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Abstract

A new measurement of the muon anomalous magnetic moment has been recently reported by the
Fermilab Muon g-2 collaboration and shows a 4.2 0 departure from the most precise and reliable
calculation of this quantity in the Standard Model. Assuming that this discrepancy is due to new
physics, we consider its relation with other potential anomalies, especially in the muon sector, as
well as clues from the early universe. We comment on new physics solutions discussed extensively in
the literature in the past decades, to finally concentrate on a simple supersymmetric model that also
provides a dark matter explanation. We show results for an interesting region of supersymmetric
parameter space that can be probed at the high luminosity LHC and future colliders, while leading
to values of (g, — 2) consistent with the Fermilab and Brookhaven (g, — 2) measurements. Such
a parameter region can simultaneously realize a Bino-like dark matter candidate compatible with

direct detection constraints for small to moderate values of the Higgsino mass parameter |u|.
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I. INTRODUCTION

The Standard Model (SM) of particle physics has built its reputation on decades of
measurements at experiments around the world that testify to its validity. With the discovery
of the Higgs boson almost a decade ago [1, 2] all SM particles have been observed and the
mechanism that gives mass to the SM particles, with the possible exception of the neutrinos,
has been established. Nonetheless, we know that physics beyond the SM (BSM) is required
to explain the nature of dark matter (DM) and the source of the observed matter-antimatter
asymmetry. Furthermore, an understanding of some features of the SM such as the hierarchy

of the fermion masses or the stability of the electroweak vacuum, is lacking.

The direct discovery of new particles pointing towards new forces or new symmetries
in nature will be the most striking and conclusive evidence of BSM physics. However, it
may well be the case that BSM particles lie beyond our present experimental reach in mass
and/or interaction strength, and that clues for new physics may first come from results for
precision observables that depart from their SM expectations. With that in mind, since
the discovery of the Higgs boson, we are straining our resources and capabilities to measure
the properties of the Higgs boson to higher and higher accuracy, and flavor and electroweak
physics experiments at the LHC and elsewhere are pursuing a complementary broad program
of precision measurements. Breakthroughs in our understanding of what lies beyond the SM

could occur at any time.

Recently, new results of measurements involving muons have been reported. The LHCb
experiment has reported new values of the decay rate of B-mesons to a kaon and a pair
of muons compared to the decay into a kaon and electrons [3], providing evidence at the
3 o-level of the violation of lepton universality. This so-called Rx anomaly joins the ranks
of previously reported anomalies involving heavy-flavor quarks such as the bottom quark
forward-backward asymmetry at LEP [4, 5], and measurements of meson decays at the LHC
and B-factories such as Rg- [6-8] and Ry [9-14]. The Fermilab Muon (g-2) experiment
has just reported a new measurement of the anomalous magnetic moment of the muon,
a, = (g, —2) /2. The SM prediction of a, is known with the remarkable relative precision
of 4 x 1077, ap™ = 116 591 810(43) x 10~'! [15-35]. From the new Fermilab Muon (g-
2) experiment, the measured value is af® "4 = 116 592 040(54) x 10~"* [36], which

combined with the previous E821 result af® "¥! = 116 592 089(63) x 107! [37], yields a



value aj; = 116 592 061(41) x 1071,

An important point when considering the tension between experimental results and the
SM predictions are the current limitations on theoretical tools in computing the hadronic
vacuum polarization (HVP) contribution to aEM, which is governed by the strong interaction
and is particularly challenging to calculate from first principles. The most accurate result
of the HVP contribution is based on a data-driven result, extracting its value from precise
and reliable low-energy (ete~ — hadrons) cross section measurements via dispersion theory.
Assuming no contribution from new physics to the low energy processes and conservatively
accounting for experimental errors, this yields a value LLEVP = 685.4(4.0) x 10719 [15, 20-26],
implying an uncertainty of 0.6 % in this contribution.! The SM prediction for the anomalous

magnetic moment of the muon and the measured value then differ by 4.2 o,

Aay, = (aS® — M) = (251 £ 59) x 107 (1)

It is imperative to ask what these anomalies may imply for new physics. The most
relevant questions that come to mind are: Can the a, and Rg«) anomalies be explained
by the same BSM physics? Can they give guidance about the nature of DM? Are they
related to cosmological discrepancies? How constrained are the possible solutions by other
experimental searches? What are future experimental prospects for the possible solutions?

