ u))) against ln(u) appear to be linear serves as a
check of the appropriateness of modeling P (x) as a stretched exponential, or Weibull, distribution [36]. See
Figure 11 for x = |∆U − | and Figure 12 for x = ∆U+. On the basis of these plots we conclude that the
Weibull distribution is a satisfactory choice for all values of V . In the main text, the Weibull parameters

k and λ were determined by fitting the stretched exponent e−(x/λ)k to the observed CCDF P (|∆U−|) on a
log-scale, that is, by fitting −(x/λ)k to ln (P (|∆U−|)) using standard nonlinear fitting routines. Treating
these functions on a log-scale ensured a better fit to the distribution tails which are of most interest in the
present case.
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FIG. 11. Plots of the function Q(u) = ln (− ln (P (|∆U−| ≥ u))) for different volumes V along with a fitted line, where
P (|∆U−|) is the observed CCDF obtained from five runs of each volume.
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FIG. 12. Plots of the function Q(u) = ln (− ln (P (∆U+ ≥ u))) for different volumes V along with a fitted line, where
P (∆U+) is the observed CCDF obtained from five runs of each volume.



18

III. FILAMENT DISPLACEMENTS

The area between the two filaments x and y is triangulated using the beads comprising the filaments

({xi}nx−1
i=0 and {yj}

ny−1
j=0 ) as vertices, where nx is the number of beads in x and similarly for ny. To compute

the displacement of filament x during the time interval δt, we set y to the new configuration of x at the end
of the interval. The triangles come in pairs for most of the filament lengths, as shown using the dark and
light colors of green of Figure 13. If nx and ny are unequal (say nx < ny), extra triangles are added using
the last bead in x, xnx−1, as the only vertex in filament x. The sum of these triangle areas Atot is divided
by the average of the two filament contour lengths Lx and Ly to give the measure of distance d = 2Atot

Lx+Ly
.

FIG. 13. Illustration of how the area between two filaments x and y is triangulated to allow calculation of the
distance between them. The beads comprising the filaments are labeled xi, yj , and areas between triplets of beads
are labeled Ai,j where the lowest indices of the beads xi and yj in the triplet are used.
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IV. DESCRIPTION OF MEDYAN SIMULATION PLATFORM

A detailed introduction to the MEDYAN (Mechanochemical Dynamics of Active Networks) model can
be found in Ref. 19, and additional extensions and applications of MEDYAN to study the dynamics of
actomyosin networks are described in Refs. 13, 25, 30–32, 34, 78, 79. Here we outline the relevant aspects of
MEDYAN to facilitate understanding the results in this paper, and direct the reader to the above references
for a more thorough description.

A. Simulation protocol

A MEDYAN simulation proceeds by iterating a cycle of four steps which propagate the chemical and
mechanical dynamics forward while maintaining a tight coupling between the two. The steps are as follows:

1. Evolve system using stochastic chemical simulation for a time δt.

2. Compute the changes in the mechanical energy resulting from the reactions that occurred in step 1).

3. Mechanically equilibrate the network in response to the new stresses from step 2).

4. Update the reaction rates of force-sensitive reactions based on the new tensions from step 3).

Further details related to these four steps are provided next.

B. Chemistry

In MEDYAN, diffusing chemical species are represented with discrete copy numbers belonging to several
compartments, which form a regular grid comprising the simulation volume. The compartment size is chosen
so that it may be assumed that inside the compartments the diffusing species are well-mixed, allowing the
use of mass-action kinetics to determine their instantaneous propensities to participate in chemical reactions
within compartments and diffusion events between adjacent compartments. The minimum Kuramoto length
(i.e. the mean free diffusional path length of a reactive species before it participates in a chemical reaction)
among the species sets this compartment size to ensure that the well-mixed assumption holds [80]. The
diffusing chemical species may participate in local chemical reactions according to the copy numbers of the
reactants in its compartment, or else they may jump to an adjacent compartment in a diffusion event with a
propensity determined by its copy number in the original compartment [81]. The algorithm for stochastically
choosing which event (including local reactions or jumps between compartments) will occur next is the Next
Reaction Method, an accelerated variant of the Gillespie algorithm [81, 82]. These are Monte Carlo methods
which randomly select both the time to any next event and which event will occur at that time in accordance
with each event’s instantaneous propensity.

