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Abstract— Humans learn to imitate by observing others.
However, robot imitation learning generally requires expert
demonstrations in the first-person view (FPV). Collecting such
FPV videos for every robot could be very expensive.

Third-person imitation learning (TPIL) is the concept of
learning action policies by observing other agents in a third-
person view (TPV), similar to what humans do. This ultimately
allows utilizing human and robot demonstration videos in TPV
from many different data sources, for the policy learning.
In this paper, we present a TPIL approach for robot tasks
with egomotion. Although many robot tasks with ground/aerial
mobility often involve actions with camera egomotion, study
on TPIL for such tasks has been limited. Here, FPV and
TPV observations are visually very different; FPV shows
egomotion while the agent appearance is only observable in
TPV. To enable better state learning for TPIL, we propose
our disentangled representation learning method. We use a
dual auto-encoder structure plus representation permutation
loss and time-contrastive loss to ensure the state and viewpoint
representations are well disentangled. Our experiments show
the effectiveness of our approach.

Index Terms— Representation learning, imitation learning

I. INTRODUCTION

Humans learn to imitate by observing others. In robotics,
imitation learning enables a robot to learn complex tasks
with minimal environmental knowledge [1] based on expert
demonstrations. The robot learns a mapping from states
(observations) to actions by using the expert trajectories as
training data. However, imitation learning is known to be
costly in collecting such expert data. Such expert demon-
strations should be in the first-person view (FPV) from the
same (or very similar) viewpoint to the robot and should
include actual action labels. Collecting a sufficient amount
of robot data could potentially be very expensive, especially
for action labels.

Third-person imitation learning (TPIL) is the concept
of learning action policies by observing other agents in a
third-person view (TPV) without accessing the action labels.
TPIL allows utilizing many human or robot demonstration
videos in TPV from different data sources and very different
viewpoints. It is similar to that humans could map TPV
observations to their egocentric perspective [2], [3] and
learn from them. Recent advances in TPIL [4]–[6] solved
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Fig. 1. Examples of third-person imitation tasks using Minecraft (a)
and Panda robot sim (b). Red box: FPV that the agent actually observes,
displaying agent’s egomotion. Black box: TPVs that are taken from multiple
fixed cameras. In Minecraft environment, the player in Minecraft is trying to
walk to the diamond blocks (blue blocks). In Panda environment, the Panda
robot is trying to pick up the object in the tray, based on the observations
from a camera mounted on the end effector.

tasks by learning a joint visual state representation space
shared by FPV and TPV from synchronized FPV and TPV
demonstrations. Such joint state representation can be used
to guide downstream policy learning.

In this research, we study a TPIL case where the robot’s
FPV contains egomotion caused by actions (Figure 1). For
example, many robot tasks with ground (or aerial) mobility
often involve actions with egomotion. Previous research [4],
[5] only focused on FPV observations from a static camera,
without considering tasks with the egomotion. Learning
a joint visual state representation in such setting is very
challenging due to the visual differences between egocentric
FPV and TPV: (1) FPV videos consist of agent’s egomotion
while TPV videos consist of a relatively fixed scene with the
moving agent, and (2) the agent itself is not visible (or only
a very small portion of it is visible) in the FPV videos. The
study on TPIL for egocentric videos will further broaden the
scope of where TPIL algorithms could be applied.

To this end, we introduce a TPIL approach that learns
disentangled state and viewpoint representations to ensure
state representations are viewpoint-agnostic. Focusing on
such visual differences between FPV and TPV, we propose a
dual auto-encoder model to process the FPV and TPV inputs
separately. In addition, we split the latent representation z
of each auto-encoder into two parts, h and v, to encode
disentangled state and viewpoint information, respectively.
We propose representation permutation loss to train h and
v to be well-disentangled representations. We adapt time-
contrastive loss and apply it on h to encode state information.
A general reconstruction loss is used to fully train our
decoders.

Our visual representation learning is based on synchro-



nized FPV and TPV videos from multiple viewpoints. Once
finished, our policy learning is done by providing a single
TPV expert demonstration without any FPV experts.

