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Abstract

Standard methods for video recognition use large CNNs
designed to capture spatio-temporal data. However, training
these models requires a large amount of labeled training
data, containing a wide variety of actions, scenes, settings
and camera viewpoints. In this paper, we show that current
convolutional neural network models are unable to recognize
actions from camera viewpoints not present in their training
data (i.e., unseen view action recognition). To address this,
we develop approaches based on 3D representations and
introduce a new geometric convolutional layer that can learn
viewpoint invariant representations. Further, we introduce
a new, challenging dataset for unseen view recognition and
show the approaches ability to learn viewpoint invariant
representations.

1. Introduction

Activity recognition with convolutional neural networks
(CNNs) has been very successful [2, 41, 13] when provided
sufficient diverse labeled data, like Kinetics [21]. However,
one major limitation of these CNNs is that they are unable
to recognize actions/data that are outside of the training
data distribution. This is most notably observed for unseen
classes (objects, activities, etc.) which has been heavily
studied in zero-shot and few-shot learning literature. In this
work, we look at a related, but different problem of unseen
viewpoint activity recognition, where the actions are the
same, but occur from different camera angles.

To motivate this problem, let us consider an example.
Given a labeled dataset of a person performing actions with
one camera angle, we train a CNN to recognize this action.
Now, suppose we have new videos to recognize, but from a
different camera view. This could be as simple as a different
camera placement in the environment, or an entirely different
camera and setting (e.g., Fig. 1). In this case, a trained CNN,
in general, fails to recognize the action. As a simple experi-
ment, we use the Human3.6M dataset [14], which contains
videos of a person performing an action from 4 different
camera angles. As shown in Table 1, when training on one

MLB-YouTube 
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New Unseen Views

Figure 1: Examples of the seen, static broadcast camera in
MLB-YouTube and examples of the new, unseen viewpoints
of the same actions. This dataset is quite challenging, adding
new views, people, etc.

view and testing on another, the model is unable to recognize
the action. However, humans are able to recognize these
actions regardless of viewpoint and studies have found that
this is likely because humans build invariant representations
of actions in their minds [39] .

Further, this problem frequently occurs in real data (e.g.,
YouTube videos). Existing smaller datasets such as Toyota
SmartHome [8], Charades-Ego [38], NTU [35] and others
all provide videos in multiple viewpoints to study this effect.
Large video datasets like Kinetics [21] naturally contain
many views, however, there is no annotation of the view
and each video only provides a single view. Other datasets
like MLB-YouTue [31] only contains the single broadcast
camera view baseball games. As collecting video data is
already challenging, designing CNNs that generalize to un-
seen viewpoints is critical, especially for applications where
diverse view data is limited or unavailable. It would be practi-
cally impossible to build datasets for many desirable settings
that enumerate all possible (or sufficiently large number of)
viewpoints to fully model activities.

There are many potential ways to address this problem.
One hypothesis is that by training on a large-scale video
datasets, such as Kinetics, the model could implicitly learn
multi-view representations of actions. However, as shown
in Table 1, we empirically find that while it improves per-
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Method Seen Unseen

Random 9.1% 9.1%
2D ResNet-50 86.4% 9.1%
3D ResNet-50 100% 9.1%
3D ResNet-50 + Kinetics 100% 38.2%
Ground Truth 3D Pose 100% 100%

Table 1: Experiments on Human3.6M with unseen view-
points. Standard CNNs are unable to recognize actions with
different viewpoints, however, using global 3D pose allows
the models to recognize the actions.

formance, it is still lacking. A second hypothesis is that by
using 3D human pose information, we can recognize actions
in a global representation space, unconstrained by camera
views. A key drawback to this approach is estimating 3D
pose from video itself is a challenging problem, especially
when multiple people are present. It further requires estimat-
ing camera pose in order to build a ‘world’/global camera
invariant 3D representation. Further, it is unclear what the
right representation of 3D pose is (e.g., coordinates of joints,
limbs, motion difference of joints between frames, etc.).