The user specifies the different chemical species and the reactions that they participate in. Several types
of reactions are possible. Regular reactions involve only diffusing species (e.g. the conversion of ADP-bound
to ATP-bound G-actin monomer). Polymerization reactions result in the subtraction of a diffusing monomer
from the local compartment and its conversion into a filament species, and depolymerization reactions do
the opposite. Filaments in MEDYAN’s have definite spatial coordinates, rather than the compartment-level
description of the diffusing species’ positions. This network of spatially resolved filaments is overlaid on the
compartment grid, so that sections of filaments are able to react with diffusing species according to their
local copy numbers. In addition, filaments have mechanical properties which will be discussed in the next
section. A filament may react with a diffusing species such as a cross-linker (e.g. α-actinin), branching (e.g.
Arp2/3), or molecular motor (e.g. NMIIA). Binding reactions involve a discrete set of binding sites along the
filament, and they stochastically occur as chemical reaction events according to the number of those binding
sites and the local copy number of diffusing binding molecules. A bound molecular motor may participate
in a walking reaction, which causes it to move one of its ends to an adjacent binding site, stretching the
motor and generating forces. Other reactions not used in this paper but encompassed by MEDYAN include
filament nucleation, filament destruction, filament severing, and filament branching reactions.
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C. Mechanics

The mechanical energy U of networks in MEDYAN is a function of the positions of the filament beads and
the lengths of the molecules bound to the filaments. There are also potentials describing a branched filament’s
energy which are not included in this paper. Filament beads mark the joined end points (i.e. hinges) of the
cylinders comprising the filament. Individual cylinders can stretch but not bend, but a bending energy term
is included for pairs of adjacent cylinders. The energy term for the stretching of cylinders is

Ustr =
1

2
Kfil,str(l − l0)2, (12)

where l = ||ri+1 − ri|| is the length of the cylinder whose beads are at positions ri+1 and ri, l0 is the
cylinder’s equilibrium length, and Kstr is the spring constant of this harmonic potential. The energy term
for the bending of adjacent cylinders is

Ubend = εbend (1− cos(θi,i+1)) , (13)

where εbend parameterizes the strength of the interaction and θi,i+1 is the angle between the cylinders.
Molecules bound to pairs of filaments (e.g. α-actinin and NMIIA) of stretched length lbound have a harmonic
stretching energy term:

Ubound,str =
1

2
Kbound,str(lbound − l0bound)2, (14)

where the subscript “bound” indicates that the variables and parameters are specific to the bound molecule.
An excluded volume interaction is included to prevent cylinders from overlapping. The analytical formula
for this interaction is complicated but can be expressed as a double integral over the two lengths of the
participating cylinders i and j:

Uvol,ij = Kvol

∫ 1

0

∫ 1

0

dsdt

||ri(s)− rj(t)||4
, (15)

where ri(s) = ri + s(ri+1 − ri) is the position along the i cylinder, which is parameterized by a variable
s running from 0 to 1 along the cylinder’s length. These positions ri(s) are also therefore functions of the
cylinders’ bead positions, ri and ri+1. Finally, an exponentially decaying boundary repulsion term prevents
the filaments from poking outside the simulation volume:

Uboundary = εboundarye
−di/λ, (16)

where εboundary parameterizes the interaction strength, di is the distance from the boundary to the nearest
endpoint of the i cylinder, and λ parameterizes the interaction screening length.

