AViD Dataset: Anonymized Videos from Diverse Countries

AJ Piergiovanni Indiana University ajpiergi@indiana.edu

Michael S. Ryoo Stony Brook University mryoo@cs.stonybrook.edu

Abstract

We introduce a new public video dataset for action recognition: Anonymized Videos from Diverse countries (AViD). Unlike existing public video datasets, AViD is a collection of action videos from many different countries. The motivation is to create a public dataset that would benefit training and pretraining of action recognition models for everybody, rather than making it useful for limited countries. Further, all the face identities in the AViD videos are properly anonymized to protect their privacy. It also is a static dataset where each video is licensed with the creative commons license. We confirm that most of the existing video datasets are statistically biased to only capture action videos from a limited number of countries. We experimentally illustrate that models trained with such biased datasets do not transfer perfectly to action videos from the other countries, and show that AViD addresses such problem. We also confirm that the new AViD dataset could serve as a good dataset for pretraining the models, performing comparably or better than prior datasets.

1 Introduction

Video recognition is an important problem with many potential applications. One key challenge in training a video model (e.g., 3D spatio-temporal convolutional neural networks) is the lack of data, as these models generally have more parameters than image models requiring even more data. Kinetics (Kay et al., 2017) found that by training on a hundreds of thousands of labeled video clips, one is able to increase the performance of video models significantly. Other large-scale datasets, such as HVU (Diba et al., 2019), Moments-in-Time (Monfort et al., 2018), and HACS (Zhao et al., 2019) also have been introduced, motivated by such findings.

However, many of today's large-scale datasets suffer from multiple problems: First, due to their collection process, the videos in the datasets are very biased particularly in terms of where the videos are from (Fig. 11 and Table 23). Secondly, many of these datasets become inconsistent as YouTube videos get deleted. For instance, in the years since Kinetics-400 was first released, over 10% of the videos have been removed from YouTube. Further, depending on geographic location, some videos may not be available. This makes it very challenging for researchers in different countries and at different times to equally benefit from the data and reproduce the results, making the trained models to be biased based on when and where they were trained. They are not static datasets (Figure 3).

AViD, unlike previous datasets, contains videos from diverse groups of people all over the world. Existing datasets, such as Kinetics, have videos mostly from from North America (Kay et al., 2017) due to being sampled from YouTube and English queries. AViD videos are distributed more broadly across the globe (Fig. 1) since they are sampled from many sites using many different languages. This is important as certain actions are done differently in different cultures, such as greetings (shown

¹The dataset is available https://github.com/piergiaj/AViD

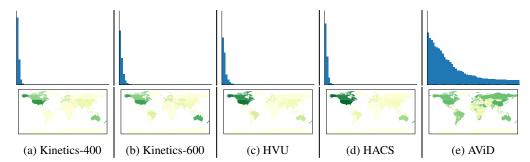


Figure 1: Histogram and Heatmap describing geological distributions of videos for Kinetics and AViD. Video locations are obtained from their geotags using the public YouTube API (check Appendix for details). X-axis of the above histogram correspond to different countries and Y-axis correspond to the number of videos. The color in heatmap is proportional to the number of videos from each country. Darker color means more videos. As shown, AViD has more diverse videos than the others.

Figure 2: Examples of 'greeting' in four different countries. Without diverse videos from all over the world, many of these would not be labeled as 'greeting' by a model. These examples are actual video frames from the AViD dataset.

in Fig. 2), nodding, etc. As many videos contain text, such as news broadcasts, the lack of diversity can further bias results to rely on English text which may not be present in videos from different regions of the world. Experimentally, we show diversity and lack of diversity affects the recognition.

Further, we anonymize the videos by blurring all the faces. This prevents humans and machines from identifying people in the videos. This is an important property for institutions, research labs, and companies respecting privacy to take advantage the dataset. Due to this fact, face-based actions (e.g., smile, makeup, brush teeth, etc.) have to be removed as they would be very difficult to recognize with blurring, but we show that the other actions are still reliably recognized.

Another technical limitation with YouTube-based datasets including Kinetics, ActivityNet (Caba Heilbron et al., 2015), YouTube-8M (Abu-El-Haija et al., 2016), HowTo100M (Miech et al., 2019), AVA (Gu et al., 2017) and others, is that downloading videos from YouTube is often blocked. The standard tools for downloading videos can run into request errors (many issues on GitHub exist, with no permanent solution). These factors limit many researchers from being able to use large-scale video datasets.

To address these challenges, we introduce a new, large-scale dataset designed to solve these problems. The key benefits of this dataset is that it captures the same actions as Kinetics plus hundreds of new ones. Further, we choose videos from a variety of sources (Flickr, Instagram, etc.) that have a creative-commons licence. This license allows us to download, modify and distribute the videos as needed.

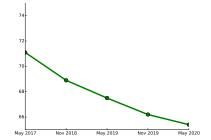


Figure 3: Performance of Kinetics-400 over time as more videos are removed from YouTube. The performance is constantly dropping.

We create a **static** video dataset that can easily be downloaded. We further provide tags based on the user-generated tags for the video, enabling studying of weakly-labeled data learning. Also unique is the ability to add 'no action' which we show helps in action localization tasks. To summarize,

- AViD contains actions from diverse countries obtained by querying with many languages.
- AViD is a dataset with face identities removed
- AViD is a static dataset with all the videos having the creative-commons licence.

2 Dataset Creation

The dataset creation process follows multiple steps. First we generated a set of action classes. Next, we sampled videos from a variety of sources to obtain a diverse sample of all actions. Then we generate candidate clips from each video. These clips are then annotated by human. We now provide more details about this process.

2.1 Action Classes

Unlike images, where objects are clearly defined and have physical boundaries, determining an action is in videos is a far more ambiguous task. In AViD, we follow many previous works such as Kinetics (Kay et al., 2017), where an action consists of a verb and a noun when needed. For example, 'cutting apples' is an action with both a verb and noun while 'digging' is just verb.

To create the AVID datasets, the action classes begin by combining the actions in Kinetics, Charades, and Moments in Time, as these cover a wide variety of possible actions. We then remove all actions involving the face (e.g., 'smiling,' 'eyeliner,' etc.) since we are blurring faces, as this makes it extremely difficult to recognize these actions. Note that we do leave actions like 'burping' or 'eating' which can be recognized by other contextual cues and motion. We then manually combine duplicate/similar actions. This resulted in a set of 736 actions. During the manual annotation process, we allowed users to provide a text description of the actions in the video if none of the candidate actions were suitable and the additional 'no action' if there was no action in the video. Based on this process, we found another 159 actions, resulting in 887 total actions. Examples of some of the new ones are 'medical procedures,' 'gardening,' 'gokarting,' etc.

Previous works have studied using different forms of actions, some finding actions associated with nouns to be better (Sigurdsson et al., 2017) while others prefer atomic, generic action (Gu et al., 2017). The Moments in Time (Monfort et al., 2018) takes the most common verbs to use as actions, while Charades (Sigurdsson et al., 2016) uses a verb and noun to describe each action. Our choice of action closely follows these, and we further build a hierarchy that will enable studying of verb-only actions compared to verb+noun actions and levels of fine-grained recognition.

2.1.1 Hierarchy

After deciding the action classes, we realized there was a noticeable hierarchy capturing these different actions. Hierarchies have been created for ImageNet (Deng et al.), 2009) to represent relationships such as fine-grained image classification, but they have not been widely used in video understanding. ActivityNet (Caba Heilbron et al.), 2015) has a hierarchy, but is a smaller dataset and the hierarchy mostly capture broad differences and only has 200 action classes.

We introduce a hierarchy that captures more interesting relationships between actions, such as 'fishing' \rightarrow 'fly tying,' 'casting fishing line,' 'catching fish,' etc. And more broad differences such as 'ice fishing' and 'recreational fishing.' Similarly, in the 'cooking class' we have 'cutting fruit' which has both 'cutting apples' and 'cutting pineapple'. Some actions, like 'cutting strawberries' didn't provide enough clips (e.g., less than 10), and in such case, we did not create the action category and made the videos only belong to the 'cutting fruit' class. This hierarchy provides a starting point to study various aspects of what an action is, and how we should define actions and use the hierarchy in classifiers. Part of the hierarchy is shown in Fig. 7, the full hierarchy is provided in the supplementary material.

2.2 Video Collection

AViD videos are collected from several websites: Flickr, Instagram, etc. But we ensure all videos are licensed with the creative commons license. This allows us to download, modify (blur faces), and distribute the videos. This enables the construction of a static, anonymized, easily downloadable video dataset for reproducible research.

In order to collect a *diverse* set of candidate videos to have in the dataset, we translated the initial action categories into 22 different languages (e.g., English, Spanish, Portuguese, Chinese, Japanese, Afrikaans, Swahili, Hindi, etc.) covering every continent. We then searched multiple video websites (Instagram, Flickr, Youku, etc.) for these actions to obtain initial video samples. This process resulted

Figure 4: Illustration of a section of the hierarchy of activities in AViD. Check Appendix for the full hierarchy with 887 classes.