Building on this hypothesis and observation, we present
and evaluate several approaches for recognizing actions in
unseen viewpoints. The basic approach relies on estimating
3D pose directly from the videos, then explores using dif-
ferent representations of it for recognition. Since directly
estimating accurate real-world 3D pose is often difficult, we
also present an approach of learning latent 3D representa-
tions of an action and its multi-view 2D projections. This is
done by imposing the latent action representations to follow
3D geometric transformations and projections, in addition
to minimizing the action classification loss. We learn such
view invariant action representations without any 3D or view
ground truth labels.

We also introduce a challenging dataset building on the
MLB-YouTube dataset [31]. The MLB-YouTube dataset
contains actions from a single camera and these actions are
all in the same environment (e.g., a professional baseball
stadium). Our extended dataset contains evaluation samples
of the same actions, but from many different viewpoints and
a variety of different settings: batting cages, little league
(children’s baseball games), high school games, etc. These
use different camera (e.g., cell phones), in very different
environments. The goal is to learn a representation from
the single view dataset that generalizes to these challenging,
unseen viewpoints. Examples are shown in Fig. 1.

To summarize, the contributions of this paper are:

• A computationally efficient, geometric-based layer and
learning to learn view invariant representation.

• Thorough evaluation of multiple approaches to unseen
viewpoint action recognition.

• A challenging new dataset for unseen viewpoint recog-
nition in unseen environments.

2. Background - 3D Geometric Camera Model

First we briefly review the standard 3D geometric camera
model used in computer vision, which we build on in this
work. We begin with a standard pinhole camera model.
Given the pixel coordinates p, the 3D world coordinates pw
are represented as

p = K [ R | t ] [ pw | 1 ]T (1)

where K is the 3 × 4 camera projection matrix (intrinsic
camera matrix) mapping a 3D point into a 2D camera view.
R and t are the camera rotation (3×3) and translation (1×3)
in the world space (extrinsic camera matrix) that transform
the points between different 3D camera views. | is the matrix
concatenation operator. In many cases in computer graphics
and computer vision, it is assumed that K, R and t are
known. These matrices can be used to compute the inverse as
[ RT |RT t ] (the inverse of a rotation matrix is its transpose).
Thus, given a 3D coordinates p, the view-invariant world
coordinates can be computed as pw = p · [ RT |RT t ].

Importantly, points in the 3D world coordinate system
are, by design, viewpoint invariant. However, in many set-
tings, including activity recognition, the camera matrices
are unknown. In some cases the intrinsic camera matrix K
might be known (e.g., when the camera has been previously
calibrated), but the extrinsic matrices as well as the defini-
tion of the world coordinate system are not. The core of this
paper is exploring methods to learn and represent these.

3. Basics - Using 3D Pose

We first design and investigate a straight forward ap-
proach of using 3D human pose estimation and its projection
for action classification (Fig. 2). Many works have explored
estimating 3D human pose from videos [30, 19, 24, 25, 28],
even multi-person 3D pose [27]. We begin by using PoseNet
[27] to estimate 3D coordinates. PoseNet provides 3D co-
ordinates in camera space, so directly using the coordinates
will not yield viewpoint-invariant recognition. For this, the
3D coordinates need to be transformed into world-space.

However, estimating the extrinsic matrix from a single,
random image is a challenging problem. We use CalibNet
[16] to obtain estimations of R and t. This approach is quite
limited by the accuracy of CalibNet, if it provides a poor
estimation, the rest of the network will fail. Since there is
limited camera calibration training data, we observe than for
in-the-wild videos, CalibNet often gives inaccurate results
and does not generalize well.
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Figure 2: Overview of the process to learn global 3D pose
and 2d multi-view projections of it for classifying unseen
viewpoints.

3.1. Recognition with 3D representation

Given the estimated 3D pose in world space, these values
can be directly used as input to the model. However, directly
using 3D coordinates may not be the best feature, as scale
changes (e.g., person size), speed of which the action occurs,
etc. will all impact the features. Previous works have studied
representations of 3D pose for skeleton action recognition [9,
46, 22, 23], such as joint angles [29] showing the difficulty
of this task.