In Sec. IT we provide a brief overview of the many models which have been previously
proposed in the literature to explain the (g, —2) anomaly and consider their impact on other
possible anomalies and on unresolved questions of the SM. Then, in Sec. III, we discuss a
supersymmetric solution in the most simplistic supersymmetric model at hand, the Minimal
Supersymmetric Standard Model (MSSM). We focus on a region of the parameter space of
the MSSM where the (g, — 2) anomaly can be realized simultaneously with a viable DM
candidate. We show that in the region of moderate |u| and moderate-to-large values of
tan 3, a Bino-like DM candidate can be realized in the proximity of blind spots (that require
uM; < 0) for spin independent direct detection experiments [43]. In this way, our MSSM

scenario explores a different region of parameter space than the one considered in the study

! The HVP contribution has recently been computed in lattice QCD, yielding a higher value of aEVP =
708.7(5.3) x 10710 [38]. Given the high complexity of this calculation, independent lattice calculations
with commiserate precision are needed before confronting this result with the well tested data-driven one.
We stress that if a larger value of the HVP contribution were confirmed, which would (partially) explain

the (g, — 2) anomaly, new physics contributions will be needed to bring theory and measurements of

(ete” — hadrons) in agreement [39-42]. 3



of Refs. [44, 45], which considers regions of large p as a way to accommodate current SIDD

bounds. Finally, we summarize and conclude in Sec. IV.

II. (g, —2) CONNECTIONS TO COSMIC PUZZLES AND THE LHC

In order to bridge the gap between the SM prediction and the measured value for the
anomalous magnetic moment of the muon, a BSM contribution of order Aa, = (20-30) x
107" is needed. Taking the a, anomaly as a guidance for new physics, it is natural to
ask how it can be connected to other anomalies, specially those in the muon sector, or to
solving puzzles of our universe’s early history. There are two broad classes of solutions to

the (g, — 2) anomaly that may be considered in the light of the above:

e New relatively light particles with small couplings to muons, typically featuring par-
ticles with O(100) MeV masses and O(1072) couplings to muons. Examples of such
models we will discuss here are new (light) scalars and new (light) (Z’) vector bosons.

These new light particles may have left important clues in the cosmos.

e New heavy fermions or scalars (possibly accompanied by additional new particles), as
well as leptoquark particles, with larger couplings to muons. Similar solutions appear
also in supersymmetric extensions of the SM that we shall discuss separately in some
detail in Sec. III. In addition, new gauge symmetries, spontaneously broken at low
energies, can induce Z’ vector bosons with masses comparable to the electroweak scale
and O(1) couplings to muons. These types of new particles can be sought for at the

LHC and other terrestrial experiments.

The most recent LHCb measurement [3], Rx = BR(B — Ku*tu~)/BR(B — KeTe™) =
0.8460:011 in the kinematic regime of 1.1 GeV? < ¢? < 6.0 GeV? implies a violation of lepton
universality and differs from the SM expectation at the 3.1 level. Since Rk also involves
muons, it naturally appears related to the (g, — 2) anomaly. However, as we shall discuss,
it is hard to simultaneously fit both Ry and (g, — 2).

Scalar solutions: This is perhaps the simplest scenario for the explanation of the ob-
served Aa,. A scalar particle, with mass < 200 MeV and couplings to muons of similar size

as the corresponding SM-Higgs coupling, can lead to a satisfactory explanation of Aa, [46-

51]. One can construct models with such a scalar particle and suppressed couplings to other

4



leptons or quarks in a straightforward way [51]. Alternatively, one can construct models with
appropriate values of the couplings of the new scalar to quarks to lead to an explanation of
some flavor anomalies, for example the KOTO anomaly [52], but the constraints tend to be
more severe and the model-building becomes more involved [53]. It is important to stress
that it proves impossible to fully explain the Rx anomaly with scalars without violating
Bs — ptp~ measurements [54]; see, for example, Ref. [55].

A pseudoscalar particle may also lead to an explanation of Aa,, provided it couples not
only to muons, but also to photons. The typical example are axion-like particles [56, 57],
although obtaining the proper Aa, requires a delicate interplay between the muon and
photon couplings.? Alternatively, a positive contribution to a, can arise from a two loop
Barr-Zee diagram mediated by the pseudoscalar couplings to heavier quarks and leptons [59].