Table 1: Comparison of large video datasets for action classification.

Dataset	Classes	Train Clips	Test Clips	Hours	Clip Dur.
Kinetics-400	400	230k	20k	695	10s
Kinetics-600	600	392k	30k	1172	10s
Moments in Time	339	802k	33k	667	3s
AViD	887	410k	40k	880	3-15s

in a set of 800k videos. From these videos, we took multiple sample clips. As shown in Fig. [1] this process found videos from all over the globe.

We ensured there was no overlap of AViD videos and those in the validation or testing sets of Kinetics. There is some minor overlap between some of AViD videos and the training set of Kinetics, which is an outcome due to that the both datasets were collected from the web.

2.3 Action Annotation

We annotate the candidate clips using Amazon Mechanical Turk. In order to make human annotations more efficient, we use I3D model (Carreira and Zisserman, 2017) to generate a set of potential candidate labels for each clip (the exact number depends on how many actions I3D predicted, usually 2-3) and provide them as suggestions to the human annotators. We also provide annotators an option to select the 'other' and 'none' category and manually specify what the action is. For each task, one of the videos was from an existing dataset where the label was known. This served as a quality check and the annotations were rejected if the worker did not correctly annotate the test video. A subset of the videos where I3D (trained with Kinetics) had very high confidence (> 90%) were verified manually by the authors.

As a result, a total of 500k video clips were annotated. Human annotators labeled 300k videos manually, and 200k videos with very high-confidence I3D predictions were checked by the authors and the turkers. Of these, about 100k videos were labeled as the 'other' action by the human annotators, suggesting that I3D + Kinetics training does not perform well on these actions. Of these, about 50k videos were discarded due to poor labeling or other errors, resulting in a dataset of 450k total samples.

We found the distribution of actions follows a Zipf distribution (shown in Fig. 5] similar to the observation of AVA (Gu et al., 2017). We split the dataset into train/test sets by taking 10% of each class as the test videos. This preserves the Zipf distribution.

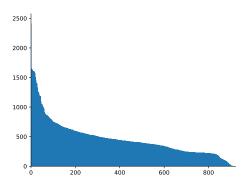


Figure 5: Distribution of videos per class in the AViD dataset. We find it follows a Zipf distribution, similar to the actions in other large-scale video datasets.

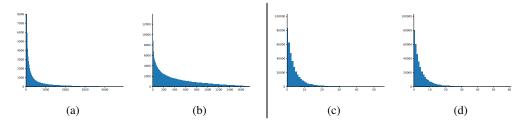


Figure 6: Evaluation of the weak tag distributions. (a/b) Number of times each tag appears in the dataset from the agglomerative clustering or affinity propagation. (c/d) Number of tags in each video. Videos have between 0 and 65 tags, most have 1-8 tags.

2.4 Weak Tag Annotation

In addition to action category annotation per video clips, AviD dataset also provides a set of weak text tags. To generate the weak tags for the videos, we start by translating each tag (provided from the web) into English. We then remove stopwords (e.g., 'to,' 'the,' 'and,' etc.) and lemmatize the words (e.g., 'stopping' to 'stop'). This transforms each tag into its base English word.

Next, we use word2vec (Mikolov et al.) 2013) to compute the distance between each pair of tags, and use affinity propagation and agglomerative clustering to generate 1768 and 4939 clusters, respectively. Each video is then tagged based on these clusters. This results in two different sets of tags for the videos, both of which are provided for further analysis, since it is unclear which tagging strategy will more benefit future approaches. The overall distribution of tags is shown in Fig. 6 also following an exponential distribution.

3 Experiments

We conducted a series of experiments with the new AViD dataset. This not only includes testing existing video CNN models on the AViD dataset and further evaluating effectiveness of the dataset for pretraining, but also includes quantitative analysis comparing different datasets. Specifically, we measure video source statistics to check dataset biases, and experimentally confirm how well a model trained with action videos from biased countries generalize to videos from different countries. We also evaluate how face blurring influences the classification accuracy, and introduce weak annotations of the dataset.

Implementation Details We implemented the models in PyTorch and trained them using four Titan V GPUs. To enable faster learning, we followed the multi-grid training schedule (Wu et al.) 2019). The models, I3D (Carreira and Zisserman, 2017), 2D/(2+1D)/3D ResNets (He et al.) 2016; Tran et al., 2018, 2014), Two-stream (Simonyan and Zisserman, 2014), and SlowFast (Feichtenhofer et al.)

	Table 2: Performance	of multiple	baselines models	s on the AViD dataset.
--	----------------------	-------------	------------------	------------------------

Model	Acc (conv)	Acc (multi-crop)
2D ResNet-50	36.2%	35.3%
I3D (Carreira and Zisserman, 2017)	46.5%	46.8%
3D ResNet-50	47.9%	48.2%
Two-Stream 3D ResNet-50	49.9%	50.1%
Rep-Flow ResNet-50 (Piergiovanni and Ryoo, 2019a)	50.1%	50.5%
(2+1)D ResNet-50	46.7%	48.8%
SlowFast-50 4x4 (Feichtenhofer et al., 2018)	48.5%	47.4%
SlowFast-50 8x8 (Feichtenhofer et al., 2018)	50.2%	50.4%
SlowFast-101 16x8 (Feichtenhofer et al., 2018)	50.8%	50.9%

 $\boxed{2018}$), were trained for 256 epochs. The learning rate followed a cosine decay schedule with a max of 0.1 and a linear warm-up for the first 2k steps. Each GPU used a base batch size of 8 clips, which was then scaled according to the multi-grid schedule (code provided in supplementary materials). The base clip size was 32 frames at 224×224 image resolution.

For evaluation, we compared both convolutional evaluation where the entire T frames at 256×256 were given as input as well as a multi-crop evaluation where 30 random crops of 32 frames at 224×224 are used and the prediction is the average over all clips.

Baseline Results In Table 2, we report the results of multiple common video model baseline networks. Overall, our findings are consistent with the literature.

Diversity Analysis Since AViD is designed to capture various actions from diverse countries, we conduct a set of experiments to measure the diversity and determine the effect of having diverse videos.

First, we computed geo-location statistics of AViD and other datasets, and compared them. To obtain the locations of AViD videos, we extract the geo-tagged location for videos where it was available (about 75% of total AViD videos). We used the public API of the site where each AViD video came from to gather the geolocation statistics. Similarly, we used the public YouTube API to gather the geolocation statistics for the Kinetics, HACS, and HVU videos. Further, after the initial release of AViD (on arXiv), the Kinetics team provided us their location statistics estimate (Smaira et al.) 2020). As it is a bit different from our estimate, we also directly include such data for the comparison.

To measure the diversity of each dataset, we report a few metrics: (1) percentage of videos in North America, Latin America, Europe, Asia, and Africa. (2) As a proxy for diversity and bias, we assume a uniform distribution over all countries would be the most fair (this assumption is debatable), then using the Wasserstein distance, we report the distance from the distribution of videos to the uniform distribution. The results are shown in Table [3] We note that due to the large overlap in videos between HVU and Kinetics-600, their diversity stats are nearly identical. Similarly, as HACS is based on English queries of YouTube, it also results in a highly North American biases dataset. We note that Kinetics-600 and -700 made efforts to improve diversity by querying in Spanish and Portuguese, which did improve diversity in those countries (Carreira et al.) [2018; Smaira et al.], [2020).

In addition, we ran an experiment training the baseline model on each dataset, and testing it on videos from different regions of the world. Specifically, we train the baseline 3D ResNet model with either Kinetics-400/600 or AViD. Then we evaluated the models on AViD videos using action classes shared by both Kinetics-400 and AViD (about 397 classes) while splitting evaluation into North American, Rest of World, or other regions. The results are summarized in Table 4. We find that the models trained with any of the three datasets perform quite similarly on the North American videos. However, the Kinetics trained models do not perform as well on the diverse videos, while AViD models show a much smaller drop. This suggests that current datasets do not generalize well to diverse world data, showing the importance of building diverse datasets. In Table 5, we show the results when using all

²We believe the main difference comes from the use of public YouTube API vs. YouTube's internal geolocation metadata estimated based on various factors. Please see the appendix for more details.

Table 3: Comparing diversity of videos based on geotagged data. The table shows percentages of the videos from North America, Latin American, Europe, Asia, and Africa. 'Div' measures the Wasserstein distance between the actual data distribution and the uniform distribution, the lower the more balanced videos are (i.e., no location bias). For Kinetics, we include both our estimated numbers (†) as well as the internal numbers from the Kinetics team (Smaira et al., 2020)².