Instead of directly using the 3D pose as input to a clas-
sification model, multi-view 2D projections of it could be
used. Research focusing on designing strong CNNs for un-
derstanding 2D image input has been one of the mainstream
areas, and it often is more advantageous to use 2D image
inputs rather than 3D. Further, by using multiple views, the
model can see the input from different angles, instead of
a single one. To do this, we assume we have an intrinsic
camera matrix K that projects the 3D coordinates into 2D.
We follow the standard pinhole camera model and learn
a camera rotation and projection to generate multiple 2D
views. Inspired by previous works, like Potion [6], we take
the 2D projections of pose and render skeletons capturing
the motion. These images are used as input to the model
for activity classification. An overview of this approach is
shown in Fig. 2.

4. Network for Latent 3D Representations
The previous approach is an engineered combination of

existing CNNs (pose, camera estimation and action recogni-
tion) and relies on multiple components correctly function-
ing. If any of these networks fail or gives slightly incorrect
results, the rest of the model will fail. However, we draw
inspiration from the geometric based approach, and design
geometric CNN layers to learn and replicate similar transfor-
mations. To do this, we begin by learning a representation
that contains and uses both 3D information and the extrin-
sic information. We then combine this information to get a

3D world representations of the actions and provide a CNN
architecture. We introduce a loss function terms to learn
such 3D view-invariant representations from a dataset with
(unlabeled) views.

4.1. Neural Projection Layer (NPL): Building a La-
tent 3D World Representation

First, we take a feature map F which is aW×H×(C+3)
tensor, where C is the channels in the feature map plus
the CNN estimated 3D camera space coordinate. Formally,
Fx′,y′ = [px′,y′ , fx′,′y], where px′,y′ = [x, y, z] at location
x′, y′ in the feature map and fx′,y′ is the C-dimensional
feature at the location.

Next, we use a fully-connected layer to estimate R and t
(rotation and translation) from each video. These are used to
transform the video camera view into the world coordinates
as pwx′,y′ = px′,y′ ·[ RT |RT t ] for each p in the feature map.
This gives the 3D world coordinates, i.e., camera invariant
coordinate, of each point p. Note that the 3D world coordi-
nate system is the same for all videos, thus R is different for
each video, depending on the camera viewpoint. R plays the
role of aligning features (e.g., humans) in different scenes,
so that the losses are minimized. This allows the model to
learn to map each video into the same global coordinates.

The world 3D representation is then created as:

FW
x,y,z =

W,H∑
i=0,j=0

1(pwi,j = [x, y, z])Fi,j (2)

where 1(pwi,j = [x, y, z]) is the indicator function for when
pw matches location x, y, z.

That is, we can create a new feature map FW which
has a shape of W × H × Z (in practice, W = H = Z,
for example, 64). Given one of the points px′,y′ and its
associated feature vector fx′,y′ from the original feature map,
we compute the ‘world coordinate’ of that point x, y, z =
pwx′,y′ and then set FW

x,y,z = FW
pw
x′,y′

= fx′,y′ . I.e., we set the
values in the feature map based on their location in the world
coordinate reference. This transforms the original latent 3D
representation into the rotation and translation invariant 3D
world representation, resulting in a representation that is
viewpoint/camera invariant.

However, since x, y, z are integers and pwi,j is likely not
an integer and we want to implement this as a differentiable
function to be learned with gradient descent, we slightly
modify this to:

FW
c,x,y,z =

W,H∑
i=0,j=0

(1− |x− pwi,j [x]|)

(1− |y − pwi,j [y]|)(1− |z − pwi,j [z]|)Fc,i,j

(3)
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Figure 3: Learning latent 3D representation. A CNN pro-
duces a 3D feature: each location has a feature value and
x, y, z location. The network also produces camera parame-
ters, allowing the construction of a viewpoint invariant 3D
feature. Then multiple cameras are learned, allowing the
creation of multi-view 2D projections of the features. These
are stacked on the channel axis and used for classification.
The world 3D feature and 2D MultiView features are learned
to be identical for the same action.

This is similar to Eq. 5 introduced in the spatial transformer
network [17]. In the implementation, we first set pw =
tanh pw to ensure its values fit in the feature map space,
similar to the transformer network.

Once we obtain FW , we use it directly as input to the
remaining CNN for classification. We note that FW is a
4-dimensional tensor (channels followed by 3D coordinates),
so we use 3D convolution on top of this representation.

