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Abstract— With the advances in wireless communications to-
wards beyond 5G (B5G) and 6G networks, new signal processing
and resource management methods need to be explored to over-
come the channel impairments and other radio and computing
obstacles. In contrast to the conventional methods which are
based on classic digital communications structures, B5G and 6G
will leverage artificial intelligence (AI) to configure or adapt the
radios and networks to the operational context. This requires
the ability to reformulate legacy transceiver structures and drive
research, development and standardization that can leverage the
amount of data that is available and that can be processed with
the available computing technology. This paper describes this
vision and discusses successful research that justifies it as well as
the remaining challenges. We numerically analyze some of the
tradeoffs when replacing the physical layer receiver processing
with an artificial neural network (ANN).

Index Terms—ANN, Equalizer, Hidden Layers.

I. INTRODUCTION

Wireless communications have gone through decades of
innovation. Cellular communications networks have provided
true mobile broadband services since the deployment of 4G
long-term evolution (LTE). 5G networks will expand the
wireless connectivity and networking for extended use cases
beyond mobile broadband, where low latency, high reliability
or massive connectivity is needed. Although 5G technology
and systems are still being enhanced by academia and industry,
6G proposals are already underway and it is a valid question
to ask what 6G will be. Before we can answer this question,
we first need to look at the requirements.

Compared to 5G, 6G systems are needed to satisfy the
increasingly heterogeneous communications requirements of
applications and services, and to enable new applications and
services. Some of the envisaged requirements are [1]:

• ultra-high data rates of up to 1 Tb/s;
• ultra-high energy efficiency;
• massive low-latency access and response
• operation in extended frequency bands, from microwave

to visible light communications.

As predicted in [1], the future of 6G will shift from network
software to network intelligence. For instance, two important
features of 5G, software defined networking (SDN) and net-
work functions virtualization, have enabled evolving modern
communications networks to software-based virtual networks.
However, by having more heterogeneous and more complex
networks, softwarization alone is insufficient to support 6G.

Artificial intelligence (AI) is driving many applications and
services of modern information technology (IT) systems. The
advances in computing have motivated scientists to consider
AI for designing and operating future wireless networks.
Recent research has shown that it is feasible to apply machine
learning (ML) to radio frequency (RF) signal processing,
baseband signal processing and higher layer processing [2].
AI will impact 5G systems [3], but it is expected to be the
foundation of next generation wireless networks.

Our vision of 6G is that of an intelligent network that
builds on top of software-defined radios (SDRs) and SDN,
and merges them into an end-to-end software configurable
system with node, edge and central network intelligence. Fig.
1 illustrates this. 6G will use AI agents to control network
functions; other functions may implement AI processing algo-
rithms. Moreover, AI will be used to calibrate, configure and
maintain the network functions as well as ensure the integrity
of the subsystem, system and network.

This paper surveys trends and recent results of AI em-
powered radio communications. We identify the opportunities
as well as the research and technological challenges and
analyze the performance and tradeoffs for a simple use case.
Section II provides an overview of AI and artificial neural
networks (ANN), in particular, and compares the opportu-
nities and challenges for trending uses of AI in modern
wireless communications contexts. Section III analyzes the
performance of an ANN-based equalizer and demodulator that
substitutes established baseband signal procession solutions of
radio receivers. We describe the working principles, evaluate
different ANN structures, and discuss the design tradeoffs.
Section IV draws the conclusions.

II. B5G AND 6G NETWORKS AND THE ROLE OF AI
A. Cellular Network Evolution

The goal of 5G is to provide wireless communication
services that can support various user applications, industrial
verticals, and mission critical services, among others. There-
fore, 5G aims at supporting three service types: ultra reli-
able low-latency communications, enhanced mobile broadband
and massive machine-type communications. New performance
criteria in terms of reliability, latency, capacity, density of
connections, spectral efficiency, throughput, and so forth are
suggested for the above application categories which need to
be addressed by 5G systems. To satisfy these criteria, the key
technologies include massive multiple-input multiple-output



Fig. 1: An overview of 5G/6G-enabled network applications.