Dataset	N.A.	L.A.	EU	Asia	AF	Div
Kinetics-400 [†]	96.2	0.3	2.3	1.1	0.1	0.284
Kinetics-400 ²	59.0	3.4	21.4	11.8	0.8	0.169
Kinetics-600 [†]	87.3	6.1	4.3	2.2	0.1	0.269
Kinetics-600 ²	59.1	5.7	19.3	11.3	0.9	0.164
Kinetics-700 ²	56.8	7.6	19.6	11.5	1.0	0.158
HVU	86.4	6.3	4.7	2.5	0.1	0.266
HACS	91.4	1.5	5.8	1.2	0.1	0.286
AViD	32.5	18.6	19.7	20.5	8.7	0.052

Table 4: Effect of having diverse videos during training. Note that we only test on AViD videos with activities shared between Kinetics-400 and AViD (397 classes). We report the accuracy on North American (N.A.) videos and the rest of the world (RoW) videos, and specific region videos.

Model	Training Data	Acc (N.A.)	Acc (RoW)	L.A.	EU	Asia	AF
3D ResNet-50	Kin-400	72.8%	64.5%	68.3%	71.2%	61.5%	58.4%
3D ResNet-50	Kin-600	73.5%	65.5%	69.3%	72.4%	62.4%	59.4%
3D ResNet-50	AViD (all)	75.2%	73.5%	74.5%	74.3%	74.9%	71.4%

AViD classes, but using training on a specific region then testing on that region vs. all other regions. We observe that the performance drops when training vs. testing are from different regions. This further suggests that having a training set of videos from diverse countries are essential.

Fine-tuning We pretrain several of the models with AViD dataset, and fine-tune on HMDB-51 (Kuehne et al., [2011)) and Charades (Sigurdsson et al., [2016)).

The objective is to compare AViD with exising datasets in terms of pretraining, including Kinetics-400/600 (Kay et al., 2017) and Moments-in-time (MiT) (Monfort et al., 2018). Note that these results are based on using RGB-only as input; no optical flow is used.

In Table 6 we compare the results on HMDB. We find that AViD performs quite similarly to both Kinetics and MiT. Note that the original Kinetics has far more videos than are currently available (as shown in Figure 3), thus the original fine-tuning performance is higher (indicated in parenthesis).

In Table 7 we compare the results on the Charades dataset. Because the AViD dataset also provides videos with 'no action' in contrast to MiT and Kinetics which only have action videos, we compare the effect of using 'no action' as well. While AViD nearly matches or improves performance even

Table 5: Training on one region and testing on the same and on the others all AViD classes. In all cases, the models perform worse on other regions than the one trained on³. This table uses a 3D ResNet-50.

AViD Training Data	Acc (Same Region)	Acc (All Other Regions)
N.A.	51.8%	42.5%
L.A.	49.4%	38.5%
EU	47.5%	39.4%
Asia	46.7%	41.2%
Africa ³	42.5%	32.2%

³There are only \sim 35k training clips from Africa, and the smaller training set reduces overall performance.

Table 6: Performance standard models fine-tuned on HMDB. Numbers in parenthesis are based on original, full Kinetics dataset which is no longer available.

Model	Pretrain Data	Acc
I3D (Carreira and Zisserman, 2017)	Kin-400	72.5 (74.3)
I3D (Carreira and Zisserman, 2017)	Kin-600	73.8 (75.4)
I3D (Carreira and Zisserman, 2017)	MiT	74.7
I3D (Carreira and Zisserman, 2017)	AViD	75.2
3D ResNet-50	Kin-400	75.7 (76.7)
3D ResNet-50	Kin-600	76.2 (77.2)
3D ResNet-50	MiT	75.4
3D ResNet-50	AViD	77.3

Table 7: Fine-tuning on Charades using the currently available Kinetics videos. We report results for both classification and the localization setting. We also compare the use of the 'none' action in AViD. [1] (Piergiovanni and Ryoo) [2018)

Model	Pretrain Data	Class mAP	Loc mAP
I3D (Carreira and Zisserman, 2017)	Kin-400	34.3	17.9
I3D (Carreira and Zisserman, 2017)	Kin-600	36.5	18.4
I3D (Carreira and Zisserman, 2017)	MiT	33.5	15.4
I3D (Carreira and Zisserman, 2017)	AViD (- no action)	36.2	17.3
I3D (Carreira and Zisserman, 2017)	AViD	36.7	19.7
3D ResNet-50	Kin-400	39.2	18.6
3D ResNet-50	Kin-600	41.5	19.2
3D ResNet-50	MiT	35.4	16.4
3D ResNet-50	AViD (- no action)	41.2	18.7
3D ResNet-50	AViD	41.7	23.2
3D ResNet-50 + super-events [1]	AViD	42.4	25.2

without 'no action' videos in the classification setting, we find that the inclusion of the 'no action' greatly benefits the localization setting, establishing a new state-of-the-art for Charades-localization (25.2 vs. 22.3 in (Piergiovanni and Ryoo) (2019b)).

Learning from Weak Tags We compare the effect of using the weak tags generated for the AViD dataset compared to using the manually labeled data. The results are shown in Table Surprisingly, we find that using the weak tags provides strong initial features that can be fine-tuned on HMDB without much different in performance. Future works can explore how to best use the weak tag data.

Blurred Face Effect During preprocessing, we use a face detector to blur any found faces in the videos. We utilize a strong Gaussian blur with random parameters. Gaussian blurring can be reversed if the location and parameters are known, however, due to the randomization of the parameters, it would be practically impossible to reverse the blur and recover true identity.

Table 8: Performance of 3D ResNet-50 using fully-labeled data vs. the weak tags data evaluated on HMDB. 'Aff' is affinity propagation and 'Agg' agglomerative clustering.

Model	Pretrain Data	Acc
3D ResNet-50	Kin-400	76.7
3D ResNet-50	AViD	77.3
3D ResNet-50	AViD-weak (Agg)	76.4
3D ResNet-50	AViD-weak (Aff)	75.3

Table 9: Measuring the effects of face blurring on AViD, HMDB and Charades classification. Note that only the faces in AViD are blurred.

Model	Data	AViD	HMDB	Charades
3D ResNet-50	AViD-no blur	48.2	77.5	42.1
3D ResNet-50	AViD-blur	47.9	77.3	41.7

Table 10: Effect of temporal information in AViD.

Model	# Frames	In Order	Shuffled
2D ResNet-50	1	32.5	32.5
3D ResNet-50	1	32.5	32.5
3D ResNet-50	16	44.5	38.7
3D ResNet-50	32	47.9	36.5
3D ResNet-50	64	48.2	35.6

Since we are modifying the videos by blurring faces, we conducted experiments to see how face blurring impacts performance. We compare performance on AViD (accuracy) as well as fine-tuning on HMDB (accuracy) and Charades (mAP) classification. The results are shown in Table . While face blurring slightly reduces performance, the impact is not that great. This suggests it has a good balance of anonymization, yet still recognizable actions.

Importance of Time In videos, the use of temporal information is often important when recognizing actions by using optical flow (Simonyan and Zisserman, 2014), stacking frames, RNNs (Ng et al., 2015), temporal pooling (Piergiovanni et al., 2017), and other approaches. In order to determine how much temporal information AViD needs, we compared single-frame models to multi-frame. We then shuffled the frames to measure the performance drop. The results are shown in Table 10. We find that adding more frames benefits performance, while shuffling them harms multi-frame model performance. This suggests that temporal information is quite useful for recognizing actions in AViD, making it an appropriate dataset for developing spatio-temporal video models.

4 Conclusions

We present AViD, a new, static, diverse and anonymized video dataset. We showed the importance of collecting and learning from diverse videos, which is not captured in existing video datasets. Further, AViD is **static** and easily distributed, enabling reproducible research. Finally, we showed that AViD produces similar or better results on datasets like HMDB and Charades.

Broader Impacts

We quantitatively confirmed that existing video datasets for action recognition are highly biased. In order to make people and researchers in diverse countries more fairly benefit from a public action recognition dataset, we propose the AViD dataset. We took care to query multiple websites from many countries in many languages to build a dataset that represents as many countries as possible. We experimentally showed that by doing this, we can reduce the bias of learned models. We are not aware of any other large-scales datasets (with hundreds of video hours) which took such country diversity into the consideration during the collection process.

As this dataset contains a wide variety of actions, it could enable malicious parties to build systems to monitor people. However, we took many steps to preserve the identity of people and eliminate the ability to learn face-based actions, which greatly reduces the negative uses of the data. The positive impacts of this dataset are enabling reproducible research on video understanding which will help more advance video understanding research with consistent and reliable baselines. We emphasize once more that our dataset is a static dataset respecting the licences of all its videos.

Acknowledgement

This work was supported in part by the National Science Foundation (IIS-1812943 and CNS1814985).