4.1.1 Multi-view 2D Projections

Instead of directly working with a 3D feature map, we can
follow the ideas from Section 3.1 and generate multiple 2D
projections of the features. This is shown in Fig. 3.

Assuming we have a camera matrix K, which we repre-
sent as

K = R

 sx 0 x0
0 sy y0
0 0 1

 (4)

where sx, sy are the focal lengths and x0, y0 are the offsets,
and R is the 3× 3 camera rotation matrix. Note R can be
represented with 3 parameters: yaw, pitch and roll which
generate the full 3 × 3 rotation matrix. This process uses
the same components and projections as in Section 4.1, but
instead of estimating R using a layer for each video, here
these are learned parameters of the model. This allows the
model to generate the same 2D views from the view-invariant
world 3D space. We can then model a 2D projection of the
3D points as:

Video 
frames

Initial 
CNN

3D Feature 
Representation

(3+C) x T x H x W

R | t

R | t

R | t

...

Camera 
Projections

Viewpoint 
Invariant Rep.

Classification
CNN + Pooling

N*C x T x H x W

Camera 
Transforms

Figure 4: Illustration of the full viewpoint invariant recogni-
tion model.

FW
c,x,y =

W,H∑
i=0,j=0

(1−|x−Kpwi,j [x]|)(1−|y−Kpwi,j [y]|)Fc,i,j

(5)
As these operations are differentiable, we can learn all

these parameters with gradient descent. This allows the
model to learn the optimal arrangement of cameras to capture
views from the latent 3D representations for action recog-
nition. Further, by increasing the number of cameras (N ),
we can learn multiple 2D projections of the representations,
which can be stacked on the channel axis for recognition. In
the next section, we describe the training loss that enables
learning of the 3D representation without any 3D or camera
calibration ground truth data.

We note that in this setting, some views will have oc-
cluded objects/features. An assumption of the approach is
that using multiple cameras will naturally capture different
viewpoints that will minimize the effects of occlusion. An-
other approach could be to use tomographies of each view
to remove the effect of occlusions, which we leave as future
work.

4.2. Recognition with 3D Representation

The full model, as illustrated in Fig. 4, begins by applying
several conv. layers to a video input. At some point in the
network (we experimentally evaluate where), we generate
the 3D feature map and apply the geometric transformations
described above. We then use either 2D or 3D conv. layers
followed by a fully connected layer to classify the video clip.

5. Learning Latent 3D Representations
The key challenge with this approach is learning the cam-

era matrices that generate view-invariant representations. We
propose an approach to learn this view-invariant representa-
tion from a dataset with action videos (e.g., Kinetics [21]).
Importantly, we do not assume any ground truth viewpoint
or 3D data is provided, but only that the videos naturally
contain multiple views. Unlike the first approach where
we first learn 3D human pose estimation and extrinsic cam-
era calibration from specific datasets, this approach only
requires action-labeled data, available in many large-scale
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public datasets.
Given two videos V and U of the same action, we com-

pute their 3D representations FW (V ) and FW (U) and use a
loss to make their representations the same:

3d_loss(V,U) = ||FW (V )− FW (U)||F (6)

Intuitively, this loss term makes it so that two videos likely
with different camera views have the same 3D representation
after the projections. This encourages the representations
from different viewpoints of the same action result in the
same 3D representation.

For multi-view 2D projection, we apply that loss on each
2D view, as well as adding a regularizing term to make each
camera different:

cam_reg(c1, c2) = max(−||c1 − c2||F , α) (7)

where c1, c2 are camera matrices and α is the margin, or
desired max difference. We note that this constraint forces
the cameras to be different, but does not ensure that they are
facing the scene. However, we observed that during training,
the cameras converged to views that were facing the scene,
as shown in Fig. 5.