At the end of each chemical evolution cycle, the positions of the bound molecules and the filament beads will
have changed due to the chemical reactions which occurred, displacing the system from near-equilibrium.
The positions of the filament beads are then updated in a mechanical equilibration cycle by minimizing
the total mechanical energy function U . This is accomplished using the conjugate-gradient minimization
algorithm. The minimization procedure ends when the maximum net force remaining in the network is below
a user-specified force tolerance FT , as result of which the system returns to near mechanical equilibrium.

D. Mechanochemical coupling

An important facet of the dynamics of actomyosin networks is that the chemical reaction rates of the
associated proteins depend on the forces they sustain: at high tension the myosin minifilaments will walk
and unbind more slowly (stalling and catch-bond behavior) whereas the passive cross-linkers are modeled as
unbinding more quickly under tension (slip-bond behavior) [28, 29]. These force-sensitive behaviors thus play
the role of non-linearly coupling the mechanical state of the actomyosin network to its stochastic chemical
dynamics.

The myosin motors used in MEDYAN are modeled after non-muscle myosin IIA (NMIIA), which exists
in the cell as a minifilament consisting of tens of individual myosin heads. The chemical dynamics of the
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myosin minifilaments are based on the Parallel Cluster Model of Erdmann et al. [22, 83]. In this model, a
myosin minifilament contains a number Ntotal of individual myosin heads and has a binding rate to the actin
filament pair equal to

kfil,bind = Ntotalkhead,bind, (17)

where khead, bind is the individual myosin head binding rate. In MEDYAN, Ntotal is uniformly randomly
selected between a minimum and maximum number of heads each time a minifilament binds. The bound
myosin minifilament has a number of bound heads N0

bound under zero tension equal to the duty ratio ρ times
the total number of heads:

N0
bound = ρNtotal. (18)

The duty ratio is determined by the individual head unbinding rate:

ρ =
khead,bind

k0
head,unbind + khead,bind

, (19)

where k0
head,unbind is the head unbinding rate under zero tension. Under tension Fext the bound myosin

minifilament has altered walking and unbinding rates as well as an altered number of bound heads. The
number of bound heads under tension is given by

Nbound(Fext) = min

{
Ntotal, N

0
bound + β

Fext

Ntotal

}
, (20)

where the parameter β = 2.0 is chosen to fit experimental data. The myosin minifilament walking rate under
zero tension is

k0
fil,walk = s

1− ρ
ρ

khead,bind, (21)

where s is called the stepping fraction, defined as the ratio of the user-specified real distance between binding
sites on the filament dstep to the distance between binding sites on the computational cylinder representing

the filament segment dtotal: s =
dstep
dtotal

. Equation 21 is based on the PCM and is explained Refs. [19, 22].
Under tension, the myosin minifilament walking rate is altered according to a formula of the Hill type:

kfil,walk = max

{
0.0, k0

fil,walk

Fstall − Fext

Fstall + Fext/α

}
, (22)

where the stall force Fstall is the maximum tension a minifilament can sustain before it stops walking, and
where α = 0.2 is another parameter chosen to fit to experimental data. The myosin minifilament will unbind
from the pair of actin filaments under zero tension with a rate

k0
fil,unbind =

khead,bindNtotal

exp
(

log
(
k0head,unbind+khead,bind

k0head,unbind

)
Ntotal

)
− 1

. (23)

This non-obvious expression is the inverse of the mean residence time of the minifilament as determined
using the PCM. Under tension, the myosin minifilament unbinding is modeled with Kramers-type catch-
bond behavior:

kfil,unbind(Fext) = k0
fil,unbind max

{
0.1, exp

(
−Fext

Nbound(Fext)F0,head

)}
, (24)

where F0,head is the characteristic force a single myosin head catch-bond, and the minimum unbinding factor
0.1 is a parameter to chosen to ensure the possibility to unbind under arbitrarily large tension. We assume
for myosin minifilaments that the stretching constant is given by

Kbound,str = Khead,strNbound, (25)
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where Khead,str is the stretching constant for an individual head; this equation assumes the bound heads
share the load in parallel.

