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Abstract
We determine the computational complexity of approximately counting and sampling independent
sets of a given size in bounded-degree graphs. That is, we identify a critical density αc(∆) and
provide (i) for α < αc(∆) randomized polynomial-time algorithms for approximately sampling and
counting independent sets of given size at most αn in n-vertex graphs of maximum degree ∆; and
(ii) a proof that unless NP=RP, no such algorithms exist for α > αc(∆). The critical density is
the occupancy fraction of hard core model on the clique K∆+1 at the uniqueness threshold on the
infinite ∆-regular tree, giving αc(∆) ∼ e

1+e
1
∆ as ∆ → ∞.
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1 Introduction

Counting and sampling independent sets in graphs are fundamental computational problems
arising in several fields including algorithms, statistical physics, and combinatorics. Given a
graph G, let I(G) denote the set of independent sets of G. The independence polynomial of
G is

ZG(λ) =
∑

I∈I(G)

λ|I| =
∑
k≥0

ik(G)λk ,

where ik(G) is the number of independent sets of size k in G. The independence polynomial
also arises as the partition function of the hard-core model from statistical physics.

With G and λ as inputs, exact computation of ZG(λ) is #P-hard [32, 18], but the
complexity of approximating ZG(λ) has been a major topic in recent theoretical computer
science research. There is a detailed understanding of the complexity of approximating
ZG(λ) for the class of graphs of maximum degree ∆, in particular showing that there is a
computational threshold which coincides with a certain probabilistic phase transition as one
varies the value of λ.

The hard-core model on G at fugacity λ is the probability distribution on I(G) defined by

µG,λ(I) = λ|I|

ZG(λ) .
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62:2 Approximately Counting Independent Sets of a Given Size

Defined on a lattice like Zd (through an appropriate limiting procedure), this is a simple
model of a gas (the hard-core lattice gas) and it exhibits an order/disorder phase transition
as λ changes. The hard-core model can also be defined on the infinite ∆-regular tree (the
Bethe lattice). Kelly [23] determined the critical threshold for uniqueness of the infinite
volume measure on the tree, namely

λc(∆) = (∆ − 1)∆−1

(∆ − 2)∆ . (1)

This value of λ also marks a computational threshold for the complexity of approximating
ZG(λ) on graphs of maximum degree ∆. One can approximate ZG(λ) up to a relative
error of ε in time polynomial in n and 1/ε with several different methods, provided G is of
maximum degree ∆ and λ < λc(∆). The first such algorithm is based on correlation decay
on trees and is due to Weitz [33], but recently alternative algorithms based on polynomial
interpolation [3, 27, 28] and Markov chains [2, 6, 7] for this problem have also been given.
Conversely, for λ > λc(∆) a result of Sly and Sun [31] and Galanis, Štefankovič, and
Vigoda [16] (following Sly [30]) states that unless NP=RP there is no polynomial-time
algorithm for approximating ZG(λ) on graphs of maximum degree ∆. Counting and sampling
are closely related, and by standard reduction techniques the same computational threshold
holds for the problem of approximately sampling independent sets from the hard-core
distribution.

The hard-core model is an example of the grand canonical ensemble from statistical
physics, where one studies physical systems that can freely exchange particles and energy
with a reservoir. Closely related is the canonical ensemble, where one removes the reservoir
and considers a system with a fixed number of particles. In the context of independent sets
in graphs, this corresponds to the uniform distribution on independent sets of some fixed size
k. Here the number ik(G) of independent sets of size k in G plays the role of the partition
function. In this paper we answer affirmatively the natural question of whether there is a
similar complexity phase transition for the problem of approximating ik(G), and the related
problem of sampling independent sets of size k approximately uniformly. Analogous to
the critical fugacity in the hard-core model, we identify a critical density αc(∆), and for
α < αc(∆) we give a fully polynomial-time randomized approximation scheme (FPRAS,
defined below) for counting independent sets of size k in n-vertex graphs of maximum degree
∆, where 0 ≤ k ≤ αn. We also show that unless NP=RP there is no such algorithm for
α > αc(∆).

In statistical physics the grand canonical ensemble and the canonical ensemble are
known to be equivalent in some respects under certain conditions, and the present authors,
Jenssen, and Roberts [12] used this idea to give a tight upper bound on ik(G) for large k

in large ∆-regular graphs G (see also [10] for the case of small k). Here, the main idea
in our proofs is also to exploit the equivalence of ensembles. For algorithms at subcritical
densities we approximately sample independent sets from the hard-core model and show that
with sufficiently high probability we get an independent set of the desired size, distributed
approximately uniformly. For hardness at supercritical densities we construct an auxiliary
graph G′ such that ik(G′) is approximately proportional to ZG(λ) for some λ > λc(∆), and
hence is hard to approximate. Our counting and sampling algorithms for independent sets of
size k permit higher densities than previous algorithms for this problem based on Markov
chains [5, 1], and an algorithm implicit in [10] based on the cluster expansion.

A pleasant feature of our methods is the incorporation of several advances from recent
research on related topics. From the geometry of polynomials we use a state-of-the-art
zero-free region for ZG(λ) due to Peters and Regts [28] and a central limit theorem of
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Michelen and Sahasrabudhe [26, 25] (though an older result of Lebowitz, Pittel, Ruelle and
Speer [24] would also suffice), and we also apply the very recent development that a natural
Markov chain (the Glauber dynamics) for sampling from the hard-core model mixes rapidly
at fugacities λ < λc(∆) on all graphs of maximum degree at most ∆ [1, 7]. Finally, our
results also show a connection between these algorithmic and complexity-theoretic problems
and extremal combinatorics problems for bounded-degree graphs [9, 12, 10], see also the
survey [34].

1.1 Preliminaries

Given an error parameter ε and real numbers z, ẑ, we say that ẑ is a relative ε-approximation
to z if e−ε ≤ ẑ/z ≤ eε. A fully polynomial-time randomized approximation scheme or FPRAS
for a counting problem is a randomized algorithm that with probability at least 3/4 outputs
a relative ε-approximation to the solution of the problem in time polynomial in the size of
the input and 1/ε. If the algorithm is deterministic (i.e. succeeds with probability 1) then
it is a fully polynomial-time approximation scheme (FPTAS). An ε-approximate sampling
algorithm for a probability distribution µ outputs a random sample from a distribution µ̂

such that the total variation distance ∥µ − µ̂∥T V ≤ ε, and an efficient sampling scheme is,
for all ε > 0 an ε-approximate sampling algorithm which runs in time polynomial in the size
of the input and log(1/ε). Note that approximate sampling schemes whose running times
are polynomial in 1/ε or in log(1/ε) are common in the literature, but we adopt the stronger
definition for this paper. The inputs to our algorithms are graphs, and input size corresponds
to the number of vertices of the graph.