References

- S. Abu-El-Haija, N. Kothari, J. Lee, P. Natsev, G. Toderici, B. Varadarajan, and S. Vijayanarasimhan. Youtube-8m: A large-scale video classification benchmark. *arXiv preprint arXiv:1609.08675*, 2016.
- F. Caba Heilbron, V. Escorcia, B. Ghanem, and J. Carlos Niebles. Activitynet: A large-scale video benchmark for human activity understanding. In *Proceedings of the ieee conference on computer vision and pattern recognition*, pages 961–970, 2015.
- J. Carreira and A. Zisserman. Quo vadis, action recognition? a new model and the kinetics dataset. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2017.
- J. Carreira, E. Noland, A. Banki-Horvath, C. Hillier, and A. Zisserman. A short note about kinetics-600. arXiv preprint arXiv:1808.01340, 2018.
- J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical Image Database. In CVPR09, 2009.
- A. Diba, M. Fayyaz, V. Sharma, M. Paluri, J. Gall, R. Stiefelhagen, and L. Van Gool. Holistic large scale video understanding. arXiv preprint arXiv:1904.11451, 2019.
- C. Feichtenhofer, H. Fan, J. Malik, and K. He. Slowfast networks for video recognition. arXiv preprint arXiv:1812.03982, 2018.
- C. Gu, C. Sun, S. Vijayanarasimhan, C. Pantofaru, D. A. Ross, G. Toderici, Y. Li, S. Ricco, R. Sukthankar, C. Schmid, and J. Malik. AVA: A video dataset of spatio-temporally localized atomic visual actions. arXiv preprint arXiv:1705.08421, 2017.
- K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2016.
- W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vijayanarasimhan, F. Viola, T. Green, T. Back, P. Natsev, et al. The kinetics human action video dataset. arXiv preprint arXiv:1705.06950, 2017.
- H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre. Hmdb: a large video database for human motion recognition. In *Proceedings of the IEEE International Conference on Computer Vision (ICCV)*. IEEE, 2011.
- A. Miech, D. Zhukov, J.-B. Alayrac, M. Tapaswi, I. Laptev, and J. Sivic. Howto100m: Learning a text-video embedding by watching hundred million narrated video clips. In *Proceedings of the IEEE International Conference on Computer Vision*, pages 2630–2640, 2019.
- T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of words and phrases and their compositionality. In *Advances in neural information processing systems*, pages 3111–3119, 2013.
- M. Monfort, A. Andonian, B. Zhou, K. Ramakrishnan, S. A. Bargal, T. Yan, L. Brown, Q. Fan, D. Gutfruend, C. Vondrick, et al. Moments in time dataset: one million videos for event understanding. arXiv preprint arXiv:1801.03150, 2018.
- J. Y.-H. Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals, R. Monga, and G. Toderici. Beyond short snippets: Deep networks for video classification. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 4694–4702. IEEE, 2015.
- A. Piergiovanni and M. S. Ryoo. Learning latent super-events to detect multiple activities in videos. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2018.
- A. Piergiovanni and M. S. Ryoo. Representation flow for action recognition. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2019a.
- A. Piergiovanni and M. S. Ryoo. Temporal gaussian mixture layer for videos. In *International Conference on Machine Learning (ICML)*, 2019b.
- A. Piergiovanni, C. Fan, and M. S. Ryoo. Learning latent sub-events in activity videos using temporal attention filters. In *Proceedings of AAAI Conference on Artificial Intelligence (AAAI)*, 2017.

- G. A. Sigurdsson, G. Varol, X. Wang, A. Farhadi, I. Laptev, and A. Gupta. Hollywood in homes: Crowdsourcing data collection for activity understanding. In *Proceedings of European Conference on Computer Vision* (ECCV), 2016.
- G. A. Sigurdsson, O. Russakovsky, and A. Gupta. What actions are needed for understanding human actions in videos? *arXiv preprint arXiv:1708.02696*, 2017.
- K. Simonyan and A. Zisserman. Two-stream convolutional networks for action recognition in videos. In *Advances in Neural Information Processing Systems (NeurIPS)*, pages 568–576, 2014.
- L. Smaira, J. Carreira, E. Noland, E. Clancy, A. Wu, and A. Zisserman. A short note on the kinetics-700-2020 human action dataset, 2020.
- D. Tran, L. D. Bourdev, R. Fergus, L. Torresani, and M. Paluri. C3d: generic features for video analysis. CoRR, abs/1412.0767, 2(7):8, 2014.
- D. Tran, H. Wang, L. Torresani, J. Ray, Y. LeCun, and M. Paluri. A closer look at spatiotemporal convolutions for action recognition. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 6450–6459, 2018.
- C.-Y. Wu, R. Girshick, K. He, C. Feichtenhofer, and P. Krähenbühl. A multigrid method for efficiently training video models. *arXiv preprint arXiv:1912.00998*, 2019.
- H. Zhao, A. Torralba, L. Torresani, and Z. Yan. Hacs: Human action clips and segments dataset for recognition and temporal localization. In *Proceedings of the IEEE International Conference on Computer Vision (ICCV)*, pages 8668–8678, 2019.

A Diversity Statistics Collection

In order to find the country location for each video in previous YouTube-based datasets (e.g., Kinetics, HACS, etc.), we used the public YouTube API. Specifically, using https://developers.google.com/youtube/v3/docs/videos, we extracted the 'recordingDetails.location' object. Importantly, it notes that

'The geolocation information associated with the video. Note that the child property values identify the location that the video owner wants to associate with the video. The value is editable, searchable on public videos, and might be displayed to users for public videos.'

This is the only location data YouTube publicly provides and many videos in existing datasets do not have this field. In our measure, roughly 8% of the videos had such geolocation. We then used reverse-geocode library https://pypi.org/project/reverse-geocode/ to map the coordinates to the country, then manually mapped the countries to each region.

For full transparency, we provide detailed breakdowns of the diversity data we were able to measure with these tools in Table [11] as an example.

Country	Video Count
North America	32,767
EU	1,613
Latin America	2,289
Asia	938
Africa	37
No Location	422,645

Table 11: Kinetics-400 Video Distribution

B Difference to Kinetics Numbers

After the initial version of AViD was released (on arXiv), the Kinetics team provided numbers based on the estimated upload location of the video (this metadata is not publicly available) (Smaira et al., 2020).

In the paper, we have included their diversity statistics as well, as they are more complete, representing 90% of videos, compared to about 8% that we were able to get geolocation for.

References

- S. Abu-El-Haija, N. Kothari, J. Lee, P. Natsev, G. Toderici, B. Varadarajan, and S. Vijayanarasimhan. Youtube-8m: A large-scale video classification benchmark. *arXiv preprint arXiv:1609.08675*, 2016.
- F. Caba Heilbron, V. Escorcia, B. Ghanem, and J. Carlos Niebles. Activitynet: A large-scale video benchmark for human activity understanding. In *Proceedings of the ieee conference on computer vision and pattern recognition*, pages 961–970, 2015.
- J. Carreira and A. Zisserman. Quo vadis, action recognition? a new model and the kinetics dataset. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2017.
- J. Carreira, E. Noland, A. Banki-Horvath, C. Hillier, and A. Zisserman. A short note about kinetics-600. arXiv preprint arXiv:1808.01340, 2018.
- J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical Image Database. In CVPR09, 2009.
- A. Diba, M. Fayyaz, V. Sharma, M. Paluri, J. Gall, R. Stiefelhagen, and L. Van Gool. Holistic large scale video understanding. arXiv preprint arXiv:1904.11451, 2019.