II. RELATED WORK

Our work is mainly related to three categories of research:
imitation learning from observation, disentanglement, and
contrastive learning.

A. Imitation learning from observations

Imitation learning from observations extends imitation
learning to the case that experts’ action labels are no longer
available. Edwards et al. [7] first learns a latent policy
and then remaps outputs from latent policy to actual action
space. In [8], [9], a context translation model is used to
map across contexts considering context differences between
demonstration and agent’s observation.

Third-person imitation learning further extends the imi-
tation learning from observations by replacing FPV expert
demonstrations with TPV ones. Recent literature on third-
person imitation learning focuses on how to make con-
nections between TPV and FPV observations by learning
visual representations. TPIL [4] extends GAIL [10] and uses
a domain confusion constraint to force features from both
FPV and TPV are indistinguishable for a discriminator. TCN
[5] uses a time-contrastive way to learn representations by
self-supervised metric learning. TCN [5] is also extended
to other tasks such as skill transfer [6] and playing hard
exploration games [11]. mfTCN [12] extends the time-
contrastive method to multiple frames. In this work, we
extend TPIL to an egocentric FPV setting.

B. Disentanglement

Disentanglement is learning independent attributes en-
coded into separated dimensions of representation space.
Typical methods for disentanglement are based on varia-
tional auto-encoders (VAE) [13] and generative-adversarial
networks (GAN) [14].
β-TCVAE [15] hypothesis that each dimension in rep-

resentation z is mutually independent. Both CVAE [16]
and Info-GAN [17] provide the model with class label
input to learn representations that are independent of these
labels. Also, GAN methods like style-GAN [18] get a latent
representation as a prior from a normal distribution. CC-VAE
[19] adapts CVAE [16] to a self-supervised manner using an
extra auto-encoder to learn a condition representation.

In imitation learning context, representations could also
be implicitly disentangled. TRAIL [20] extends GAIL [10]
to disentangle task-relevant and task-irrelevant information
by adding a consistency constraint on samples in an invari-
ant set. The learned representations are agnostic to task-
irrelevant factors like colors. Disentangled representations
have been also applied to other computer vision tasks and
get successful results [21]–[25].

Compared with the above methods, our method explic-
itly splits latent representation into two components: state
and viewpoint representation. We do not assume that exact

viewpoint coordinates (i.e. labels of viewpoints) are provided
for disentanglement, and rather train the model in a self-
supervised manner.

C. Contrastive learning

Contrastive learning performs a comparison across differ-
ent views that are generated from one single input to learn
representations in a self-supervised fashion [26], [27]. The
concept of contrastive learning also has been adopted for
TPIL [5]. For computer vision tasks, CMC [28] takes advan-
tage of InfoNCE loss [26] on the comparison between anchor
sample, positive sample, and a batch of negative samples.
Other research on contrastive learning [29]–[33] focus on
avoiding trivial solutions to improve representation quality
and increasing training efficiency by getting rid of negative
samples. Contrastive learning concepts and techniques are
also applied to control tasks like [34]. We extend time-
contrastive loss [5] (which is based on triplet loss [35]) using
InfoNCE loss [26] that includes a batch of negative samples.
We also take advantage of the stop-gradient technique from
the above literature to avoid trivial solutions.

III. PROBLEM SETUP

A discrete-time finite-horizon discounted Markov decision
process (MDP) can be noted by M = (S,A,P, r, T ), where
S is a state set,A is an action set, P is a transition probability
distribution, r is a reward function, and T is the horizon.
For imitation learning, the agent is given trajectories τ =
{(st, at)} which are states and actions generated from an
unknown expert policy πE and r is not traceable. The agent
is required to learn a policy πθ that recovers πE .

