
WEBGRAPH:
Capturing Advertising and Tracking Information Flows for Robust Blocking

Sandra Siby
EPFL

Umar Iqbal
The University of Iowa

Steven Englehardt Zubair Shafiq
University of California, Davis

Carmela Troncoso
EPFL

Abstract
Millions of web users directly depend on ad and tracker

blocking tools to protect their privacy. However, existing ad
and tracker blockers fall short because of their reliance on
trivially susceptible advertising and tracking content. In this
paper, we first demonstrate that the state-of-the-art machine
learning based ad and tracker blockers, such as ADGRAPH, are
susceptible to adversarial evasions deployed in real-world. Sec-
ond, we introduce WEBGRAPH, the first graph-based machine
learning blocker that detects ads and trackers based on their
action rather than their content. By building features around
the actions that are fundamental to advertising and tracking
– storing an identifier in the browser, or sharing an identifier
with another tracker – WEBGRAPH performs nearly as well as
prior approaches, but is significantly more robust to adversarial
evasions. In particular, we show that WEBGRAPH achieves
comparable accuracy to ADGRAPH, while significantly de-
creasing the success rate of an adversary from near-perfect
under ADGRAPH to around 8% under WEBGRAPH. Finally,
we show that WEBGRAPH remains robust to a more sophis-
ticated adversary that uses evasion techniques beyond those
currently deployed on the web.

1 Introduction

Users rely on privacy-enhancing blocking tools to protect
themselves from online advertising and tracking. Many of
these tools—including uBlock Origin [1], Ghostery [2], Fire-
fox [3, 4], Edge [5], and Brave [6]—rely on manually curated
filter lists [7, 8, 9] to block advertising and tracking. The re-
search community is actively developing machine learning
(ML) approaches to automate the detection of advertising and
tracking and make filter lists more comprehensive. The first
generation of ML-based blocking approaches analyze network
requests [10, 11, 12] or JavaScript code [13, 14, 15] to learn dis-
tinctive behaviors of advertising and tracking. However, these
ML-based blocking approaches are highly susceptible to ad-
versarial evasion techniques that are already found in the wild,

including URL obfuscation [16] and code obfuscation [17]. To
address this limitation, the next generation of ML-based block-
ing approaches leverage cross-layer graph information from
multiple layers of the web stack [18, 19]. These approaches
claim better robustness to evasion, as compared to single-layer
approaches, due to their use of structural features of the graph
(i.e., the hierarchy of resource inclusions) in addition to tradi-
tional content features (i.e., the resource’s network location or
response content).

In this paper, we show that state-of-the-art ad and tracker
detection approaches, such as ADGRAPH [18], are susceptible
to adversarial evasion due to their disproportionate reliance on
easy-to-manipulate content features. We show that a third-party
adversary can achieve 8% evasion success by manipulating
URLs of its resources. Worse yet, an adversary can achieve
near-perfect evasion—as high as a 96% success rate—if they
collude with the first party, e.g, by using the CNAME cloaking
technique already deployed by some trackers [20, 21].

We introduce WEBGRAPH, the first ML-based ad and
tracker blocking approach that does not rely on content features.
WEBGRAPH improves the cross-layer graph representation by
capturing a fundamental property of advertising and tracking
services (ATS): the flow of information from one entity to the
browser’s storage, the network, and to other entities loaded on
a page. The intuition behind adding these features is to focus
on the actions of the advertising and tracking services, rather
than the contents of their resources. We posit that actions are
harder to obfuscate. Advertising and tracking scripts need to
generate and store identifiers for users, and those identifiers
must be shared with any other entity with which they wish
to share data (e.g., via cookie syncing [22]). Ultimately, if a
script wishes to store an identifier in the browser, it will need
to call a browser API, and as such, we monitor the flow of
information to and from browser APIs. We build a graph rep-
resentation of the page load by monitoring network requests,
JavaScript execution, HTML element creations, and browser
storage access. From this graph we extract flow features, which
explicitly capture distinctive information flows in advertising
and tracking. Our evaluation shows that WEBGRAPH’s graph

1

ar
X

iv
:2

10
7.

11
30

9v
1 

 [
cs

.C
R

] 
 2

3 
Ju

l 2
02

1



representation and flow features can entirely supplant content
features, with comparable accuracy.

While high accuracy is necessary for deployment, it is not
sufficient. We have repeatedly seen that advertisers and track-
ers will attempt to circumvent detection and evade blocking
[16, 17, 20]. Therefore, in order for an advertising and tracking
classifier to be useful in practice, it must be robust to adver-
sarial manipulation. We show that WEBGRAPH represents a
significant step forward in robustness to adversarial evasion
when compared to previous approaches. In particular, we find
that WEBGRAPH is robust to the types of URL, CNAME, and
content manipulation evasion techniques that are in use on the
web today. We also know that ad and tracking adversaries will
attempt to deploy more sophisticated evasion techniques tai-
lored to our classifier. To understand how robust WEBGRAPH
would be in the face of these new evasion techniques, we pro-
pose a novel realistic graph manipulation evasion technique.
We show that this attack achieves only limited evasion success
against WEBGRAPH, while incurring a non-trivial usability
loss in terms of mistakenly blocking its own advertising/track-
ing resources or other benign resources on the web page.

Overall, our findings suggest that the community should
migrate away from unreliable content features for advertising
and tracking blocking. We show that information flow features
built upon the actions of advertisers and trackers provide a
promising path forward.

In summary, our contributions are as follows:
• We show that existing ML-based ad and tracker detection

approaches are susceptible to evasion due to their heavy
reliance on content features. As a representative example,
we show how an adversary can achieve near-perfect eva-
sion of ADGRAPH using evasion techniques already in
use on the web today.

• We introduce WEBGRAPH, the first ML-based ad and
tracker blocking approach that does not rely on content
features and captures fundamentally distinctive informa-
tion flows in advertising and tracking.

• Our in-depth evaluation shows that WEBGRAPH achieves
comparable accuracy to prior approaches and achieves
significantly better robustness to adversarial manipulation
of content features.

• We propose a novel graph manipulation evasion tech-
nique, and show that WEBGRAPH (and the information
flow features it relies on) remain robust under this sophis-
ticated attack.

Paper organization: The rest of this paper is organized as
follows: Section 2 provides an overview of recent advance
in ML-based ad and tracker blocking. Section 3 evaluates ro-
bustness of existing graph-based approaches, using ADGRAPH
as a representative example. Section 4 describes the design
and evaluation of WEBGRAPH. Section 5 further evaluates
WEBGRAPH’s robustness to adversarial attacks. We discuss
limitations of our work in Section 6 and conclude in Section 7.

2 Background & Related Work

Online behavioral advertising enables ad targeting based on
users’ interests and behaviors. To target ads, online advertising
relies on the intertwined tracking ecosystem that uses cook-
ies for cross-site tracking. For instance, the real-time bidding
(RTB) protocol that powers programmatic online advertising
has built-in mechanisms for advertisers and trackers to share
information [22, 23]. Thus, almost always, ads and trackers
go together, often with intertwined execution flows and re-
source dependencies. Below, we revisit prior literature on ad
and tracker blocking, and analyze its limitations.

Popular ad and tracker blocking tools such as Adblock Plus
[24] rely on filter lists [7, 8]. These filter lists are manually
curated based on user feedback. Prior work has shown that
manually curated filter lists suffer from scalability and robust-
ness issues. First, filter lists have trouble keeping up with the
ever expanding advertising and tracking ecosystem. Filter lists
have grown to include tens of thousands of rules that are of-
ten not updated in a timely fashion. For instance, prior work
showed that filter lists may take as long as 3 months to add
rules for newly discovered ads and trackers [25]. Once a filter
rule is added to block an advertising and tracking service, it
is rarely removed, even if it is no longer needed. In fact, prior
work showed that almost 90% of the rules in filter lists are
rarely or never used [16]. Second, filter lists are not robust to
evasion attempts by advertisers and trackers. Filter lists are
brittle in the face of domain rotation [26, 27] and manipulation
of page structure [28, 29, 30]. For instance, prior work showed
that filter lists are susceptible to evasion attacks such as ran-
domization of URL path, hostname, or element attributes and
IDs [31, 32].

Addressing scalability. To address the scalability issues that
arise due to manual curation of filter lists, researchers have
proposed to use machine learning (ML) for automated ad and
tracker blocking. Prior ML-based approaches mainly detect ads
and trackers at the network and JavaScript layers of the web
stack. Specifically, these approaches detect ads and trackers by
featurizing network requests [10, 11, 12] or JavaScript code
[13, 14, 15].

Network layer approaches rely on content in URLs, HTTP
headers, and request and response payloads (e.g., keywords,
query strings, payload size) to extract features and train ML
models to detect ads and trackers [10, 11]. While trying to
mimic filter lists by detecting ad and tracker URLs, these ap-
proaches end up replicating some characteristics of filter lists
and thus also naturally inherit their shortcomings. For example,
presence of a certain keyword in the request URL could be
a distinguishing feature. However, as discussed earlier, such
keyword based features are brittle in the face of trivial evasions
such as domain rotation [31, 32].

JavaScript layer approaches rely on static or dynamic anal-
ysis to extract features and train ML models to detect ads
and trackers. Examples of features are n-grams of code state-

2



ments obtained via static analysis [15] or JavaScript API invo-
cations captured via dynamic analysis [13]. These approaches
are susceptible to JavaScript obfuscation [33, 34, 35]. These
approaches are also susceptible to evasion such as script amal-
gamation or dispersion. They implicitly assume that tracking
code is bundled in a single script or that tracking scripts only
contain tracking code. However, in practice, tracking code
could be distributed across several chunks and packaged with
functional code [18].

Addressing robustness. While network and JavaScript layer
approaches consider information at each layer in isolation, ads
and trackers rely on all three layers (i.e. network, JavaScript,
and HTML) of the web stack for their execution. Therefore, it is
natural that focusing on only one layer lacks robustness against
the aforementioned evasion attempts. To address this limitation,
graph-based approaches aim to capture the interactions among
and across network, JavaScript, and HTML layers of the web
stack.