The unbinding of passive cross-linkers (e.g. α-actinin) are modeled as Kramers-type slip-bond:

klinker,unbind(Fext) = k0
linker,unbind exp

(
Fext

F0,linker

)
, (26)

where F0,linker is the characteristic force of the cross-linker slip-bond.
Finally, the actin filament will polymerize with a rate that exponentially decreases with the component

of the sustained force along the polymerizing tip, Fext. This dependence is based on the Brownian ratchet
model of Peskin et al. [84]:

kpoly(Fext) = k0
poly exp

(
− Fext

F0,poly

)
, (27)

where F0,poly is the characteristic force of the Brownian ratchet model, and k0
poly is the zero-force polymer-

ization rate.
Any of the above characteristic forces F0 may be converted to a corresponding characteristic distance x0

via

F0 = kBT/x0, (28)

where kBT is the thermal energy, casting expressions of the form Fext/F0 to the form Fextx0/kBT .
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E. Parameterization

The following table lists the parameters chosen for the simulations presented in this paper.

Parameter Description Value
General Simulation Parameters

kBT Thermal energy 4.1 pN · nm
Lcomp Cubic compartment side length 500 nm
Nx, Ny, Nz Number of compartments in each dimension 2, 2, 2
Lcyl Filament cylinder equilibrium length 54 nm
δt Length of chemical evolution step 0.05 s
FT Force tolerance of mechanical minimization 1 pN

Mechanical Parameters
Kfil,str Actin filament stretching constant 100 pN/nm [19]
εbend Actin filament bending energy 1344 pN ·nm [19, 85]
Kvol Cylinder excluded volume constant 105 pN/nm4 [19]
Khead,str NMIIA head stretching constant 2.5 pN/nm [86]
Kα,str α-actinin stretching constant 8 pN/nm [87]
εboundary Boundary repulsion energy 41 pN · nm a

λ Boundary repulsion screening length 2.7 nm b

Mechanochemical Parameters
NNMIIA,bind Binding sites per cylinder for myosin motors 8 c

Nα,bind Binding sites per cylinder for α-actinin 4 d

dstep NMIIA minifilament step size 6.0 nm [86]
Nmin, Nmax Range of number of NMIIA heads per minifilament 15, 25 e [88]
Fstall Stall force of NMIIA minifilament 100 pN f

F0,head Characteristic force of NMIIA catch-bond 12.6 pN [22]
F0,α Characteristic force of α-actinin slip-bond 17.2 pN [89]
F0,poly Characteristic force of actin Brownian ratchet 1.5 pN [90]
lM Equilibrium length of NMIIA minfilament 175− 225 nm [19]
lα Equilibrium length of α-actinin 30− 40 nm [19]

Chemical Parameters
kactin,diff Diffusion constant of actin monomer 20 µMs−1 [19]
kα,diff Diffusion constant of α-actinin 2 µMs−1 [19, 91]
kmotor,diff Diffusion constant of NMIIA minifilament 0.2 µMs−1 [19]
kactin,poly,+ Actin plus-end polymerization 11.6 µMs−1 [76]
kactin,poly,- Actin minus-end polymerization 1.3 µMs−1 [76]
kactin,depoly,+ Actin plus-end depolymerization 1.4 s−1 [76]
kactin,depoly,- Actin minus-end depolymerization 0.8 s−1 [76]
khead,bind NMIIA head binding 0.2 s−1 [21]
k0

head,unbind NMIIA head unbinding under zero tension 1.7 s−1 [19, 21]
kα,bind α-actinin binding 0.7 µMs−1 [92]
k0
α,unbind α-actinin unbinding under zero tension 0.3 s−1 [92]

TABLE I. All parameters used in the simulations reported in this paper.

