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Abstract— Geometric accuracy control is critical for precision
additive manufacturing (AM). To learn and predict the shape
deformation from a limited number of training products, a
fabrication-aware convolution learning framework has been
developed in our previous work to describe the layer-by-
layer fabrication process. This work extends the convolution
learning framework to broader categories of 3D geometries by
constructively incorporating spherical and polyhedral shapes
into a unified model. It is achieved by extending 2D cookie-
cutter modeling approach to 3D case and by modeling spatial
correlations. Methodologies demonstrated with real case studies
show the promise of prescriptive modeling and control of
complicated shape quality in AM.

I. INTRODUCTION

As a revolutionary technology, additive manufacturing
(AM) or three-dimensional (3D) printing enables the direct
fabrication of products with highly complex geometries
through layer-by-layer fabrication using various materials
including metals, ceramics, polymers, and their composites,
hybrid, or functionally graded materials. Unlike traditional
manufacturing methods, AM has the potential of building
extremely complex geometries with high efficiency and low
material waste. However, one major barrier for broader adop-
tion of AM techniques is the geometric shape inaccuracy.
Due to a wide spectrum of AM processes, low sample
size caused by one-of-a-kind manufacturing and complicate
geometries, accuracy control has been a daunting task for
researchers and practitioners [1], [2], [3], [4], [5], [6], [7],
[8], [9], [10].

Three types of methodologies have been reported to im-
prove the shape accuracy: (1) physics-based modeling and
simulation based on first-principles; (2) data-driven modeling
using statistical and machine learning (ML) techniques; and
(3) physics-informed ML modeling by incorporating process
knowledge into modeling and learning. One major part
of physics-based modeling strategies applies finite element
methods (FEM) to predict the final product quality [11],
[12]. For example, King et al. [13] proposed a multi-scale
modeling approach based on the comprehensive physical
understanding of both the powder scale and the part scale to
predict shape accuracy, residual stress, and material proper-
ties of the laser powder bed fusion process. Similarly, Yan et
al. [14] proposed a micro-scale model for electron-material
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interaction, a meso-scale model for powder particle evolu-
tion, and a macro-scale model using FEM. These models
can achieve voxel-level accuracy for describing 3D products
along the printing process, but at a high computational
cost. Moreover, the development of such models requires
extensive expert’s knowledge and the models are restricted
to a specific type of AM processes and/or materials.

To improve the printing accuracy, process optimization
have long been employed with both online and offline ob-
servations [15]. For instance, Anderegg et al. [16] monitored
in-situ temperature and pressure inside the nozzle of a fused
filament fabrication printer to minimize their fluctuation dur-
ing fabrication process. To reduce the slicing error incurred
when transforming the computer-aided design (CAD) to the
building file, Mao et al. [17] optimized the slicing plan and
building orientation by considering multiple metric profiles
including cusp height, surface roughness, area deviation, and
volume deviation.

For building data-driven models, machine learning strate-
gies has been explored by using in-situ monitoring data
such as thermal history and optical sensing data. Francis and
Bian [18] applied deep learning to predict the top surface dis-
tortion of disks through a combination of convolution neural
network (CNN) and artificial neural network using thermal
history data collected during the printing process. To enable
learning from different shapes, Decker et al. [19] employed
a random forest method to predict the shape deformation
of an untried shape by extracting position, geometry and
material expansion features from the triangular meshes of
other shapes in the FDM process. Many efforts have been
taken to enable model transfer across materials, fabrication
processes and shapes to improve prediction accuracy with
a limited number of printed parts. For example, Chen et
al. [20] achieved the knowledge transfer across different
shapes by decomposing the geometric error into shape-
independent and shape-specific components, and then fixing
the global shape-independent parameters and shape features,
respectively. Ferreira et al. [21] proposed a Bayesian extreme
learning machine methodology to automatically predict the
shape deformation pattern of freeform shapes under different
printing processes by using knowledge of the shape defor-
mation patterns of simpler shapes printed under the same
and different processes. These transfer learning methods are
limited to 2D shapes.

The physics-informed ML aims to predict the shape
deformation of arbitrary shapes using a limited number
of training products and construct compensation plans to
improve the quality of new parts [22]. This strategy has



been successfully implemented for thin (in height) shapes
that can be approximated as 2D shapes for purposes of shape
deviation modeling. Huang et al. [3] developed a prescriptive
statistical modeling approach to predict and compensate the
2D shape deformation of circular shapes considering the size
effect and over-exposure, which serves as a basis for a series
of following work. A key challenge to model polygonal
shapes is that the deformation pattern changes dramatically
on the sharp corners. To transfer the knowledge from circular
shape deformations to that of regular polygons, Huang et
al. [4] proposed the use of a cookie-cutter function that
is parameterized by the number of sides, which cuts the
polygons from their circumcircles. After modeling the shape
deformation of circular and polygonal shapes, Luan and
Huang [5] predicted the shape deformation of 2D freeform
products considering a piecewise approximation with circular
or polygonal sections and applied the compensation plan that
modifies CAD design to control geometric inaccuracy.