Graph-based approaches extract features from the cross-
layer graph representation to train ML models to detect ads
and trackers [18, 19]. These approaches leverage rich cross-
layer context and thus claim to be robust to evasion attempts.
ADGRAPH was the first graph-based approach to ad and tracker
classification [18]. It extracts structural features from the graph
such as node connectivity and ancestry information as well as
content features such as URL length and presence/absence of
certain keywords. Sjösten et al. [19] introduced PageGraph,
which extends ADGRAPH’s graph representation by improv-
ing event attribution and capturing more behaviors. In addi-
tion to content and structural features, they also added percep-
tual features to train the classifier. Since perceptual features
attempt to use the rendered resource content, they are also
considered content features. Chen et al. [36] proposed an ap-
proach, using PageGraph, to detect trackers based on their exe-
cution signatures. In contrast to ML-based approaches, their
signature-based approach would only be able to detect trackers
that strictly match the signatures of tracking scripts, but miss
trackers with even slight deviations in their behavior, such as
changes in the execution order. Kargaran et al. [37] followed
a different approach. Instead of building a graph representa-
tion per website, they combined graph representations across
multiple websites to model relations between third parties on
those sites. Just like ADGRAPH, they also extract structural
and content features from the graph to train the classifier.

These graph-based systems use a combination of content
and structural features for classification, which they claim in-
creases the robustness to evasion attacks. While this combina-
tion should intuitively improve classifier robustness, we posit
that it would be less robust than expected if the classifier relies
heavily on content features. This is because content features
pertain to a single node on the graph and are easy to manipu-
late for an adversary, e.g., using adversarial attacks on textual
[38] and perceptual [39] content features, without causing un-
desired changes in other nodes. It is noteworthy that Zhu et

al. [38], also manipulate structural features, however their ma-
nipulations are only limited to graph size. Further, they do not
evaluate the impact of their mutations on overall graph.

In the next section, we analyze the robustness of graph-based
ad and tracker detection systems. We focus on ADGRAPH as it
is representative of other graph-based systems that use similar
structural and content features.

3 ADGRAPH Robustness

In this section, we analyze ADGRAPH’s robustness by evaluat-
ing its accuracy in the face of adversarial content manipulation.

ADGRAPH is a graph-based machine learning approach that
detects ads and trackers based on their structural and content
properties. ADGRAPH instruments the Chromium web browser
to capture detailed execution of ads and trackers across the
HTML, JavaScript, and the network layer, and models the in-
teraction among these layers in the form of a graph. Using this
graph, ADGRAPH extracts two categories of features: content
(information related to individual nodes in the graph, such as
URL length and presence of ad/tracking keywords in the URL)
and structure (information about relationships between nodes,
such as connectivity and ancestry information). It uses the ex-
tracted features to train a machine learning classifier to detect
advertising and tracking resources. The full list of ADGRAPH
features are described in Table 4.

Since ADGRAPH relies on content properties, in addition to
structural properties, it is subject to same evasion attacks that
succeed against the filter lists-based ad and tracker detection
approaches [31, 32].

3.1 Threat Model & Attack
Our threat model assumes an adversarial third-party adver-
tiser or tracker embedded on a site, who aims to change the
classification of its resources from advertising and tracking ser-
vices (ATS) to benign resources (Non-ATS) in order to evade
detection by ad and tracker blocking tools.

We assume that the adversarial third party has limited coop-
eration with the first-party publisher. We do not assume full
cooperation because the parties are mutually distrusting. The
third-party adversary generally does not trust the first-party
publisher to serve its advertising and tracking resources via a
reverse proxy [40, 41]. Likewise, the first-party publisher does
not trust the third-party adversary to host functional resources
via the adversary-controlled CDN [42]. Given existing prac-
tices, we assume that the adversary can serve its advertising
and tracking resources from a first-party subdomain but not
arbitrarily within the first-party domain space. For example,
the adversary can masquerade its resources through CNAME
cloaking [43], which only requires a minor change in DNS
records by the first party. Recent measurement studies have
reported an increase in the prevalence of CNAME cloaking
over the last few years. Dao et al. [20] showed that the usage

3



Figure 1: Classification switch success rate distribution by
web page (over 10 folds) when the adversary does not collude
with the first party. The average success rate per web page is
15.92 ± 0.03 %.

of CNAME cloaking-based tracking has steadily increased
between 2016 and 2020, with 1,762 of Alexa’s top-300K web-
sites employing at least one CNAME-based tracker as of Jan-
uary 2020. Dimova et al. [21] also showed that the usage of
CNAME cloaking has increased by 22% from 2018 to 2020,
with 9.98% of Tranco’s top-10K websites now employing at
least one CNAME-based tracker as of October 2020.

We assume that the adversary is able to manipulate their
own URLs by altering the domain name or query string. Natu-
rally, the adversary can only manipulate URLs that are under
their control, and only attempts to manipulate the subset of its
URLs that were initially correctly classified as ATS (ad and
tracker URLs initially classified as Non-ATS already benefit
the adversary). The adversary cannot manipulate the data used
to train the classifier. Therefore, we only implement mutations
during inference.

We implement two types of URL manipulations. For domain
names, we allow the adversary to randomly change the URL’s
domain, subdomain, or both. In practice, adversaries can rely
on automated techniques to generate random domains and sub-
domains. For example, they can use malware-inspired domain
generation algorithms (DGA) techniques to generate a large
number of domains [44, 45]. For query strings, we randomly
change the number of parameters, the parameter names, the
parameter values in the URL, or a combination of the three.

3.2 Results

Experimental setup. We extend OpenWPM [46] to automati-
cally crawl websites with Firefox and build ADGRAPH’s rep-
resentation. We crawl 10K sites sampled from the Alexa’s
top-100K list, the top 1K sites and a random sample of 9K
sites ranked between 1K-100K, and store their graph repre-
sentations. Next, we implement a decision tree classifier that
closely follows ADGRAPH’s design [18], and extract features
from the graphs for training and testing. For ground truth, we
use the same set of filter lists for data labeling that were used

by ADGRAPH [18]. A URL is labeled as ATS if it is present
in one or more of the filter lists, and Non-ATS otherwise. We
use 10-fold cross validation to obtain our results, where the
folds are selected such that every fold uses a different set of
web pages in the test set. Our classifier obtains comparable
performance to the original results reported by [18]: 92.33%
accuracy, 88.91% precision, and 92.14% recall. The minor
differences are likely due to differences in crawled sites, up-
dated filter lists, and a few subtle changes in our adaptation
of ADGRAPH from online to offline. In ADGRAPH’s online
implementation, features are extracted from each node in the
graph as they are created. Our offline adaptation, instead, ex-
tracts features after page load completion. There are also some
minor differences due to JavaScript attribution, caused by the
differences in instrumentation between Chromium-based AD-
GRAPH and Firefox-based OpenWPM.1

Adversarial success rate without collusion. In our first ex-
periment, we assume that the adversary does not collude with
the first party. The adversary can randomize their domain and
subdomain, but cannot masquerade as the first party. Our con-
tent mutation procedure results in the mutation of 41.48 ± 1.47
% of all the test data URLs (averaged over 10 folds). The ad-
versary’s success rate in evading the classifier is 8.72 ± 0.42 %
(over 10 folds). While this may seem like a low percentage, we
note that every successful mutation is a win for the adversary
since it means that one more of their ads or trackers is now
unblocked. Over all 10 folds, the adversary mutated 691,602
URLs, out of which 60,270 had their classifications switched.

We also observe that the evasion success rate varies across
sites, as shown in Figure 1. For ≈1% of the web pages in the
test set (90 pages), the adversary achieves a perfect success
rate, meaning that all third-party ads and trackers on the web
page are now classified as benign content. It is noteworthy
that 21.62% of the unblocked URLs belong to popular ad
exchanges, which are responsible for further diffusion of user
information due to the broadcast nature of real-time bidding
(RTB) [47]. These unblocked ad exchanges can amplify the
privacy harm because they often share information about page
visits with multiple advertisers and trackers.

Adversarial success rate with collusion. In our second ex-
periment, we assume that the adversary colludes with the first
party. The adversary can perform domain mutation such that
their URL is a subdomain of the first party. The adversary’s
success rate increases to 96.62 ± 0.37 % (over 10 folds). This
means that being able to use a first-party subdomain provides
almost perfect evasion capabilities. Figure 2 shows the evasion
success rate variation across sites. For ≈50% of the web pages
in the test set, the adversary achieves a perfect success rate.
We also see a higher proportion (32.25%) of the unblocked

1Due to these differences, our features are not exactly identical to the
online implementation of ADGRAPH. For example, in ADGRAPH, a node can
have a maximum of two parents, which need not be the case for our system.
Therefore, we do not use ADGRAPH features specific to these two parents.
The full feature list, showing these differences is provided in Appendix A.

4



Figure 2: Classification switch success rate distribution by web
page (over 10 folds) when adversary colludes with the first
party. The average success rate per web page is 93.01 ± 0.01 %.

Feature Category Information Gain (%)

URL length Content 14.87 ± 0.36
URL domain is a subdomain of the first party Content 11.06 ± 1.24
URL is a third party Content 10.67 ± 1.32
Degree of a node Structure 7.56 ± 0.63
Number of edges divided by number of nodes Structure 7.48 ± 0.41

Table 1: Top 5 most important features for ADGRAPH’s classi-
fication, their category, and information gain values (averaged
over 10 folds).

URLs belonging to popular ad exchanges, as compared to the
previous experiment.

To better understand why such URL manipulation is able to
evade detection by ADGRAPH, we analyze feature importance
using information gain (see Table 1). We see that content
features are essential to the ADGRAPH classifier: not only
are the top-3 most important features content features, their
relative importance scores are also high compared to the other
features. Two of the top-3 features depend on whether a URL
is third-party, which explains why we obtain high success rates
when the adversary has the capability to masquerade as the
first party. These two features do not have an effect in the case
where the adversary does not collude with the first party, since
the adversary cannot change the fact that they are third party.
However, the adversary’s manipulations still influence the third
top feature, length of the URL. Hence, we observe lower but
non-trivial success rates even without collusion.