(MIMO), heterogeneous ultra-dense networks, new radio ac-
cess technologies, mmWave access, advanced channel coding
and decoding. Since 5G networks will be heterogeneous,
serve numerous devices, and offer different operational modes
5G and beyond 5G (B5G) networks will be virtualized and
implemented in part in Edge computing nodes and data centers
using Cloud technology [11]. One of the key features of such
networks is network segmentation, which will leverage new air
interfaces that are designed to dynamically optimize spectrum
resources allocated to subnetworks, services, or applications
[12]. AI has been proposed as a promising solution to meet
these increasingly heterogeneous networking demands.

B. AI Origins and Principles

Machines and systems which are able to learn and operate
intelligently are defined as AI. With the advent of AI in
the 1950s, being the result of the increasing improvement of
modern computing and data storage technologies, AI research
and development achieved important advancements, but also
faced challenges. Academic research and industrial deploy-
ments, specifically in the software sector, has intensified in the
recent years. There exist several real-world problems for AI,
including data fitting, clustering and optimization, which are
well suited for genetic algorithms or ANNs; However, features
such as self-optimization makes AI a compelling target for
cyber attacks [13]. In the broader IT industry, various problems
are being solved employing AI-based learning techniques.

There are two broad categories for AI learning: supervised
and unsupervised learning. A third learning approach is rein-
forcement learning, which can be considered in between su-
pervised and unsupervised learning. It operates by interacting
with the environment and learns by reinforcing the decision
that lead to a good outcome. Supervised learning needs labeled
data to train the network and configure it. Unsupervised
learning does not need labeled data, but rather the network

extracts the important information on its own from the input
data. Classification techniques such as k-means fall into the
category of unsupervised learning. Neuronal networks can
be unsupervised or supervised. Multi-layer perceptron neural
networks, which we exemplify in Section III, use labeled data
for training.

C. AI Adoption in Wireless Networks

Several review papers have been published about using ML
and AI in wireless communications, especially in the context
of 5G and 6G. In [12], the authors provide an overview of
several communications problems where AI can be used and
can outperform traditional communications techniques. They
also discuss where the performance of AI algorithms may be
not beneficial considering their complexity. In the 5G context,
the authors propose applying AI at the physical (PHY) layer,
where certain signal processing blocks in the transmitter and
receiver are replaced by ANNs. In the context of 6G, [1] talks
about how AI will be beneficial for the 6G architecture design
and end-to-end optimization. It envisions the full PHY layer
processing chain becoming an intelligent PHY layer where AI
and, specifically, deep learning (DL) will enable self-learning
and self-optimization. Additional recommendations on how to
apply DL and AI at the PHY layer in a wireless communi-
cations system are presented in [9]. The paper discusses the
application of AI in different channels and how to scale it to
multiple transmitters and receivers. The results compare the
block error rate (BLER) when using AI with the BLER of
traditional transceivers to demonstrate the feasibility.

Table. I summarizes recent research efforts that explore
AI for wireless communications with application to 5G/6G
networks. These contributions show promising opportunities,
but they also indicate the practical challenges which will
lead to continuing research and future breakthroughs. The
common theme of replacing the traditional model based signal



TABLE I: ANNs applied to advanced wireless communications and networking.

Reference Main Contributions Challenges

[4]

• Compares the traditional model-based approaches and the
emerging AI-based solutions for wireless networks and dis-
cusses the role of ANN for the future of wireless communi-
cations

• Provides a thorough explanation of ML and DL, the different
architectures and algorithms

• Computational complexity, especially during the learning
process

• A lot of data needed for an ANN to result in satisfactory
performance

• Difficulty to gather sufficient amount of data within the
coherence time of the channel

• Distributed ANN might lead to instabilities
• Difficulty to achieve robustness against corrupted data

[5]

• Covers the difficulties of applying conventional ML and signal
processing approaches to wireless communications and how
combining these methods can revolutionize the PHY layer of
6G

• Proposes hardware-efficient model-driven DL approaches

• Performance limited to the accuracy of the optimization
problem

• Difficulty of online learning, which is needed for the dynamic
nature of the proposed scenario

• Choosing the best appropriate hyper parameters and loss
functions for the convergence of the system

• Security

[6]
• Analyze the wireless channel statistics and estimates the angle

of arrival for massive MIMO using a DL
• Computational complexity
• Convergence time for optimizing the network

[7]