a - Chosen for the energy scale to be 10 kBT .
b - Chosen as the the length of a G-actin monomer.
c - Chosen to allow the spacing between binding sites to be roughly equal to its physiological value near

6 nm [86].
d - Chosen to allow the spacing between binding sites to be roughly equal to its physiological value near

30 nm [93].
e - Chosen to given an average Ntotal = 20 in approximate agreement with literature values [88].
f - A wide range of values are found in the literature for the stall force of the minifilament. We take an

order of magnitude estimate for this parameter based on the stall force of a single head (on the order of 10
pN , estimated as dstepKhead,str [19]) times the number of bound heads in the minifilament (on the order of
10). This parameter choice is empirically valid as it yields observable network contraction.
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V. DEPENDENCE ON δt AND FT

The heavy-tailed distributions of |∆U−|, the magnitudes of the negative energy increments which are the
chief subject of this paper, may have strong dependence on certain key parameters governing the mechanical
equilibration protocol. To ensure that these distributions are not artifacts of simulation we investigate
whether changing the parameters FT and δt alters the qualitative properties of the distributions. In Figure
14 we compare these distributions using 3 runs for each parameter choice. Only weak dependence on FT is
observed (Figure 14.A). We find strong dependence on δt (Figure 14.B), however for each parameter choice
heavy tails exist and thus we may conclude that the cytoquake phenomenon is not an artifact despite their
frequency and magnitude having dependence on δt. We can ask whether the observed discrepancy between
the distributions for different choices of δt is due to a change in the underlying dynamics or due to the
effect of summing over larger time intervals to obtain the quantities ∆U . We expect that by summing over
larger time intervals, the heavy tails are “averaged out,” or coarse-grained, causing them to be increasingly
Gaussian for larger δt. We can check this by summing consecutive increments ∆U for small choices of δt over
time windows equal to the largest value of δt tested. When this is done (shown in Figure 14.C), we find the
distributions for all choices of δt to approximately collapse on each other. This suggests that coarse-graining
in time indeed explains the discrepancy in the distributions of |∆U |− in Figure 14.B. Without showing the
data, we find a similar picture to apply for the distributions of positive increments ∆U+, with a similar
asymmetry in the non-Gaussian parameters for all choices of δt and FT as observed for conditions used in
main text, δt = 0.05 s and FT = 1 pN . While a smaller choice for FT and δt should correspond more closely
to reality, we find that for the smallest of the tested values for these parameters the simulations did not
complete in the allotted computer wall time of 2 weeks. Thus our choices for these parameters used in this
paper are chosen to be small while still allowing us to run full 2,000 s simulations.
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FIG. 14. A: Complementary cumulative distribution functions of the negative increments |∆U−| at QSS for various
choices of the force tolerance parameter FT plotted against fitted half-normal CCDFs. For these runs condition C3,3

is used with δt = 0.05 s. B: CCDFs of the negative increments |∆U−| at QSS for various choices of the time between
minimization, δt. The energy increments are normalized by δt for more direct comparison between these curves.
For these runs condition C3,3 is used with FT = 2 pN . B: Complementary cumulative distribution functions of the
negative increments |∆U−| at QSS for various choices of the time between minimization, δt. The energy increments
are normalized by δt for more direct comparison between these curves. For these runs condition C3,3 is used with
FT = 1 pN . C: The same data is shown as in part B, except here ∆U for each choice of δt is obtained by summing
consecutive energy increments over time windows equal to 0.2 s. In this way the values of ∆U for each choice of δt
correspond to the same duration of time.
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We also investigated how the fraction of negative eigenvalues persisting after mechanical minimization
depends on the force threshold FT . When minimization ceases at higher forces, more negative eigenvalues
are left remaining, as expected. This behavior is illustrated in Figure 15.
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FIG. 15. Scatter plot showing the fraction of negative eigenvalues remaining after mechanical minimization when
different choices of the parameter FT are used. The data is collected from QSS for 3 runs of C3,3, with the standard
deviation taken over time and over the runs.
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VI. MACHINE LEARNING MODEL