An independent set in a graph G = (V, E) is a subset I ⊂ V such that no edge of E is
contained in I. The density of such an independent set I is |I|/|V |, and it will be convenient
for us to parametrize independent sets by their density instead of their size. We write I(G)
for the set of all independent sets in G, Ik(G) for the set of independent sets of size k in G,
and ik(G) = |Ik(G)| for the number of such sets. Recall the hard-core distribution µG,λ on
I(G) is given by µG,λ(I) = λ|I|/ZG(λ). We also define the occupancy fraction αG(λ) of the
hard-core model on G at fugacity λ to be the expected density of a random independent set
drawn according to µG,λ. Let G∆ be the set of graphs of maximum degree ∆.

The critical density that we show constitutes a computational threshold for the problems
of counting and sampling independent sets of a given size in graphs of maximum degree ∆ is

αc(∆) = λc(∆)
1 + (∆ + 1)λc(∆) = (∆ − 1)∆−1

(∆ − 2)∆ + (∆ + 1)(∆ − 1)∆−1 ,

with λc the critical fugacity as in (1). This may seem unexpected at first sight, but has a
natural interpretation. The threshold is in fact the quantity αK∆+1(λc(∆)), the occupancy
fraction of the clique on ∆ + 1 vertices at the critical fugacity λc(∆). This is a natural
threshold because the occupancy fraction is a monotone increasing function of λ, and the
clique on ∆ + 1 vertices has the minimum occupancy fraction over all graphs of maximum
degree ∆. Thus, for any G ∈ G∆, the value of λ which makes αG(λ) > αc(∆) must be greater
than λc(∆). Conversely, if α < αc(∆) then for every graph G ∈ G∆ there is some λ < λc(∆)
such that αG(λ) = α.

ICALP 2021



62:4 Approximately Counting Independent Sets of a Given Size

1.2 Our results
We are now ready to state our main result.

▶ Theorem 1.
(a) For every α < αc(∆) there is an FPRAS for i⌊αn⌋(G) and an efficient sampling scheme

for the uniform distribution on I⌊αn⌋(G) for n-vertex graphs G of maximum degree ∆.
(b) Unless NP=RP, for every α ∈ (αc(∆), 1/2) there is no FPRAS for i⌊αn⌋(G) for n-vertex,

∆-regular graphs G.
The assumption NP ̸=RP, which is that polynomial-time algorithms using randomness cannot
solve all problems in NP, is standard in computational complexity theory. Indeed, this
assumption is used in [30, 31, 16] to show hardness of approximation for ZG(λ) on regular
graphs at supercritical fugacities, which we apply directly. The upper bound of 1/2 on α

in b is required since in a regular graph (of degree ≥ 1) there are no independent sets of
density greater than 1/2 and counting those of density 1/2 amounts to counting connected
components in a bipartite graph (which can be done in polynomial time). For graphs of
maximum degree ∆ there is no such barrier, and in this case our methods can also be used
to prove b for α ∈ (αc(∆), 1).

On the algorithmic side, Bubley and Dyer [5] showed via path coupling that a natural
Markov chain for sampling independent sets of size k in n-vertex graphs of maximum degree
∆ mixes rapidly when k < n/(2∆ + 2), and recently this was slightly improved to k < n/(2∆)
via the method of high-dimensional expanders by Alev and Lau [1] (who also gave an improved
bound in terms of the smallest eigenvalue of the adjacency matrix of G). The fast mixing of
this Markov chain provides a randomized algorithm for approximate sampling and an FPRAS
for approximate counting for this range of k. Implicit in the work of the present authors and
Jenssen [10] is an alternative method based on the cluster expansion that yields an FPTAS
for ik(G) when k < e−5n/(∆ + 1), and although we did not try to optimize the constant
it seems unlikely that without significant extension the cluster expansion approach could
yield a sharp result. Considering asymptotics as ∆ → ∞, these previous algorithms work for
densities up to (c + o(1))/∆ with the constant c being 1/2 or e−5 ≈ 0.007 respectively. Here,
our algorithms work for densities α satisfying

α < αc(∆) = (1 + o(1)) e

1 + e

1
∆ ,

as ∆ → ∞. The constant e/(1 + e) is approximately 0.731, and our hardness proof shows
that this is tight.

Our sampling algorithm is based on searching over possible values of λ until we find one for
which the mean size of an independent set from the hard-core model is close to the target k.
We then repeatedly sample from the hard-core model until we obtain an independent set of
size k and output this independent set. Our approximate counting algorithm is based on a
standard reduction of approximate counting to approximate sampling.

The method of sampling from the canonical ensemble by sampling from the grand
canonical ensemble and conditioning on obtaining an object the desired size is quite old and
appears in the seminal papers of Jerrum and Sinclair [20, 21]. The key technical step in
applying this method is to prove a lower bound on the probability of obtaining the desired
size; in [20, 21] this is accomplished by using log-concavity of the specific distribution on
sizes. Since the hard-core model does not have this property in general, we need a different
argument; our new argument is based on the rapid mixing of Glauber dynamics.

Harris and Kolmogorov [19] have recently investigated the general problem of estimating
the coefficients of partition functions given access to samples from the corresponding Gibbs
distribution. Applying their ideas and results to this problem could likely lead to more
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efficient run times for the problem of approximating the entire sequence {ik(G)}, 1 ≤ k ≤ αn.
Their ideas could also be applied to improve the efficiency of the reduction from counting to
sampling, as they describe a more efficient “cooling schedule” for the simulated annealing
technique that we use for this type of reduction.

1.3 Triangle-free graphs
As an additional application of our techniques we find an approximate computational
threshold for the class of triangle-free graphs.

▶ Theorem 2. For every δ > 0 there is ∆0 large enough so that the following is true.
(a) For ∆ ≥ ∆0 and α < 1−δ

∆ there is an FPRAS and efficient sampling scheme for i⌊αn⌋(G)
for the class of triangle-free graphs of maximum degree ∆.

