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Abstract—The Legacy Survey of Space and Time [1], operated

by the Vera C. Rubin Observatory, is a 10-year astronomical

survey due to start operations in 2022 that will image half the

sky every three nights. LSST will produce ⇠20TB of raw data

per night which will be calibrated and analyzed in almost real

time. Given the volume of LSST data, the traditional subset-

download-process paradigm of data reprocessing faces significant

challenges. We describe here, the first steps towards a gateway for

astronomical science that would enable astronomers to analyze

images and catalogs at scale. In this first step we focus on

executing the Rubin LSST Science Pipelines, a collection of image

and catalog processing algorithms, on Amazon Web Services

(AWS). We describe our initial impressions on the performance,

scalability and cost of deploying such a system in the cloud.

I. INTRODUCTION

The currently pervasive model of sub-selecting, transferring
to local compute resources and then reprocessing data has
been successful for users processing past astronomical sky-
survey data because technological developments and pricing
made acquiring sufficient local compute resource affordable.
With a new generation of sky surveys such as those operated
by the Rubin Observatory delivering an order of magnitude
more data this subset-download-process paradigm is no longer
viable for users of these datasets. We describe a different
approach, utilizing the elastic capabilities of cloud compute
resources to enable users to scale their analyses to 100TB+
data sets.

Our goal is to provide astronomers with an interface and
tools that allow them to reprocess and reanalyze an entire
night’s worth of Rubin data in hours, and to do so at a rea-
sonable cost. As a first step towards such a gateway we focus
on image data reduction pipelines. These pipelines consist of
a series of steps that remove any instrumental signature from
the data, detect sources above a specified threshold, potentially
cross reference these detections to previously known sources,
and measure their properties (or features). A typical input
and output of such a pipeline is shown on Figure 1 where a
raw image has been processed to remove instrumental effects.
Exposing the Rubin LSST Science Pipelines functionality
through a common interface would enable the astronomy com-
munity to define and execute custom analysis pipelines based
on state-of-the-art astronomical data processing algorithms.
The need for scalability and the ability to share the resulting

data across a range of communities naturally leads to a cloud
compute model whether commercial or academic.

Fig. 1. A raw, uncalibrated image from the Hyper Suprime Cam (HSC) [2]
(top) and the resulting calibrated exposure after processing with the Rubin
LSST Science Pipelines (bottom). The images are not the same size because
calibration adjusts for the optic distortion of the instrument.

II. TECHNOLOGY STACK

While cloud technology has been embraced quickly by
some scientific communities (see [3] or [4]) its adoption by
the astronomical community has been slow. Legacy code is
typically designed with the assumptions that (a) data exists
locally or there exists a globally accessible file system, (b)
the computation is some form of batch processing, and (c) the
system is in general not state agnostic. While it is possible to
create similar systems in the cloud, modern cloud approaches
scale much better with shared-nothing filesystems [5], con-
tainerization [6] and near-data processing architectures.

Here we will firstly provide a brief overview of Rubin LSST
Science Pipelines and how they are used to process data and
then we will briefly describe the modifications required to run
the system in the cloud.

The Rubin LSST Science Pipelines [7] represent the state-
of-the-art in astronomical data reduction. They consist of
configurable Tasks that can be chained into a pipeline. Such
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a pipeline is described by a directed acyclic graph (DAG)
called a Quantum Graph [8]. A Quantum Graph consists of
Quanta, where each Quantum is a Task applied to an individual
dataset. The Rubin LSST Science Pipelines enable processing
of astronomical data from a single exposure to overarching
tasks such as joint calibration that constrains astrometric and
photometric measurements across multiple exposures.

Tasks themselves are agnostic to file formats and locations
of the data. The input-output (IO) and provenance is tracked
through a Middleware component called the Data Butler [9].
The main purpose of the Data Butler is to isolate the end
user from file organization, filetypes and related file access
mechanisms by exposing datasets as, mostly, Python objects.
Datasets are referred to by their unique IDs, or a set of
identifying references. The Data Butler uses a registry to
resolve the dataset references and resolves the location, file
format and the Python object/type of the files stored in a
datastore.