Fermionic solutions: Another interesting solution occurs in the case of vector-like
leptons, which may induce a contribution to a, via gauge boson and Higgs mediated inter-
actions [60, 61]. Note that the mixing between the SM leptons and the new heavy leptons
must be carefully controlled to prevent dangerous flavor-changing neutral currents in the
lepton sector. A recent analysis shows that consistency with the measured values of Aa,
may be obtained for vector-like leptons with masses of the order of a few TeV [62].

Leptoquark solutions: This is one of the most interesting solutions to Aa,,, since it
can also lead to an explanation of the Rx anomaly; see, for example, Refs. [63-66]. A
directly related and particularly attractive realization arises in R-parity violating supersym-
metry, which enables the same type of interactions as a leptoquark theory; see, for example,
Ref. [67]. This solution requires the scalar partner of the right-handed bottom quark to have
masses of a few TeV, which may be tested at future LHC runs. Similar to the vector-like
lepton scenarios, a careful choice of the leptoquark couplings is necessary to avoid flavor-
changing neutral currents. This tuning may be the result of symmetries [66], and is perhaps
the least attractive feature of such scenarios.

Gauge boson solutions: New gauge bosons coupled to muons are an attractive solution
to the a, anomaly, since they can be incorporated in an anomaly-free framework that can
also lead to an explanation of the Ry anomalies. Of particular interest is the gauged

(L, — L,) scenario [68], since it avoids the coupling to electrons.® The Ry, anomalies

2 A similar mechanism applies for (g. — 2) in the case of the QCD axion; see, for instance, Ref. [58]

3 Models with (L n+L-) give an intriguing connection to a novel mechanism of electroweak baryogenesis with



may be explained by the addition of vector-like quarks that mix with the second and third
generation SM quarks [71-73], connecting the (L, — L,) gauge boson to baryons. A common
explanation of both Ry and a, is, however, strongly constrained by neutrino trident
bounds on Z’ bosons coupled to muons [74-76].* In addition, bounds from BaBar [79] and
CMS [80] from [eTe™ /pp — ptp~ + (Z' — ptp~)] rule out the values of the new gauge
coupling which could explain the observed value of a, for mz > 2m, ~ 210 MeV. Due to
these experimental constraints, explaining the Aa, anomaly with a light new gauge boson
requires myz < 200 MeV. Explanations of the flavor anomalies require larger gauge boson
masses, preventing simultaneous explanations of Ry and a,.

It is interesting to note that explanations of the (g, —2) anomaly via gauged (L, —L,) may
have a relation to some of the cosmological puzzles, in particular the tensions of the late and
early time determinations of the Hubble constant, Hy [78, 81]. In the myz ~ 10 MeV region,
the effective number of degrees of freedom can be enhanced by AN.g ~ 0.2, alleviating the
Hoy-tension. Note that constraints from solar neutrino scattering in Borexino [78, 82, 83]
and ANeg bounds [81] rule out the couplings preferred by the a, anomaly for mz < 5MeV.

Before considering minimal supersymmetric scenarios for the (g, — 2) anomaly in some
detail, let’s summarize the discussion above as follows: 1) All the above solutions, with a
broad range of masses and couplings of the new particles, can readily explain the (g, — 2)
anomaly, but it is difficult to simultaneously accommodate the Ry, anomalies. This diffi-
culty mainly arises from experimental constraints. In the rare cases where both solutions can
be accommodated simultaneously, additional requirements are necessary for tightly connect-
ing them. 2) In most scenarios, a DM candidate can be included in the model (with different
levels of complexity). However, there does not appear to be a compelling connection offering
a unique guidance for model building. On the other hand, in low-energy SUSY models with
R-Parity conservation, an explanation of the (g, —2) anomaly is naturally connected to the
presence a DM candidate and other new particles within the reach of the (HL-)LHC and

future colliders. We explore this possibility in its simplest realization in the next section.

CP-violation triggered in a dark sector that allows for a suitable DM candidate [69, 70]. Unfortunately,
solutions to (g, — 2) in this appealing scenario are ruled out by (B — Kpu*pu~) constraints due to

contributions from the anomalous WW Z’ coupling.