(b) For ∆ ≥ ∆0 and α ∈
( 1+δ

∆ , 1/2
)

there is no FPRAS for i⌊αn⌋(G) for the class of
triangle-free graphs of maximum degree ∆.

The proof of this theorem uses a result on the occupancy fraction of triangle-free graphs
from [11], see Section 4.

1.4 Related work
Counting independent sets of a specified size has arisen in various places as a natural
fixed-parameter version of counting independent sets, and is equivalent to counting cliques
of a specified size in the complement graph. Exact computation of ik(G) in an n-vertex
graph H is trivially possible in time O(k2nk), though improvements can be made via fast
matrix multiplication algorithms (see e.g. [15]). Another branch of research concerns the
complexity (in both time and number of queries to the graph data structure) of counting
and approximately counting cliques. For example, in [14] the authors gave a randomized
approximation algorithm for approximating the number of cliques of size k. Results of this
kind perform poorly in our setting, which is equivalent to counting cliques in the complement
of bounded-degree graphs, because such graphs are very dense. In particular, the main result
of [14] has expected running time Ω((nk/e)k) in our setting.

With a focus on bounded-degree graphs and connections to statistical physics, our work is
closer in spirit to that of Curticapean, Dell, Fomin, Goldberg, and Lapinskas [8]. There, the
authors consider the problem of counting independent sets of size k in bipartite graphs from
the perspective of parametrized complexity. They give algorithms for exact computation and
approximation of ik(G) in bipartite graphs (of bounded degree and otherwise), including a
fixed parameter tractable randomized approximation scheme, though their running times are
exponential in k. We note that the complexity of approximately counting the total number
of independent sets in bipartite graphs (a problem known as #BIS) is unknown [13].

1.5 Questions and future directions
For the hard-core model, the algorithm of Weitz [33] gives a deterministic approximation
algorithm (FPTAS) for ZG(λ) for λ < λc(∆). The approach of Barvinok along with
results of Patel and Regts and Peters and Regts give another FPTAS for the same range of
parameters [3, 27, 28]. Our algorithm for approximating the number of independent sets of
a given size uses randomness, but we conjecture that there is a deterministic algorithm that
works for the same range of parameters. (The cluster expansion approach of [10] gives an
FPTAS but only for smaller values of α).

▶ Conjecture 3. There is an FPTAS for i⌊αn⌋(G) for G ∈ G∆ and all α < αc(∆).

ICALP 2021



62:6 Approximately Counting Independent Sets of a Given Size

The Markov chain analyzed in [5, 1] is the “down/up” Markov chain: starting from an
independent set It ∈ Ik(G) at step t, pick a uniformly random vertex v ∈ It and a uniformly
random vertex w ∈ V . Let I ′ = (It \ v) ∪ w. If I ′ ∈ Ik(G), let It+1 = I ′; if not, let It+1 = It.

▶ Conjecture 4. The down/up Markov chain for sampling from I⌊αn⌋(G) mixes rapidly for
α < αc(∆) and all G ∈ G∆.

One of the steps of our proof leads to a natural probabilistic conjecture concerning the
hard-core model in bounded degree graphs.

▶ Conjecture 5. Suppose G is a graph on n vertices of maximum degree ∆. Then if λ < λc(∆)
and k = ⌊EG,λ|I|⌋, we have

PG,λ[|I| = k] = Ω(n−1/2) ,

where the implied constant only depends on ∆ and λ and the expectation and probability are
with respect to the hard-core model on G at fugacity λ.

Lemma 8 below gives the weaker bound Ω(n−1 log−1 n). A stronger conjecture would be
that a local central limit theorem for |I| holds whenever λ < λc(∆).

Finally, our proofs of Theorems 1 and 2 show a close connection between the computational
threshold for sampling independent sets of a given size in bounded-degree graphs and the
extremal combinatorics problem of minimizing the occupancy fraction in the hard-core model
over a class of bounded-degree graphs. We expect that a rigorous connection between the
two problems can be proved.

2 Algorithms

In this section, we fix ∆ ≥ 3 and α < αc(∆). We first give an algorithm that, for G ∈ G∆ on
n vertices and k ≤ αn, returns an ε-approximate uniform sample from Ik(G) and runs in
time polynomial in n and log(1/ε); this proves the sampling part of Theorem 1a. We then
use this algorithm to approximate ik(G) using a standard simulated annealing process to
prove the approximate counting part of Theorem 1a.

Given λ ≥ 0, let I be a random independent set from the hard-core model on G at
fugacity λ. We will write PG,λ for probabilities over the hard-core measure µG,λ, so e.g.
PG,λ(|I| = k) is the probability that I is of size exactly k. Often we will suppress the
dependence on G.

A key tool that we use for probabilistic analysis and to approximately sample from µG,λ

is the Glauber dynamics. This is a Markov chain with state space I(G) and stationary
distribution µG,λ. Though the algorithm of Weitz [33] was the first to give an efficient
approximate sampling algorithm for µG,λ for λ < λc(∆) and all G ∈ G∆, a randomized
algorithm with better running time now follows from recent results showing that the Glauber
dynamics mix rapidly for this range of parameters [2, 6, 7]. The mixing time Tmix(M, ε) of a
Markov chain M is the number of steps from the worst-case initial state I0 for the resulting
state to have a distribution within total variation distance ε of the stationary distribution.
We will use the following result of Chen, Liu, and Vigoda [7], and the sampling algorithm
that it implies.

▶ Theorem 6 ([7]). Given ∆ ≥ 3 and ξ ∈ (0, λc(∆)), there exists C > 0 such that the
following holds. For all 0 ≤ λ < λc(∆) − ξ and graphs G ∈ G∆ on n vertices, the mixing
time Tmix(M, ε) of the Glauber dynamics M for the hard-core model on G with fugacity λ is
at most Cn log(n/ε). This implies an ε-approximate sampling algorithm for µG,λ for G ∈ G∆
that runs in time O(n log n log(n/ε)).
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The sampling algorithm follows from the mixing time bound; the extra factor log n is
the cost of implementing one step of Glauber dynamics (which requires reading O(log n)
random bits to sample a vertex uniformly). Note that the implicit constant in the running
time depends on how close λ is to λc(∆), but in applications of this theorem we will have
λ ≤ λc(∆) − ξ for some fixed ξ > 0, so that the implicit constant depends only on ξ, which
in turn depends on α.