HTCondor [10] provides a powerful batch system for high
throughput computing (HTC). Directed Acyclic Graph Man-
ager (DAGMan) is HTCondor’s metascheduler capable of
managing workflows at a higher level than the underlying
HTCondor Scheduler. Pegasus [11] is a workflow management
system built on top of HTCondor. It provides command
line and API interfaces that allow writing abstract workflows
(DAXs) independent of the underlying computing infrastruc-
ture. Pegasus then translates the abstract workflow to an
executable workflow interpretable by DAGMan. The Rubin
LSST Science Pipelines Quantum Graph is written in the form
of a DAX, that is submitted to Pegasus, which translates it into
an executable workflow and submits it to HTCondor.

To facilitate running Rubin LSST Science Pipelines in the
cloud we adopted an lift-and-shift strategy that is common in
porting existing applications to the cloud. Initially an exact
copy of Rubin software was executed on cloud services con-
figured to mimic the on-premise environment. Having verified
functionality of the software we implemented an Simple Stor-
age Service (S3) back-end for the Datastore and a PostgreSQL
backed Registry managed through the Relational Database
Service (RDS) service. Because the Data Butler abstracts IO
for the Middleware, the changes remove the need to have a
shared local drive across the nodes. HTCondor Annex allows
HTCondor deployment on cloud resources via acquisition of
cloud compute resources external to an existing HTCondor
pool by acquiring Elastic Compute 2 (EC2) instances. The
schematic of the system is shown on Figure 2.

Scaling is achieved by scheduling as many parallel jobs
of the same type as resources allow. When the compute
cluster is under-subscribed due to a low number of jobs to
schedule simultaneously, the resource manager will deallocate
the idle resources for cost optimization. New resources can
also be allocated and dynamically added to the cluster when
resource requirements of the jobs change. The system, and
work required to create it, are described in [12] and [13]. In
the following chapters we focus on analysing and identifying
bottlenecks and mitigation strategies that lead to a decrease in

Fig. 2. A user or users, leftmost, gains access to the head node which contains
the Rubin LSST Science Pipelines, Pegasus and HTCondor. The user creates
and submits a Quantum Graph to Pegasus. Pegasus clusters the jobs and begins
submitting jobs to HTCondor. Users procure compute resources, workers,
through HTCondor Annex. Compute resources are logically separated into
units called Condor Pools, each of which is dynamically scalable and can
consist of a mix of EC2 instances procured on-demand or via Spot Fleet
requests. As Quanta are executed on the workers the persisted data is written
to the Datastore, an S3 Bucket, and to the Registry, an RDS PostgreSQL
database. Persisted data remains accessible from the head node.

cost and an increase in performance.

III. EXAMPLE WORKFLOW

The example workflow is based on the HSC Release Candi-
date (RC) dataset tract 9516 [14]. This dataset is reprocessed
using Rubin compute resources every two weeks in order to
characterize the scientific validity and performance of the al-
gorithms. The dataset contains 6787 images. The total number
of Quanta, i.e. jobs, is 20361. There is one initialization task
that prepares the Registry and there are three different Tasks
that run on the images: Instrument Signature Removal (ISR),
Characterization, and Calibration. A broad overview of the
Tasks is provided in [7] with more details provided in [15].
Processing results in an instrument corrected image, a model
of the background and the point spread function, and a catalog
of detected sources on which astrometric and photometric
measurements were performed. The workflow is shown on
Figure 3. The total size of the input data is 0.2TB and the size

Fig. 3. An example workflow for performance and scalability tests. Processing
consists of instrument signature removal, characterization and calibration.
These are ordered jobs for each image but processing a set of images is
an embarrassingly parallel task.

of output data is approximately 2.7TB. In number of exposures
processed this represents ⇠11% of the number of observations
per night from Rubin Observatory.

https://research.cs.wisc.edu/htcondor
https://pegasus.isi.edu/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://aws.amazon.com/rds/
https://aws.amazon.com/rds/


IV. PERFORMANCE, SCALABILITY AND COST

The example workflow was evaluated for multiple different
instance types and instance sizes. The tests were performed
using on-demand and spot instance types. The wall time is
the cumulative value of execution times of all Quanta in the
Quantum Graph, including the scheduling and execution over-
head. Each workflow includes the initialization task which, on
average, adds an overhead of 25 minutes.