These results show that graph-based classifiers such as AD-
GRAPH are vulnerable because of their over-reliance on con-
tent features. In the next section, we propose an approach to
improve the robustness of graph-based ad and tracker blocking
tools.

4 WEBGRAPH

Online advertising and tracking fundamentally relies on in-
formation sharing. Trackers need to share information with
each other to improve their coverage of users’ browsing history
[22, 46]. Trackers also need to share information with each

other as part of built-in dependencies in programmatic adver-
tising protocols [48, 49]. We contend that leveraging such fun-
damental information sharing patterns can help build accurate
and robust classifiers for ad and tracker blocking. We intro-
duce WEBGRAPH, a classifier that explicitly captures these
information sharing patterns as part of its cross-layer graph
representation of the execution of a web page.

To illustrate the information sharing patterns that we want
to capture in WEBGRAPH, let us revisit how information shar-
ing between different origins is mediated by the browser. We
deliberately use a loose definition of origin. An origin can
be, depending on the specific use case, a site, a domain, or
an entity, among others. At a high-level, the web browser iso-
lates different origins, based on various policies, so that their
data is not leaked to each other. Figure 3(a) illustrates how the
browser limits information sharing between different origins:
example.com, tracker1.com, and tracker2.com each have
access to their isolated local storage (e.g., cookies, IndexedDB)
that may be used to store user identifiers. The browser isolates
information flows between the local storage and remote servers
of different origins: tracker1.com and tracker2.com can-
not generally access each others’ cookies.

Trackers typically circumvent these limitations in the
browser in two main ways. First, Figure 3(b) illustrates
how a tracker may share its identifier with another tracker
through cookie syncing. This can be implemented in several
ways. For example, let’s say example.com loads a JavaScript
from Tracker 1 that first uses document.cookie to retrieve
Tracker 1’s identifier cookie from its cookie storage and then
initiates a GET request to Tracker 2. The script includes
Tracker 1’s identifier cookie in the request URL as a query
string parameter. Note that the request automatically includes
Tracker 2’s identifier cookie in the Cookie header. Therefore,
when Tracker 2’s remote server receives the request, it would
be able to sync Tracker 1’s identifier with its own identifier.
As another example, let’s say example.com first loads an in-
visible pixel from Tracker 1, which responds back with a 3XX
redirect status code along with the URL in the Location header
that points to Tracker 2 and includes Tracker 1’s identifier
cookie. Upon receiving the response, the browser issues a GET
request to Tracker 2 and includes Tracker 1’s identifier cookie
in the request URL and Tracker 2’s identifier cookie in the
Cookie header. Again, Tracker 2’s remote server is able to sync
Tracker 1’s identifier with its own identifier.

Second, Figure 3(c) illustrates how a tracker may share its
identifier with another tracker through various JavaScript APIs,
in several ways. For example, let’s say example.com loads
scripts from Tracker 1 and Tracker 2 which then share their
identifiers by reading/writing to the global variables of the
window object. The script from Tracker 1 may assign its iden-
tifier to a new global variable foo that is then read by the
script from Tracker 2. Therefore, Tracker 1 and Tracker 2’s
scripts would be able to sync identifiers with each other and
also send them to their respective remote servers. As an-

5



(a) (b) (c)

Figure 3: Origin isolation vs. sharing. Circles represent information about a user gathered by a particular domain (example.com,
; tracker1.com, ; and tracker2.com, ). The box represents the browser which acts as channel between the local storage

on the user’s device and the remote server of each domain. 3(a) Illustrates origin isolation in the browser: every domain can only
access information in their own storage. 3(b) and 3(c) illustrate two information sharing patterns that trackers use to circumvent
origin isolation: (b) cookie syncing, where users’ identifiers are sent to more than one domain; and (c) sharing identifiers using
JavaScript APIs.

other example, let’s say example.com loads iframes from
Tracker 1 and Tracker 2 which then share their identifiers us-
ing postMessage. While these iframes have different origins,
Tracker 1’s iframe can use window.parent property to get a
reference to the parent window and then use window.frames
to get a reference to Tracker 2’s iframe. Tracker 1’s iframe
can then use this reference to call window.postMessage
and send its identifier to Tracker 2’s iframe, which can
use window.addEventListener to receive the identifier.
Tracker 2’s iframe can then send the shared identifier with
its remote server to sync them.

Trackers use a wide variety of information sharing patterns,
beyond the two aforementioned mechanisms. A sound and
precise examination of all patterns warrants full-blown infor-
mation flow tracking that adds significant implementation over-
heads and complexity [50, 51, 52]. As we discuss next, WE-
BGRAPH approximately2 captures these information sharing
patterns by including additional nodes and edges in its graph
representation that correspond to elements and actions associ-
ated with these information sharing patterns. It then extracts
new features on this enriched graph representation to train a
classifier for detecting ads and trackers.

4.1 Design & Implementation

4.1.1 Graph Construction

WEBGRAPH captures the flow of information among and
across the HTML, network, JavaScript, and storage layers of
the web stack. At the HTML layer, WEBGRAPH captures cre-
ation and modification of all HTML elements, e.g., iframe,
that are initiated with scripts. At the JavaScript layer, WEB-
GRAPH captures the scripts’ interaction with other layer, e.g.,
initiation of a network request. At the network layer, WEB-
GRAPH captures all outgoing network requests and their re-
sponses. At the storage layer, WEBGRAPH captures read/write
in cookies and local storage through scripts and network re-

2See Section 6 for a discussion of completeness of WEBGRAPH’s imple-
mentation.

quests, and also the exchange of values between network re-
quests.

OpenWPM Instrumentation. We extend OpenWPM [46]
to capture the execution and interaction of HTML, network,
JavaScript, and storage layers. To capture HTML elements
creation and modifications, we instrument createElement
method and register a MutationObserver interface. To cap-
ture network requests, we parse OpenWPM’s existing instru-
mentation, which uses a webRequests listener 3, to capture
all of the network requests, their responses, and redirects. To
capture JavaScript interaction, we parse OpenWPM’s existing
instrumentation, which relies on JavaScript’s stack trace to
log JavaScript execution. To capture read/write to storage, we
instrument document.cookie and localStorage methods and
also intercept cookie read/write HTTP headers.

Graph Composition. Elements at each of the layers are rep-
resented with nodes and the interaction between these nodes is
represented with edges. Specifically, each HTML element, net-
work request, script, and stored value, is represented as a node.
Edges to HTML nodes from script nodes represent the creation
and modification of elements. Edges from HTML nodes to
network nodes represent initiation of network requests to load
content, such as scripts and images. Edges from script nodes
to network nodes represent the initiation of XMLHTTPRequest
which will be parsed by the script. Edges between script and
storage nodes and network and storage nodes, represent the
read/write of values in the storage. Edges between network
nodes either represent redirects or the presence of the same
stored values.4

Graph Composition Example. To illustrate WEBGRAPH’s
graph representation, let us consider the example web page
given by Code 1. The web page embeds a script from
Tracker 1 and an iframe from Tracker 2. The tracking iframe
from Tracker 2 reads its tracking cookies and sends them to
Tracker 3 via an XHR. Both trackers trigger requests to share

3https://developer.mozilla.org/en-US/docs/Mozilla/Add-
ons/WebExtensions/API/webRequest

4We match stored values with their encoded and hashed counterparts.
Specifically, we look for presence of base64 encoded and MD5 and SHA-
1 hashed values [23, 53].

6



1 <html>
2 <script src=’tracker1.com/track.js’>
3 ...
4 var image =document.createElement(’img’);
5 image.src = ’tracker2.com/sync’;
6 document.body.appendChild(image);
7 ...
8 </script>
9 ...

10 <iframe src=’tracker2.com/track.html’>
11 <script>
12 ...
13 idCookie = document.cookie;
14 var newReq = new XMLHTTPRequest();
15 newReq.open("GET", "tracker3.com?user_id=

" + idCookie);
16 ...
17 </script>
18 </iframe>
19 </html>

Code 1: An example web page sending requests to several
trackers.

tracking identifiers. The HTTP requests and responses that
result from loads in Code 1 are listed in Listing 1.

Tracker 1’s script embeds an image element from Tracker 2,
which causes the browser to send an HTTP request (Request 1
in Listing 1) that includes Tracker 2’s cookie. Tracker 2 re-
sponds to this request with a redirect to Tracker 1 that embeds
the user identifier Tracker 2 received via the initial request’s
Cookie header (i.e., user1). The browser makes a subsequent
request (Request 2 in Listing 1) to Tracker 1. Tracker 1 re-
sponds with a tracking pixel image and a Set-Cookie header
to set its own tracking cookie with the value userA. On the
backend, Tracker 1 knows that userA is known as user1 by
Tracker 2. Tracker 2’s embedded iframe further shares its iden-
tifier cookie with Tracker 3. It does so by accessing its cookies
locally via document.cookie and embedding them in an XHR
to Tracker 3 (Request 3 in Listing 1).

Differences as compared to ADGRAPH. WEBGRAPH
keeps ADGRAPH’s HTML and JavaScript layers as they are,
but extends the network layer and includes a new storage layer
in the graph representation. WEBGRAPH also introduces infor-
mation flow edges, which are absent in ADGRAPH, to entwine
the extended network layer and the storage layer. The extension
of network and the addition of storage layer allow WEBGRAPH
to explicitly capture information sharing patterns used in ad-
vertising and tracking.