4 There are also bounds from Coherent v-Nucleus Scattering (CEvNS), although these are not yet compet-

itive with the bounds from neutrino trident processes [77, 78].



III. TINY (g, —2) MUON WOBBLE WITH SMALL || IN THE MSSM

Supersymmetric extensions of the SM remain among the most compelling BSM scenar-
ios [84-86], not least because in supersymmetric theories the stability of the Higgs mass pa-
rameter under quantum corrections can be ensured. In minimal supersymmetric extensions
of the SM, the SM-like Higgs is naturally light [87-97] and the corrections to electroweak
precision as well as flavor observables tend to be small, leading to good agreement with
observations. Supersymmetric extensions can also lead to gauge coupling unification and

provide a natural DM candidate, namely the lightest neutralino.

In this section, we discuss the regions of parameter space of the Minimal Supersymmetric
Standard Model (MSSM) [84-86] where the (g, —2) anomaly can be simultaneously realized
with a viable DM candidate. Related recent (but prior to the publication of the Fermilab
Muon (g-2) result) studies can, for example, be found in Refs. [44, 45, 98-100]. One crucial
difference in the region of parameter space we study here compared to the very recent work
in Refs. [44, 45] is that we show how the experimentally observed value of a,, can be explained
in the MSSM together with a viable DM candidate for moderate (absolute) values of the
Higgsino mass parameter |pu| < 500GeV. In this region of parameter space, a Bino-like
neutralino can be an excellent DM candidate if its (spin independent) direct detection cross
section is suppressed by the so-called blind spot cancellations [43], which require p and the

Bino mass parameter, M7, to have opposite sign.

A. Aa, and Direct Dark Matter Detection Constraints

The MSSM contributions to a, have been discussed extensively in the literature, see, for
example, Refs. [100-107]. The most important contributions arise via chargino-sneutrino

and neutralino-smuon loops, approximately described by [100]

= am’uMtan 3 e (M%/m%u) — [ <,u2/m%u)

%ifvﬂ‘ ~ 2
U 47 sin? GWm%u M3 — 2 ’ 2)
T OémiMl (ntan B3 — Au) fxo (Mlz/m%R) B fxo (Mlz/m,%L)] 3)
o — )
A1 cos? Oy <m?ﬂR - m%L> Mg e



where M, is the Wino mass parameter and my are the scalar particle ]? masses, with the

loop functions

2? — 4z + 3+ 2In(x)

fxx (z) = (4)

(1—a)’ ’
o 2?—1-2zn(z)
fx()(x) = (1 _ I)S ) (5)

see Refs. [104, 107] for the full (one-loop) expressions. It is interesting to note that these two
contributions can be of the some order of magnitude: The chargino-sneutrino contribution is
proportional to Higgsino-Wino mixing which can be sizeable, but suppressed by the small-
ness of the Higgsino-sneutrino-muon coupling which is proportional to the muon Yukawa
coupling, oc my, tan 5/v with the SM Higgs vacuum expectation value v. The neutralino-
smuon contribution, on the other hand, arises via muon-smuon-neutralino vertices which are
proportional to the gauge couplings, but is suppressed by the small smuon left-right mixing,

o< my(ptan B — A,)/(m?

2. —m2 ). Regarding corrections beyond one-loop [108, 109], the
most relevant contribution is associated with corrections to the muon Yukawa coupling, A ,.
These corrections become relevant at large values of ptan S and can be re-summed at all
orders of perturbation theory [110]. While these corrections lead to small modifications of
a,, they do not change the overall dependence of Aa, on the masses of the supersymmetric
particles.

From Egs. (2)—(3) we can observe that the sign of the MSSM contributions to a, depend
sensitively on the relative signs of the gaugino masses M; and M, and the Higgsino mass
parameter u. As we will discuss shortly, a DM candidate compatible with the current null-
results from direct detection experiments can be realized for |u| < 500 GeV if M; and p have
opposite signs. For this combinations of signs, the contribution from the neutralino-smuon
loop to a, will be negative, alX:O*ﬁ < 0. Since the measured value of a, is larger than the
SM prediction by Aa, ~ 25 x 107, we require the chargino-sneutrino contribution to be
positive and larger than the neutralino-smuon contribution. This can be realized if M5 has
the same sign as p and if |M,] is of similar size as |u| and the soft smuon masses. In the
regime of moderate or large values of tan 5, and assuming all weakly interacting sparticles

have masses of the same order, m, one obtains approximately
100 GeV'\?
Aa, ~ 1.3 x 10~ tan 3 x (%) , (6)
m
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The factor 1.3 reduces to values closer to 1 if M; and Ms have opposite signs. This implies
that for values of tan 8 ~ 10, sparticles with masses m ~ 200 GeV can lead to an explanation
of the observed Aq, anomaly, while for tan 3 = 60, the characteristic scale of the weakly
interacting sparticle masses may be as large as m ~ 500 GeV.