Initial testing was performed with 25, 50 and 100
c5.xlarge instances. Each c5.xlarge instance has 4
vCPUs. Each vCPU is a hardware hyperthread on a 3.0 GHz
Intel Xeon Platinum 8000-series processor, 8 GB of memory,
up to 10 Gbps connection bandwidth and mounts an General
Purpose (gp2) Elastic Block Storage (EBS) SSD volume. The
two major bottlenecks in the processing were an EBS drive
IO bottleneck and the staging of the scripts and configuration
files.

A typical gp2 EBS drive throughput is between 128 and
250 MBps, i.e. on par with modern HDDs, depending on
volume size and instance type. This is usually parameterized
through IOPS (IO operations per second) with larger volumes
having a higher base IOPS performance, e.g. a 100 GB drive’s
base performance is 300 IOPS. A volume can burst up to 3000
IOPS with the length of the burst governed by the amount of
Burst Credits associated with the drive. Burst Credits recharge
when IOPS usage is less than baseline performance. The
Data Butler can not always instantiate objects from memory
and will instead download files to the local drive, which can
exhaust the Burst Credits on individual workers.

Staging is the process of setting up the required environment
including the transfer of job scripts, their configuration files
and other required files. We stage the processing configuration
and output logs, using Pegasus, to and from the workers re-
spectively. The cumulative size of the processing configuration
files can be up to 5 GB and 6 GB for output processing logs,
straining the IO performance on the head node as many of
the configuration and output logs transfers occur in lock-step.
During testing, Burst Credits often masked or delayed the
onset of IO bottle-necking, making it hard to identify the issue.
For example, timings for 25 and 50 workers were the same
(see Figure-4 unoptimized) because the Burst Credits were
already exhausted before the first run, so both workflows were
limited by the drive throughput, while the third one, launched
the following day, executed against full Burst Credits.

Selecting more appropriately scaled EBS drives for the
head and worker nodes, in tandem with moving the staging
site from the head node and into an S3 Bucket are directly
responsible for the majority of the measured improvement.
Further improvements were achieved by clustering multiple
single jobs into a single larger job and by relegating scheduling
to DAGMan. This was because, Pegasus would, by default,
fork a new condor_submit process for every job. If the
workflow was, for example, executed on 50 c5.2xlarge
workers it would launch 400 jobs, which fork 400 processes
and establish 400 head-worker staging transfer connections,

simultaneously.
Better indexing schemes for the Registry, materialized

views, allocating more cache per connection, increasing the
maximum number of allowed connections and simultaneous
locks resulted in further a decrease in walltime and cost of
the workflows.

Fig. 4. Workflow execution wall time on c5.xlarge instances before and
after optimization.

A. Resource Optimization

Choice of instance type, number of instances and workflow
determines the cost (either in wall time or USD) for the
execution of the Rubin LSST Science Pipelines. In Figure-
5 we show the performance scaling tests after workflow
optimization. The example workflow shows scaling that is
approximately linear with the number of simultaneously al-
located jobs, which is dependent on the number of vCPUs,
memory and job resource requirements. The scaling factor of
1.8 is only slightly less than what is expected from an idealized
case. The 50 and 100 workers tests for c5.2xlarge family
do not show linear scaling. The total duration was 1h18m
when executing with 100 workers, meaning the intialization
task became a significant portion of the total wall time.
Additionally, the example workflow does not have sufficient
parallelizable jobs to saturate the allocated resources, i.e.
the compute cluster was undersubscribed. Because resource
allocation is based on vCPU (which are hyperthreads for the
selected instance families and sizes) it is still possible for the
physical core to be occupied and therefore the worker will
not deallocate automatically but its full resources will remain
unused. To verify we executed an additional test using 200
m5.large workers, counting 400 vCPUs with 2 GB per
vCPU of memory. The test finished in approximately the same
wall time, 1h58m, as its vCPU number counterpart, the 50
c5.2xlarge workers. The cost for the workflows was 28.21
USD and 26.72 USD respectively, which confirmed that the
scaling is mainly dependent on the number of jobs that are
able to run in parallel. The cost of EC2 instances is shown in
Figure-6. We find that cost is approximately constant, within
7%, for tests using 25 and 50 workers. This is to be expected
as the cost of more powerful instances is offset by a reduction
in wall time. Therefore, if the cluster is oversubscribed,
increasing the number of workers decreases both the wall
time and the cost of the workflow (if the instances suit the