The modeling and control issues faced in printing 2D
shapes are exacerbated for 3D cases, since the deforma-
tion pattern can change from layer-to-layer due to com-
plex process physics including inter-layer interactions [23],
[24], [25], [26]. To incorporate the layer-by-layer fabrication
mechanism into modeling and learning, Huang et al. [9]
proposed a convolution learning framework to describe the
3D deformation patterns as the result of the 2D shape defor-
mation of each layer convolved with a transfer function that
captures inter-layer interactions. Although this framework
was validated with spherical shapes built in a stereolithog-
raphy (SLA) process, it still requires fundamental work to
predict the complex deformation patterns of freeform shapes.
In particular, a purely convolution formulation over-smooths
the deformation profiles observed on the sharp corners of
3D printed products. In this paper, a consistent modeling
framework for spherical and polyhedral shapes is proposed.
The main reason to study these particular shapes is that
3D freeform shapes can be approximated as a combination
of spherical and polyhedral patches. Understanding of these
two basic categories of 3D shapes makes it possible for 3D
freeform shape prediction, just as the work demonstrated for
2D case [3], [4], [5]

The remainder of this paper is organized as follows. Sec. II
briefly reviews the convolution framework proposed in [9]
and proposes a unified model for a broader category of
shapes by introducing a new set of functions that capture
the effect of polyhedral geometries on the deviation profile.
In Sec. III, joint modeling of shape deformation for domes
and thin walls with half-cylindrical shapes is investigated.
Conclusion and future work are given in Sec. IV.

II. A UNIFIED CONVOLUTION LEARNING FRAMEWORK
FOR DEFORMATION MODELING

This section briefly introduces the convolution learning
framework for modeling shape deformation of AM built
products. A new 3D cookie-cutter function is proposed
to extend the learning framework in order to capture the
complex shape deformation profiles for polyhedral shapes.

Furthermore, a Gaussian process with a Euclidean distance
metric is introduced to characterize the spatial correlation
among neighboring regions.

A. Deformation Modeling of Spherical Products Through
Convolution Framework

In [9], the convolution learning framework was proposed
as

y(x) = (f ∗ g) (x) + GP (0, k (·, ·)) + ε, (1)

where y(x) is the shape deviation, x are the features, f is
the input function that models the 2D shape deformation
in a horizontal layer, g is the transfer function that models
the layer-to-layer interactions, GP (0, k (·, ·)) is a mean-zero
Gaussian process with covariance kernel function k that
captures the spatial correlation, and ε is the measurement
error that follows a normal distribution with mean 0 and
variance σ2.

The deformation y(x) of a 3D printed product from its
designed shape is described using the spherical coordinate
system (SCS) with dimensions (r, θ, ϕ), where θ is the polar
angle and ϕ is the azimuth angle. The measurement point
cloud is represented as r(θ, ϕ) and the designed shape is
denoted as r0(θ, ϕ). Thus, shape deformation is defined as
y(x) = r(θ, ϕ) − r0(θ, ϕ), where x = (r0(θ, ϕ), θ, ϕ), θ ∈
[0, 2π), and ϕ ∈ [0, π/2].

The first step of the convolution learning framework is to
identify the input function f , which describes the in-plane
shape deformation. For 3D spherical shapes (domes), each
layer is a circle. Shape deformation for circles of radius r0
can often be modeled with a few Fourier basis functions [3],
for example, f(r0, θ) = c1(r0) + c2(r0) cos(2θ). Using this
function, Huang et al. [9] modeled the deformation of a dome
shape as

y (r0, θ, ϕ) = β(r0) + α(r0)(f ∗ g)(θ, ϕ)

+ GP(0, k(·, ·)) + ε.
(2)

Then, the size factors c1(r0) and c2(r0) can be absorbed in
α(r0) and β(r0) in Eq. (2). Since each layer of a dome shape
has radius r0 sinϕ, the input function for the domes can be
normalized, for example, as

f(θ, ϕ) = cos(2θ) sinϕ. (3)