2.1 Approximate sampling
The algorithm Sample-k listed in Algorithm 1 uses Theorem 6 and a binary search on values
of λ to generate samples from Ik(G). The algorithm requires access to distributions µ̂λ

which are meant to be approximate versions of the hard-core model on G at fugacity λ.
For the algorithm to work, we require that there is some value of λ such that sampling
from the hard-core model at fugacity λ is likely to yield a set of size exactly k, and we will
establish that this holds for some λ in a set of size O(n2) and for a suitable definition of
“likely”. Quantitatively, these results inform the length C log n of the for loop and the value
of N . An intuitive choice for λ would be the unique value that makes k the expected size of
an independent set from the hard-core model on G, and in fact it suffices to find a value
sufficiently close to this.

Algorithm 1 Sample-k.

input : α < αc; ε > 0; G ∈ G∆ of size n; integer k ≤ αn

output : I ∈ Ik(G) with distribution within ε total variation distance of the uniform
distribution of Ik(G)

1 Let λ∗ = α
1−α(∆+1)

2 For t = 0, . . . , ⌊2λ∗n2⌋, let λt = t/(2n2)
3 Let Λ0 = {λt : t = 0, . . . , ⌊2λ∗n2⌋}
4 for i = 1, . . . , C log n, do
5 Let λ be a median of the set Λi−1

6 With N = C ′n2 log
( log n

ε

)
, take N independent samples I1, . . . , IN from a

distribution µ̂λ on I(G)
7 Let κ = 1

N

∑N
j=1 |Ij |

8 If |κ − k| ≤ 1/4 and there exists j ∈ {1, . . . , N} so that |Ij | = k, then output Ij

for the smallest such j and halt
9 If κ ≤ k, let Λi = {λ′ ∈ Λi−1 : λ′ > λ}. If instead κ > k, let

Λi = {λ′ ∈ Λi−1 : λ′ < λ}
10 end
11 If no independent set of size k has been obtained by the end of the for loop (or if

Λj = ∅ at any step), use a greedy algorithm and output an arbitrary I ∈ Ik(G)

▶ Theorem 7. Let C be the constant in Line 4 and N be as in Line 6 of Sample-k (Algo-
rithm 1). If the distributions µ̂λ are each within total variation distance ε/(2CN log n) of
µG,λ, the output distribution of Sample-k is within total variation distance ε of the uniform
distribution of Ik(G). The running time of Sample-k is O(N log n · T (n, ε)) where T (n, ε) is
the running time required to produce a sample from µ̂λ satisfying the above guarantee.

ICALP 2021
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The sampling part of Theorem 1 follows immediately from Theorem 7 since by Theorem 6
we can obtain ε/(2CN log n)-approximate samples from µG,λ in time O(n log n log(n log n ·
N/ε)). Thus, the total running time of Sample-k with this guarantee on µ̂λ is

O(N · n log2 n · log(nN/ε)) ≤ n3 log3 n · polylog
( log n

ε

)
.

Note that the use of Glauber dynamics in Sample-k could be replaced by any other
polynomial-time approximate sampler for µG,λ, such as the algorithm due to Weitz [33]
based on the method of correlation decay. We do however use rapid mixing of the Glauber
dynamics in Lemma 8 below to prove correctness of our algorithm, by establishing a lower
bound on the probability that a set sampled from µG,λ has size close to its mean. Note
that e.g. a resolution of our Conjecture 5 could imply the necessary probabilistic statement
without appealing to the Glauber dynamics, however.

Before we prove Theorem 7, we collect a number of preliminary results that we will use.
The first is a bound on the probability of getting an independent set of size close to the mean
from the hard-core model when λ < λc(∆). We use the notation nαG(λ) for the expected
size of an independent set from the hard-core model on G at fugacity λ to avoid ambiguities.

▶ Lemma 8. For ∆ ≥ 3 and α < αc(∆), there is a unique λ∗ < λc(∆) so that αK∆+1(λ∗) = α,
and the following holds. For any G ∈ G∆ on n vertices and any 1 ≤ k ≤ αn, there exists an
integer t ∈ {0, 1, . . . , ⌊2λ∗n2⌋} so that∣∣nαG(t/(2n2)) − k

∣∣ ≤ 1/2 . (2)

Moreover, if t satisfies (2) then

µG,t/(2n2)(Ik(G)) = Ω
(

1
n log n

)
.

To prove this lemma we need several more results. The first is an extremal bound on
αG(λ) for G ∈ G∆. The statement of the theorem follows from a stronger property proved
by Cutler and Radcliffe in [9]; see [12] for discussion.

▶ Theorem 9 ([9]). For all G ∈ G∆ and all λ ≥ 0,

αG(λ) ≥ αK∆+1(λ) = λ

1 + λ(∆ + 1) .

We next rely on a zero-free region for ZG(λ) due to Peters and Regts [28], so that we can
apply the subsequent central limit theorem.

▶ Theorem 10 ([28]). Let ∆ ≥ 3 and ξ ∈ (0, λc(∆)). Then there exists δ > 0 such that for
every G ∈ G∆ the polynomial ZG has no roots in the complex plane that lie within distance δ

of the real interval [0, λc(∆) − ξ).

The probability generating function of a discrete random variable X distributed on the
non-negative integers is the polynomial in z given by f(z) =

∑
j≥0 P(X = j)zj , and the above

result shows that at subcritical fugacity the probability generating function of |I| has no
zeros close to 1 in C. This lets us use the following result of Michelen and Sahasrabudhe [25].

▶ Theorem 11 ([25]). For n ≥ 1 let Xn be a random variable taking values in {0, . . . , n}
with mean µn, standard deviation σn, and probability generating function fn. If fn has no
roots within distance δn of 1 in C, and σnδn/ log n → ∞, then (Xn − µn)/σn tends to a
standard normal in distribution.
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The final tools we need are simple bounds on the variance of the size of an independent
set from the hard-core model.

▶ Lemma 12. Let G be a graph on n vertices and let I be a random independent set drawn
from the hard-core model on G at fugacity λ. Then, if the maximum degree of G is at most
∆ and M ≥ n/(∆ + 1) is the size of a largest independent set in G, we have

λ

(1 + λ)2+∆ M ≤ var(|I|) ≤ n2 λ

1 + λ
.