- C. Feichtenhofer, H. Fan, J. Malik, and K. He. Slowfast networks for video recognition. arXiv preprint arXiv:1812.03982, 2018.
- C. Gu, C. Sun, S. Vijayanarasimhan, C. Pantofaru, D. A. Ross, G. Toderici, Y. Li, S. Ricco, R. Sukthankar, C. Schmid, and J. Malik. AVA: A video dataset of spatio-temporally localized atomic visual actions. arXiv preprint arXiv:1705.08421, 2017.
- K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2016.
- W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vijayanarasimhan, F. Viola, T. Green, T. Back, P. Natsev, et al. The kinetics human action video dataset. arXiv preprint arXiv:1705.06950, 2017.
- H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre. Hmdb: a large video database for human motion recognition. In *Proceedings of the IEEE International Conference on Computer Vision (ICCV)*. IEEE, 2011.
- A. Miech, D. Zhukov, J.-B. Alayrac, M. Tapaswi, I. Laptev, and J. Sivic. Howto100m: Learning a text-video embedding by watching hundred million narrated video clips. In *Proceedings of the IEEE International Conference on Computer Vision*, pages 2630–2640, 2019.
- T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of words and phrases and their compositionality. In *Advances in neural information processing systems*, pages 3111–3119, 2013.
- M. Monfort, A. Andonian, B. Zhou, K. Ramakrishnan, S. A. Bargal, T. Yan, L. Brown, Q. Fan, D. Gutfruend, C. Vondrick, et al. Moments in time dataset: one million videos for event understanding. arXiv preprint arXiv:1801.03150, 2018.
- J. Y.-H. Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals, R. Monga, and G. Toderici. Beyond short snippets: Deep networks for video classification. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 4694–4702. IEEE, 2015.
- A. Piergiovanni and M. S. Ryoo. Learning latent super-events to detect multiple activities in videos. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2018.
- A. Piergiovanni and M. S. Ryoo. Representation flow for action recognition. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2019a.
- A. Piergiovanni and M. S. Ryoo. Temporal gaussian mixture layer for videos. In *International Conference on Machine Learning (ICML)*, 2019b.
- A. Piergiovanni, C. Fan, and M. S. Ryoo. Learning latent sub-events in activity videos using temporal attention filters. In *Proceedings of AAAI Conference on Artificial Intelligence (AAAI)*, 2017.
- G. A. Sigurdsson, G. Varol, X. Wang, A. Farhadi, I. Laptev, and A. Gupta. Hollywood in homes: Crowdsourcing data collection for activity understanding. In *Proceedings of European Conference on Computer Vision* (ECCV), 2016.
- G. A. Sigurdsson, O. Russakovsky, and A. Gupta. What actions are needed for understanding human actions in videos? *arXiv preprint arXiv:1708.02696*, 2017.
- K. Simonyan and A. Zisserman. Two-stream convolutional networks for action recognition in videos. In *Advances in Neural Information Processing Systems (NeurIPS)*, pages 568–576, 2014.
- L. Smaira, J. Carreira, E. Noland, E. Clancy, A. Wu, and A. Zisserman. A short note on the kinetics-700-2020 human action dataset, 2020.
- D. Tran, L. D. Bourdev, R. Fergus, L. Torresani, and M. Paluri. C3d: generic features for video analysis. CoRR, abs/1412.0767, 2(7):8, 2014.
- D. Tran, H. Wang, L. Torresani, J. Ray, Y. LeCun, and M. Paluri. A closer look at spatiotemporal convolutions for action recognition. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 6450–6459, 2018.
- C.-Y. Wu, R. Girshick, K. He, C. Feichtenhofer, and P. Krähenbühl. A multigrid method for efficiently training video models. arXiv preprint arXiv:1912.00998, 2019.
- H. Zhao, A. Torralba, L. Torresani, and Z. Yan. Hacs: Human action clips and segments dataset for recognition and temporal localization. In *Proceedings of the IEEE International Conference on Computer Vision (ICCV)*, pages 8668–8678, 2019.

C Action Classes

abseiling
 acoustic guitar
 bee keeping
 acrobatic gymnastics
 acting in play
 adjusting glasses
 aerobics
 bench pressing
 bending back
 bending metal
 bending metal

7. air drumming 51. biceps curl
8. air travel 52. bicycling
9. airbrush 53. biking through snow

10. alligator wrestling
11. alpine climbing
12. alpine skiing
13. amusement park
14. answering questions
15. applauding
15. blowing sand
15. blowing glass
15. blowing leaves
15. blowing nose
15. blowing out candles

16. applying cream

60. bmx bike

61. boating

62. bobsledding

18. archery
19. arguing
20. arm wrestling
21. arranging flowers
22. bobsledding
63. body piercing
64. bodyboarding
65. bodysurfing

22. arresting
23. assembling bicycle
24. assembling computer

66. bodyweight exercise
67. bookbinding
68. bottling

s. assembling computer

69. bouncing ball

25. attending conference

70. bouncing ball (not juggling)

71. bouncing on bouncy castle

72. baby transport

73. bouncing on trampoline

29. backflip (human)

73. bowling

74. bowling (cricket)

30. backpacking (wilderness) 75. braiding hair

31. baking 76. breading or breadcrumbing

32. baking cookies

33. balance beam

34. balloon blowing

35. bandaging

36. barbell

37. breakdancing

78. breaking

79. breaking boards

80. breaking glass

36. barbell

37. barbequing

38. bartending

39. base jumping

40. bathing

40. bathing

41. bathing dog

81. breathing fire

82. brush painting

83. brushing hair

84. brushing teeth

85. building cabinet

86. building lego

42. batting (cricket)
43. batting cage
87. building sandcastle
88. building shed

44. battle rope training 89. bull fighting

90. bulldozer 134. circus

91. bulldozing 135. clam digging

92. bungee jumping 136. clay pottery making

93. burping 137. clean and jerk

94. busking 138. cleaning floor 95. buttoning 139. cleaning gutters

96. cake decorating 140. cleaning pool 97. calculating 141. cleaning shoes 98. calligraphy 142. cleaning toilet

99. camping 143. cleaning windows

100. canoeing or kayaking 144. climbing a rope

101. capoeira
102. caporales
103. capsizing
145. climbing ladder
146. climbing tree
147. closing door

104. card stacking
105. card throwing
106. card tricks
148. coloring in
149. combat
150. comedian

107. carp fishing
108. carrying baby
109. carrying weight
151. concert
152. construction
153. contact juggling

110. cartwheeling
111. carving ice
154. contorting
155. cooking

112. carving marble
156. cooking chicken
157. cooking egg

113. carving pumpkin
114. carving wood with a knife
158. cooking on campfire
159. cooking sausages

115. casting fishing line 160. cooking sausages (not on barbeque)

116. catching fish
117. catching or throwing baseball
118. catching or throwing frisbee
119. catching or throwing softball
110. cooking scallops
1110. cooking show
1110. cooking show
1110. cooking show
1110. cooking show
1110. cooking scallops

120. celebrating of throwing sortball 164. counting money 120. celebrating 165. country line dancing

121. changing gear in car

122. changing oil

123. changing wheel

124. changing wheel

125. cracking knuckles

126. cracking neck

127. cracking neck

128. crawling baby

123. changing wheel
124. chasing
125. checking tires
126. checking watch
127. cheerleading
128. chiseling stone
129. chiseling wood
174. cumbia

130. chopping meat

131. chopping vegetables

132. chopping wood

133. christmas

134. curling (sport)

136. curling hair

137. cutting apple

138. cutting cake

179. cutting nails 223. drumming fingers 180. cutting orange 224. dumbbell 181. cutting pineapple 225. dump truck 226. dumpster diving 182. cutting watermelon 227. dune buggy 183. dancing 228. dunking basketball 184. dancing ballet 229. dying hair 185. dancing charleston 230. eating burger 186. dancing gangnam style 231. eating cake 187. dancing macarena 232. eating carrots 188. dashcam 233. eating chips 189. deadlifting 234. eating doughnuts 190. dealing cards 235. eating hotdog 191. decorating the christmas tree 236. eating ice cream 192. decoupage 237. eating nachos 193. delivering mail 238. eating spaghetti 194. demolition 239. eating street food 195. digging 240. eating watermelon 196. dining 241. egg hunting 197. directing traffic 242. electric guitar 198. dirt track racing 243. embroidering 199. disc golfing 244. embroidery 200. disc jockey 245. enduro 201. diving cliff 246. entering church 202. docking boat 247. exercising arm 203. dodgeball 248. exercising with an exercise ball 204. dog agility 249. explosion 205. doing aerobics 250. extinguishing fire 206. doing jigsaw puzzle 251. extreme sport 207. doing laundry 252. faceplanting 208. doing nails 253. falling off bike 209. doing sudoku 254. falling off chair 210. doing wheelie 255. feeding birds 211. drag racing 256. feeding fish 212. drawing 257. feeding goats 213. dressage 258. building fence 214. dribbling basketball 259. fencing (sport) 215. drifting (motorsport) 260. festival 216. drinking 261. fidgeting 217. drinking beer 262. field hockey 218. drinking shots 263. figure skating 219. driving car 264. filling cake 220. driving tractor 265. filling eyebrows 221. drooling 266. finger snapping

267. fingerboard (skateboard)

222. drop kicking

268. firefighter 312. headbanging 269. fireworks 313. headbutting 270. fixing bicycle 314. heavy equipment 315. helmet diving 271. fixing hair 316. herding cattle 272. flamenco 317. high fiving 273. flint knapping 318. high jump 274. flipping bottle 319. high kick 275. flipping pancake 320. hiking 276. fly tying

277. flying kite 321. historical reenactment

278. folding clothes322. hitchhiking279. folding napkins323. hitting baseball280. folding paper324. hockey stop281. forklift325. holding snake282. french horn326. home improvement283. front raises327. home roasting coffee

284. frying
285. frying vegetables
286. gambling
287. garbage collecting
328. hopscotch
329. horse racing
330. hoverboarding
331. huddling

288. gardening
289. gargling
290. geocaching
291. getting a haircut
292. getting a piercing
293. getting a tattoo
332. hugging
333. hugging (not baby)
334. hugging baby
335. hula hooping
336. hunting
337. hurdling
338. hurling (sport)