• Explains the opportunities and issues using AI for classifica-
tion and management of nonlinearity in 6G and future wire-
less systems considering deep learning based optimization

• Input noise, which can lead to disastrous system configura-
tions

[8]

• Compares neuroscience and wireless communication theory
in two ways, namely, what neurscience offers to 6G and how
6G systems provide new visions to study the brain

• Accurate new models for the brain that can be used in a
wireless network framework and vice versa

[9]

• Proposes an end-to-end wireless communication system using
an autoencoder

• Designs signals using AI (ANN)
• Shows how the proposed ANN structure optimizes itself for

different wireless channels

• Limited data sets
• Determining the optimal data representation, loss-function

and training strategies
• The need for complex-valued neural networks to properly

represent the baseband representation of wireless signals

[10]

• Traffic flow and vehicle trajectory prediction based on gaus-
sian mixture models (GMM)

• Network congestion and handoff control by fuzzy Q-learning
approach

• High complexity of the method to train and point millimeter
wave beams in vehicular networks

• Security during training

processing structures with data-driven learning solutions is
that data needs to be available for training. Moreover, the
dynamics of wireless networks require dynamic adjustments
and, hence, retraining, which can be costly in terms of
computational complexity and time. While ANNs are flexible
and can model nonlinearity that is inherently present in RF,
when the characteristics change, the trained ANN may fail to
provide acceptable performance. ANNs lack accuracy if the
training data is corrupted or not representative and they lack
robustness if environmental or operational parameters change.
Specifically, the dynamics of wireless channels, systems, and
communications context can lead to unexpected behavior of
such data-driven solutions. The data dependency can also be
exploited to harm the network [14]. Hence, the robustness
of AI-controlled network functions needs to be investigated
prior to relying on those in production networks.

III. ANN MODEL AND NUMERICAL ANALYSIS

A. ANN Model

In order to illustrate the feasibility of an AI-empowered
wireless receiver and discuss the design tradeoffs, we study
the performance of an ANN-based equalizer and demodulator

compare the system performance in terms of the bit error rate
(BER) with the optimal Maximum Ratio Combining (MRC)
receiver.

The AI system employed in this paper falls in the category
of supervised learning. Labeled data is needed for supervised
learning. Therefore, a portion of a data block that is sent over
the wireless channel is dedicated to pilot symbols, which are
known to the receiver. The received pilots are used to configure
the ANN whose role is to equalize or mitigate the channel
impairments and facilitate coherent data demodulation at the
receiver. This process typically consists in determining the
weights associated with the neurons given a network archi-
tecture. This process is known as training where the training
data are the pilot symbols that form part of the control signals
and are well-specified in modern communications protocols to
enable highly efficient communications.

If we assume L hidden layers, the k-th output neuron of the
proposed ANN is

yk(x,w) = α
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w
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Fig. 2: Multi Layer Perceptron (MLP) structure employed for
learning with sigmoid and linear activation functions.

The output of each hidden layer is the input to the next layer
and x0 = 1 for simplicity to account for biases in the learning
process. Parameters α, β, ... represent the activation functions
(AF) in each hidden layer and emphasize that each layer can
have its particular AF. In the proposed ANN structure, the AF
in the hidden layers is the sigmoid function:

y(x) =
2

1 + e−2x
− 1. (2)

The reason of using the sigmoid AF is that it bounds the
signal scale of neurons to between -1 and 1. This makes the
learning process faster and the ANN reaches the local or global
optimum quicker. In other words, when the input signal scale
at the neurons in the inner hidden layers are far from each
other, it results in excessive oscillation of the weight update by
the gradient descent approach. The linear AF is applied for the
output layer with the aim of comparing the ANN output with
the target to estimate the error. Fig. 2 clarifies the employed
structure.

The question that arises is about the best structure of the
ANN, specifically what the number of layers and neurons per
layer should be. As stated in [15], our goal is to minimize the
error function with respect to the target values which are the
pilot symbols here T = {t1, t2, ..., tn} as follows:

E(w) =
1

2

N∑
n=1

{y(xn, w)− tn}2. (3)

Because of the nonconvex structure of y(xn, w), it is
difficult to devise an approach to determine the optimum ANN
structure and weights for the above error function. Therefore,
we numerically analyze different ANN architectures.