5.1. Training Loss Function

Our final loss is a combination of these terms plus a stan-
dard classification loss. Given the set of cameras in the
model C, let V be a video and l be the binary vector indicat-
ing the class label of a video. Let M(V ) be the application
of the network to video V giving the predictions for each
class (e.g., a c-dimensional vector where c is the number of
classes). In particular, M(V ) is some video CNN that pro-
duces the classification. More details are shown in Fig. 4 and
specific architecture details are in the appendix. Given the
set of training videos and labels, V , The final loss function
is:

L(V) =
∑

(V,l)∈V

(
−

c∑
i

li logM(V )i

)

+λ1

 ∑
(U,k)∈V

{
3d_loss(V,U) l = k

0 otherwise


+ λ2

 ∑
c1 6=c2∈C

cam_reg(c1, c2)


(8)

The combination of the geometric structure imposed by
the NPL and the components of the loss function encourages
the model to learn viewpoint invariant representations. This
formulation enables learning 3D representations with only
activity-level labels and the geometric constraints.

6. Experiments
We conduct various experiments to understand the various

components of the approach on multiple datasets. The model
was implemented in PyTorch (code in appendix) and pre-
trained on Kinetics-400 [21]. We used Kinetics to pretrain
as it is large and naturally has many viewpoints, allowing for
the evaluation of this approach. We then use the network to
extract features and train a small two-layer network on each
specific dataset. Training was done for 25 epochs with the
learning rate set to 0.01. For learning the rotation matrices,
we learn 3 parameters: yaw, pitch and roll, which we convert
to the rotation matrix.

Datasets: We evaluate this approach on three datasets con-
taining multi-view data. On Human3.6M, we train the model
on one camera view for one subject and test on one of the
other views. The model is trained to recognize 11 different
activities. We perform this experiment for 9 subjects and
2 different seen/unseen view combinations and report the
average over each setting.

For the unseen MLB (baseball) videos, we train on the
broadcast camera videos (original MLB-YouTube dataset
[31] and test on the new, unseen views. We newly created
this dataset of unseen views for testing only. It consists of
500 videos from YouTube for testing of 4 different baseball
actions (swing, hit, pitch, bunt). This data is quite chal-
lenging as it has drastically different viewpoints, people,
backgrounds, activity speeds, etc. Examples of these views
are shown in Fig. 1.

For Toyota SmartHome (TSH), we follow the CV1 proto-
col [8] where the model is trained using camera 1 and tested
on camera 2. We also report results on the CV2 protocol
where it is evaluated on camera 2 but trained on multiple
cameras. This dataset has 16.1k videos taken from 7 dif-
ferent camera viewpoints. It contains 31 classes of human
daily activities in real-world environments. Similarly, we
also compare on NTU-RGB-D [35] following the standard
settings.

In Table 2, we compare the different proposed approaches.
We find that for some datasets, like Human3.6M, using 3D
pose (Section 3) is a very good feature, as this dataset con-
tains actions focused on human motion. However, on TSH,
which has many object-dependent actions, using pose de-
grades performance. For example, actions such as ‘pick up
cup’ and ‘pick up plate’, the pose motion is nearly identical
for both of those, but the object is different. Using pose
gives little indication which object is being used, thus when
only using pose to recognize the action, the model cannot
distinguish.

On the MLB dataset, using pose harms performance on
the seen viewpoint, but slightly improves performance on
the unseen views. In both cases, it is only slightly better than
random. This is likely due to noisy data with many people
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Table 2: Comparison of the approaches. While pre-training on Kinetics improves results, the use of the geometric NPL is quite
beneficial.

Method H3.6M MLB TSH
Seen Unseen Seen Unseen Seen Unseen

Random 9.1% 9.1% 25% 25% 5.2% 5.2%
ResNet-50 86.4% 9.1% 49.4% 27.3% 34.6% 33.7%
ResNet-50 + Kinetics 100% 38.2% 55.6% 30.2% 49.8% 34.2%

3D Pose Based (Section 3)

Ground Truth 3D Pose 100% 100% - - 19.6% 14.5%
Estimated 3D Pose 97.8% 78.6% 36.5% 33.6% 17.9% 11.6%
MultiView 2D Pose 98.3% 81.3% 37.6% 34.6% 18.4% 12.2%

Latent 3D Representation (Section 4)

NPL 99.3% 84.4% 52.3% 34.5% 51.2% 34.7%
NPL + Multi-view projections 99.7% 87.5% 58.9% 42.7% 54.5% 39.6%

present, and thus the 3D pose estimation is not accurate
enough. When using the learned, latent 3D representation
(Section 4), we find in all cases the performance on the
unseen views (and often seen views) improves, showing the
benefit of the proposed approach. We note that the latent
3D representation generalizes quite well to challenging data
with very different views and backgrounds (e.g., MLB data)
because it is trained on large-scale video data, the model is
able to learn more general projections.