Proof. For the upper bound note that |I| is the sum of the indicator random variables Xv

that the vertex v ∈ V (G) is in I. Then because P(Xv = 1) ≤ λ/(1 + λ) for all v, from the
Cauchy–Schwarz inequality in the form cov(Xu, Xv)2 ≤ var(Xu) var(Xv) we obtain

var(|I|) =
∑

u∈V (G)

∑
v∈V (G)

cov(Xu, Xv) ≤ n2 λ

1 + λ
.

For the lower bound, let J be some fixed independent set in G of maximum size M . Now
write X = |I|, and let K = I \ J . By the law of total variance,

var(X) = E[var(X|K)] + var(E[X|K]) ≥ E[var(X|K)] .

But we have X = |K|+ |I∩J |, and conditioned on K the set |I∩J | is distributed according to
the hard-core model on J \ NG(K), the subset of J uncovered by K. Since J is independent,
this is a sum of at most |J | independent, identically distributed Bernoulli random variables
with probability λ/(1 + λ).

Now, writing U = |J \ NG(K)| for the number variables in the sum we have

var(X) ≥ E[var(X|K)] = λ

(1 + λ)2EU .

A vertex u ∈ J is uncovered by K precisely when N(u) ∩ K = ∅. Then by successive
conditioning and the maximum degree condition, the probability that u is uncovered by K is
at least (1 + λ)−∆. This means EU ≥ |J |(1 + λ)−∆ and hence

var(X) ≥ λ

(1 + λ)2+∆ M .

The assertion M ≥ n/(∆ + 1) follows from the fact that any n-vertex graph of maximum
degree ∆ contains an independent set of size at least n/(∆ + 1), which is easy to prove by
analyzing a greedy algorithm. ◀

Now we are ready to prove Lemma 8.

Proof of Lemma 8. A standard calculation gives

∂

∂λ
αG(λ) = 1

n

∂

∂λ

λZ ′
G(λ)

ZG(λ) = 1
nλ

var(|I|) ,

and so Lemma 12 gives that 0 < α′
G(λ) ≤ n for all λ > 0.

Next, let λ∗ < λc(∆) be the solution to the equation αK∆+1(λ∗) = α. This means

λ∗ = α

1 − α(∆ + 1) ,
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as defined in Sample-k. The fact that λ∗ < λc(∆) follows from the fact that α < αc(∆) =
αK∆+1(λc(∆)), and that occupancy fractions are strictly increasing. Then using Theorem 9
we have that

αG(λ∗) ≥ αK∆+1(λ∗) = α , (3)

and so there exists λ ∈ (0, λ∗] such that nαG(λ) = k. Using the upper bound on α′
G(λ),

we see that as λ increases over an interval of length 1/(2n2), the function nαG(λ) can
increase by at most 1/2. Hence, there is at least one integer t ∈ {1, . . . , ⌊2λ∗n2⌋} such that
|nαG(t/(2n2)) − k| ≤ 1/2.

The second statement of Lemma 8 follows from a central limit theorem for |I| and rapid
mixing of the Glauber dynamics. There is a close connection between zeros of the probability
generating function of |I| and the zeros of the partition function itself. The probability
generating function of |I| is

f(z) =
∑
j≥0

Pλ(|I| = j)zj =
∑
j≥0

ij(G)λjzj

ZG(λ) = ZG(λz)
ZG(λ) .

Then for λ such that ZG(λ) ̸= 0, z is a root of f if and only if zλ is a root of ZG(λ). By
our assumptions on t, when λ = t/(2n2) Theorem 10 gives the existence of δ > 0 such that
for all G ∈ G∆ there are no complex zeros of f within distance δ/λ of 1. This is because
Theorem 10 means that ZG(zλ) = 0 implies |zλ − λ| ≥ δ. The condition of Theorem 11
which states that σnδn/ log n → ∞ is met because λ < λc(∆) ≤ 4 and so

σnδn ≥

√
λ

(1 + λ)2+∆
n

∆ + 1 · δ

λ
≥ Ω

(√
n/λ

)
> ω(log n) .

Now, let λ = t/(2n2) and suppose that (2) holds, meaning that k is within 1/2 of nαG(λ).
The standard deviation of the size of a set drawn from µG,λ is at least a constant, which
follows from the lower bound in Lemma 12 of Ω(

√
λn) and the fact that λ ≥ Ω(1/n). To see

this, note that αG(λ) ≤ λ/(1 + λ) for any graph and non-negative fugacity λ. This holds
because when I is a random independent set from the hard-core model, conditioned on a
vertex v having no neighbors in I, v ∈ I with probability λ/(1 + λ). If v has a neighbor in I
then v /∈ I with probability 1, and the bound follows. Then using (2), we have

n
λ

1 + λ
≥ nαG(λ) ≥ k − 1/2 ≥ 1/2 ,

and so λ ≥ Ω(1/n). We deduce that k is within some constant number r > 0 of standard
deviations of the mean size nαG(λ). The central limit theorem and standard properties of
the normal distribution mean that there are constants ρ > 0 (small enough as a function
of r) and n0 such that for all n ≥ n0, with probability at least ρ, |I| is at least r standard
deviations below the mean, and similarly with probability at least ρ it is at least r standard
deviations above the mean. So we have PG,λ(|I| ≥ k) ≥ ρ and PG,λ(|I| ≤ k) ≥ ρ.

The transition probabilities when we are at state I in the Glauber dynamics are given by
the following random experiment. Choose a vertex v ∈ V (G) uniformly at random and let

I ′ =
{

I ∪ {v} with probability λ/(1 + λ) ,

I \ {v} with probability 1/(1 + λ) .
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Now if I ′ is independent in G move to state I ′, otherwise stay in state I. This means that the
sequence of sizes of set visited must take consecutive integer values. By Theorem 6, there is
a constant C ′′ such that from an arbitrary starting state, in C ′′n log n steps the distribution
π of the current state is within total variation distance ρ/2 of the hard-core model. Then
the following statements hold.

(i) Starting from an independent set of size at most k, with probability at least ρ/2 the
state after C ′′n log n steps is an independent set of size at least k.

(ii) Starting from an independent set of size at least k, with probability at least ρ/2 the
state after C ′′n log n steps is an independent set of size at most k.