In visual third-person imitation learning from observation,
we consider an observer is learning by solely watching a
demonstrator’s demonstration from a different viewpoint than
the demonstrator’s, and at is not traceable. Under this setting,
the observer and the demonstrator have visual observations
oTt ∈ OT , OT ⊆ RH×W×d and oFt ∈ OF , OF ⊆ RH×W×d
respectively, where d = 3 if we consider a pure RGB image
input. Usually, we call OT third-person view (TPV) and OF
first-person view (FPV). A fact holds that at any moment t,
oTt and oFt are different since they see from different views
but oTt and oFt correspond to a same state st. Therefore,
visual representation learning approaches explored by [4],
[5] tried to solve this problem by finding a function F :
O → H that learns a latent state representation h = F(o)
satisfying F(oTt ) = F(oFt ) to estimate the true state space
S.

In this research, we investigate an egocentric FPV setting
that actions cause agent’s egomotion. Moreover, we consider
TPV demonstrations from multiple different viewpoints. This
is more challenging than learning the state embedding only
applicable for one third-person viewpoint.

Formally, we have a set of synchronized FPV-TPV
trajectories {τ} for visual representation learning, and a
single TPV expert demonstration τE = {oTt } generated
by some unknown expert policy πE for policy learn-
ing. For each FPV-TPV trajectory, it has one FPV video



Fig. 2. This figure includes an overview of the dual AE model we propose, the policy learning method we use after having a state representation space,
and losses we use to learn our FPV-TPV joint state representation. (a) Proposed dual AE model. (b) When doing policy learning, we discard v and use
h. (c) Time-contrastive loss requires an anchor sample, a positive sample, and a batch of negative samples. This figure uses anchor FPV frame as an
example. Symmetrically, a TPV frame can be an anchor. (d) We reconstruct every input FPV/TPV frame and calculate the reconstruction loss. (e) We
permute viewpoint representation v among a batch of frames from the same TPV but different timesteps. Symmetrically, we permute state representations
h among a batch of frames from the same timestep but different TPVs. We compare the reconstructed frames with original inputs accordingly to have our
representation permutation loss.

and multiple TPV videos from multiple viewpoints: τ =
({oFt }, {o

T1
t }, . . . , {o

Tn
t }). Given the egocentric FPV set-

ting, oF is visually different from oT since oF contains
egomotion and oT contains the agent’s appearance which
is not in oF . So the challenge is how we design the map
function F , i.e. the representation model, that still preserves
F(oTt ) = F(oFt ). After getting such viewpoint-agnostic state
representation h, we train a policy π to maximize imitation
reward formulated by τE to best recover πE . We follow
the previous literature [5] to give a distance-metric based
reward function, e.g. r(t) = −||hFt −hTt ||2, to perform policy
learning, where hFt is current agent’s FPV observation and
hTt is given TPV expert demonstration at the same timestep.

IV. FPV-TPV JOINT STATE REPRESENTATION
LEARNING

Focusing on the visual differences between OF and OT ,
we propose our dual auto-encoder (AE) model with explicitly
disentangled latent representations that learns a joint repre-
sentation space H. Then, we introduce our modified time-
contrastive loss [5] and representation permutation loss to
train our proposed model in a self-supervised fashion.

A. Dual AE for Joint State Representation Learning

Considering the visual differences between OF and OT ,
we design two different mapping functions, Fθ : OF → Z
and Fϕ : OT → Z , instead of learning a single universal
function for both OF and OT . We propose a dual AE
structure to model such Fθ and Fϕ as encoders in AEs
along with the decoders Gθ and Gϕ. The decoder Gθ takes
the full representation zF = [hF , vF ] as input and outputs a
reconstructed FPV image x̂F = Gθ([hF , vF ]). Similarly Gϕ
reconstructs TPV image x̂T = Gϕ([hT , vT ]).

We further design the dual AE to disentangle the repre-
sentation vectors to better learn the joint embedding, taking
advantage of multiple training losses. Specifically, each of
our AE splits full representation vector z into two vectors,

z = [h, v], where [·, ·] means concatenation (See Figure 2(a)).
Our motivation is to disentangle state and viewpoint from
observation. If well-disentangled, the state representation is
viewpoint-invariant, i.e. a joint embedding for TPV and FPV.
Representation decomposition has been an effective strategy
to obtain independent components (representations) in mul-
tiple computer vision tasks such as object recognition [15],
[18], [21], [36], and our motivation is to extend and take
advantage of such concept for TPIL. In our formulation,
h (state) and v (viewpoint) are two independent factors
we want to split from raw RGB observations. Similar to
[21], which decomposed class-irrelevant features from class-
relevant features for object recognition, our formulation has
only two factors to decompose. Thus, we separate the latent
vector into two parts and ensure that they are disentangled
by appropriate loss functions.