We also find that training from scratch (ResNet-50) gives
very poor performance on the unseen views. Somewhat sur-
prising, pre-training on Kinetics, which has many different
views of people performing actions, does slightly improve
performance on unseen views, but still remains low, espe-
cially in the MLB and Toyota SmartHome datasets. This
suggests that standard video CNNs are not learning 3D rota-
tion invariant representations, even when given training data
from many views, further showing the benefit of learning 3D
view invariant representations.

6.1. Ablation Experiments

To better understand the effect of the NPL, we conduct
a set of experiments to analyze each component’s impact.
The results are shown in Table 3. Adding the multi-view
projection without any of the loss constraints slightly re-
duces performance. Adding the 3D loss enforces the ge-
ometric constraints to learn the viewpoint invariant repre-
sentation, without this, the model struggles to learn the rep-
resentation. Further adding the the camera regularization
loss improves performance. Based on this observation, we
also try a baseline with representation matching (RepMatch)
where we apply the 3D loss (Eq. 6) to feature maps from a
ResNet-50 without using any of the geometric layers. The
findings shown no real benefit of RepMatch over standard

Table 3: Comparison of the components of the approach.
All models are based on a ResNet-50 and pretrained on
Kinetics-400.

Method MLB TSH
Seen Unseen Seen Unseen

ResNet-50 Baseline 55.6 30.2 49.8 34.2
RepMatch 55.7 30.3 48.7 33.8

+ MultiView Proj. (MVP) 52.7 28.5 47.8 33.7
+ MVP + 3D loss (Eq. 6) 57.9 35.5 52.3 37.8
+ MVP + cam reg (Eq. 7) 54.7 30.8 50.7 34.4

+ MVP + 3D loss + cam reg 58.9 42.7 54.5 39.6

pre-training, while the proposed geometric approach shows
meaningful benefit.

We also study the effect of the number of cameras in Fig
6, finding that using just 1 camera projection is very helpful
while more than 4 no longer improves performance. This
intuitively makes sense, as a single camera will already result
in a viewpoint invariant representation, and the amount of
new data introduced with additional cameras decreases as
more are added. In Fig. 7, we compare the effect of placing
the geometric layer at different locations in the network.
Overall, the performance is fairly stable regardless of where
it is added. In Fig. 5 we visualize the learned cameras from
Sec 4.1.1. In the figure, the red rectangle represents the
world 3D representations space which contains the CNN
features FW (Eq. 3). The brown, blue and green markers
indicate the different learned camera matrices that capture
different 2D views of the space (Eq. 5).

6.2. Comparison to other approaches

We compare the proposed approach to other approaches
for unseen viewpoint activity recognition. The results are
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Figure 5: Visualization of the learned 2D multi-view cameras
(Sec. 4.1.1). The red square represents the origin of the
world coordinate system, the cameras are drawn using their
intrinsic and extrinsic matrices using the matlab PlotCamera
function.

Table 4: Comparison to other approaches on Toyota
SmartHome (TSH) and the Unseen MLB Views and NTU-
RGB+D.

Method TSH MLB NTU
CV1 CV2 Unseen CV

IDT [43] 20.9 23.7 27.3 -
Pose LSTM [8] 13.4 17.2 - -

I3D [2] 34.9 45.1 30.1 -
STA [8] 35.2 50.3 - 94.6

PEM [26] - - - 95.2
Ours 39.6 54.6 42.7 93.7

shown in Table 4, showing that the proposed approach out-
performs the existing ones. Importantly, the added runtime
of our approach is small, processing a 3 second video clip
in 120ms (ours) vs. 105ms (baseline ResNet-50), enabling
practical use.