For the transfer function g(x), LASSO [27] model selec-
tion was adopted as

min
c

1

N

N∑
i=1

yi −∑
j

cj(f ∗ gj)(θi, ϕi)

2

+γ||c||1, (4)

where N is the number of sampled points and gj(θ, ϕ) is a
2-D Fourier basis function. Significant terms shared among
all domes were selected and the final form of the transfer
function was

g(θ, ϕ) = cos(n1ϕ)[1 + cos(n2θ + ψ)]. (5)

Lastly, Gaussian process regression (GPR) over the para-
metric model residuals ȳ (r0, θ, ϕ) = y (r0, θ, ϕ) − β̂(r0) −



α̂(r0)(f ∗ g)(θ, ϕ) was conducted to take account for the
remaining high-order spatial correlation of the deviation
profile.

B. Extended Convolution Learning Framework for Shape
Deformation

Although the convolution framework shown in Eq. (2)
is quite general, it struggles to learn the sharp transitions
observed in the deviation profiles around the corners of
polyhedral shapes (shown in Fig. 3) because the convolution
combines the smoothness of both f and g functions. More-
over, using an excessive number of basis functions would
lead to over-fitting.

In the 2D case, a cookie-cutter function f2(θ, r0(θ)) was
proposed in [4] to link the deformation of circular shapes to
that of polygons as

f(θ, r0(θ)) = f1(θ, r0(θ)) + f2(θ, r0(θ)) + f3(θ, r0(θ)) + ε,
(6)

where f1(θ, r0(θ)) describes circular shape deformation and
f3(θ, r0(θ)) is a high-order term.

To generalize this idea to 3D cases, we model each
layer of a polyhedral shape as a polygon being cut from
its circumcircle, then the whole product can be carved out
from the stack of circular shapes. Thus, we can extend the
convolution learning framework to spherical and polyhedral
shapes as an additive model of the base function for spherical
shapes, a 3D cookie-cutter function, and a high-order term
for the remaining pattern.

By denoting the convolution term in Eq. (2) as

h1(θ, ϕ) = (f ∗ g)(θ, ϕ), (7)

the extended convolution learning model can be written as

y(r0(θ, ϕ), θ, ϕ) =α0(r0) + α1(r0)h1(θ, ϕ)

+ α2(r0)h2(θ, ϕ)

+ α3(r0)h3(θ, ϕ)

+ GP(0, k(·, ·)) + ε,

(8)

where the first row corresponds to the model in Eq. (2)
describing spherical shape deformation, h2 is the 3D cookie-
cutter function, and h3 represents the remaining high-order
pattern. Note that h1 can be learned from spherical products
as in [9], and both h2 and h3 are fully determined by the
geometries of AM fabricated products.

For 3D geometries, we extend the 2D cookie-cutter func-
tion square.wave(θ) = sign{cos[n(θ − φ0)/2]} proposed in
[4] and modify the frequency as

h2(θ, ϕ) =
1

2

{
sign

[
sin

(
(−1)j+1πθ

ϑj(ϕ)

)]
+ 1

}
, (9)

for ϑj−1(ϕ) ≤ θ < ϑj(ϕ), j = 1, . . . , n + 1, where
ϑj , j = 1, . . . , n are the polar angles of sharp transitions
with ϑ0(ϕ) = 0 and ϑn+1(ϕ) = 2π. It can be regarded as
the stack of 2D cookie-cutter functions over the ϕ-direction,
where each layer could have sharp transitions at different
angles according to the designed geometry.

Fig. 1. Thin walls with half-cylindrical shapes printed in an SLA process

As an example, considering the thin wall with a half-
cylindrical shape that has radius r0 and thickness D as shown
in Fig. 1, each horizontal layer is a rectangle with length
2r0 sinϕ and width D. To cut out a rectangular A1A2A3A4

from its circumscircle as shown in Fig. 2(a), we first find
the angles of each corner as ϑ1, ϑ2, ϑ3 and ϑ4, which incurs
the 2-D cookie-cutter function shown in Fig. 2(b). Since
the rectangle sides in each horizontal layer defined by ϕ
are different, the sharp transitions for each layer happen
at different polar angles, which are purely defined by the
geometry of the product.

Fig. 2. A rectangle cut from its circumcircle and corresponding 2D cookie-
cutter function

III. CASE STUDY FOR METHODOLOGY VALIDATION

In this section, we demonstrate the capability of the
extended convolution learning framework in Eq. (8) for
learning and predicting the shape deviation patterns of a
wide variety of geometries containing both spherical and
polyhedral shapes. The small training data contains domes
and thin walls with half-cylindrical shapes.