The main technical challenge is in learning Fθ and Fϕ,
while ensuring (1) h to be an FPV-TPV joint state represen-
tation and (2) h and v are well disentangled. In the below
subsections, we describe how the time-contrastive loss and
the proposed representation permutation loss enable this.

B. Self-Supervised Disentangled Representation Learning

1) Time-Contrastive Loss: Time-contrastive [5] was pre-
viously proposed to make the state representation follow
the temporal order. The temporal order means a state rep-
resentation ht should be closed to ht+1 but far from ht+n
where n > 1 in most cases. In practice, we use a triplet
that includes anchor (A), positive (P), and negative (N)
samples to construct time-contrastive loss. This loss requires
representations of A and P samples are close (attraction), and
representations of A and N samples are distant (repulsion).

Original time-contrastive loss [5], [35] is in a triplet-loss
form. We extend it to include multiple negative samples for
each single A and P sample using Info-NCE loss (See Fig-
ure 2(c)), inspired by recent advances in contrastive learning
[28], [32]. Given two synchronized FPV-TPV demonstra-



tion videos, {(xFi , xTi )}, we first identify an A(anchor) at
timestep a. Suppose xFa is the anchor (A) sample, then the
xTa is the positive (P) sample. We then randomly sample
a batch of negative (N) timesteps {ni} that appears ξ away.
Then {xTni

} from a TPV video are N samples of xFa . After we
get A-P-N samples, we have our modified time-contrastive
loss term on FPV anchor:

LFtc = − log
d(hFa , sg(h

T
a ))

d(hFa , sg(h
T
a )) +

∑
d(hFa , sg(h

T
ni
))
,

where h is state representation vector, d(·, ·) is a critic metric
on h implemented based on cosine similarity between h
vectors [28]:

d(h1, h2) = exp

(
h1 · h2

||h1|| · ||h2||
· τ
)
,

where || · || is L2-norm, τ is a scaling coefficient [28], sg(·)
is a stop-gradient trick [32], [33] to avoid trivial solutions.
Symmetrically, if we let the TPV frame xTa be anchor,
we have LTtc by making xFa as positive sample and {xFni

}
negative samples.

To force h to be a joint representation space for FPV and
TPV, we add a general matching loss (See Figure 2(c) in the
middle) for all the {(hFi , hTi )} pairs from the same timestep.
We minimize their L2-distance pairwisely:

Lmatch = E
[
||hT − sg(hF )||2

]
,

where sg(·) is stop-gradient, viewing the state represen-
tations from FPV as references. Together, the total time-
contrastive loss is:

Ltc = LFtc + LTtc + Lmatch.

2) Representation Permutation Loss: We introduce our
representation permutation loss below to supervise h and v
to be disentangled (See Figure 2(e)). Ideally, h and v should
be independent, saying that modifying v only changes the
viewpoint information, and modifying h only changes the
state information. Therefore, we permute h and v among
a batch of samples and reconstruct images from permuted
full representations z = [hi, vj ]. We expect the reconstructed
images should be similar accordingly after the permutation.
We will describe how we permute and compare reconstructed
images accordingly below.

Given a single TPV demonstration, we can get the repre-
sentations from two arbitrary timesteps: (hTi , v

T
i ) = F(xTi )

and (hTj , v
T
j ) = F(xTj ). Ideally, we should expect their

viewpoint information is the same, so we have vTi = vTj .
Then, by exchanging vTi to vTj and doing reconstruction,
we would expect that the reconstruction image should still
remain same as input at timestep i: G([hTi , vTj ]) = xTi . Sym-
metrically, G([hTj , vTi ]) = xTj . We can do these exchanges
in a batch of samples from a single TPV demonstration by
randomly pairing v to h. Then our viewpoint permutation
loss is formulated as an reconstruction error

Lv = Ei
[
||G([hTi , vTk ])− xTi ||2

]
, k 6= i,

where i, k are time indices of the selected batch.