A. Cytoquake classification

To forecast the occurrence of cytoquakes, we resorted to using a high-dimensional ML model (3 layer
feed-forward neural network) after it was found that several simple features in the eigenspectrum which we
believed might reflect mechanical stability (for instance the value of the smallest positive eigenvalue) did not
by themselves significantly correlate with cytoquake occurrence. We pose the forecasting of cytoquakes as
a binary classification problem. A trajectory ∆U (t) = U(t + δt) − U(t) at QSS (after 1,000 s) is converted
to a binary sequence such that each t for which ∆U(t) ≤ ∆UT , as well as the tW = 0.15 previous seconds
(i.e. 3 previous time points) are classified as cytoquakes, and the rest are not. This tW window is chosen
to help overcome the stochasticity inherent in the chemical dynamics which, along with the instantaneous
mechanical stability we are using as a predictor, controls cytoquake occurrence. We focus here on the five
runs of conditions C3,3. ∆UT = −100 kBT is chosen to lie well in the tail of the distribution of |∆U−| for
this condition and therefore distinguishes rare events, as shown in Figure 1 in the main text. With these
choices, ∼ 10% of samples across all runs are labeled as events in the classification problem.

B. Model inputs

The predictors of the model capture information about the network’s mechanical stability. The ordered
sets of eigenvalues {λk}3Nk=1 at each time t is padded by adding zero eigenvalues between the unstable (λk < 0)
and stable (λk ≥ 0) parts of the spectrum to maintain a fixed input dimension across all time points and
runs. We then collect these eigenvalues into a tuple M(t) such that the first element of M(t) is the largest
negative λk at time t and the last element is the largest positive λk at time t. We optionally include the
the inverse participation ratios {rk}3Nk=1 in this vector by first adding zeros in the places of the set {rk}3Nk=1
corresponding to where zeros were added in the set {λk}3Nk=1, and then interleaving the λk and rk in the now
doubly sized tuple M(t), so that now for example the first two elements of M(t) correspond to the largest
negative λk and the associated rk at time t. The tuples M(t) are then linearly rescaled, so for each element

Mi(t) the average over all times of a run is 0 and the variance is 1. These rescaled tuples are labeled M̃(t).

When only the λk are included then M̃(t) has ∼ 1,600 dimensions, and with the rk are also included it has

∼ 3,200 dimensions. To avoid overfitting the model, we first reduce the dimensionality of M̃(t) via principal
component analysis (PCA) using all QSS time points in a run. We choose 30 dimensions as the size of the

reduced tuple m(t) because this allows for more than 95% of the variance of M̃(t) to be explained when
just the λk are included as shown in Figure 16.A. Model performance appreciably decreases when fewer than
30 dimension are used and improves only marginally if more are used. A row of ones is added as a 31st

dimension to m(t) as a bias for the neural network. As an additional indicator of the network’s mechanical

stability we also consider its mechanical energy U at time t. U(t) is linearly rescaled to give Ũ(t) so that

it has zero mean and unit variance. We then optionally augment with input tuple m(t) with the Ũ(t) as a
32nd dimension.

C. Treating multiple trials

We can treat the data from all five runs of condition C3,3 separately or combine all data together to train
a larger model. Model performance is generally found to be better when trained on data from a single run,
however by combining data from all runs we probe more general underlying trends that are not specific to
the network organization of one run. When describing trends from varying model inputs, as in Figure 16.D,
we focus on results obtained by combining all runs due to their greater generality.