Consider starting from an initial state distributed according to µG,λ. Then every subsequent
state is also distributed according to µG,λ, and the above facts mean that for any sequence
of C ′′n log n consecutive steps, with probability at least ρ/2 we see a state of size exactly k.
Recalling that λ = t/(2n2), this immediately implies that

µG,t/(2n2)(Ik(G)) ≥ ρ

2C ′′n log n
,

as required. ◀

Proof of Theorem 7. We first prove the theorem under the assumption that each µ̂λ is
exactly the hard-core measure µG,λ, taking note of how many times we sample from any µ̂λ.

We say a failure occurs at step i in the FOR loop if either of the following occur:
1. |nαG(λ) − κ| > 1/4.
2. |nαG(λ) − k| ≤ 1/2 but the algorithm did not output an independent set of size k in step

i.
We show that the probability that a failure occurs at any time during the algorithm is at
most ε/2. By a union bound, it is enough to show that the probability of either type of
failure at a given step i is at most ε

4C log n .
Consider an arbitrary step i with its value of λ. To bound the quantity P(|nαG(λ) − κ| >

1/4), note that κ is the mean of N independent samples from µ̂λ, which we currently assume
to be µG,λ. Then we have Eκ = nαG(λ) and Hoeffding’s inequality gives P(|nαG(λ) − κ| >

1/4) ≤ 2e−N/(8n2), so for this to be at most ε/(4C log n) we need only N ≥ Ω
(
n2 log

( log n
ε

))
.

To bound the probability that the current step involves λ such that |nαG(λ) − k| ≤ 1/2,
but we fail to get a set of size k in the N samples, observe that we have N independent
trials for getting a set of size k, and each trial succeeds with probability p ≥ c/(n log n) by
Lemma 8. Then the probability we see no successful trials is

(
1 − c

n log n

)N , which is at most
ε/(4C log n) for N ≥ Ω

(
n log n · log

( log n
ε

))
. Thus, we can take N = Θ

(
n2 log

( log n
ε

))
, as in

line 6 of Sample-k.
Next we show that in the event that no failure occurs during the running of the algorithm,

the algorithm outputs an independent set I with distribution within ε/2 total variation
distance of the uniform distribution on Ik(G).

We first observe that if no failure occurs, the algorithm at some point reaches a value
of λ so that |nαG(λ) − k| ≤ 1/2. This is a simple consequence of Lemma 8, which means
there exists some t with this property, and the binary search structure of the algorithm. In
particular, in each iteration of the FOR loop, at line (e) the size of the set Λi being searched
goes down by (at least) half. Conditioned on no failures, the search also proceeds in the
correct half of λi because we search the upper half only when κ < k − 1/4 and so conditioned
on no failure we have nαG(λ) ≤ κ + 1/4 < k and hence using a larger value of λ must bring
nαG(λ) closer to k. The case κ > k + 1/4 is similar. This means that, conditioned on no
failures, the algorithm must reach a value of λ such that |nαG(λ) − k| ≤ 1/4.
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Note that µG,λ conditioned on getting a set of size exactly k is precisely the uniform
distribution on Ik(G), hence if the algorithm outputs an independent set of size k during
the FOR loop, its distribution is exactly uniform distribution on Ik(G). Thus, under the
assumption that each µ̂λ is precisely µG,λ we have shown that with probability at least
1 − ε/2 no failures occur, and hence a perfectly uniform sample from Ik(G) is output during
the FOR loop.

We do not have access to an efficient exact sampler for µG,λ, so we make do with the
approximate sampler from Theorem 6. One interpretation of total variation distance is that
when each µ̂λ has total variation distance at most ξ from µG,λ, there is a coupling between µ̂λ

and µG,λ such that the probability they disagree is at most ξ. Then to prove Theorem 7 we
consider a third failure condition: that during any of the calls to a sampling algorithm for any
µ̂λ the output differs from what would have been given by µG,λ under this coupling. Since
we make at most CN log n calls to such sampling algorithms, provided ξ ≤ ε/(2CN log n)
the probability of any failure of this kind is at most ε/2. Together with the above proof for
samples distributed exactly according to µG,λ which successfully returns uniform samples
from Ik(G) with probability 1 − ε/2, we have now shown the existence of a sampler that
with probability 1 − ε returns uniform samples from Ik(G), and makes at most CN log n

calls to a ε/(2CN log n)-approximate sampler for µG,λ (at various values of λ). Interpreting
this in terms of total variation distance, this means we have an ε-approximate sampler for
the uniform distribution on Ik(G) with running time O(N log n · T (n, ε)). ◀

2.2 Approximate counting
Given a graph G = (V, E) on n vertices and j ≥ 0, let fj(G) = (j + 1)ij+1(G)/ij(G). This
fj(G) has an interpretation as the expected free volume over a uniform random independent
set J ∈ Ij(G), that is, fj = E|V \(J∪N(J))|. This holds because each vertex in V \(J∪N(J))
can be added to J to make an independent set of size j + 1, and each such set is counted
j + 1 times in this way. Then by a simple telescoping product we have

ik(G) =
k−1∏
j=0

fj(G)
j + 1 , (4)

and hence if for 0 ≤ j ≤ k − 1 we can obtain a relative ε/k approximation to fj in time
polynomial in n and 1/ε then we can obtain a relative ε-approximation to ik(G) in time
polynomial in n and 1/ε. By the definition of fj as an expectation over a uniform random
independent set of size j, we can use an efficient sampling scheme for this distribution
to approximate fj , which is provided by Theorem 7. That is, by repeatedly sampling
independent sets of size j approximately uniformly and recording the free volume we can
approximate the expected free volume fj(G), and hence the corresponding term of the
product in (4). Doing this for all 0 ≤ j ≤ k − 1 thus provides an approximation to ik(G).
This scheme is an example of simulated annealing, which can be used as a general technique
for obtaining approximation algorithms from approximate sampling algorithms. For more
details, see e.g. [22, 29]. Here the integer j is playing the role of inverse temperature, and we
approximate ik(G) by estimating fj(G) (by sampling from Ij(G)) with the cooling schedule
j = 0, 1, . . . , k − 1. We expect that a more sophisticated cooling schedule can be used to
decrease the running time of our reduction, see for example [19].