7. Related Works
Representation Invariant Networks: Many works have
studied representation invariant networks. The spatial trans-
former network [17] and Equivarient CNNs [11] introduced
an operation to make CNNs invariant to 2D translation, scale,
rotation and more generic warping. Spherical CNNs [10, 7]
took advantage of spherical representation that are invariant
to 3D rotation transformations of objects in the camera view.

Our approach shares some similar ideas and motivations
to spherical CNNs, i.e., trying to learn a rotation invariant
representation. But differs in the goal of learning object
rotation invariance in spherical CNNs vs. world space repre-
sentations in this work. Another difference is in the design
of the representation: spherical CNNs rely on convolutions
in the spherical harmonic domain, while the proposed ap-
proach uses traditional geometric computer vision to learn a
representation. Other works like geometry-aware RNNs [5]
propose the related idea of ‘unprojection’ for learning 3D
representations by utilizing ground truth 3D data.

View Invariant Action Recognition: Many works have
studied view invariance in action recognition [34, 1, 36, 12,
37, 15]. Several works have studied using multiple views
during training to learn view invariant representations [45]
or ‘hallucinating’ features (e.g., HOG) in different view-
points to recognize actions in unseen views [4]. Several
works explored using cross-view similarity to recognize ac-
tions in various viewpoints [18] or trajectory curvature [1].
Other works [33] explored using 3D Pose for recognition,
but as described, pose has limitations when interacting with
objects.

3D Representations: Other works have designed CNNs to
specifically model 3D shapes, such as RotationNet [20] and
others (e.g., ShapeNet, PointNet, etc.) [40, 3, 32]. However,
these works focused on learning 3D models, rather than
applications to noisy, real videos in various environments
where no 3D data is directly given.

Works such as SynSin [44] propose similar ideas of using
geometric projections on CNN representations, showing the
promise of such ideas.

8. Conclusions
We presented a new geometric based layer to learn 3D

viewpoint invariant representations within CNNs. We also
introduced a new, challenging dataset to evaluate camera
view invariance. We experimentally showed the benefit of
the proposed layer on multiple datasets.
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A. Architecture Details
Our base model used a standard (2+1)D ResNet-50 [42].

The camera transform is inserted into the network usually
after the 3rd block (in the main paper we compared all lo-
cations). Usually this network used 256 channels for the
representation and we used 3 cameras (i.e., 3 different 2D
projections). The total number of parameters of the 3 main
models is summarized in Table 5. Our layer adds only 280k
parameters (only about 1% of the parameters), but signif-
icantly improves performance on unseen views. It further
has significantly better runtime performance than spherical
CNNs.

Table 5: Comparison of the number of parameters in the 3
main models. Adding the geometric projection layer only
adds 280k parameters, but greatly improves performance.

Model # params ∆

(2+1)D ResNet-50 21.3M 0
(2+1)D ResNet-50 + Ours 21.5M 280k
Spherical CNNs 21.2M -123k

B. Full Results
The full numerical results from plots in the paper are

provided here.

Table 6: How many cameras to use.

Method MLB TSH
Seen Unseen Seen Unseen

Baseline 55.6 30.2 49.8 34.2
1 Cam 57.4 38.6 53.2 38.5
2 Cams 58.1 41.8 53.9 39.1
4 Cams 58.9 42.7 54.5 39.6
8 Cams 58.7 42.7 54.5 39.4

Table 7: Where in network to add layer.

Method MLB TSH
Seen Unseen Seen Unseen

Block 1 57.8 42.1 54.3 39.2
Block 2 58.3 42.4 54.4 39.2
Block 3 58.9 42.7 54.5 39.6
Block 4 57.4 41.7 53.8 38.9
Block 5 57.1 40.9 53.3 37.7
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C. PyTorch Implementation
We provide the code here to implement the camera projection layer.

import numpy as np

import torch
import torch.nn as nn
import torch.nn.functional as F

device = torch.device('cuda')

def rotation_tensor(theta, phi, psi, b=1):
"""

Takes theta, phi, and psi and generates the
3x3 rotation matrix. Works for batched ops
As well, returning a Bx3x3 matrix.