For a single run there are ∼ 20,000 samples, giving 100,000 samples when combining all runs. When
combining runs, we first rescale and perform PCA on the predictors using only the data within a single
run, and then concatenate the resulting m(t) with their associated labels into a larger data set. This way
the relative variation of the predictors compared to their typical values for a particular organization of the
actomyosin network is retained, and the typical values of particular network organizations themselves affect
the model inputs to a lesser degree.
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FIG. 16. A: Cumulative explained variance from PCA of the ∼ 1, 600 eigenvalues {λk(t)}3Nk=1. B: Schematic
depiction of the feed-forward neural network architecture. C: ROC curves for the model using only {λk}3Nk=1 as input
and trained on a single run of condition C3,3, with five realizations of the stochastic batch network training and their
average shown. The ROC curve of a random model is plotted as the red dotted line. D: Bar plot indicating the AUC
of ROC curves using different combinations of inputs for the model trained on data collected from all runs of condition
C3,3. From left to right, the labels indicate that the model inputs are: {λk}3Nk=1; {λk|0 ≤ λk < λT }; {λk|λT ≤ λk};
{λk}3Nk=1 and {rk}3Nk=1; U , using a logistic regression model; {λk}3Nk=1, {rk}3Nk=1, and U ; {λk}3Nk=1, {rk}3Nk=1, and U with
forecasting done for large positive increments ∆U > 100 kBT . Error bars indicate uncertainty from five realizations
of stochastic batch training.

D. Neural network architecture

We used the Python modules scikit-learn and Keras with a Tensorflow back end to train a deep feed-forward
neural network and a logistic regression model for the binary classification problem [94, 95]. The 31 or 32-

dimensional (depending on if Ũ(t) is included as a predictor) input tuple m is fed into three fully connected
hidden layers Li, i = 1, 2, 3, each with either 30 or 100 nodes depending on if the data consists of a single
run (20,000 samples) or of all five runs (100,000 samples). Each node in the hidden layers uses a rectified
linear unit activation function. The output of the network is two nodes using a softmax activation function
whose values are p and 1− p, where p is the predicted probability of a cytoquake event at that time t. This
architecture is schematically illustrated in Figure 16.B. The network is trained for either 400 or 200 epochs
using a categorical cross-entropy loss function with Adam optimization in stochastically chosen batches of
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either 1,000 or 10,000 samples, depending on the whether the single or multiple run data sets, respectively,
are used. The cytoquake samples are given a higher weight (×3) than the non-cytoquake samples during

training. A L2 penalty of 0.05 is used to curb overfitting. When using only Ũ(t) as a predictor, a logistic
regression model is fit using the same sample weights.

E. Model validation

Of all the data samples, we use 2/3 to train the model with and validate the model on the remaining 1/3.
We repeat these random training/testing set splits to gather statistics on model performance. The binary
classification procedure involves the probability threshold pT (such that p > pT means the model predicts
a cytoquake). Model performance is measured by varying pT from 0 to 1 and measuring the true positive
rate (TPR, the proportion of actual cytoquakes correctly predicted as such) and false positive rate (FPR,
the proportion of actual non-cytoquakes incorrectly predicted as cytoquakes) on the test data; the locus of
these points forms the receiver operator characteristic (ROC) curve. A random model would have FPR =
TPR, so an area under the curve (AUC) of the ROC curve greater than 0.5 indicates a good model, and a
perfect model would have an AUC of 1. One can also consider precision-recall (PR) curves, which contain
points in the space of model precision (the proportion of predicted cytoquakes which were actual cytoquakes)
and recall (the same as TPR). A random model would have the same precision, equal to the proportion of
actual cytoquakes in the testing data, for all values of recall as pT is varied, giving an AUC equal to that
proportion.

When the test data is unbalanced, i.e. when there are many more non-cytoquake events than cytoquake
events, it has been shown that the AUC of the PR curve is a more faithful metric for model performance
(since a model may score a high AUC of the ROC curve by overestimating that events are not cytoquakes)
[96, 97]. To overcome this limitation of ROC curves, which we believe has a more intuitive interpretation
that PR curves, we balance the testing data, keeping all cytoquake events and randomly keeping an equal
number of non-cytoquake events. We confirmed that trends observed in the AUC of the ROC curves as the
model is varied also hold when considering the AUC of PR curves on the full test set.