Since this annealing process is standard, we sketch a simple version of the method.
Suppose that for all 0 ≤ j ≤ k − 1 we have a randomized algorithm that with probability at
least 1 − δ′ returns a relative ε/k-approximation t̂j to fj(G)/(j + 1) in time T ′. Then (4)



E. Davies and W. Perkins 62:13

implies that with probability at least 1 − kδ, the product ı̂k =
∏k−1

j=0 t̂j is a relative ε-
approximation to ik(G), and this takes time kT ′ to compute. For the FPRAS in Theorem 1,
it therefore suffices to design the hypothetical algorithm with δ′ = 1/(4k) and T ′ polynomial
in n and 1/ε.

First, suppose that we have access to an exactly uniform sampler for Ij(G) for 0 ≤ j ≤ k−1,
but impose the smaller failure probability bound of δ′/2. Then, for each j, let t̂j be the
sample mean of m computations of |V \ (J ∪ N(J))|/(j + 1) where J is a uniform random
independent set of size j. We note that as a random variable |V \ (J ∪ N(J))|/(j + 1) has a
range of at most j∆/(j + 1) in a graph of maximum degree ∆ because 0 ≤ |N(J)| ≤ j∆,
and for j ≤ k − 1 and

k ≤ αn < αc(∆)n <
e

1 + e

n

∆ ,

we have

|V \ (J ∪ N(J))|
j + 1 ≥ n − j(∆ + 1)

j + 1 ≥ ∆
e

− 1 .

Let Sj be the mean of m samples of |V \ (J ∪ N(J))|/(j + 1). Then, using that for ε′ ≤ 1 it
suffices to ensure |Sj −µ| ≤ ε′µ/2 for Sj to be a relative ε′-approximation to µ, by Hoeffding’s
inequality,

m ≥ Ω(ε−2k2 log(1/δ′)) = Ω(ε−2k2 log k)

samples are sufficient to obtain the required approximation accuracy ε′ with the required
success probability 1 − δ′/2. Since we do not have an exact sampler, we use the approximate
sampler obtained in this section with total variation distance δ′/2. Using the coupling
between the exact and the approximate sampler that we used in the proof of Theorem 7,
this suffices to obtain the required sampling accuracy with failure probability at most δ′.
Recalling that k ≤ n, it is now simple to check that the running time of the entire annealing
scheme is polynomial in n and 1/ε. This completes the proof of Theorem 1a.

3 Hardness

To prove hardness we will use the notion of an “approximation-preserving reduction” from [13].
We reduce the problem of approximating the hard-core partition function ZG(λ) on a ∆-
regular graph G, which we recall is hard for λ > λc (see [16, 31]), to the problem of
approximating ik(G′) for ∆-regular graph G′ that can be constructed in time polynomial in
the size of G. In particular, we show that it suffices to find an ε/2-approximation to ik(G′)
in order to obtain an ε-approximation to ZG(λ).

Let IS(α, ∆) be the problem of computing i⌊αn⌋(G) for a ∆-regular graph G on n vertices.
Let HC(λ, ∆) be the problem of computing ZG(λ) for a ∆-regular graph G.

▶ Theorem 13. For every ∆ ≥ 3 and α ∈ (αc(∆), 1/2), there exists λ > λc(∆) so that there
is an approximation-preserving reduction from HC(λ, ∆) to IS(α, ∆).

Theorem 13 immediately implies the hardness part of Theorem 1 as the results of [16, 31]
show that there is no FPRAS for HC(λ, ∆) for any λ > λc(∆) unless NP=RP.

Proof of Theorem 13. Fix ∆ ≥ 3, and let α ∈ (αc(∆), 1/2) be given. We will construct
a ∆-regular graph H on nH vertices such that for some value λ ∈ (λc(∆), ∞) we have
αH(λ) = α. Our reduction is then as follows: given a ∆-regular graph G on n vertices and
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ε > 0, let G′ be the disjoint union of G with rH, the graph of r disjoint copies of H, with
r = ⌈C∆n2/ε⌉ for some absolute constant C. Let N = |V (G′)| = n + rnH . We will prove
that

e−ε/2 ik(G′)
ik(rH) ≤ ZG(λ) ≤ eε/2 ik(G′)

ik(rH) , (5)

where k = ⌊αN⌋.
Since G′ can be constructed and ik(rH) computed in time polynomial in n, this provides

the desired approximation-preserving reduction. What remains is to construct the graph H

satisfying αH(λ) = α and then to prove (5).

Constructing H

The graph H = Ha,b will consist of the union of a copies of the complete bipartite graph
K∆,∆ and b copies of the clique K∆+1. Clearly H is ∆-regular. Since the occupancy fraction
of any graph is a strictly increasing function of λ, and the relevant occupancy fractions
satisfy αK∆+1(λc(∆)) = αc(∆) and limλ→∞ αK∆,∆(λ) = 1/2, we see that there exist integers
a, b ≥ 0 (with at least one positive) and λ > λc(∆) so that αHa,b

(λ) = α. A given pair (a, b)
provides a suitable Ha,b when

αHa,b
(λc(∆)) < α < lim

λ→∞
αHa,b

(λ) = a∆ + b

2a∆ + b(∆ + 1) ,

and hence it can be shown that for all ∆ ≥ 3 one of the pairs (0, 1), (1, 16), (1, 6), (1, 3), (2, 3),
(2, 1), (1, 0) suffices for (a, b), and a suitable pair is easy to find efficiently. This provides us
with the desired graph H. From here on, fix these values a, b, λ and let nH = 2a∆ + b(∆ + 1).

Proving (5)
We now form G′ by taking the union of G (a ∆-regular graph on n vertices) and r copies of
H. Let N = n + rnH be the number of vertices of G′, and write k = ⌊αN⌋. Let rH be the
graph consisting of the disjoint union of r copies of H. We can write:

ik(G′) =
n∑

j=0
ij(G)ik−j(rH) = ik(rH)

n∑
j=0

ij(G) ik−j(rH)
ik(rH) .