Fig. 5. EC2 wall times for the example workflow.

workflow resource requirements). The workflow executed on
100 c5.2xlarge workers costs significantly more because
the cluster was under-subscribed but, as explained previously,
it was not possible to deallocate workers. The workflow
executed on 100 m5.xlarge instances costs significantly less
than its 25 and 50 worker counterparts because the reduction in
wall time scaled as 1.8 meaning the instances were allocated
for shorter periods of time. Significant savings are achieved
by executing on Spot instances, with our example workflow,
using 50 c5.2xlarge workers, reduced by a factor > 4
(see Figure-6). The total workflow cost is also offset by the
constant cost of the RDS instance, the head node and amount
of data stored in S3. In general the scaling performance is not

Fig. 6. EC2 cost for the example workflow.

limited by IO or connection bandwidth on the workers mainly
due to the distributive properties of S3. The upper limit is
generally set by the size of the instance that hosts the Registry.
Since all jobs need to contact the registry, there is an upper
limit to the number of workers that can execute simultaneously
set by the maximum number of simultaneous connections and
maximum allowed number of locks per connection, that are in
turn dependant on the available cache size of the RDS instance.
The largest RDS instance available is the db.m5.24xlarge
with 96 vCPUs, 384 GB of memory and 14000 Mbps of write
speed to the attached EBS drives. The per-hour cost of such an
instance is 8.45 USD/h of use which is substantial in an on-
demand provisioning scheme. Were this functionality offered
as a service, however, cost can be significantly amortized by
procuring reserved instances. For reserved instances a 40%
discount is possible by reserving an instance for a year and
60% for three years.

V. COST PROJECTIONS

The dataset used in this analysis represents approximately
11% of the number of nightly observations of Rubin or, given
the difference in the size of the cameras, about 2% of Rubin’s
nightly data volume. In [16] we performed a cost estimate of
a full Data Release Production (DRP) workflow, a workflow
that in addition to the tasks described in III also includes
combining images (coaddition) and source measurements on
the combined images.

We base our on-premise resources estimates on [13] where
we multiply the per node cost with the walltime for a workflow
executed using on-premise resources. The Verification Clus-
ter at the National Center for Supercomputing Applications
(NCSA) is used as a prototypical Rubin compute center. The
Verification Cluster comprises 48 Dell C6320 nodes. Each
node has 24 physical cores and 128 GB RAM, which due
to hyperthreading results in 48 virtual cores per node. We
estimate the cost of the on-premise compute resources to
be 0.408 USD per node-hour without including labor. We
note that until the location of the Rubin Data Facility has
been decided and concrete commitments are made this costing
estimate will remain uncertain.

To provide a bound on the expected requirements and costs,
in the following analysis we evaluate the DRP workflow using
two different data abstraction layers known as the Generation
2 and 3 Butlers. Generation 2 Butler is the current and more
mature implementation, and Generation 3 Butler, on which
our work is based, is the less optimized next generation Data
Butler. Processing took 17.8 node hours [17] and 88 node
hours on the Verification Cluster for Data Butler Generation
2 and 3 respectively. This corresponds to run time costs of
7.3 USD and 35.9 USD. Given the large difference in the run
times for the different generations, to estimate the total cost
of processing Rubin data with the DRP pipelines, we use the
relative performance of running these workflows in the cloud
and on-premises and use that to scale the costs given in [16].