In Figure 17 we show examples of these PR and ROC curves on the training and testing data for a model
trained on a single run. The very high AUC of the PR and ROC curves evaluated on the training data
indicates that the model has nearly perfected its prediction on those samples and may indicate overfitting,
however this high performance generalizes nicely to the unseen testing data. Note that the AUC of the ROC
evaluated on the testing data is significantly higher than shown in Figure 16.D reflecting the generally higher
performance of models trained on data from a single run compared to models trained on data from all runs.

Finally, as a sanity check, we confirmed that randomly shuffling the labels on the training set decreases
performance on the training set and causes the performance on the test set to decrease to that of a random
model, as shown in Figure 18.

F. Varying the machine learning model inputs

Applying the model using the Hessian eigenspectrum as the input, we obtained an AUC of 0.81 when using
data from a single run of condition C3,3 (Figure 16.C) and of 0.70 when using data from five runs, i.e. from
five different network realizations. In Figure 16.D, we display the effects of varying the machine learning
model inputs on prediction performance, reflecting the degree to which cytoquake occurrence depends on the
various inputs. We point out that these trends from varying the model inputs are not particularly strong,
contributing only marginal changes (though greater the measured uncertainty) to the model performance.
These differences are less than the difference resulting from combing all five runs in a data set rather than
using one run. We report them here mainly out of completeness, rather than in support of some strong
conclusion.

Uncertainty in AUC from five repetitions of stochastic batch training is roughly 0.01 for all reported values.
Keeping only the eigenvalues of the soft modes does not harm performance (AUC 0.71), while keeping only
the stiff modes does harm performance (AUC 0.68). Performance is not harmed (AUC 0.72) upon augmenting
the input with the inverse participation ratios {rk(t)}3Nk=1. Interestingly, we found that a logistic regression
model using only the mechanical energy U(t) as an input feature performs well (AUC 0.74, with a smaller
uncertainty around 0.002 for this simpler model), reminiscent of the debate concerning one neuron vs. deep
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learning models of earthquake aftershock prediction [53, 54]. This logistic regression model has learned an
optimal cutoff for U that indicates instability and likely cytoquake occurrence. We may seemingly conclude
that the machine learning model using the Hessian eigenspectrum as an input has merely learned what the
mechanical energy is, however we find that by far the best performance results from combining {λk(t)}3Nk=1,
{rk(t)}3Nk=1, and U(t) in the ML model, reaching an AUC of 0.79 when using data from all five runs. This
suggests that the learned features of the Hessian eigenspectrum are not redundant given U , i.e. that their
mutual information is low. Finally, we found that prediction of large positive increments (∆U > 100 kBT )
is also possible, with an AUC of 0.74 when combining all inputs.
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FIG. 17. A: PR curve evaluated for a model using {λk}3Nk=1, {rk}3Nk=1, and U as inputs trained on data from a single
run at QSS of condition C3,3 and evaluated on the training data. The red line indicates the performance of a random
model on the data set. The asterisk on the AUC indicates that the fraction of cytoquake samples in the data set (for
this run ∼ 0.06) has been subtracted from the actual AUC, to give the area between the black and red curves. B:
ROC curve for the same model evaluated on the training data. C: PR curve for the same model evaluated on the
balanced testing data. D: ROC curve for the same model evaluated on the balanced testing data.
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FIG. 18. A: PR curve evaluated for a model using {λk}3Nk=1, {rk}3Nk=1, and U as inputs trained on data from a single
run at QSS of condition C3,3 and evaluated on the training data, when the training data labels have been randomly
shuffled. The red line indicates the performance of a random model on the data set. B: ROC curve for the same
model evaluated on the training data. C: PR curve for the same model evaluated on the balanced testing data. D:
ROC curve for the same model evaluated on the balanced testing data.
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