The range of tan 5 and of sparticle masses consistent with the observed Aa, has implica-
tions on the DM properties. We will concentrate on DM candidates with masses comparable
to the weak scale such that the thermal DM relic density reproduces the observed value. In
the MSSM, DM candidates in this mass range can be realized if the lightest supersymmetric
particle is an almost-pure Bino, m, =~ |M|.

For the moderate-to-large values of tan 5 required explain the (g, —2) anomaly, the spin
independent direct detection (SIDD) amplitude for the scattering of DM with nuclei (V) is

proportional to
M in 2 2
/\/l;’loc1 2( L psin ﬁ)_ucoi Btanﬁ ) (7)

2 2
H my, My

where my, and mpy are the masses of the SM-like and the new heavy Higgs. We see that the
SIDD amplitude depends in a crucial way on the sizes and signs of M; and u. There are two
options to lower the SIDD amplitude: For large values of ||, the Higgsino components of the
DM candidate become small and the SIDD amplitude is suppressed. Alternatively, the terms
inside the brackets in Eq. (7) can cancel, leading to a suppression of the SIDD amplitude.
The latter option is particularly interesting since it allows |u| to remain of the order of the
electroweak scale; see, for example Ref. [111] for a recent discussion of naturalness and the
connection with direct detection bounds.

Regarding the first term in Eq. (7), if M; ~ —pusin 23, the contributions of the Higgsino-
up and the Higgsino-down admixtures to the (xxh) interaction cancel. The second term
is the contribution to the (yN — x/N) amplitude arising from the ¢-channel exchange of
the non-SM-like heavy Higgs boson H. The generalized blind spot condition for SIDD cross
section of a Bino-like DM candidate is then [43]

2(My + psin2B)  ptan fcos2f
5 ~ 5 ) (8)

mp My

If the condition in Eq. (8) is satisfied, the amplitudes mediated by h and by H exchange
interfere destructively, suppressing the SIDD cross section; a property that also holds at the

one-loop level [112]. Hence, if the neutralino is mostly Bino-like, for a given value of || and

9



M, the cross section is suppressed (enhanced) if ;1 and M; have opposite (the same) sign.?

The value of the heavy Higgs boson mass plays an important role in the blind-spot
cancellation. In the presence of light electroweakinos, the current LHC bounds on my coming
from searches for heavy Higgs bosons decaying into 7-leptons [113-116] can be approximated
by

mpg > 250 GeV X y/tan  ~ 2 my/tan 3 . 9)

For values of my close to this bound, the SIDD amplitude is proportional to

2 My 41
SI 1 K

= 1 =1 10
My S { o (tanﬁ+4)] (10)

To exemplify the relevance of the relative sign and size of u and M;, consider M%I for

tan § = 16. As a reference value for the SIDD amplitude, let us set u ~ —M;. Keeping
M fixed, but increasing the value of u to u ~ —2Mj, the value of Mﬁl becomes a factor
of ~ 1/6 smaller. Let us compare this to the situation if g and M; to have the same sign.
First, we can note that for u = M, the SIDD amplitude is almost a factor 2 larger than for
1 = — M. Furthermore, in order to obtain a reduction of M]S)I by a factor of 1/6, one would
have had to raise the value of y from p ~ M to u ~ 4M;. This exemplifies that obtaining
SIDD cross sections compatible with experimental limits either requires (uM;) < 0 (blind
spot solution) or, to compensate for a positive sign of this product, one must sufficiently
enhance the ratio u/M; (large p solution).