Symmetrically, we consider permutations on state repre-
sentations h. Considering samples from the same timestep
but different viewpoints, we expect identical h but different
v. Similar as Lv above, we randomly pair h to different v
and have this state permutation loss

Lh = Ej
[
||G([hTk

i , v
Tj

i ])− xTj

i ||2
]
, k 6= j,

where k and j indicate different TPVs. Combine viewpoint
and state permutation losses together, we have our represen-
tation permutation loss:

Lpermute = Lv + Lh.

We do not apply the representation permutation loss above
to the latent representation vF from FPV branch, because
the viewpoints can continuously change and are highly
correlated with agent’s egomotion in its FPV.

3) Reconstruction Loss: We have this reconstruction loss
to ensure that (a) h and v are meaningful latent repre-
sentations instead of trivial solutions and (b) we have a
reliable decoder G that can reconstruct images for computing
representation permutation loss above. We compare a recon-
structed image G(F(x)) with input x (See Figure 2(d)):

Lrecon = Ex
[∑

(G(F(x))− x)2
]
. (1)

We apply this loss to all the samples we pass through our
model, including the samples used when calculating time-
contrastive loss and representation permutation loss.

In conclusion, our overall loss function to learn an FPV-
TPV joint representation is

L = αLtc + βLpermute + Lrecon, (2)

where α and β are hyper-parameters to control the weight
of time-contrastive loss and invariant loss.

C. Implementation Details

We implement each of our two AEs by seven convolutional
layers and seven deconvolutional layers. As for splitting rep-
resentation, we can assign any dimension to v. Specifically,
if the dimension of v is 0, it means we do not split our
full latent representation, i.e. h := z and thus Lpermute is
not applicable. We use TCN [5] as a baseline model that
using one universal encoder for FPV and TPV inputs. It can
be regarded as a 0-dimension-v model. Since we use h for
policy learning, we control all models to have 16-dimension
h for a fair comparison between models. We empirically set
α = 1, β = 1 in all our models except ablation studies on
these hyper-parameters.

D. Imitation Learning Formulation

We follow the common setting of imitation learning in
recent literature [5], [11]. Given synchronized FPV-TPV
demonstrations, we first train a joint representation model
(See Figure 2(a)). Then, given only one extra demonstration
{xEi }, we let the agent execute the policy in the environment
to maximize the imitation learning reward (See Figure 2(b)).



The imitation learning reward at each step Rt is assigned
based the cosine similarity

Rt =

{
1, cos(hFt , h

E
t ) ≥ ξ

0, cos(hFt , h
E
t ) < ξ

, (3)

where [hFt , v
F
t ] = Fθ(xFt ) are the latent representations

of the agent’s first-person observation and hEt is the state
representation from expert demonstration, both are at current
timestep t. hEt will be produced by Fθ(xEt ) if we perform a
first-person imitation and by Fϕ(xEt ) if it is third-person
imitation learning. We use a threshold ξ to discrete the
imitation reward, following the formulation as [11], [37].

E. Policy Model and Policy Training

We use a multi-layer perceptron (MLP) as our policy
model to map the state representation to agent actions:
π : H → A. The input layer and two hidden layers
contain the same dimension as the input state representation.
For continuous action space, the policy outputs means and
standard deviations of Gaussian distributions. For discrete
action space, the policy outputs log-likelihoods of actions.
We use PPO [38] to optimize the policy based on the
imitation learning reward above.

V. EXPERIMENTS

A. Environments and Tasks

We develop and use two simulated environments to collect
data, train, and evaluate methods (See Figure 1).

1) Minecraft Environment: We develop a Minecraft game
environment based on Project Malmo [39] and MineRL [40].
The agent is a game player and the task is moving itself to the
target position. The agent observation is an RGB visual input
from the default FPV in the game without user interfaces
such that O ⊆ RW×H×3. The action space is discrete, where
|A| = 6, including moving forward, backward, left, and right,
and turning (along with the camera) towards left and right.
The goal is to reach the target labeled as a pillar of diamond
blocks (blue ones).