We illustrate the differences in Figure 4 which shows the
graph representation of the web page in Code 1 and request
and response sequences in Listing 1 for both ADGRAPH (Fig-
ure 4(a)) and WEBGRAPH (Figure 4(b)). ADGRAPH’s rep-
resentation of the example web page consists in two disjoint
graphs which capture the individual actions of the two trackers:
The first row of nodes (from 10 to 15) captures Tracker 2’s
tracking behavior: from the iframe loading to the initiation

---------------------------------------------------
Request 1
URL: tracker2.com/sync
Cookie: user1
Response 1
Status: 302
Location: tracker1.com?tracker2_id=user1
---------------------------------------------------
Request 2
URL: tracker1.com?tracker2_id=user1
Response 2
Status: 200
Set-Cookie: userA
Content: pixel.png
---------------------------------------------------
Request 3
URL: tracker3.com?user_id=user1
Response 3
Status: 200

Listing 1: HTTP requests and responses initiated from Code 1.

of an XHR request. The second row of nodes (from 2 to 6)
captures Tracker 1’s tracking behavior: from the script loading
to the initiation of a network request for loading an image. In
this figure, it becomes clear that ADGRAPH does not capture
the information sharing pattern between the nodes, because of
its inability to capture the redirect (Request 2) made by the
image request (network node 5) and the cookie set (storage
node 5; visible only in WEBGRAPH’s graph) by the redirect
request. WEBGRAPH, on the contrary, not only captures the
flows appearing in ADGRAPH, but also captures the redirects
(dotted edge between the two network nodes labeled 5) and
cookies set by requests (the second network node 5 to storage
node 5). This representation further enables WEBGRAPH to
link requests that share common identifiers (node 5 to 15).

4.1.2 Features

We take the ADGRAPH feature set and augment them with
three categories of features. These additional features come
from WEBGRAPH’s improved graph representation, i.e., exten-
sion of the network layer and a new storage layer. The features
target storage, network, and information sharing behaviors that
were absent in ADGRAPH. First, we extract features that mea-
sure the number of read/write cookie and localStorage accesses
by a node. We obtain these features from the new storage layer.
Second, we extract features that measure the number of re-
quests and redirects to/from a node as well as the depth of
a node in a redirect chain. These features come from our ex-
tension to the network layer. Third, we extract features that
measure the number of different types of information sharing
edges (e.g., nodes access the same storage node or share data of
a storage node) to/from a node. We obtain these features using
both the network and storage layers in WEBGRAPH’s graph
representation. We also extract some standard graph features
(e.g., in-degree, out-degree, eccentricity) for the information

7



2 5 6

Script
node

Image
request

HTML
image

11

2

10 10

Script
request

HTML
iframe

Script
node

Iframe
request

15

XMLHTTP
request

(a) Graph representation of Code 1 in ADGRAPH

2 5 5

6

5

Script
node

Image
request

Cookie
storage

Network	request
setting	a	cookie

Redirect	initiation
to	load	the	image

HTML
image11 15

Script
node

Network	request
sharing	a	cookie	value

2

10 10

Script
request

HTML
iframe

Iframe
request

XMLHTTP
request

(b) Graph representation of Code 1 in WEBGRAPH

Figure 4: Graph representation of Code 1 in ADGRAPH and WEBGRAPH. represents network nodes, represents script
nodes, represents HTML nodes, and represents storage nodes. Node numbers correspond to the lines in Code 1. In Figure
4(b), dotted (- - -) lines represent the additional edges that are captured by WEBGRAPH and missed by ADGRAPH.

sharing edges. We jointly refer to these three newly added
categories of features as flow features. Table 4 in Appendix A
lists the full set of features in WEBGRAPH, including these
newly added flow features.

To illustrate the potential of these features in distinguishing
ATS and Non-ATS resources, let us consider three flow fea-
tures belonging to each of the categories described above: the
number of storage elements set by a resource (Figure 5(a)),
the number of requests that were redirected to a resource (Fig-
ure 6(b)), and the number of information sharing edge ancestors
(Figure 6(c)). As explained in Section 4, ATS resources store
user identifiers in storage elements and use redirects and shar-
ing of identifiers in URLs to perform actions such as cookie
syncing. Therefore, we expect ATS resources to set a larger
number of storage elements, be at the receiving end of redirects,
and be involved in a larger number of shared information edges
than Non-ATS resources. We plot in Figure 5 the distributions
of these features in our dataset. We see that, indeed, the distri-
butions are different for benign and ATS resources, with ATS
presenting higher values on average for the three features under
study. The differences in distributions is especially apparent
for Figure 6(c), which shows the number of shared informa-
tion edge ancestors. In our dataset, we observe 589,218 cases
of ATS receiving a cookie value in a request URL, as com-
pared to 89,564 cases for non-ATS. This sharing is detected
as an information sharing edge, which in turn leads to ATS
having larger values in shared information edge properties than
Non-ATS. In the case of redirects (Figure 6(b)), the probability
that a Non-ATS resource has more than 7 redirects tends to
0, which is not the case with ATS resources. The number of
ATS resources with more than 7 redirects is very small in our
dataset (≈ 0.04%). Yet, it is a top-20 feature in our classifier, as
observing more than 7 redirects directly identifies the resource
as ATS. Storage element setting (Figure 5(a)) shows a similar
behavior, with ATS resources sometimes having more than 54
elements set, while Non-ATS resources never have so many.

While individual contributions of some of these flow features
might be small, they provide a strong signal in distinguishing
ATS when combined, as we show in the next section.

4.2 Evaluation

To evaluate WEBGRAPH, we use the same dataset of 10K web
pages and method as in Section 3.2. To understand the marginal
benefit of WEBGRAPH over ADGRAPH, we systematically
compare the performance of different feature sets and graph
representations. Table 2 summarizes the results.

Graph Feature Set Accuracy Precision Recall

ADGRAPH Structural + Content 92.33 ± 0.50 88.91 ± 1.14 92.14 ± 0.65
Structural 80.22 ± 0.81 71.85 ± 1.53 82.44 ± 1.26

WEBGRAPH Structural+ Flow + Content 94.32 ± 0.27 92.24 ± 0.67 94.14 ± 0.30
Structural + Flow 86.93 ± 0.64 80.57 ± 1.12 90.01 ± 0.50
Structural 82.62 ± 0.47 75.67 ± 0.75 85.09 ± 1.41

Table 2: Evaluation of WEBGRAPH and ADGRAPH with dif-
ferent feature set variations.

We observe that ADGRAPH’s performance drops by at least
10% when content features are removed. Recall from Section
3.2 that if content features are present alongside structural fea-
tures, ADGRAPH is particularly susceptible to evasion: trackers
have an 8.72% evasion success rate on their own, and a 96.62%
success rate if they collude with the first party. Thus, there is a
trade-off in ADGRAPH between effectiveness (with content)
and robustness to evasion (without content).

Second, Table 2 shows that WEBGRAPH’s performance is
better than ADGRAPH due to its improved graph representa-
tion and new flow features. When using all feature sets, WEB-
GRAPH outperforms ADGRAPH by about 2-4%. If we remove
content features for robustness, we observe a drop in accuracy
limited to just 4-9% across all measures. We conclude that
WEBGRAPH’s improved graph representation and new flow
features can compensate for the loss of content features to a
large extent.

Finally, Table 2 shows that WEBGRAPH’s improved graph
representation by itself (i.e., even without the new flow fea-
tures) contributes to about half of the improvement over AD-
GRAPH. WEBGRAPH with only structural features achieves
2-4% improvement across all measures as compared to AD-
GRAPH also with only structural features. We conclude that,

8



(a) (b) (c)

Figure 5: Histograms of three example flow features for ATS and Non-ATS resources (normalized, y-axis in log scale). (a)
Number of storage elements set by a resource; (b) Number of network redirects received by a resource, and (c) Number of shared
information ancestors of a resource. These features demonstrate different distributions for ATS and Non-ATS resources, and thus
can help the classifier to distinguish between them.

while WEBGRAPH’s new flow features help improve its accu-
racy, the improved graph representation is an important con-
tributor to performance.

Feature Category Information gain (%)

Shared information ancestors Flow 6.48 ± 0.69
Number of requests sent by node Flow 5.9 ± 0.69
Number of nodes in graph Structure 5.46 ± 0.35
Average degree connectivity of node Structure 5.18 ± 0.16
Number of edges in graph Structure 4.19 ± 0.34

Table 3: Top-5 most important features for WEBGRAPH’s clas-
sification, their category, and information gain (averaged over
10 folds).

To provide insights into the relative importance of flow and
structural features, we list top five most important features in
terms of information gain in Table 3. The two most important
features are flow features. As discussed in Section 4.1.2, the
top feature distribution (Figure 6(c)) is very different for ATS
and non-ATS, so it’s not surprising that this feature contributes
to the classification. Storage setting (Figure 5(a)) and received
redirects (Figure 6(b)) contribute a smaller, but still useful, por-
tion towards identification; they have information gains of 1.9%
(± 0.37) and 2.5% (± 0.47) respectively (21st and 17th most
important features). We also observe that structure features, en-
hanced by WEBGRAPH’s improved graph representation, also
contribute towards the performance. We further analyze which
features contribute most to each prediction of WEBGRAPH
using treeinterpreter [54]. For ≈ 32% of predicted ATS in
the dataset, the flow features were the top contributors, indi-
cating that they provide an important signal for the presence
of trackers. In contrast, for ≈ 47% of predicted Non-ATS in
the dataset, structure features were the top contributors. These
results confirm our earlier intuition that capturing information
sharing behaviors that are unique to advertising and tracking
carries significant predictive power.

4.3 Efficiency
We envision WEBGRAPH to be used for filter list curation and
maintenance in an offline setting. WEBGRAPH relies on large

scale web crawls and notoriously expensive graph traversals
for feature extraction. We now measure WEBGRAPH’s offline
overhead to demonstrate its adequacy as a tool to periodically
update filter lists.

Crawl time. Our implementation of WEBGRAPH has an up-
per bound of 60 seconds, enforced with a timeout, to crawl a
website. In the average case, crawls take only ∼26.46 seconds.
Crawls can be parallelized over several instances to reduce
the crawl time. For example, it took us around 10.5 hours to
crawl 10K websites, parallelized over 7 instances. Without
parallelization and if all websites would reach the timeout, the
crawls would take ∼166 hours.