The spin dependent (SD) interactions are instead dominated by Z-exchange, and can only
be suppressed by lowering the Higgsino component of the lightest neutralino. At moderate

or large values of tan 3, the amplitude for SD interactions is proportional to [99]

2
MBP (%) cos2f3 . (11)

Comparison with the results from direct detection experiments [117-120] leads to an ap-
proximate bound on ,

1l 2 300 GeV (12)

with a mild dependence on Mj.
To summarize this discussion, we show the qualitative behavior of the direct detection

cross sections in Figs. 1 and 2 in the M;—u plane. We use approximate analytic expressions

® Note that cos(28) = (1 — tan? 3)/(1 + tan? 3) ~ —1 for moderate-to-large values of tan 3.
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tan f = 15; my = 1000 GeV; My = |M;|+ 80 GeV
i, = my, = |[Mi|+ 90 GeV; my, = | M|+ 80 GeV

400

300 1
200 1

1001

M1 [GGV}
o

—100 7.

—200

—300 1

—400 " .
100 200 300 400 500 600 700

1 [GeV]

FIG. 1. Approximate bounds on the values of y» and M; coming from Aa, and DM direct detection
constraints for tan § = 15 and values of the slepton, Higgs and Wino mass parameters that leads
to consistency with LHC constraints. The areas shaded in the respective colors are consistent with
the current SI and SD direct detection bounds, and in the gray areas bounded by the dashed black
lines we find a MSSM contribution Aa, = (25.1 £5.9) x 10719 explaining the value observed by
the Fermilab and Brookhaven Muon (g-2) experiments. The two darkest gray areas denote the

preferred region of parameter space.

for the cross sections and set the masses of the heavy Higgs boson and tan 5 to character-
istic values. The values of M; and the slepton masses have been chosen to avoid current
constraints from slepton and chargino searches at the LHC, see, for example, Refs. [121—
131]. The regions shaded in the different colors denote the region allowed by current direct
detection constraints on the SD-proton [117, 120], SD-neutron [118, 119], and ST [132-135]
scattering cross section. We see that whereas the SD constraints provide an approximately
symmetric lower bound on p, due to the SI constraints the values of |u| need to be sig-

nificantly larger for positive u x M; than for negative u x M;. We also show the region
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tan = 30; my = 1500 GeV; My = |M;|+ 80 GeV
mg, =my, = |Mi|+ 90 GeV; mg, = |M;|+ 80 GeV

400

300 1
200 1

1001

M1 [GGV}
o

~100 4.
—200 -

—300 1

—400 " .
100 200 300 400 500 600 700

1 [GeV]

FIG. 2. Same as Fig. 1 but for tan 8 = 30.

where the MSSM contribution explains the (g, — 2) anomaly in Figs. 1 and 2 with the gray
shade bounded by the dashed black line. The shape of the region preferred by Aa, may
be understood from the interplay between the Bino- and Wino-mediated contributions. For
large values of |u|, the Bino contribution tends to be the most relevant one. If one considers
positive values of ;1 x Mj, it gives a positive contribution to Aa, which can account for the
(g, — 2) anomaly for sufficiently large values of tan 5. However, for smaller values of |u|
and negative values of p x My, as required by the blind spot solution, the Bino contribution
tends to be subdominant and neither has the sign nor the magnitude to account for the
(g, —2) anomaly. If anything, depending on the sign of M; x M, it will partially cancel the
Wino contribution to Aa,. For smaller values of |;|, an explanation for the (g, —2) anomaly
requires a Wino-mediated contribution enabled by p x Ms > 0 and moderate values of M.
We stress that our preferred region is the intersection of the a, and the direct detection

contours, corresponding to the regions with the darkest shade.
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B. Aa, and the DM Relic Density

For a Bino-like DM candidate with mass in the few hundred GeV range, the observed
relic density can be realized via thermal production through different mechanisms, such as
co-annihilation with sleptons or charginos [136-141], t-channel annihilation via light left-
right mixed staus [142] or smuons [143], or resonant s-channel annihilation [139, 140]. In
Tables I and II we present a few benchmark scenarios which simultaneously accommodate
the (g, — 2) anomaly and a viable DM candidate. All of them are consistent with the
observed relic density, the observed value of Aa,,, and satisfy the LHC constraints as well as
constraints from direct detection. Bounds from Higgsino and Wino pair production depend
on a careful consideration of the decay branching ratios [144, 145]. For the aim of this
work, however, we have consider a compressed spectrum, for which the Wino production
constraints are weakened. The results for the spectrum, Aa,,, relic density as well as the SI

and SD cross sections have been obtained with Micromegas v 5.2.7.a [146-148].