A. AM Experiments and Observations

The AM process for this work is the mask image projec-
tion stereolithography (MIP-SLA) developed by Envision-
TEC. Unlike the traditional SLA process, MIP-SLA projects
the sliced mask images dynamically onto a resin surface
to build the product. After the printing process, ROMER
absolute arm with RS4 laser scanner is used to collect the
measurements as point clouds, which are then registered
using the well-known iterative closest point algorithm [28].

For spherical products, we use domes with radii 0.5 inch,
0.8 inch, 1.5 inches and 1.8 inches that studied in [9] as
the training set. Three 0.25-inch-thick thin walls with half-
cylindrical shapes that have radii of 0.8 inch, 1.5 inches,
and 2.0 inches, respectively, were vertically printed at the
center of the printing platform as shown in Fig. 1. We employ



Fig. 3. Shape deformation measurements of three thin walls with half-cylindrical shapes and the 0.8-inch dome presented in SCS

the 0.8-inch and 2.0-inch thin walls as the training set and
leave the 1.5-inch thin wall as the validation set. Their shape-
deviation profiles on the SCS are presented in Fig. 3. We also
include the shape deformation of the 0.8-inch dome from [9]
for comparison. It is obvious that the deformation pattern of
the thin walls differs significantly from the dome shape.

B. Convolution Modeling and Learning

To adopt the convolution learning framework in Eq. (8),
the first step is to identify the input function f . Note that, due
to machine repair, the pattern of shape deformation of 2D
circular disks changed from what was presented in [3], i.e.,
the input function f(θ, ϕ) should have a different pattern and
we need to fit the spherical shape model for the new data.
We can extract the pattern from the fitted model for circular
shape deformation from Luan and Huang [5] as

f(θ) = cos
(

2θ +
π

3

)
1θ∈[0,π) − sin(2θ)1θ∈[π,2π). (10)

Recall that the form of input function was changed to
Eq. (3) by multiplying it by sinϕ because the radius of each
layer is r0 sinϕ for the dome shape. Similarly, we have the
input function f(θ, ϕ) for spherical shapes as

f(θ, ϕ) =
[
cos
(

2θ +
π

3

)
1θ∈[0,π) − sin(2θ)1θ∈[π,2π)

]
sinϕ.

(11)
If the radius is r0 and the thickness is D for the thin wall

shape, the circumcircle radius for each horizontal layer ϕ is

max
θ
{r0(θ, ϕ)} =

√
r20 sin2 ϕ+

(
D

2

)2

≈ r0 sinϕ, (12)

since D is much smaller than r0 for the thin products. Then,
we can compute the convolution explicitly and regard the
thin walls as cut from the domes with the same radii, and
the same input function f(θ, ϕ) as in Eq. (11) can be applied.

For the transfer function g(θ, ϕ), Eq. (5) is used since the
printing mechanism is the same and only the shapes and sizes
change. Thus, the additive term h1(θ, ϕ) is fully specified.

Next, we need to specify the sharp transition angles ϑj
and n used in the 3D cookie-cutter function h2(θ, ϕ) in
Eq. (9). As shown in Fig. 2, n = 4 and the angles are
ϑ1 = arctan(D/(2r0 sinϕ)), ϑ2 = π − ϑ1, ϑ3 = π + ϑ1,
ϑ4 = 2π − ϑ1 according to the geometry of the thin walls.

To capture the arch pattern of thin walls presented in the
deformation profiles in Fig. 3, we choose h3(θ, ϕ) as

h3(θ, ϕ) =
{

sin
(n

4
θ
)
1θ∈[ϑ1,ϑ2)

+ sin
[n

4
(θ − π) sinϕ

]
1θ∈[ϑ3,ϑ4)

}
sinϕ,

(13)

where n is the number of sides. For the thin walls, we have
n = 4, and when n→∞, this term becomes white noise.

We follow similar assumptions as in [9] to incorporate
the size effect, i.e.,: α0(r0) = a1 + a2r0; α1(r0) = b1 +
b2r0; n1(r0) = c1 + c2r0; n2 and ψ are unknown constants;
α2(r0) = d1 + d2r0; and α3(r0) = e1 + e2r0.

Note that the first four conjectures are for the spherical
shape deformation model, and the last two would affect the
deformation modeling for thin walls. Under these conjec-
tures, at least two samples of each shape are required to
estimate the model parameters.