Processing websites. On average, WEBGRAPH takes 0.72 sec-
onds to build the graph, 15 seconds to extract features, and
0.25 seconds to train and test each website. For our crawl of
10K websites, it took us a total of ∼44.36 hours to create their
graphs and extract features on a single instance. This time can
be significantly reduced using parallelization.

Update frequency. These estimates suggest that for 10K web-
sites containing ∼1.1 million requests WEBGRAPH will re-
quire, at most, ∼166 (data crawling) and ∼44.36 (data process-
ing) hours with a single instance. However, when averaged
over 7 instances, the computation time significantly reduces to
only 16.83 hours (10.5 for crawling and 6.33 for processing).
We anticipate the computation time for periodic updates to
reduce significantly because many websites have low update
frequency. Specifically, monitoring the update frequency of
websites will allow us to only crawl when changes are expected
in websites. In cases, where we determine that the website did
not change since the last crawl, we will not recompute their
classifications. With this performance, WEBGRAPH could be
able to update filter lists on a daily basis, and certainly op-
erate within the current the expiry period (mandated update
frequency) of popular filter lists, e.g., 4 days for Easylist [7].
Frequent updates with WEBGRAPH can help remove outdated
rules and as well as add new rules to block newly discovered
ads and trackers.

9



5 WEBGRAPH Robustness

In this section, we evaluate WEBGRAPH’s robustness against
content mutation attacks (described in Section 3) and structure
mutation attacks.

5.1 Content mutation attacks

To evaluate WEBGRAPH against content mutations, we
strengthen the threat model described in Section 3 to enable
the adversary to also masquerade their resources as first party,
i.e., through first-party subdomains. Overall, our attacks in-
volve random mutations to domain names, subdomains, and
the query string in URLs (Section 3.2).

By relying on content mutations, the adversary is able to
switch 96.62% of their ATS resources to Non-ATS against AD-
GRAPH. Against WEBGRAPH, the adversary’s success rate
plummets to just 8.34 ± 0.66% (over 10 folds). For example,
mylivesignature.com, a tracking domain, was able to switch
all of its 560 ATS resources to Non-ATS against ADGRAPH,
but none against WEBGRAPH.

Note that, even though WEBGRAPH does not use content
features, the evasion success rate against WEBGRAPH does
not drop to zero. This is because some of the WEBGRAPH’s
features implicitly rely on URL properties. For example, shared
information edges, that consider sharing of cookie values via
query strings in the URL, are affected by URLs manipulations.

5.2 Structure mutation attacks

Next, we evaluate WEBGRAPH’s robustness against structure
mutations. We assume that the adversarial third-party has un-
restricted black box access to the WEBGRAPH’s classifier,
i.e., the adversary can make unlimited queries and observe
WEBGRAPH’s classification output. This access enables the
adversary to validate the effect of their structure mutations.

Attack details. We assume that the adversary can mutate the
structure of a web page through resource addition, re-routing,
and obfuscation. Moreover, we assume that the adversary also
performs content mutations, to maximize its chance of success
Resource addition entails addition of new resources, such as
images and scripts. Resource re-routing entails re-organization
of existing redirect chains, i.e., dispersing a redirect chain in
a sequence of XMLHttpRequest’s through one or multiple
scripts. Resource obfuscation entails obfuscation of cookie or
query string parameter values of existing resources, i.e., encod-
ing or encrypting cookie or query string parameter values in a
format that is not detected by WEBGRAPH’s implementation,
before sharing them in network requests. To remain stealthy,
we assume that the adversary does not delete functional content
from the web page that could damage usability.

It is important to note that even simple mutations, such as
adding a single element to the web page, can significantly

change graph properties and impact several features. For ex-
ample, the addition of a child node causes a cascading effect.
It increases the number of descendants of all the parent nodes
in the branch, all the way up to the root node, and also impacts
their centrality. Thus, the result of such simple mutations can
become unpredictable and hard to control by the adversary: It
can cause unintended classification changes for nodes under
and outside the control of the adversary. Complex mutations,
such as adding a combination of nodes at once, further compli-
cate having control on the number of unintended classification
changes. In our evaluation, we only consider atomic mutations,
i.e., addition, re-routing, or obfuscation of individual resources.

Mutation algorithm. We capture the adversary’s unrestricted
black box access to classifier by implementing a greedy random
algorithm to find suitable mutations. This kind of algorithm
is extensively used in the literature due to its simplicity and
practicality [55, 56, 57]. The algorithm (formally described
in Appendix D) iteratively mutates WEBGRAPH’s graph rep-
resentation. At each step, it adds, re-routes, or obfuscates the
resource that provides the best trade-off between desired (ATS
to Non-ATS) and undesired (NON-ATS to ATS) classification
switches. Resource addition is simulated by adding nodes to a
randomly selected leaf nodes in the graph. Resource re-routing
is simulated by adding each request, in a redirect chain, as
an individual node to one or more randomly selected scripts.
Resource obfuscation is simulated by replacing stored values
in URLs with an encoding that is not detected by WEBGRAPH.

5.3 Empirical evaluation

Experimental Setup. To evaluate WEBGRAPH’s robustness,
we must rebuild the graph and recompute the features after
each mutation. To keep the evaluation time reasonable, we
sample 100 web pages from our dataset, and we limit the graph
growth to 20%. To ensure that this sample is representative of
our dataset, we divide graphs into 5 bins according to their size
and sample 20 web pages from each bin. We only consider web
pages that have 250 or fewer nodes (i.e., 80% of the dataset;
see Appendix B for the full distribution). We exclude large
web pages to avoid exceptionally long evaluation times. For
each web page, we designate the adversary as the third party
with the highest number of resources classified as ATS. It is
noteworthy that the adversary with the highest number of ATS
resources has an opportunity to do maximum damage.

In this dataset, the median evaluation time per web page was
29.08 minutes, with 39% of the pages taking more than an hour
to run. Even though this is a simulation, the computational
cost is directly proportional to the operational cost for the
adversary. The adversary must consume additional CPU cycles
and memory and in the case of node addition, send additional
network requests, thereby increasing the cost of their attack.

Success metrics. To measure adversary’s success, we define
the following terms:

10



ATSWeb: Number of nodes classified as ATS.

ATSAdv: Number of adversary nodes classified as ATS.

Non-ATSWeb: Number of nodes classified as Non-ATS.

Non-ATSAdv: Number of adversary nodes classified as
Non-ATS.

desired: Number of nodes switching from ATSAdv to
Non-ATSAdv.

undesired: Number of nodes switching from Non-ATSWeb to
ATSAdv.

neutral: Number of nodes switching from ATS to Non-ATS
for non-adversary nodes.

Success rate: Desired changes from the adversary’s point of
view. It is calculated as desired/ATSAdv.

Collateral damage: Undesired changes from the
adversary’s point of view. It is calculated as
undesired/(Non-ATSAdv +Non-ATSWeb).

Other changes: Non-consequential changes from the adver-
sary’s point of view. It is calculated as neutral/ATSWeb.

We illustrate the node switches, with the mutation algorithm,
for an example graph in Appendix E.

5.3.1 Adversary’s success

We assume that the adversary neither colludes with other third
parties nor with the first party and can only perform mutations
on the nodes and edges it controls. We conduct the attack on
100 web pages. We note that increasing the number of graph
mutations increases the adversary’s mean success rate from
38.6 ± 33.01 (median: 33.33) at 5% graph growth to 52.48 ±
33.4 (median: 50.00) at 20% graph growth. The classification
switches lead to a decrease in the overall classification accuracy
by 1.5%, recall by 8.85%, and precision by 2.29%.

However, the adversary’s success comes at a cost of collat-
eral damage. The average collateral damage rises from 2.17 ±
11.19 to 3.88 ± 13.55 (median: 0). In Figure 6, we illustrate the
trade-off between success rate and collateral damage at 20%
graph growth. The x-axis represents success rate, the y-axis
represents collateral damage, and circles represent a trade-off
between the two. The circles’ color represents ATSAdv or the
number of classifications the adversary has to switch for the
particular web page. The lighter the color, the more switches
are required, i.e, the cost of success increases. For the web
pages in this dataset, the adversary has, on average, ATSAdv =
5.98 ± 5.39 nodes classified as ATS. For certain pages, the
ATSAdv can be as high as 26.

Ideally, the adversary wants to be at the bottom right of the
graph, where it achieves 100% success rate with zero collateral
damage. The adversary is able to reach its ideal target on

only 13 web pages, which only required four switches. The
adversary is able to achieve 50% or more success on 61 of
the tested web pages. Together, they amount to 240 nodes
switched, with 45 of these pages having non-zero collateral
damage. On the other hand, we have 9 web pages that had a
higher collateral damage than success rate: a net negative effect
of the mutation. Out of these, 6 web pages had 0% success rate
with non-zero collateral damage, and 3 web pages had a large
collateral damage > 75% (with one web page hitting 83%).

Overall, our evaluation shows that even in the case of an
unrealistic adversary that has the capabilities to manipulate
structure features at will, and also the operational power to do
so for a large number of iterations, there is no guarantee of
perfect success.

Breakage. If undesired changes affect benign resources that
are essential to the correct functioning of the web page, even
a small collateral damage can break the page. This may have
large impact on trackers. If users leave the broken web pages,
the adversary cannot track them or show them ads.

We define website breakage as degradation in usability of
the website. We say there is major breakage if the user is
unable to complete the primary functionality of the web pages
(e.g. login, search or page navigation). If the user is unable
to complete a secondary functionality of the web pages (e.g.
comment or review), we consider that there is minor breakage.
Otherwise, we consider that the web page does not have any
breakage.

We quantify breakage on all of the 21 web pages where
the adversary experiences undesired classification switches.5

We open these web pages side by side on stock Firefox and
a Firefox configured with an extension that blocks the URLs
that switched classification, and we compare them side by side
to identify any visual signs of breakage.