e The most natural benchmark is that associated with a light smuon. The proper relic
density may be obtained by co-annihilation of the lightest neutralino with the muon

sneutrino. The benchmark BMSM gives a representation of such a possibility.

e Another similar solution is associated with the co-annihilation of a light stau with the
lightest neutralino, something that happens naturally at large values of tan 3, where
the lightest stau is pushed to masses lower than those of the sneutrinos. BMS1 gives

a representative spectrum consistent with such a possibility.

e A light neutralino can also annihilate via the interchange of a ¢t-channel stau. BMS2

gives a representation of this possibility.

e BMS3 represents a case of mixed co-annihilation with charginos and staus.

Although the mechanism controlling the relic density is different for the different benchmark
points, all of them present similar characteristics. They feature masses of weakly interacting
sparticles masses lower than about 500 GeV and values of tan S of the order of a few 10’s,
leading to values of Aa, in the desired range. All of them have negative values of p x M;

and positive values of uMs, as discussed above.
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BMSM|BMS1|/BMS2|BMS3

my [GeV] | 287.0 |231.5| 92.6 |172.5

BMSM|BMS1|BMS2|BMS3

ms [GeV] | 464.9 | 241.8 | 104.6 | 189.2

M [GeV] | -290 | -234 | -96 | -175

mj, [GeV] | 303.2 |395.0|120.4 | 195.0

Ms [GeV] | 350 | 280 | 212 | 210

my, [GeV] | 496.0 | 293.3 | 264.5 | 267.7

w [GeV] 500 | 460 | 350 | 355

mg, [GeV] | 293.3 |395.0 | 264.6 | 267.7

M;? [GeV]| 300 | 400 | 272 | 275

m, [GeV] | 334.5 [267.5|208.2|193.7

M3 [GeV] | 500 | 300 | 272 | 275

Aay, 10° 243 | 2.98 | 2.66 | 2.06

My? [GeV]| 300 | 300 | 112 | 190

Qpumh? 0.116 |0.120 | 0.118 | 0.121

M3 [GeV] | 500 | 300 | 112 | 190

oSt [10710pb]| 2.01 | 1.26 | 0.11 | 0.98

My [GeV] | 1800 | 1800 | 1500 | 1000

oxP [10-%pb]| 4.67 | 5.27 | 10.1 | 13.8

tan 3 40 | 40 | 25 | 15

oST[10~19pb]| 2.00 | 1.24 | 0.11 | 0.95

oSP [1075pb]| 3.77 | 423 | 7.9 | 10.9

TABLE I. Values of the MSSM parameters, mass spectrum and quantities relevant for dark matter
and (g, — 2) for the case of Bino-like DM co-annihilating with a muon sneutrino (BMSM), co-
annihilating with a light stau (BMS1), annihilating via stau mediated ¢-channel (BMS2) and co-

annihilating with staus and charginos (BMS3).

In Table II we present benchmarks for which the sleptons do not give a relevant contri-

bution to the thermal production of the DM relic density:

e The lightest neutralino may co-annihilate with the lightest chargino, due to the small
mass difference. The LHC bounds may be avoided due to the compressed spectrum.

The benchmark BMW represents such a possibility.

e The lightest neutralino can acquire the proper relic density via resonant s-channel

annihilation. BMH1 and BMH2 represent such a possibility.

The proper thermal relic density may be obtained via resonant s-channel annihilation me-
diated by either the Z, the SM-like Higgs (h) or the heavy Higgs bosons, A and H. For
the values of tan 8 necessary to enhance Aa,, the bounds on the heavy Higgs bosons be-
come very strong, implying a heavy spectrum. Indeed, using the bounds on my provided in