294. giving or receiving award

295. gliding

296. go-kart

297. gold panning

298. golf chipping

299. golf driving

340. ice dancing

341. ice fishing

342. ice skating

343. ice swimming

344. inflating balloons

300. golf putting

345. installing carpet

345. installing carpet 301. gospel singing in church 346. ironing 302. greeting 347. ironing hair 303. grinding meat 348. javelin throw 304. grooming cat 349. jaywalking 305. grooming dog 350. jetskiing 306. grooming horse 351. jogging 307. gymnastics 352. juggling 308. gymnastics tumbling 353. juggling balls 309. hammer throw 354. juggling fire 310. hand washing clothes 355. juggling soccer ball

555. Jugging soccer c

311. head stand 356. jumping

401. making bubbles 357. jumping bicycle 358. jumping into pool 402. making cheese 359. jumping jacks 403. making horseshoes 404. making jewelry 360. jumping sofa 405. making latte art 361. jumpstyle dancing 406. making paper aeroplanes 362. karaoke 407. making pizza 363. kick (football) 408. making snowman 364. kickboxing 409. making sushi 365. kickflip 410. making tea 366. kicking field goal 411. making the bed 367. kicking soccer ball 412. manicure 368. kissing 413. manufacturing 369. kitesurfing 414. marching 370. knitting 415. marching band 371. krumping 416. marimba 372. land sailing 417. marriage proposal 373. landing airplane 418. massaging back 374. laughing 419. massaging feet 375. lawn mower racing 420. massaging legs 376. laying bricks 421. massaging neck 377. laying concrete 422. mechanic 378. laying decking 423. metal detecting 379. laying stone 424. metal working 380. laying tiles 425. milking cow 381. leatherworking 426. milking goat 382. letting go of balloon 427. minibike 383. licking 428. mixing colours 384. lifting hat 429. model building 385. lighting 430. monster truck 386. lighting candle 431. moon walking 387. lighting fire 432. mopping floor 388. listening with headphones 433. mosh pit dancing 389. lock picking 434. motocross 390. logging 435. motorcycling 391. long jump 436. mountain biking 392. longboarding 437. mountain climber (exercise) 393. looking at phone 438. moving baby 394. looking in mirror 439. moving child 395. luge 440. moving furniture 396. lunge 441. mowing lawn 397. making a cake 442. mushroom foraging 398. making a sandwich 443. musical ensemble 399. making balloon shapes 444. needle felting

445. news anchoring

400. making bed

446	400 1 1
446. news presenter	490. planting trees
447. nightclub	491. plastering
448. none	492. playing accordion
449. offroading	493. playing american football
450. ollie (skateboarding)	494. playing badminton
451. omelette	495. playing bagpipes
452. opening bottle	496. playing banjo
453. opening bottle (not wine)	497. playing basketball
454. opening coconuts	498. playing bass guitar
455. opening door	499. playing beer pong
456. opening present	500. playing billiards
457. opening refrigerator	501. playing blackjack
458. opening wine bottle	502. playing cards
459. orchestra	503. playing cello
460. origami	504. playing checkers
461. outdoor recreation	505. playing chess
462. packing	506. playing clarinet
463. parade	507. playing controller
464. paragliding	508. playing cricket
465. parasailing	509. playing cymbals
466. parkour	510. playing darts
467. passing american football	511. playing didgeridoo
468. passing soccer ball	512. playing dominoes
469. peeling apples	513. playing drums
470. peeling banana	514. playing fiddle
471. peeling potatoes	515. playing field hockey
472. penalty kick (association football)	516. playing flute
473. person collecting garbage	517. playing gong
474. personal computer	518. playing guitar
1	519. playing hand clapping games
475. petting animal	520. playing handball
476. petting animal (not cat)	521. playing harmonica
477. petting cat	522. playing harp
478. petting horse	523. playing ice hockey
479. photobombing	524. playing keyboard
480. photocopying	525. playing kickball
481. picking apples	526. playing laser tag
482. picking blueberries	527. playing lute
483. picking fruit	528. playing mahjong
484. pilates	529. playing maracas
485. pillow fight	530. playing marbles
486. pinching	531. playing monopoly
487. pipe organ	532. playing netball
488. pirouetting	533. playing oboe
489. planing wood	534. playing ocarina

579. preacher 535. playing organ 536. playing paintball 580. preparing salad 537. playing pan pipes 581. presenting weather forecast 582. pretending to be a statue 538. playing piano 583. protesting 539. playing piccolo 584. pull ups 540. playing pinball 585. pulling 541. playing ping pong 586. pulling espresso shot 542. playing poker 587. pulling rope 543. playing polo 588. pulling rope (game) 544. playing recorder 589. pumping fist 545. playing road hockey 590. pumping gas 546. playing rounders 591. punching bag 547. playing rubiks cube 592. punching person 548. playing rugby 593. push up 549. playing saxophone 594. pushing car 550. playing scrabble 595. pushing cart 551. playing shuffleboard 596. pushing wheelbarrow 552. playing slot machine 597. pushing wheelchair 553. playing snare drum 598. putting on foundation 554. playing soccer 599. putting on lipstick 555. playing squash or racquetball 600. putting on sari 556. playing tennis 601. putting on shoes 557. playing timbales 602. putting wallpaper on wall 558. playing trombone 603. queuing 559. playing trumpet 604. racing 560. playing tuba 605. radio-controlled model 561. playing ukulele 606. rafting 562. playing viola 607. rain 563. playing violin 608. rallying 564. playing volleyball 609. reading book 565. playing with toys 610. reading newspaper 566. playing with trains 611. recipe 567. playing xylophone 612. recording music 568. plumbing 613. recreational fishing 569. poaching eggs 614. repairing puncture 570. poking bellybutton 615. riding a bike 571. pole vault 616. riding camel 572. polishing furniture 617. riding elephant 573. polishing metal 618. riding mechanical bull 574. popping balloons 619. riding mule 575. pouring beer 620. riding or walking with horse

621. riding scooter

623. riding unicycle

622. riding snow blower

576. pouring milk

577. pouring wine

578. praying

668. shopping 624. ripping paper 625. roasting 669. shot put 626. roasting marshmallows 670. shouting 671. shoveling snow 627. roasting pig 672. shredding paper 628. robot dancing 673. shrugging 629. rock climbing 674. shucking oysters 630. rock scissors paper 675. shuffling cards 631. rocking 676. shuffling feet 632. roller coaster 677. side kick 633. roller skating 678. sieving 634. rolling pastry 679. sign language interpreting 635. rope pushdown 680. silent disco 636. rowing (sport) 681. singing 637. running 682. sipping cup 638. running on treadmill 683. situp 639. sailing 684. skateboarding 640. salsa dancing 685. ski ballet 641. saluting 686. ski jumping 642. sanding floor 687. skiing crosscountry 643. sanding wood 688. skiing mono 644. sausage making 689. skiing slalom 645. sawing wood 690. skipping rope 646. scrambling eggs 691. skipping stone 647. scrapbooking 692. sky diving 648. screen printing 693. skydiving 649. scrubbing face 694. slacklining 650. scuba diving 695. slapping 651. seasoning food 696. sled dog racing 652. separating eggs 697. sleeping 653. serve (tennis) 698. slicing onion 654. setting table 699. slopestyle 655. sewing 700. smashing 656. shaking hands 701. smelling feet 657. shaking head 702. smoking 658. shaping bread dough 703. smoking hookah 659. sharpening knives 704. smoking pipe 660. sharpening pencil 705. smoothie 661. shaving head 706. snatch weight lifting 662. shaving legs 707. sneezing 663. shearing sheep 708. sniffing 664. shining flashlight 709. snorkeling 665. shining shoes 710. snowboarding

711. snowkiting

712. snowmobile

666. shooting basketball

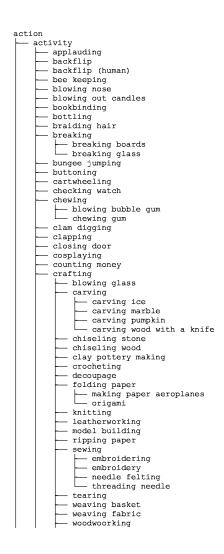
667. shooting off fireworks

713. snowmobiling 757. swimming backstroke 714. snowplow 758. swimming breast stroke 715. snowshoe 759. swimming butterfly stroke 760. swimming front crawl 716. soccer goal 761. swimming with dolphins 717. somersaulting 762. swimming with sharks 718. sowing 763. swing dancing 719. speed skating 764. swinging baseball bat 720. spelunking 765. swinging legs 721. spinning plates 766. swinging on something 722. spinning poi 767. sword fighting 723. splashing 768. sword swallowing 724. splashing water 769. tabla 725. spray painting 770. tackling 726. spraying 771. tagging graffiti 727. springboard diving 772. tai chi 728. square dancing 773. taking a shower 729. squat 774. taking photo 730. squeezing orange 775. talking on cell phone 731. stacking cups 776. tango dancing 732. stacking dice 777. tap dancing 733. standing on hands 778. tapping guitar 734. standup paddleboarding 779. tapping pen 735. staring 780. tasting beer 736. stealing 781. tasting food 737. steer roping 782. tasting wine 738. steering car 783. teaching 784. tearing 739. sticking tongue out 785. telemark ski 740. stir frying 786. tennis 741. stirring 787. testifying 742. stomping grapes 788. texting 743. street racing 789. threading needle 744. stretching 790. throwing axe 745. stretching arm 791. throwing ball 746. stretching leg 792. throwing ball (not baseball or american 747. strumming guitar football) 748. stunt performer 793. throwing discus 749. submerging 794. throwing knife 750. sucking lolly 795. throwing snowballs 751. sun tanning 796. throwing tantrum 752. surfing crowd 797. throwing water balloon 753. surfing water 798. thunderstorm 754. surveying 799. tickling 755. sweeping floor 800. tie dying