"""
one = torch.ones(b, 1, 1).to(device)
zero = torch.zeros(b, 1, 1).to(device)
rot_x = torch.cat((

torch.cat((one, zero, zero), 1),
torch.cat((zero, theta.cos(), theta.sin()), 1),
torch.cat((zero, -theta.sin(), theta.cos()), 1),

), 2)
rot_y = torch.cat((

torch.cat((phi.cos(), zero, -phi.sin()), 1),
torch.cat((zero, one, zero), 1),
torch.cat((phi.sin(), zero, phi.cos()), 1),

), 2)
rot_z = torch.cat((

torch.cat((psi.cos(), -psi.sin(), zero), 1),
torch.cat((psi.sin(), psi.cos(), zero), 1),
torch.cat((zero, zero, one), 1)

), 2)
return torch.bmm(rot_z, torch.bmm(rot_y, rot_x))

class CameraProps(nn.Module):
"""

Generates the extrinsic rotation and translation matrix
For the current camera. Takes some feature as input, then
Returns the rotation matrix (3x3) and translation (3x1)

"""
def __init__(self, channels):

super(CameraProps, self).__init__()
self.cam = nn.Conv2d(channels, 128, 3)
self.cam2 = nn.Linear(128, 32)
self.rot = nn.Linear(32, 3)
self.trans = nn.Linear(32, 3)

def forward(self, x):
x = F.relu(self.cam(x))
# averages x over space,time
# then provides 3x3 rot and 3-dim trans
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x = torch.mean(torch.mean(x, dim=2), dim=2)
x = F.relu(self.cam2(x))
b = x.size(0)
r = self.rot(x)
return rotation_tensor(r[:,0], r[:,1], r[:,2], b), self.trans(x).view(b,3,1,1)

class CameraProjection(nn.Module):
"""

Does the camera transforms and multi-view projection
Described in the paper.

"""
def __init__(self, num_cameras):

super(CameraProjection, self).__init__()
self.cameras = nn.ParameterList()
self.cam_rot = nn.ParameterList()
for c in range(num_cameras):

self.cameras.append(nn.Parameter(torch.rand(4)*2-1))
self.cam_rot.append(nn.Parameter(torch.rand(3)*np.pi))

def forward(self, x, rot, trans):
# X is a list of [F, x,y,z] feature maps
# or X is a [C, W, H] feature map
# rot, trans are the extensic camera parameters
if isinstance(x, list):

# if it is a list, process each feature map
# resulting in a [C, W, H] as input
output = [self.forward(f, rot, trans) for f in x]
return torch.cat(output, dim=1) # channels is dim1

# x is now a [F, x,y,z] input where F is the feature
fts = x[:, :-3] # get feature value, a B x F x H x W tensor
pt = x[:, -3:] # get 3D point locations, a B x 3 x H x W tensor

# rot is a 3x3 matrix
# pw is 3x3 matrix applied along dim
pw = torch.einsum('bphw,bpq->bqhw', pt, rot)
pw += trans # add 3D translation

# pw is now world coordinates at each feature map location
# we do 2d projection next
views = []
for r,c in zip(self.cam_rot, self.cameras):

rot = rotation_tensor(r[0].view(1,1,1), r[1].view(1,1,1), r[2].view(1,1,1))
cam_pt = torch.einsum('bphw,pq->bqhw', pw, rot.squeeze(0))

proj = torch.stack([(cam_pt[:, 0]*c[0] + c[2]),
(cam_pt[:, 1]*c[1] + c[3])], dim=-1)

proj = torch.tanh(proj) # apply tanh to get values in [-1,1]
views.append(F.grid_sample(fts, proj))

return torch.cat(views, dim=1)

This layer can easily be inserted anywhere into a CNN. For example, assume the following code generates a ResNet. Then
the camera transform is used as:

class Net(nn.Module):
def __init__(self, ...):
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self.layers = # ResNet Layers
self.cam_props = CameraProps(channels)
self.camera_proj = CameraProjection(num_cams)

def forward(self, video):
x = video
for i,layer in enumerate(self.layers):
x = layer(x)
if i = apply_camera_layer_loc:

rot, trans = self.cam_props(x)
x = self.camera_proj(x, rot, trans)

return x
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