Eq. (9) and the approximate expression for Aa,, Eq. (6), and assuming that all the weakly
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BMW| BMHI BMH?2
FEETS R, EE—. my, (my) [GeV]| 224.6 |60.1 (124.8)(60.8 (124.9)
mz [GeV] [303.3| 708.1 693.1
M [GeV] | -227 | -62. | 62.4
mp, [GeV] 3329 7214 721.4
My [GeV] | 260 | 140. | 130.
GVl my, [GeV] [325.9| 717.2 717.2
p [GeV] | 450 | 320 | 500.
2 Gev] mg, [GeV] [325.9| 717.2 717.2
M, [GeV]| 332 | 720 | 720
L m s [GeV] |247.9| 1402 135.6
M3 [GeV] | 332 | 720 | 720 !
Aa,, 10° 2.13 2.38 2.11
ML [GeV]| 330 | 720 | 720
i Qpmh? 0.117 0.116 0.121
M3 [GeV] | 330 | 720 | 720
o [1071%pb] | 1.20 | 3.6 1073 0.37
M4 [GeV] | 1500 | 2000 | 2500 B—
oyP [10-%pb] | 5.7 13.1 2.4
tan 3 25 40 45
oS [1079pb] | 1.19 | 521073 0.39
oSP [107%pb] | 4.6 10.2 1.9

TABLE II. Same as Table I but for the case of co-annihilation with a Wino (BMW) and resonant
s-channel annihilation via the SM-like Higgs boson (BMH1 and BMH2). For BMH1 and BMH2

we also provide the mass of the SM-like Higgs boson mj, between brackets.

interacting sparticles have masses close to my /2, the maximal value for Aa, that may be

obtained is

4
Aay, ~107° tan B (100 GeV)? <7 x 107", (13)

which is a factor of a few smaller than the observed anomaly. Therefore, we shall not discuss
this particular solution further.

Regarding the resonant s-channel annihilation via the Z-boson, it presents similar char-
acteristics to resonant annihilation mediated by the SM-like Higgs, h. We therefore present
two example of the latter case. The two examples are related to the fact that, for such small
values of M; ~ 60 GeV, values of |u| < 500 GeV may lead to the desired suppression of the
cross section for either sign of p. This follows, for instance, from Eq. (7), from where we also
observe that for positive values of p x M1, values of my significantly larger than the current
experimental bounds are preferred. Observe that in the case of BMH1 and BMH2 we chose
the sleptons to be heavy to avoid the bounds from the LHC, hence, the proper values of Aa,,

require relatively large values of tan 5. An extended discussion of the region of parameters
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consistent with Aq,, for these s-channel annihilation are presented in Ref. [99].

Let us finally note that while we have chosen benchmark points compatible with current
bounds on heavy Higgs bosons, sleptons, and charginos from the LHC, these models are
within the reach of future runs of the (HL)-LHC and, in the case of sleptons and charginos,
future lepton colliders, see, for example, Refs. [149-161].

IV. SUMMARY AND CONCLUSIONS

In this article we present several possible extensions of the Standard Model that can lead
to an explanation of the value of Aa, measured at the Fermilab and Brookhaven experiments.
While the simplest explanation is just the addition of a scalar particle, one can also rely on
new gauge bosons, vector-like fermions or leptoquark models. The leptoquark (or R-parity
violating supersymmetry) solution seems to be interesting since it can accommodate not
only the values of Aa,,, but can also lead to an explanation of the flavor anomalies, although
at the prize of a delicate tuning between the couplings of the leptoquarks to quarks and

leptons.

This work puts most emphasis on a solution based on the Minimal Supersymmetric ex-
tension of the Standard Model, in which, although one cannot address the flavor anomalies,
one can find solutions leading to a compelling DM explanation. In particular, we discuss
the conditions that are required to be consistent with the observed Aa,,, existing direct dark
matter detection constraints, and the bounds from the LHC on new Higgs bosons and su-
persymmetric particles. We stress the importance of negative values of pu x M; to satisfy the
direct detection constraints for small values of || and consider the impact of this condition
on the resulting values of Aa,. In general, the measured values of Aa, are consistent with
moderate or large values of tan 8 and light electroweak interacting supersymmetric parti-
cles. The observed relic density may be produced via a wide range of different mechanisms,
including co-annihilation with sleptons, ¢-channel annihilation mediated by staus, or reso-
nant s-channel annihilation mediated by the Standard Model-like Higgs or Z bosons. The
resonant s-channel annihilation mediated by heavy Higgs bosons, on the other hand, tends
to require heavy supersymmetric particles leading to values of Aa, that are smaller than

those recently observed by the Fermilab Muon (g-2) experiment.
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