801. tightrope walking

756. swimming

802. tiptoeing	849. waiting in line
803. tobogganing	850. wakeboarding
804. torte	851. waking up
805. tossing coin	852. walking on stilts
806. tossing salad	853. walking the dog
807. train	854. walking through snow
808. training dog	855. walking with crutches
809. trapezing	856. washing
810. treating wood	857. washing dishes
811. trimming or shaving beard	858. washing feet
812. trimming shrubs	859. washing hair
813. trimming trees	860. washing hands
814. triple jump	861. washing machine
815. twiddling fingers	862. watching tv
816. tying bow tie	863. water park
817. tying knot (not on a tie)	864. water skiing
818. tying necktie	865. water sliding
819. tying shoe laces	866. watercolor painting
820. tying tie	867. waterfall
821. unboxing	868. waterfowl hunting
822. uncorking champagne	869. watering plants
823. underwater diving	870. waving hand
824. unidentified flying object	871. waxing armpits
825. unloading truck	872. waxing back
826. using a microscope827. using a paint roller	873. waxing chest
828. using a power drill	874. waxing eyebrows
829. using a sledge hammer	875. waxing legs
830. using a wrench	876. weaving basket
831. using atm	877. weaving fabric
832. using bagging machine	878. wedding
833. using circular saw	879. weight lifting
834. using computer	880. welding
835. using inhaler	881. whistling
836. using megaphone	882. wildlife
837. using puppets	883. windsurfing
838. using remote controller	884. winking
839. using remote controller (not gaming)	885. wood burning (art)
840. using segway	886. wood carving
841. vacuum cleaner	887. woodworking
842. vacuuming car	888. wrapping present
843. vacuuming floor	889. wrestling
844. valuting	890. writing
845. visiting the zoo	891. yarn spinning
846. volcano	892. yawning
847. wading through mud	893. yoga
848. wading through water	894. zumba