Rubin DRP estimates that approximately 2PB of raw sci-
ence data will be produced annually. Based on an input size
of 122 GB and a cost of 95 USD for the DRP workflow [16],
assuming that the scaling remains linear, Rubin processing
would cost approximately 0.7 million USD for the first year
of DRP operations if we adopted no cloud optimizations. This
compares to 0.9 million USD for the current on-premises
implementation. If the optimizations we achieved in this paper
can be extended across the entire DRP workflow, not just the
example workflow we have evaulated, we estimate that Rubin
yearly DRP processing costs would be between 600,000 to
900,000 USD. Note that this includes the compute, database
access, and storage necessary to run the pipelines. It does not
include the long-term archival costs of storing or querying the
raw and processed images or the resulting catalogs. From these
numbers, it is clear that optimization can yield substantial cost
savings (between a factor of 1.7 and 2.5). If the optimizations
shown in this paper can be extended across the full DRP
workflow we believe that the compute resources required for



processing Rubin data could be cost neutral on the cloud.

VI. CONCLUSIONS

We show that a lift-and-shift strategy is an appropriate and
relatively easy way to adapt Rubin software to run in the
cloud. While an unoptimized lift-and-shift approach can scale
to multi-petabyte datasets, such as those that will be generated
by Rubin Observatory, it is not a cost effective solution.
While the current work does not address storage or networking
costs, we identify several compute performance bottlenecks
that drive processing costs and propose solutions to mitigate
them. The most significant compute performance gains are
achieved by careful management of workflow execution IO.
Trimming significant amounts of log transfers, staging in an S3
bucket, and clustering reduced the example workflow walltime
from 210–255 minutes to 128–140 minutes when executed
on 50 c5.xlarge instances. The large dispersion in the
unoptimized lift-and-shift example workflow walltimes is due
to the nature of some of the bottlenecks.

We investigate the impact of EC2 instance size and type
on performance and cost. We show that compute resources
must be tailored to the requirements of individual Tasks within
a complex workflow. For the example workflow, for small
numbers of instances, walltime is a function of instance type
and instance size and walltime scales linearly with the number
of jobs that can run in parallel. Above 50 instances, this scaling
no longer holds because the example dataset is not large
enough to saturate the compute resources of the workers. Costs
remain flat relative to instance type and number of instances
for < 50 instances but for larger instance counts the under
utilization of the compute resources increases the total cost.
While the cost estimates for workflows run on inappropriately
selected compute resources might not differ significantly, due
to different pricing of instances, the total wall time of such
a workflow will. Selecting a cost and performance optimal
instance type and size requires careful benchmarking of each
individual component of a workflow. For the case of the Rubin
pipelines, adding more fine grained control that would allow
associating, launching, or at least targeting Quanta to specific
resources would enable better resource allocation, improve
total cost, and reduce run times.

Lastly, while the current results might not match the cost
estimates for purchasing large scale on-premise compute re-
sources for a long term 10-year sky survey such as the LSST,
we show that it is possible to approach those estimates within
30% to 40%. We believe that for such a difference in relative
pricing between on-premise and on-cloud resources, the added
benefits of elasticity could outweigh the absolute cost of the
workflow. Based on the work presented, we believe it is
possible to achieve this relative price difference even when
not including different provisioning schemes other than on-
demand and spot. For longer lasting projects it would also
be possible to reserve the EC2 and RDS resources required
with 1 to 3 year reserved instance contracts. The pricing of
EC2 and RDS instances is then further reduced by up to 72%
and 65% respectively. With further work on the optimization

of the workflow and system performance we believe, for the
compute resources, cost parity with on-premises solutions can
be achieved.

We note that the elasticity provided by moving into the
cloud could allow the full Rubin data set to be reprocessed
in under a week rather than the 6 months expected from an
on-premises solution. Supplementing on-premise resources
with on-demand or spot compute resources in the cloud could
improve the speed with which research is conducted yielding
a total net saving in delivering science results. This would
transform how quickly science discoveries could be made
using Rubin data.
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