2) Panda Environment: We develop a simulated contin-
uous control environment by PyBullet [41]. The agent is a
Panda robot mounted on a desk. The task is reaching an
object in a tray in front of the robot and picking up the
object. The agent observation is an RGB visual input, O ⊆
RW×H×3. The agent has an action space A ⊆ [−0.5, 0.5]11
which is the force applied to 11 joints. The camera is
mounted at the end effector, i.e. the “hand” of the Panda
robot. The camera follows the motion of the end effector
and emulates an egocentric FPV.

B. Dataset Collection

We collect synchronized FPV-TPV videos from both en-
vironments. For the Minecraft environment, we collect 8 dif-
ferent demonstration trajectories with randomized target dia-
mond block locations. Each trajectory contains synchronized
1 FPV video and 8 TPV videos. Third-person viewpoints are
not controlled to be the same, so the Minecraft environment
is more challenging to get a well-aligned representation. For

Panda environment, we collect 30 different demonstration
trajectories with randomized initial locations of the target
object. The expert policy is driven by an oracle using extra
information and inverse kinetics. Each trajectory contains
synchronized 1 FPV video and 9 TPV videos corresponding
to 9 different viewpoints. All distinct trajectories share the
9 viewpoints. We keep the number of trajectories small
to better emulate the realistic setting where the amount of
training data is limited. We split 20% data for each dataset
as test sets.

C. Quantitative Evaluations on Representation Space

We first investigate the quality of our joint representation
model in terms of alignment error [5] between FPV-TPV
sequences. Given a FPV frame xFi having time index i
and its state representation hFi , we find its nearest TPV
state representation neighbor hTj that has time index j. The
alignment error is the mean absolute temporal distance of i
and j regularized by video frame count L over all indices i:

alignment error = Ei
[
|i− j|
L

]
. (4)

The lower error means the better quality of imitation reward
suggesting a better representation space [5].

TABLE I
ALIGNMENT ERROR COMPARISON BETWEEN DIFFERENT

REPRESENTATION MODELS

Model Environment
Minecraft Panda

Multi-view TCN [5] 0.2725 0.2861
Ours 0-d v (i.e. without v and Lpermute) 0.2606 0.2036

Ours 4-d v 0.2398 0.1892
Ours 8-d v 0.2329 0.1550

Ours 12-d v 0.2571 0.1999

As shown in Table I, our model generally has a lower
alignment error than the baseline, indicating that our dual
AE model can deal with visually different FPV and TPV
inputs. Specifically, Minecraft results show that our model
can better align videos from various unseen viewpoints
than the baseline. And from the comparison between non-
zero dimensions of v and 0-d v, having a disentangled
representation v yields better performance than not having
it, suggesting that our disentangled representation helps learn
state representations. We further investigate how the non-zero
dimensions of viewpoint representation v affect the represen-
tation learning quality. We try 4, 8, and 12 dimensions of v.
Table I tells that 8-d has the lowest alignment error compared
to 4 and 12. 12-d has worse performance than 4-d (due to
the overfitting), but we note that all the variants are better
than ours 0-d v baseline. We confirm that having a non-
zero-dimension v helps learn a joint representation, while
we should choose a suitable dimension of v empirically to
ensure the information in v is well encoded, based on how
much information we intend v to encode. We also learn that
increasing the dimension of v is not always beneficial to learn



TABLE II
ABLATION STUDIES ABOUT LOSS FUNCTIONS ON PANDA ENVIRONMENT

BASED ON OUR MODEL WITH 8-DIMENSION v.

Model based on 8-d v Alignment Error

Ltc + Lpermute + Lrecon 0.1550
Ltc + Lvmatch + Lrecon 0.2518

Ltc + Lrecon 0.1922
Ltc + Lpermute 0.1748

Ltc 0.1844
5Ltc + Lpermute + Lrecon 0.1695
Ltc + 5Lpermute + Lrecon 0.1616

such disentangled representation, which is the overfitting
problem.