We ask two reviewers to perform the analysis. Our reviewers
attain an agreement of 90.46% in their evaluation. They find
that the undesired classification switches cause major break-
age on 3 and minor breakage on 2 web pages. This breakage
mostly happens when the first-party resources are switched
from Non-ATS→ ATS.

Careless adversary. If the adversary is not concerned with
changes to any non-adversarial nodes, their collateral damage
decreases. The adversary still does not want their own con-
tent to be blocked, so it will optimize against their own nodes
switching to ATS. This change in strategy updates the collateral
damage calculation to: undesired/Non-ATSAdv.

As per our modified definition, the web pages on which all
of the adversary nodes are classified as ATS, there can be no col-
lateral damage; we note 55 such web pages. For the remaining
45 web pages, where the adversary can experience collateral
damage, the mean growth in success rate does not change much

5In total, the adversary experiences undesired classification switches on
45 web pages. However, 24 web pages no longer serve the switched ATS
resources.

11



(a) (b) (c)

Figure 6: Adversary’s success rate vs. collateral damage for each web page in the test data at 20% graph growth. Figure 6(a)
represents all mutations, 6(b) represents only structure mutations, and 6(c) represents only resource re-routing and obfuscation
mutations. Colored circles represent the number of required switches.

from the previous scenario, but naturally the trade-off is better.
Further, out of 45 web pages, only 8 web pages have collateral
damage, as compared to 27 web pages that had collateral dam-
age as per our original definition. Out of these 8 web pages,
4 had a higher collateral damage than success rate (net nega-
tive effect), and 6 web pages have a large collateral damage
> 20% (with 2 web pages hitting 100%). Thus, even when an
adversary is not concerned about collateral damage to other
parties they are not significantly more successful in subverting
WEBGRAPH.

Collusion with the first party. So far, we have assumed that
the adversary is a single third party that does not collude with
other third parties or the first party. If we assume the adversary
colludes with both, the adversary can add child nodes to any
node in the graph. This is a much stronger adversary than
in Section 5.3.1, where in each iteration the adversary can
only test a random subset of the options. Realistically, such a
powerful collusion would be difficult to implement, as it would
require coordination and cooperation among multiple parties
to ensure that the mutation is feasible.

We repeat our experiment, but we now allow the adversary to
consider all possible mutation options on any node, and pick the
best one in each iteration. These experiments take longer to run
(see Appendix C), so we only analyze 100 web pages whose
graphs have at most 50 nodes. We see that collusion enables the
adversary to have a slightly higher success rate (63 pages with
success rate > 50% as compared to 60 for the non-colluding
adversary) and lower collateral damage (9 pages with damage
>0% compared to 18 pages for a non-colluding adversary).
These results are described in detail in Appendix F).

5.3.2 Impact of mutation choice

Next, we evaluate the adversary’s preference in selecting the
most useful mutations. We notice that the adversary picks
resource addition 81.70%, resource re-routing 17.26%, and
resource obfuscation 0.04% of the time. Resource obfuscation
is rarely chosen by the adversary because the graph already
has content manipulations applied, and these manipulations
have already severed many of the edges that would be severed

by resource obfuscation. To separate out the impact of dif-
ferent mutations, we conduct two additional experiments: (1)
where the adversary can only perform resource addition, and
(2) where the adversary can only perform resource re-routing
and obfuscation.

We exclude 33 of the web pages for experiment 2 because
these web pages do not have re-route-able or obfuscate-able
resources. For the remaining 67 pages, we see that the re-
routing/obfuscation mutations (Figure 6(c)) are more effective
than addition mutations (Figure 6(b)). Re-routing/obfuscation
not only yields higher success rates for the adversary, but also
results in lower collateral damage. This is unsurprising because
these mutations target information sharing patterns which are
distinctive of trackers; changing these patterns removes an
important signal for the classifier (see Table 3).

However, in practice, resource re-routing and obfuscation
would entail high costs for the adversary since they involve the
manipulation of identifier sharing patterns. Specifically, the ad-
versary would have to coordinate with other parties on changes
to these patterns, and redesign how they perform tracking in
order to perform these mutations. The success of these muta-
tions also depends on the degree to which flows are captured
by the instrumentation used to create the graph. WEBGRAPH’s
instrumentation approximates information flows and will not
capture all attempts by an adversary to use re-routing and
obfuscation. We argue that this is not a fundamental flaw in
WEBGRAPH’s architecture but a limitation in our implementa-
tion that approximates information flow (Section 4). A fully
fledged instrumentation would make these manipulations much
more difficult to deploy. See Section 6 for an extended discus-
sion. Resource addition has fewer costs for the adversary since
it does not involve coordination with additional parties. This
manipulation is not affected by the type of implementation
because it is not related to the flow of identifiers.

5.3.3 Comparison with ADGRAPH.

We also evaluate whether WEBGRAPH, in addition to having
superior classification performance, offers robustness bene-
fits over ADGRAPH. For this comparison, we only use AD-
GRAPH’s structural features, as we already demonstrated that

12



content features are not robust. Because ADGRAPH does not
have features based on flow information, we only perform re-
source addition. We find that the adversary has greater success
against ADGRAPH than WEBGRAPH, but also suffers from
more collateral damage (Figures 13 and 14 in Appendix F).
This is because the structural effects of node additions are hard
to control, as explained in Section 5.2. Since the former is ben-
eficial to the adversary but the latter is not, it is not clear-cut
as to whether one system provides more robustness than the
other.

In summary, our results indicate that mutations to the struc-
ture of the graph are harder for an adversary to control than
content mutations. It is not trivial for an adversary to produce
the desired classification switches for their resources without
producing any undesired changes. This makes WEBGRAPH,
without content features, more robust to adversarial evasion
attacks than prior approaches. Within the structural mutations,
re-routing/obfuscating resources target information flow and
are a more effective strategy than adding resources. At the same
time, performing these mutations is not trivial for the adversary
since they involve coordination with multiple parties.

6 Limitations

In this section, we discuss limitations of WEBGRAPH’s design,
implementation, and evaluation.

Completeness. For efficiency reasons, WEBGRAPH fo-
cuses on a limited subset of the browser’s API surface,
such as HTTP cookie headers, document.cookie, and
window.localStorage. WEBGRAPH’s implementation is
also geared towards capturing client-side information that is
pertinent to stateful tracking. However, techniques used by
ATS need not to be limited to these APIs or to stateful tracking.
Some ATS have started to use stateless tracking techniques,
such as browser fingerprinting, which use APIs that are not cur-
rently covered by our instrumentation [58, 59, 60]. To account
for these techniques, WEBGRAPH’s instrumentation must be
extended to include the corresponding APIs.

WEBGRAPH’s manually designed graph representation and
feature set capture the most well-known information shar-
ing patterns. The limits of these approach are shown in Sec-
tion 5.3.2, where we show that an adversary capable of hiding
or obfuscating traditional sharing flows has a better chance to
bypass WEBGRAPH than doing structure modifications. This
limitation is, however, linked to our implementation choices.
To increase WEBGRAPH’s coverage of sharing behaviors, if
suffices with increase the instrumentation to cover more infor-
mation flows. Ideally, we would instrument full-blown infor-
mation flow tracking. Such expansion would incur prohibitive
runtime overheads (up to 100X-1000X [50]) and its complex-
ity makes it hard to integrate in the browser [51, 52, 61, 62].
Nevertheless, the design of WEBGRAPH permits that the instru-
mentation to be upgraded gradually, as ATS evolve in response

to our evasion protection techniques, increasing the cost of eva-
sion without fundamentally changing the detection approach.

Robustness analysis. Inspired by previous work on graph-
based detection evasion [55, 56, 57], we use a greedy algo-
rithm to attack WEBGRAPH. This algorithm only considers
the best mutation in each iteration, and not the best overall mu-
tation. Thus, it is not guaranteed to find the optimal mutation
sequence that would lead to the best adversary performance.
We note however that, as our experiments on small websites
show, even exhaustive search does not lead to perfect success.
We expect adversaries to try alternative algorithms to improve
their success rates. However, any alternative that is close to
exhaustive search will become prohibitively expensive for the
adversary when the web page graph is large.

Another option for the adversary would be to perform more
sophisticated graph mutations instead of the simple node ad-
ditions that we perform. An adversary could tailor their muta-
tions to the page’s graph structure by studying how their node
changes affect the graph properties of the web page. However,
this requires that the rest of the graph (i.e., the portions outside
of the adversary’s control) remaining unchanged. Realistically,
it would be difficult for an adversary to coordinate with other
parties to generate these changes.

Finally, we note that the dynamism of modern websites [63]
complicates the process for the adversary. Web pages change
often, sometimes on every load. Even if the adversary manages
to find an appropriate set of mutations, those mutations may
be invalid the next time the page is reloaded.

7 Conclusion

In this paper, we showed that state-of-the-art ad and tracker
blocking approaches are susceptible to evasion due to their re-
liance on easy-to-manipulate content features. We then showed
that information sharing patterns in online advertising and
tracking can instead be leveraged for robust blocking. Specif-
ically, our proposed WEBGRAPH builds a cross-layer graph
representation to capture such information flows and train a ma-
chine learning classifier for accurate and robust ad and tracker
blocking. Our results showed that it is non-trivial to evade WE-
BGRAPH’s classifier without causing unavoidable collateral
damage.

While it is not foolproof, we believe that WEBGRAPH raises
the bar for advertisers and trackers attempting to evade detec-
tion. We foresee that advertising and tracking services would
need to significantly re-architecture their information sharing
patterns to achieve long-lasting evasion against WEBGRAPH.
We note, however, that introducing new information flows may
be quite complicated, as they may require collaboration among
the first-party and numerous third-parties on a typical web
page.

13



References

[1] uBlock Origin. https://github.com/gorhill/uBl
ock.

[2] Ghostery. https://www.ghostery.com.

[3] MDN. Storage access policy: Block cookies from
trackers. https://developer.mozilla.org/en-US/
docs/Mozilla/Firefox/Privacy/Storage_acces
s_policy.