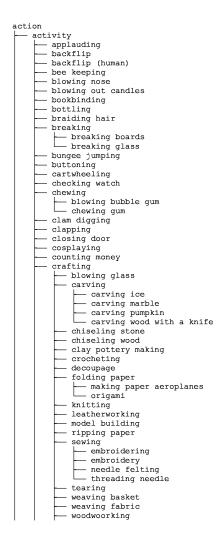


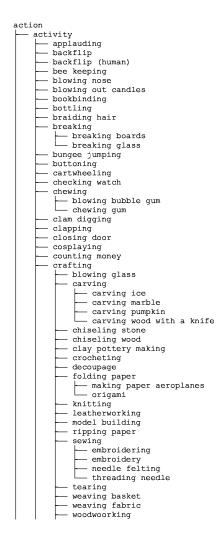
D Full Hierarchy

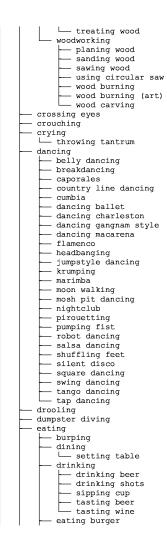
```
action

activity

applauding
backflip
backflip (human)
bee keeping
blowing nose
blowing out candles
bookbinding
bottling
braiding hair
breaking boards
breaking glass
bungee jumping
buttoning
cartwheeling
checking watch
chewing gum
clam digging
clapping
closing door
cosplaying
counting money
crafting
blowing glass
carving
carving wood with a knife
chiseling stone
chiseling wood
clay pottery making
crocheting
decoupage
folding paper
making paper
activing
leatherworking
model building
ripping paper
sewing
embroidering
embroidering
embroidery
heading needle
tearing
weaving basket
weaving basket
weaving fabric
woodwoorking
```







```
eating cake
      eating carrotseating chips
      eating doughnutseating hotdog

    eating ice cream

eating ice cream
eating nachos
eating spaghetti
eating street food
eating watermelon
sucking lolly
tasting food
entering church
 exercise
     wercise
— aerobics
— battle rope training
— bodyweight exercise
— canoeing or kayaking
— doing aerobics

    exercising arm
    exercising with an exercise ball
    gymnastics

              — acrobatic gymnastics
— balance beam
             gymnastics tumblingsomersaulting
          valuting
     — hula hooping
— lunge
         martial arts
          capoeira kickboxing
      - mountain climber
- mountain climber (exercise)
         parkour
       - pilates
       pull upspunching
     — punching bag
— punching person
— punching person (boxing)
— push up
— rope pushdown
     - running
     chasing
jogging
running on treadmill
situp
standing on hands
standup paddleboarding
stretching
bending back
contorting
cracking back
```

```
cracking knuckles
cracking neck
stretching arm
stretching leg
yoga
tai chi
walking
crawling baby
delivering mail
jaywalking
marching
tightrope walking
tiptoeing
wading
wading through mud
wading through water
walking on stilts
walking the dog
walking with crutches
weight lifting
barbell
bench pressing
biceps curl
carrying weight
clean and jerk
deadlifting
dumbbell
front raises
snatch weight lifting
squat
zumba
falling
falling off bike
falling off chair
fidgeting
finger movement
drumming fingers
finger snapping
fingerboard (skateboard)
tapping pen
twiddling fingers
tying knot
tying bow tie
tying necktie
tying sice
flipping bottle
flying kite
qambling
playing poker
playing slot machine
```

```
garbage collecting
      gaibage collecting
gliding
gold panning
head stand
historical reenactment

    hitchhiking

      hitchhiking
jumping
diving cliff
jumping bicycle
jumping into pool
jumping jacks
jumping sofa
ski jumping
      skipping rope
triple jump
land sailing
laughing go of balloon
licking lifting hat
lighting candle
listening with headphones
lock picking
looking at phone
looking in mirror
making bubbles
making snowman
manipulating
  laughing
 — making snowman

— manipulating

— adjusting glasses

— arranging flowers

— stacking

— stacking cups
      marriage proposal
 - metal detecting
      moving
   - moving
- carrying baby
- moving baby
- moving child
- moving furniture
- mushroom foraging
 — opening
             ening

opening bottle

opening bottle (not wine)

opening wine bottle

uncorking champagne

opening door
        opening present
opening refrigerator
unboxing
      unboxing
paragliding
parasailing
person collecting garbage
pinching
playing
```

```
- bouncing ball
- bouncing ball (not juggling)
- bouncing on bouncy castle
- bouncing on trampoline
- building sandcastle
- egg hunting
        hopscotch playing american football

    kicking field goal
    passing american football
    passing american football (in game)

        playing badminton
playing board game
L doing jigsaw puzzle
playing controller
playing games
               playing beer pong
playing beer pong
playing cards
card stacking
card throwing
card tricks

    dealing cards

                     playing blackjack shuffling cards
                   playing checkers
                 - playing chess
- playing dominoes

    playing mahjong
    playing monopoly

                   playing pinball

    playing scrabble
    playing shuffleboard

    rock scissors paper

         playing hand clapping games playing laser tag
        playing laser tag
playing paintball
playing toys
playing marbles
playing rubiks cube
radio-controlled model
playing with toys
building lego
playing with trains
         train pulling rope
      - pulling rope
- pulling rope (game)
- spinning plates
- spinning poi
- stacking dice
     using puppets
using remote controller
using remote controller (not gaming)
water sliding
praying
```

```
pretending to be a statue
pulling
pumping gas
pushing
pushing car
pushing cart
pushing wheelbarrow
pushing wheelchair

reading
reading book
reading newspaper
riding mechanical bull
rocking
saluting
scrapbooking
screen printing
shopping
shredding paper
shrugging
sign language interpreting
sitting
sky diving
slacklining
sledding
tobogganing
smashing
smelling feet
smoking
smoking pipe
sneezing
sniffing
sports
archery
arm wrestling
base jumping
bicycle
bobsledding
bodyboarding
bodyboarding
bodyboarding
catching or throwing frisbee
catching or throwing softball
cheerleading
cricket
curling
curling
curling (sport)
diving
bodyboard
ing
curdewater diving
dodgeball
```

```
enduro
     extreme sports
 - fencing (sport)
- field hockey
     frisbee

disc golfing
 - golfing
- golf chipping
- golf driving
- golf putting
- hammer throw
 high jump
huddling
 - hurdling
  hurling
- nurling
- hurling (sport)
- ice skating
- figure skating
- ice dancing
- speed skating
speed skating
javelin throw
long jump
luge
playing baseball
batting cage
catching or throwing baseball
hitting baseball bat
playing basketball
dribbling basketball
duking basketball
     dunking basketball
shooting basketball
playing billiards
      playing cricket

batting (cricket)

bowling (cricket)
     playing darts
playing field hockey
      playing handball
 — playing handball
— playing ice hockey
— hockey stop
— playing kickball
— playing netball
— playing ping pong
— playing road hockey
— playing rounders
— playing rounders
     playing rugby
playing soccer

_ juggling soccer ball

_ kick (football)

_ kicking soccer ball

_ passing soccer ball
```

```
penalty kick (association football)
shooting goal
shooting goal (soccer)
soccer goal
playing squash or racquetball
playing tennis
serve (tennis)
playing volleyball
pole vault
           pole vault
          dirt track racing
horse racing
lawn mower racing
        racings
sled dog racing
roller skating
rowing (sport)
        - shot put
- skateboarding
            | kickflip | longboarding | ollie (skateboarding)
           snowboarding
           snowkiting
          surfing
bodysurfing
kitesurfing
              - surfing crowd
- surfing water
            windsurfing
        - tackling
  spraying
sticking tongue out
   stomping grapes
stunt performer
submergingsun tanning
   swinging
  swinging legs
swinging on something taking photo
photobombing talking
      acting in playanswering questions
       - arguing
- attending conference
- auctioning
       preachershoutingtalking on cell phone
       teachingtestifyingusing megaphone
```

```
throwing | skipping stone | throwing axe | throwing ball | throwing ball | throwing ball | throwing discus | throwing snowballs | throwing water balloon | tickling | tie dying | tossing coin | using phone | texting | waiting in line | whistling | winking | working | unloading truck | writing | calligraphy | doing sudoku | yarn spinning | yawning | animal | dog | dog agility | farming | feeding birds | feeding fish | feeding goats | grooming dog | grooming dog | grooming dog | grooming dog | grooming horse | herding camel | ridding mule | ridding mule | ridding mle | training | dog | wisiting the zoo | wildlife | wildlife | wildlife | wildling with horse | dressage | shearing sheep | training dog | wisiting the zoo | wildlife | art | airbrush | drawing | coloring in
```



```
poaching eggs
        - poaching eggs
- pouring
- pouring beer
- pouring milk
- pouring wine
- pulling espresso shot
- preparing salad
- recipe
        recipe
roasting
roasting pig
rolling pastry
sausage making
scrambling eggs
seasoning food
        separating eggs
shaping bread dough
sharpening knives
        shucking oysters
smoothie
smoothle
squeezing orange
stir frying
stirring
tossing salad
entertainent
making balloon shapes event
     - celebrating
     — circus

└─ trapezing
        entertainment
balloon blowing
comedian

    inflating balloons

     inflating ballooms
juggling
contact juggling
juggling balls
popping balloons
sword swallowing
festival
    — giving or receiving award
    — news
     news anchoring
news presenter
presenting weather forecast
parade
wedding
explosion demolition
    re
— breathing fire
— extinguishing fire
    — firefighter
— fireworks
    — juggling fire
```

```
lighting fire shooting off fireworks
fun
amusement park
roller coaster
water park
interaction
    fighting
          — combat
— headbutting
          - headbutting
- high kick
- kicking
- drop kicking
- side kick
        — side kick
— pillow fight
— slapping
— sword fighting
— wrestling
   greeting
shaking hands
high fiving
   — kissing
   - kissing
- massage
- massaging back
- massaging feet
- massaging legs
- massaging neck
- massaging person's head
- shaking head
   — staring
   - staring
- stealing
- touching
           music
   — beatboxing
   - concert
- disc jockey
- musical ensemble
- orchestra
       playing instrument
          — acoustic guitar
— air drumming
           busking
          — cymbal
— electric guitar
           fiddlefrench hornmarching band
           pipe organplaying accordionplaying bagpipes
```

```
playing banjo
                       playing bass guitar
playing cello
                       playing clarinet
                    playing cymbalsplaying didgeridoo
                   - playing didgeridoo
- playing drums
- tabla
- playing fiddle
- playing flute
- playing gong
- playing guitar
- strumming guitar
                       playing harmonica
                    playing harpplaying keyboardplaying lute
                    - playing maracas
- playing oboe
                    playing ocarinaplaying organplaying pan pipes
                   - playing pan pipes
- playing piano
- playing piccolo
- playing recorder
- playing saxophone
- playing snare drum
- playing timbales
- playing trombone
                  — playing trombone
playing trumpet
— playing tuba
— playing ukulele
playing viola
— playing violin
— playing xylophone
— snare drum
— tapping guitar
— timbales
— viola
             viola recording music
              singing
               gospel singing in church karaoke
- none
    outdoors
         - abseiling
- alligator wrestling
- archaeological excavation
              backpacking (wilderness)
             camping flint knapping
             climbing

alpine climbing

climbing a rope
```

```
    climbing ladder

             - climbing ladde
- climbing tree
- ice climbing
             rock climbing
          dashcam
     — digging
          algging
fishing
carp fishing
casting fishing line
catching fish
fly tying
ice fishing
recreational fishing
           gardening
                 picking fruit
    picking apples
    picking blueberries
                 - planting trees
            planting trees
sowing
trimming shrubs
trimming trees
watering plants
          hiking — geocaching
            snowshoe spelunking
          hunting
waterfowl hunting
outdoor recreation
    outdoor recreation
riding snow blower
skiing
lalpine skiing
ski ballet
skiing crosscountry
skiing mono
skiing slalom
slopestyle
telemark ski
      — volcano
— waterfall
waterfall
yardwork
blowing leaves
mowing lawn
shoveling snow
personal computer
queuing
riding a bike
setting
by mome activity
      — home activity
— baby waking up
— beauty
                       beauty
blowdrying hair
body piercing
curling hair
```

```
doing nails
dyeing hair
dying hair
dying hair
filling eyebrows
fixing hair
gargling
getting a haircut
getting a piercing
getting a tattoo
hair coloring
ironing hair
makeup
applying cream
putting on eyeliner
putting on foundation
putting on lipstick
putting on mascara
manicure
scrubbing face
shaving
shaving legs
trimming or shaving beard
waxing
waxing armpits
waxing armpits
waxing dock
waxing eyebrows
waxing legs
brushing hair
brushing hair
brushing teeth
christmas
cleaning
bathing
bathing
bathing dog
taking a shower
blasting sand
brushing floor
cleaning guters
cleaning guters
cleaning shoes
cleaning tool
cleaning shoes
cleaning toor
polishing furniture
shining shoes
waking shoes
waking shoes
waking shoes
scleaning floor
cleaning floor
polishing furniture
shining shoes
sweeping floor
vacuuming
vacuum cleaner
```

```
vacuuming car
vacuuming floor
decorating the christmas tree
                - decorating the christmas tree
- dressing
- putting on sari
- putting on shoes
- folding
- folding clothes
- folding napkins
- home improvement
- installing carpet
- laying tiles
- plumbing
- putting wallpaper on wall
- sanding floor
- ironing
- packing
- packing
                packingsleepingwaking up
                    washing up
washing
washing dishes
washing feet
washing hair
washing lands
washing clothes
doing laundry
hand washing clothes
                 washing machine
watching tv

    wrapping present

          lighting

shining flashlight
          medical
           medicai
— bandaging
— using inhaler
          office work

- photocopying
- sharpening pencil
                 using computer using atm
snowmobile
tennis
toy
transportation

air travel
           all travel

aircraft
landing airplane
unidentified flying object
         bicycling
biking through snow
bmx bike
doing wheelie
minibike
```

```
building
building cabinet
buildozer
bulldozer
bulldozing
dump truck
heavy equipment
laying bricks
laying concrete
laying decking
laying stone
electronics
assembling computer
forklift
logging
manufacturing
bending metal
making horseshoes
making jewelry
polishing metal
welding
mechanic
changing wheel
changing wheel
changing wheel
changing wheel
changing tires
repairing puncture
plastering
police
arresting
directing traffic
protesting
using a microscope
using a power drill
using a sledge hammer
using a wrench
using bagging machine
```

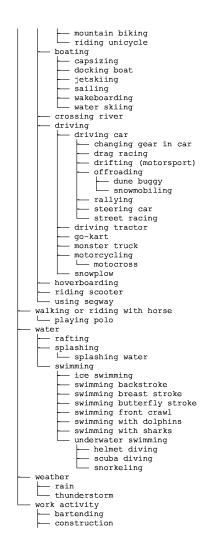


Figure 7: Full AViD hierarchy