Now to prove (5) it suffices to show that for r ≥ C∆n2/ε and 0 ≤ j ≤ n, we have

e−ε/2λj ≤ ik−j(rH)
ik(rH) ≤ eε/2λj . (6)

We have the exact formula (for any 0 ≤ j ≤ k)

ik−j(rH) = ZrH(λ)
λk−j

PrH,λ(|I| = k − j)

and so
ik−j(rH)
ik(rH) = λj PrH,λ(|I| = k − j)

PrH,λ(|I| = k) ,

where PrH,λ denotes probabilities with respect to an independent set I drawn according to
the hard-core model on rH at fugacity λ. It is then enough to show

e−ε/2 ≤ PrH,λ(|I| = k − j)
PrH,λ(|I| = k) ≤ eε/2 .
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This will follow from a local central limit theorem (e.g. [17]) since |I| is the sum of r i.i.d.
random variables and the fact that ErH,λ|I| is close to both k and k − j. The following
theorem gives us what we need.

▶ Theorem 14 (Gnedenko [17]). Let X1, . . . , Xr be i.i.d. integer valued random variables
with mean µ and variance σ2, and suppose that the support of X1 includes two consecutive
integers. Let Sr = X1 + · · · + Xr. Then

P(Sr = k) = 1√
2πrσ

exp
[
−(k − nµ)2/(2rσ2)

]
+ o(r−1/2) ,

with the error term o(r−1/2) uniform in k.

This immediately implies that with µ and σ2 the mean and standard deviation of the
hard-core model on H at fugacity λ,

PrH,λ(|I| = k − j)
PrH,λ(|I| = k) = e−[j2−2(k−rµ)j]/(2rσ2) + o(e(k−rµ)2/(2rσ2)/r)

1 + o(e(k−rµ)2/(2rσ2)/r)
.

It therefore suffices to show that for large enough r, namely r ≥ C∆n2/ε, we can make
[j2 − 2(k − rµ)j]/(2rσ2) small compared to ε and show that (k − rµ)2/(2rσ2) is bounded
above by some absolute constant. Note that µ = αnH , and by Lemma 12 we have for all
∆ ≥ 3 (and any choices of α, λ, a, b made according to our conditions),

σ2 ≥ λ

(1 + λ)2+∆ (a∆ + b) ≥ λc(∆)
(1 + λc(∆))2+∆ (a∆ + b) ≥ 0.00384

∆ .

Since k = ⌊αN⌋ = ⌊αn + rαnH⌋, we then have (k − rµ)2 ≤ α2n2 < n2, and hence
(k−rµ)2

2rσ2 ≤ C ′∆ n2

r , where C ′ is an absolute constant. Now since 0 ≤ j ≤ n we also have∣∣∣∣j2 − 2(k − rµ)j
2rσ2

∣∣∣∣ ≤ C ′∆n2

r
.

This means that provided we take C to be a large enough absolute constant and r ≥ C∆n2/ε,
we have (5) as required. ◀

4 Triangle-free graphs

In this section we briefly describe the modifications to the proofs in Sections 2 and 3 to yield
Theorem 2, an analogue of Theorem 1 for triangle-free graphs.

4.1 Algorithms
We use the following lower bound on the occupancy fraction of triangle-free graphs.

▶ Theorem 15 ([11]). For every δ > 0, there is ∆0 large enough so that for every ∆ ≥ ∆0,
and every triangle-free G ∈ G∆,

αG(λc(∆) − 1/∆2) ≥ 1 − δ

∆ .

This statement follows from [11, Theorem 3] and some asymptotic analysis of the bound
for λ = λc(∆) − 1/∆2 as ∆ → ∞. Now the algorithm for Theorem 2 is essentially the same
as for Theorem 1, but since we assume the graph G is triangle free we can use a stronger
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lower bound on the occupancy fraction than Theorem 9. Let δ > 0 and α < (1 − δ)/∆ as in
Theorem 2. Then Theorem 15 means that for ∆ ≥ ∆0 and any triangle-free graph G ∈ G∆
we have

αG(λc(∆) − 1/∆2) ≥ 1 − δ

∆ > α .

But occupancy fractions are continuous and strictly increasing, so with λ∗ = λc(∆) − 1/∆2

there exists λ ∈ (0, λ∗] such that k = nαG(λ), as in the proof of Lemma 8 but permitting
larger α. The analysis of the algorithm can then proceed exactly as in the proofs of Lemma 8
and Theorem 1, completing the proof of Theorem 2a.

4.2 Hardness
The proof of hardness for triangle-free graphs is the same as that for general graphs, but we
replace K∆+1 with a (constant-sized) random regular graph in the construction. Bhatnagar,
Sly, and Tetali [4] showed that the local distribution of the hard-core model on the random
regular graph converges to that of the unique translation-invariant hard-core measure on
the infinite regular tree for a range of λ including λ = λc(∆). This means that if K is a
random ∆-regular graph on n vertices and αT∆ denotes the occupancy fraction of the unique
translation-invariant hard-core measure on the infinite ∆-regular tree (see [4, 11]) we have
with probability 1 − on(1),

αK(λc(∆)) = αT∆(λc(∆)) + on(1) = 1 + on,∆(1)
∆ ,

where on(1) → 0 as n → ∞ and on,∆(1) → 0 as both n and ∆ tend to infinity. Thus, for
fixed δ ∈ (0, 1), there is n0 = n0(δ) and ∆0 = ∆0(δ) such that with probability at least 1 − δ

a random ∆-regular graph K on n0 vertices has αG(λc(∆)) ≤ (1 + δ)/∆. This means that in
time bounded by a function of δ an exhaustive search over ∆-regular graphs on n0 vertices
must yield a graph K with the property αK(λc(∆)) ≤ (1 + δ)/∆. Now we replace K∆+1
with the random ∆-regular graph K in the proof above, which for ∆ ≥ ∆0 allows us to
work with any α ∈ ((1 + δ)/∆, 1/2) by the above argument. To finish the proof, we require
that approximating ZG(λ) is hard for ∆-regular triangle-free graphs G when λ > λc. This
follows directly from the proof of Sly and Sun [31], as their gadget which shows hardness for
∆-regular graphs contains no triangles. Thus, we have the following analogue of Theorem 13,
where we let IS′(α, ∆) be the problem of computing i⌊αn⌋(G) for a ∆-regular triangle-free
graph G on n vertices.

▶ Theorem 16. Given δ > 0 there exists ∆0 such that the following holds for all ∆ ≥ ∆0. For
every α ∈ ((1+δ)/∆, 1/2), there exists λ > λc(∆) so that there is an approximation-preserving
reduction from HC(λ, ∆) to IS′(α, ∆).

This implies Theorem 2b.
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