[4] MDN. Redirect tracking protection. https://develo
per.mozilla.org/en-US/docs/Mozilla/Firefox
/Privacy/Redirect_Tracking_Protection.

[5] Microsoft Edge Team. Introducing tracking prevention,
now available in Microsoft Edge preview builds. https:
//blogs.windows.com/msedgedev/2019/06/27/tr
acking-prevention-microsoft-edge-preview/.

[6] Brave. A Long List of Ways Brave Goes Beyond Other
Browsers to Protect Your Privacy. https://brave.co
m/privacy-features/.

[7] EasyList. https://easylist.to/easylist/easylis
t.txt.

[8] EasyPrivacy. https://easylist.to/easylist/eas
yprivacy.txt.

[9] Disconnect. https://disconnect.me/.

[10] Sruti Bhagavatula, Christopher Dunn, Chris Kanich, Mi-
naxi Gupta, and Brian Ziebart. Leveraging Machine
Learning to Improve Unwanted Resource Filtering. In
ACM Workshop on Artificial Intelligence and Security,
2014.

[11] David Gugelmann, Markus Happe, Bernhard Ager, and
Vincent Lenders. An Automated Approach for Comple-
menting Ad Blockers’ Blacklists. In Privacy Enhancing
Technologies Symposium (PETS), 2015.

[12] Anastasia Shuba, Athina Markopoulou, and Zubair
Shafiq. NoMoAds: Effective and Efficient Cross-App
Mobile Ad-Blocking. In Privacy Enhancing Technolo-
gies Symposium (PETS), 2018.

[13] Qianru Wu, Qixu Liu, Yuqing Zhang, Peng Liu, and
Guanxing Wen. A Machine Learning Approach for De-
tecting Third-Party Trackers on the Web. In ESORICS,
2016.

[14] Andrew J. Kaizer and Minaxi Gupta. Towards Au-
tomatic identification of JavaScript-oriented Machine-
Based Tracking. In IWSPA, 2016.

[15] Muhammad Ikram, Hassan Jameel Asghar, Mohamed Ali
Kaafar, Anirban Mahanti, and Balachandar Krishna-
murthy. Towards Seamless Tracking-Free Web: Im-
proved Detection of Trackers via One-class Learning
. In Privacy Enhancing Technologies Symposium (PETS),
2017.

[16] Peter Snyder, Antoine Vastel, and Benjamin Livshits.
Who Filters the Filters: Understanding the Growth, Use-
fulness and Efficiency of Crowdsourced Ad Blocking. In
ACM SIGMETRICS, 2020.

[17] Philippe Skolka, Cristian-Alexandru Staicu, and Michael
Pradel. Anything to hide? studying minified and obfus-
cated code in the web. In The World Wide Web Confer-
ence, pages 1735–1746, 2019.

[18] Umar Iqbal, Peter Snyder, Shitong Zhu, Benjamin
Livshits, Zhiyun Qian, and Zubair Shafiq. AdGraph: A
Graph-Based Approach to Ad and Tracker Blocking. In
IEEE Symposium on Security and Privacy (S&P). IEEE,
2020.

[19] Alexander Sjösten, Peter Snyder, Antonio Pastor, Pana-
giotis Papadopoulos, and Benjamin Livshits. Filter List
Generation for Underserved Regions. In WWW, 2020.

[20] Ha Dao, Johan Mazel, and Kensuke Fukuda. Character-
izing CNAME Cloaking-Based Tracking on the Web. In
Network Traffic Measurement and Analysis Conference,
2020.

[21] Yana Dimova, Gunes Acar, Lukasz Olejnik, Wouter
Joosen, and Tom Van Goethem. The CNAME of the
Game: Large-scale Analysis of DNS-based Tracking Eva-
sion. Proceedings on Privacy Enhancing Technologies,
2021(1):109–126, 2021.

[22] Panagiotis Papadopoulos, Nicolas Kourtellis, and Evan-
gelos P. Markatos. Cookie synchronization: Everything
you always wanted to know but were afraid to ask. In
Proceedings of the World Wide Web (WWW) Conference,
2019.

[23] Imane Fouad, Nataliia Bielova, Arnaud Legout, and
Natasa Sarafijanovic-Djukic. Missed by Filter Lists: De-
tecting Unknown Third-Party Trackers with Invisible Pix-
els. Proceedings on Privacy Enhancing Technologies,
2020:499–518, 04 2020.

[24] Adblock Plus. https://adblockplus.org/.

[25] Umar Iqbal, Zubair Shafiq, and Zhiyun Qian. The Ad
Wars: Retrospective Measurement and Analysis of Anti-
Adblock Filter Lists. In IMC, 2017.

[26] Catalin Cimpanu. Ad Network Uses DGA Algorithm
to Bypass Ad Blockers and Deploy In-Browser Miners.

14

https://github.com/gorhill/uBlock
https://github.com/gorhill/uBlock
https://www.ghostery.com
https://developer.mozilla.org/en-US/docs/Mozilla/Firefox/Privacy/Storage_access_policy
https://developer.mozilla.org/en-US/docs/Mozilla/Firefox/Privacy/Storage_access_policy
https://developer.mozilla.org/en-US/docs/Mozilla/Firefox/Privacy/Storage_access_policy
https://developer.mozilla.org/en-US/docs/Mozilla/Firefox/Privacy/Redirect_Tracking_Protection
https://developer.mozilla.org/en-US/docs/Mozilla/Firefox/Privacy/Redirect_Tracking_Protection
https://developer.mozilla.org/en-US/docs/Mozilla/Firefox/Privacy/Redirect_Tracking_Protection
https://blogs.windows.com/msedgedev/2019/06/27/tracking-prevention-microsoft-edge-preview/
https://blogs.windows.com/msedgedev/2019/06/27/tracking-prevention-microsoft-edge-preview/
https://blogs.windows.com/msedgedev/2019/06/27/tracking-prevention-microsoft-edge-preview/
https://brave.com/privacy-features/
https://brave.com/privacy-features/
https://easylist.to/easylist/easylist.txt
https://easylist.to/easylist/easylist.txt
https://easylist.to/easylist/easyprivacy.txt
https://easylist.to/easylist/easyprivacy.txt
https://adblockplus.org/


https://www.bleepingcomputer.com/news/secu
rity/ad-network-uses-dga-algorithm-to-bypas
s-ad-blockers-and-deploy-in-browser-miner
s/, 2018.

[27] Zhang Zaifeng. Who is Stealing My Power III: An
Adnetwork Company Case Study, 2018. http://blog
.netlab.360.com/who-is-stealing-my-power-i
ii-an-adnetwork-company-case-study-en/.

[28] Andrew Bosworth. A New Way to Control the Ads
You See on Facebook, and an Update on Ad Blocking.
https://newsroom.fb.com/news/2016/08/a-new-way-to-
control-the-ads-you-see-on-facebook-and-an-update-on-
ad-blocking/, 2016.

[29] Garett Sloane. Ad Blocker’s Successful Assault on
Facebook Enters Its Second Month. http://adage.co
m/article/digital/blockrace-adblock/311103/,
2017.

[30] Ben Williams. Ping pong with Facebook. https://ad
blockplus.org/blog/ping-pong-with-facebook,
2018.

[31] Weihang Wang, Yunhui Zheng, Xinyu Xing, Yonghwi
Kwon, Xiangyu Zhang, and Patrick Eugster. WebRanz:
Web Page Randomization For Better Advertisement De-
livery and Web-Bot Prevention. In ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engi-
neering, 2016.

[32] Mshabab Alrizah, Sencun Zhu, Xinyu Xing, and Gang
Wang. Errors, misunderstandings, and attacks: Analyzing
the crowdsourcing process of ad-blocking systems. In
Proceedings of the 2019 Internet Measurement Confer-
ence (IMC), 2019.

[33] Hung Dang, Yue Huang, and Eechien Chang. Evading
Classifiers by Morphing in the Dark. In Proceedings of
the ACM SIGSAC Conference on Computer and Commu-
nications Security, 2017.

[34] Aurore Fass, Michael Backes, and Ben Stock. Hi-
deNoSeek: Camouflaging Malicious JavaScript in Benign
ASTs. In Proceedings of the ACM SIGSAC Conference
on Computer and Communications Security, 2019.

[35] Niels Hansen, Lorenzo De Carli, and Drew Davidson.
Assessing Adaptive Attacks Against Trained JavaScript
Classifiers. In 16th EAI International Conference on
Security and Privacy in Communication Networks (Se-
cureComm), 2020.

[36] Quan Chen, Peter Snyder, Ben Livshits, and Alexandros
Kapravelos. Detecting filter list evasion with event-loop-
turn granularity javascript signatures. In Proceedings
of the IEEE Symposium on Security and Privacy (May
2021), 2021.

[37] Amir Hossein Kargaran, Mohammad Sadegh
Akhondzadeh, Mohammad Reza Heidarpour, Mo-
hammad Hossein Manshaei, Kave Salamatian, and
Masoud Nejad Sattary. On detecting hidden third-party
web trackers with a wide dependency chain graph:
A representation learning approach. arXiv preprint
arXiv:2004.14826, 2020.

[38] Shitong Zhu, Zhongjie Wang, Xun Chen, Shasha Li,
Umar Iqbal, Zhiyun Qian, Kevin S Chan, Srikanth V Kr-
ishnamurthy, and Zubair Shafiq. A4: Evading learning-
based adblockers. arXiv preprint arXiv:2001.10999,
2020.

[39] Florian Tramèr, Pascal Dupré, Gili Rusak, Giancarlo Pel-
legrino, and Dan Boneh. Adversarial: Perceptual ad
blocking meets adversarial machine learning. In CCS,
2019.

[40] Bypassing ad blockers for Google Analytics. https://
analytics-bypassing-adblockers.netlify.app/.

[41] Bjørn Johansen. Tracking visitors with adblock-
ers. https://www.bjornjohansen.com/tracking-v
isitors-with-adblockers.

[42] Jason Bloomberg. Ad Blocking Battle Drives Disruptive
Innovation. https://www.forbes.com/sites/jason
bloomberg/2017/02/18/ad-blocking-battle-dri
ves-disruptive-innovation, 2017.