We also do ablation studies about our loss functions on
Panda environment (see Table II). We first compare our
Lpermute with a vanilla loss function Lvmatch that could
be applied to v. Recall that v should be similar for inputs
from the same TPV and different for inputs from different
TPVs. We define Lvmatch = Lvsim + Lvdissim where
Lvsim = cos(vi, vj) and Lvdissim = max{cos(vi, vj), 0}
for similarities and dissimilarities between v respectively.
Results show that using Lpermute has a lower alignment
error (0.1550) than Lvmatch (0.2518), indicating Lpermute
is reasonable and effective on supervising v. Using Lvmatch
leads to a higher alignment error than not using Lpermute
(0.1922), suggesting that Lvmatch provides a poor supervise
signal. We infer that the Lvdissim part overemphasizes the
dissimilarity among v to satisfy cos(vi, vj) ≤ 0. We also
investigate the performance if we remove certain loss func-
tions. By removing Lrecon and keep Lpermute (0.1748), we
know that adding a general reconstruction error would help
the training of the decoder. But when we compare using
Ltc and Lrecon (0.1922) and using Ltc (0.1844), we find
that using this Lrecon without Lpermute is not sufficient
to supervise h and v. A well-trained decoder ensures that
Lpermute is not affected by the under-trained decoder. As
for hyper-parameters α and β, increasing α does not yield a
better result while the result of increasing β is comparable.
We always keep Ltc, otherwise the model will easily fail to
capture temporal information between states.

Fig. 3. Visualization of state representation spaces H of Panda environ-
ment. Squares are FPV representations and dots are TPV representations.
The colors from red to blue indicate the timesteps from 0 to T (end of a
trajectory).

Fig. 4. Reconstruction results of representation permutation on the test sets.
The green arrow means the reconstructed images (from) should be similar
with ground truth (to). Up: replacing hTj of TPV frames (2nd row) by hF

from an FPV frame (1st row) at the same timestep. Bottom: replacing vTj

(of 2nd row) by vTi (of 1st row) from a different viewpoint.

D. Qualitative Evaluations on Representation Space

To evaluate the state representation space qualitatively, we
first show a t-SNE visualization [42] of the learned represen-
tation space on Panda environment (Figure 3). We observe a
generally clear temporal order from both methods. Moreover,
FPV and TPV frames are aligned together by temporal order
by our method, which indicates a good joint representation
for FPV and TPV. However, in the visualization of TCN [5]’s
representation space, we observe many FPV representations
are scattered in the space and are misaligned. This will affect
the joint representation and generate a misleading reward
function in third-person imitation learning. Therefore our
model is more suitable to deal with the visual differences
between OF and OT .

We then show how our state representation h and view-
point representation v encode corresponding information i.e.
they are well disentangled. We follow the same permutation
and reconstruction procedures as calculating Lpermute in
Section IV-B.2 on frames in the test set the model has never
seen.

Figure 4 shows the result of replacing state representation
hTj with hF in Minecraft frames and replacing viewpoint
representation vT2 with vT1 in Panda frames. From the result
in Panda environment, we could observe the viewpoint in
reconstructed images is coherent, which means changing
h does not affect the viewpoint. The states are also well
reconstructed if we see the poses of the robot. In the result of
Minecraft environment, we could see the model reconstructs
corresponding viewpoints by changing v. Even though the
reconstructed agents are blurred, their positions are closed
to the ground truth. We note that reconstruction is not
our ultimate goal in this research, but it provides us an
informative self-supervised objective to train disentangled
latent representations. The clear disentanglement meets our



TABLE III
SUCCESS RATE AND CUMULATIVE REWARDS FROM (SINGLE EXAMPLE)

IMITATION LEARNING. *: FIRST-PERSON IMITATION LEARNING. † :
THIRD-PERSON IMITATION LEARNING.