TABLE I
ESTIMATION FOR DOME SHAPE DEFORMATION

Parameters Estimate Standard Error

n2 0.6472 0.005970
ψ 4.0759 0.015579
a1 0.0071 0.000204
a2 0.0044 0.000161
b1 0.0068 0.000598
b2 0.0153 0.000488
c1 -0.0022 0.160061
c2 -0.0004 0.116186
σ 0.0065 0.000046

To obtain one unified model for all shapes considering the
size effect, we apply a three-step physics-informed sequential
model-fitting strategy as an extension to the method proposed
in [9]. First, we fit the parametric model without Gaussian
process for the deformation of domes because we treat
the spherical shape as the base model. Second, we fix
the parameters estimated in the previous step and fit the
parameters of the thin wall shape while ignoring the Gaussian
process. Third, we fit a GPR to the residuals of the parametric
models for both shapes.

To avoid overfitting, we iteratively fit the parameters in g,
i.e., (n2, ψ, c1, c2) through maximum likelihood (MLE) and
parameters for the coefficients, i.e., (a1, a2, b1, b2) through
least square (LSE). The estimates for the spherical shape
deformation model are given in Table I and the measured



shape deformations (in black) and model predictions (in
blue) are superimposed in Fig. 4. The mean absolute error
(MAE) is 0.0048 and the root mean square error (RMSE)
is 0.0065. Note that the results are different from [9] since
the input function f(θ, ϕ) is changed to Eq. (11). Also, we
could ignore the term c1 and c2 and simplify function g
as g(θ, ϕ) = 1 + cos(n2θ + ψ) since their estimates are
insignificant.

Fig. 4. Measured shape deformation (in black) and model prediction (in
blue) for domes

The thin walls with radii of 0.8 inch and 2.0 inch are
used as the training set, and the 1.5-inch thin wall is the
validation set. The estimated model parameters for α2 and
α3 are shown in Table II, and the measured deformations
versus model predictions are presented in Fig. 5. For this
model, the MAE is 0.0137 and the RMSE is 0.0192. The
performance of the parametric part of the model is worse
for the thin walls than for the spherical shapes.

TABLE II
MLE ESTIMATION FOR THIN WALL SHAPE DEFORMATION

Parameters Estimate Standard Error

d1 -0.0614 0.001394
d2 0.0118 0.000857
e1 0.0459 0.002459
e2 -0.0044 0.001542
σ 0.0113 0.000115

It is obvious that there are some remaining spatial patterns
to be captured, so the residuals are fitted with GPR. The
squared-exponential kernel is used with the form [29]

k(xi,xj|σf , σl) = σ2
f exp

(
−1

2

d(xi,xj)

σ2
l

)
, (14)

where d(xi,xj) is the distance between two samples xi
and xj . To more accurately describe the spatial correlation
between two sample points, we first transform each point to
the Cartesian coordinate system, i.e., xi = (xi, yi, zi). Then
the coordinates are standardized and the Euclidean distances
between points are computed.

The residuals for all four domes and three thin walls except
the one with radius of 1.5 inches are used as the training
set, and the 1.5-inch thin wall with a half-cylindrical shape
is left as the validation set. The estimated parameters are

σf = 0.0098, σl = 0.2269 and σ = 0.0085, and the model
has MAE = 0.0047 and RMSE = 0.0078. The measurements
and model predictions are presented in Fig. 6 and Fig. 7.
Since the Gaussian process combines the point coordinates
information of all shapes together, and the points on the
smaller domes are closer to those on the thin walls, 0.5-
inch and 0.8-inch dome deformation predictions are greatly
affected by the deformation pattern of thin walls.

Fig. 5. Measured shape deformation (in black), training set prediction (in
blue) and validation set prediction (in red) for thin walls

Fig. 6. Measured shape deformation (in black), training set prediction (in
blue) and validation set prediction (in red) after adding GPR

IV. CONCLUSION

This work extends the convolution learning framework
for shape deviation modeling by enabling joint learning for
a wide class of 3D shapes including both spherical and
polyhedral shapes. The newly developed 3D cookie-cutter
function can effectively capture the unique pattern of the
shape deformation for polyhedral shapes. The case study
shows that the unified model can successfully predict the
shape deformation of both domes and thin wall shapes. Since
3D freeform shapes can be approximated as a combination of
spherical and polyhedral patches, the extended convolution
learning framework builds a foundation for modeling and



predicting the quality of 3D freeform shapes. Lastly, the
current Gaussian process regression methodology overesti-
mates the correlations among different shapes, and it can be
improved by changing the kernel function and considering
new distance measures for points from different shapes.

Fig. 7. Measured shape deformation vs. model prediction for all shapes
(training set in blue and validation set in red)
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