B. Simulations

We propose different ANN architectures for the ANN-based
equalizer and demodulator and use the mean square error
(MSE) metric for their evaluation. It is worth noting that the
proposed ANN starts learning symbol-by-symbol, instead of
using a batch learning method. To put it simple, symbol-by-
symbol detection results in lower complexity and lower input
dimension which allows reaching the near global optimum

Fig. 3: Increasing the number of neurons in a network with a
single hidden layer.

Fig. 4: Increasing the depth of the ANN for a fixed number
of six neurons in each hidden layer.

through the learning process. For the sake of simplicity, we
use quadrature phase shift keying modulation. Higher order
modulation, multi-channel communications, and other channel
models can be equivalently analyzed.

As Fig. 3 shows, the performance of the ANN improves
significantly when increasing the number of neurons in a single
hidden layer and reaches a steady state with six neurons. This
means there is no gain in further increasing the number of
neurons. Moreover, the number of iterations needed to obtain
the best weights is also shown. With 6 neurons in the hidden
layer a MSE of -66 dB is achieved after only 10 iterations.

Fig. 4 plots the ANN performance as a function of the
depth of the network for a fixed number of six neurons
per layer. This can provide insights on how the equalizer
performs using a deep neural network. As the results show,
there is no significant difference in the performance between

Fig. 5: Varying the number of neurons and hidden layers.



Fig. 6: Comparison between transmit and receive diversity
techniques and the ANN equalizer and demodulator.

1 and 4 hidden layers. With more than four hidden layers,
the performance deteriorates sharply. Adding additional layers
adds more complexity and over fitting could be one reason for
this degradation in performance. We conclude that only one
hidden layer with six neurons suffices here. Slightly better
performance is achieved with two hidden layers at a cost of
slower convergence in determining the weights.

Next we vary both the number of neurons and hidden
layers simultaneously. This ANN architecture resembles that
of an autoencoder. For instance, the index six refers to the
[6, 4, 2, 4, 6] ANN layer structure, i.e. three hidden layer with
symmetry in the number of neurons per layer. Fig. 5 plots
the results that show a higher MSE and more iterations when
compared to the previous results. This indicates that this kind
of neural network structure is not suitable for this application.

Fig. 6 finally evaluates the proposed ANN (one hidden layer
with 6 neurons) with transmit/receive diversity techniques in
a frequency selective Rayleigh fading channel with parameter
σ2 = 1. Although the ANN does not have any information
about the channel and uses only 5 percent of the data for
training, it is within 1 dB of the BER performance of the
MRC with perfect channel state information (CSI). Moreover,
since we have two antennas in the receiver and the transmitted
symbols are complex, we need to apply the real and imaginary
part of symbols separately to the ANN; therefore, we have
4 neurons in the input layer. The stochastic gradient descent
momentum algorithm is employed for updating weights with
the aim of reaching the global optimum. The BER curves for
both transmit diversity using Orthogonal Space Time Block
Codes (OSTBC) [16] and no diversity are included here for
reference.

IV. CONCLUSIONS

This paper discusses the opportunities and challenges of AI-
empowered radios with focus on the PHY layer. In order to
illustrate the working principles of an ANN for implementing
part of a radio receiver, and to examine the knobs and
tradeoffs, we compare different architectures. Specifically, we
vary the number of neurons in each layer and the number
of hidden layers to evaluate the system performance and the
iterations needed to find the optimum weights. The results
show two things: The ANN receiver performs comparably to

the conventional receiver in terms of BER. With only one
hidden layer and six neurons it achieves -66 dB MSE after
only 10 iterations, which is very fast. Moreover, by consider-
ing two additional channels—multiple-input, single-output for
diversity at the transmitter and single-input, multiple-output
for diversity at the receiver—the results show the effectiveness
of a simple ANN equalizer and demodulator without CSI.

Ongoing research has shown the promising applications of
different AI methods to manage or implement different parts of
modern wireless networks. AI will play a dominant role for 6G
network operations. The main challenges are the availability
of quality data for training, the training complexity, and the
robustness and security of data-driven network architectures.
Research and development needs to address those system-
atically to understand the remaining risks and limitations
of AI applied to wireless communications. We envisage AI
working in conjunction with traditional model based methods,
complement them, and gradually replace them where feasible.
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