Model
Environment

Minecraft Panda
(Succ. Rate / Reward Mean ± Std)

Random Policy 0 / 10.3±9.47 0 / 48.4±11.0

Single-view TCN [5] * 0.12 / 12.6±8.33 0.16 / 64.0±8.42
Ours* 0.46 / 19.8±9.34 0.36 / 69.3±8.45

Multi-view TCN [5]† 0.31 / 18.9±12.4 0.32 / 66.4±9.00
Ours† 0.52 / 21.9±10.5 0.44 / 71.2±7.01

initial motivation to separate h and v from full representation
z.

E. Imitation Learning Evaluation

We finally evaluate the quality of our state representation
in terms of success rates and rewards by applying it for
the actual policy learning. We try both first-person imitation
learning (FPIL) and third-person imitation learning (TPIL) to
show that our joint state representation generalizes to both
FPV and TPV domains.

1) Experiment Settings: All representation models are
trained by expert trajectories in the training set. We have
6 distinct trajectories for Minecraft environment and 24 for
Panda environment. We implemented two baselines for two
different settings: FPIL and TPIL. For FPIL, we implement
a single-view TCN [5] baseline where the representation
is trained solely on FPV demonstrations. For TPIL, we
implement a multi-view TCN [5] baseline where the rep-
resentation is trained by FPV-TPV demonstrations. Our rep-
resentation models are trained by FPV-TPV demonstrations
as in TCN [5], and we apply them to both FPIL and TPIL
because our representations are generalizable to both FPV
and TPV inputs once learned. All the policies are trained
by providing only one FPV expert demonstration for FPIL,
or one expert TPV demonstration for TPIL, from the testing
set.

We train each policy on Panda for 105 steps and on
Minecraft for 5 × 104 steps by PPO [38]. We run 100
evaluation epochs for the best model achieved during training
steps. Successful execution of a task is defined by reaching to
the diamond block in Minecraft environment and picking and
lifting the object in Panda environment. A continuous reward
is defined by how much distance between the target and the
agent has been minimized at any timestep in an epoch. We
regularize the reward according to different randomized tar-
get locations to a fair comparison. The larger reward means
a closer approaching to the target for both environments.

2) Experiment Results: Table III shows that our method
outperforms the multi-view TCN [5] baseline in both FPIL
and TPIL, suggesting our joint state representation space is
better aligned in general and is capable of learning the policy
in this egocentric TPIL setting.

In FPIL setting (2nd and 3rd rows in Table III), our method
outperforms the single-view TCN [5] baseline indicating

Fig. 5. Performance under different number of distinct trajectories used in
representation learning. The experiment is taken in Panda environment

that (1) the representation learned from only few FPV
demonstrations is limited and (2) our method takes advantage
of the FPV-TPV demonstrations to shape a better state
representation space than using pure FPV demonstration.
By introducing third-person demonstrations from multiple
viewpoints, we could learn a better representation while
keeping the total number of distinct trajectories is small.

We also show how the number of trajectories used for
representation model training will affect the final policy. This
experiment is done using Panda environment and results are
shown in Figure 5. Our method benefits from more trajecto-
ries when the trajectory count is small and the performance
saturates after providing 40 trajectories. Even with 8 and
16 FPV-TPV trajectories (0.33 and 0.29 Succ. Rate), our
method can reach a better performance than Single-view
TCN [5] (0.16), which is trained by 24 FPV trajectories.
This highlights the value of our approach, as it uses fewer
trajectories to gain better performance.

VI. CONCLUSION

In this research, we consider a third-person imitation
learning setting where the agent performs tasks that actions
may cause agents’ egomotion. We solve this egocentric third-
person imitation learning by learning a joint state repre-
sentation space for FPV and TPV inputs. We introduce a
dual AE model to encode FPV and TPV inputs separately
considering the visual differences between FPV and TPV
videos. We explicitly split latent representation into state and
viewpoint representations and train them to be disentangled
by applying time-contrastive, representation permutation, and
reconstruction losses in a self-supervised way. Results show
that our representation space successfully encodes the state
information with viewpoint information disentangled. We
apply our joint state representation to both third-person and
first-person imitation learning, and results show that our state
representation is effective for learning a task out of either
TPV or FPV expert demonstrations.
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