[43] Romain Cointepas. CNAME Cloaking, the
dangerous disguise of third-party trackers.
https://medium.com/nextdns/cname-cloaking-
the-dangerous-disguise-of-third-party-trackers-
195205dc522a, 2010.

[44] Catalin Cimpanu. Ad Network Uses DGA Algorithm
to Bypass Ad Blockers and Deploy In-Browser Miners.
https://www.bleepingcomputer.com/news/secu
rity/ad-network-uses-dga-algorithm-to-bypas
s-ad-blockers-and-deploy-in-browser-miner
s/, 2018.

[45] Daniel Plohmann, Khaled Yakdan, Michael Klatt, Jo-
hannes Bader, and Elmar Gerhards-Padilla. A Com-
prehensive Measurement Study of Domain Generating
Malware. In Proceedings of the 25th USENIX Security
Symposium, 2016.

[46] Steven Englehardt and Arvind Narayanan. Online track-
ing: A 1-million-site measurement and analysis. In Pro-
ceedings of ACM CCS 2016, 2016.

[47] Muhammad Ahmad Bashir and Christo Wilson. Diffu-
sion of user tracking data in the online advertising ecosys-
tem. Proceedings on Privacy Enhancing Technologies,
2018(4):85–103, 2018.

15

https://www.bleepingcomputer.com/news/security/ad-network-uses-dga-algorithm-to-bypass-ad-blockers-and-deploy-in-browser-miners/
https://www.bleepingcomputer.com/news/security/ad-network-uses-dga-algorithm-to-bypass-ad-blockers-and-deploy-in-browser-miners/
https://www.bleepingcomputer.com/news/security/ad-network-uses-dga-algorithm-to-bypass-ad-blockers-and-deploy-in-browser-miners/
https://www.bleepingcomputer.com/news/security/ad-network-uses-dga-algorithm-to-bypass-ad-blockers-and-deploy-in-browser-miners/
http://blog.netlab.360.com/who-is-stealing-my-power-iii-an-adnetwork-company-case-study-en/
http://blog.netlab.360.com/who-is-stealing-my-power-iii-an-adnetwork-company-case-study-en/
http://blog.netlab.360.com/who-is-stealing-my-power-iii-an-adnetwork-company-case-study-en/
http://adage.com/article/digital/blockrace-adblock/311103/
http://adage.com/article/digital/blockrace-adblock/311103/
https://adblockplus.org/blog/ping-pong-with-facebook
https://adblockplus.org/blog/ping-pong-with-facebook
https://analytics-bypassing-adblockers.netlify.app/
https://analytics-bypassing-adblockers.netlify.app/
https://www.bjornjohansen.com/tracking-visitors-with-adblockers
https://www.bjornjohansen.com/tracking-visitors-with-adblockers
https://www.forbes.com/sites/jasonbloomberg/2017/02/18/ad-blocking-battle-drives-disruptive-innovation
https://www.forbes.com/sites/jasonbloomberg/2017/02/18/ad-blocking-battle-drives-disruptive-innovation
https://www.forbes.com/sites/jasonbloomberg/2017/02/18/ad-blocking-battle-drives-disruptive-innovation
https://www.bleepingcomputer.com/news/security/ad-network-uses-dga-algorithm-to-bypass-ad-blockers-and-deploy-in-browser-miners/
https://www.bleepingcomputer.com/news/security/ad-network-uses-dga-algorithm-to-bypass-ad-blockers-and-deploy-in-browser-miners/
https://www.bleepingcomputer.com/news/security/ad-network-uses-dga-algorithm-to-bypass-ad-blockers-and-deploy-in-browser-miners/
https://www.bleepingcomputer.com/news/security/ad-network-uses-dga-algorithm-to-bypass-ad-blockers-and-deploy-in-browser-miners/


[48] Lukasz Olejnik, Minh-Dung Tran, and Claude Castel-
luccia. Selling off privacy at auction. In Network and
Distributed System Security Symposium (NDSS), 2014.

[49] Gunes Acar, Christian Eubank, Steven Englehardt, Marc
Juarez, Arvind Narayanan, and Claudia Diaz. The web
never forgets: Persistent tracking mechanisms in the wild.
In Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, 2014.

[50] Daniel Hedin, Arnar Birgisson, Luciano Bello, and An-
drei Sabelfeld. Jsflow: Tracking information flow in
javascript and its apis. In Proceedings of the 29th Annual
ACM Symposium on Applied Computing, pages 1663–
1671, 2014.

[51] Andrey Chudnov and David A Naumann. Inlined infor-
mation flow monitoring for javascript. In Proceedings
of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, pages 629–643, 2015.

[52] Quan Chen and Alexandros Kapravelos. Mystique: Un-
covering information leakage from browser extensions.
In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, pages 1687–
1700, 2018.

[53] Steven Englehardt, Jeffrey Han, and Arvind Narayanan.
I never signed up for this! privacy implications of email
tracking. Proceedings on Privacy Enhancing Technolo-
gies, 2018(1):109–126, 2018.

[54] treeinterpreter. https://pypi.org/project/treeint
erpreter/.

[55] Daniel Zügner, Amir Akbarnejad, and Stephan Günne-
mann. Adversarial attacks on neural networks for graph
data. In Proceedings of the 24th ACM SIGKDD Inter-
national Conference on Knowledge Discovery & Data
Mining, pages 2847–2856, 2018.

[56] Shifu Hou, Yujie Fan, Yiming Zhang, Yanfang Ye, Jing-
wei Lei, Wenqiang Wan, Jiabin Wang, Qi Xiong, and
Fudong Shao. 𝛼cyber: Enhancing robustness of android
malware detection system against adversarial attacks on
heterogeneous graph based model. In Proceedings of the
28th ACM International Conference on Information and
Knowledge Management, pages 609–618, 2019.

[57] Xiaoyun Wang, Joe Eaton, Cho-Jui Hsieh, and Felix Wu.
Attack graph convolutional networks by adding fake
nodes. arXiv preprint arXiv:1810.10751, 2018.

[58] Umar Iqbal, Steven Englehardt, and Zubair Shafiq.
Fingerprinting the Fingerprinters:Learning to Detect
Browser Fingerprinting Behaviors. In IEEE Symposium
on Security and Privacy (S&P). IEEE, 2021.

[59] Anupam Das, Gunes Acar, Nikita Borisov, and Amogh
Pradeep. The Web’s Sixth Sense: A study of scripts ac-
cessing smartphone sensors. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 1515–1532, 2018.

[60] Vasilios Mavroudis, Shuang Hao, Yanick Fratantonio,
Federico Maggi, Christopher Kruegel, and Giovanni Vi-
gna. On the privacy and security of the ultrasound ecosys-
tem. Proceedings on Privacy Enhancing Technologies,
2017(2):95–112, 2017.

[61] Ben Stock, Sebastian Lekies, Tobias Mueller, Patrick
Spiegel, and Martin Johns. Precise Client-side Protec-
tion against DOM-based Cross-Site Scripting. In 23rd
USENIX Security Symposium (USENIX Security 14),
pages 655–670, San Diego, CA, 2014.

[62] Sebastian Lekies, Ben Stock, and Martin Johns. 25 mil-
lion flows later: Large-scale detection of DOM-based
XSS. In Proceedings of the 2013 ACM SIGSAC confer-
ence on Computer and Communications Security, pages
1193–1204, 2013.

[63] M. Butkiewicz, H. V. Madhyastha, and V. Sekar. Un-
derstanding website complexity: measurements, metrics,
and implications. In Proceedings of the ACM Internet
Measurement Conference (IMC), 2011.

A Comparison between ADGRAPH and WEB-
GRAPH features

Table 4 compares and contrasts the features used in WEB-
GRAPH and ADGRAPH. WEBGRAPH does not use content
features. Graph size, Degree and Centrality features come un-
der both structure and flow categories, since they include graph
properties that are based on both normal (structure feature)
and shared information edges (flow feature). WEBGRAPH uses
both types of edges, whereas ADGRAPH uses only normal
edges. Some structural features used in ADGRAPH are not
used in WEBGRAPH due to WEBGRAPH being adapted for
offline use, whereas the features are useful in an online context.

B Distribution of graph sizes

Figure 7 shows the distribution of number of nodes in the graph
representations of the web pages in our dataset. Since 80% of
web pages have 250 nodes or fewer, we sample from this subset
in our structural mutation experiments in Section 5.

16

https://pypi.org/project/treeinterpreter/
https://pypi.org/project/treeinterpreter/


Table 4: WEBGRAPH features comparison with ADGRAPH. indicates that a feature is present. WEBGRAPH calculates Graph
size, Degree and Centrality features using both normal and shared information edges. The former comes under structural features
while the latter comes under flow features.

Feature Type WEBGRAPH ADGRAPH

Request type (e.g. iframe, image) Content
Ad keywords in request (e.g. banner, sponsor) Content
Ad or screen dimensions in URL Content
Valid query string parameters Content
Length of URL Content
Domain party Content
Sub-domain check Content
Base domain in query string Content
Semi-colon in query string Content

Graph size (# of nodes, # of edges, and nodes/edge ratio) Structure
Degree (in, out, in+out, and average degree connectivity) Structure
Centrality (closeness centrality, eccentricity) Structure
Number of siblings (node and parents) Structure
Modifications by scripts (node and parents) Structure
Parent’s attributes Structure
Parent degree (in, out, in+out, and average degree connectivity) Structure
Sibling’s attributes Structure
Ascendant’s attributes Structure
Descendant of a script Structure
Ascendant’s script properties Structure
Parent is an eval script Structure

Local storage access (# of sets, # of gets) Flow (storage)
Cookie access (# of sets, # of gets) Flow (storage)
Requests (sent, received) Flow (network)
Redirects (sent, received, depth in chain) Flow (network)
Common access to the same storage node Flow (shared information)
Sharing of a storage node’s value in a URL Flow (shared information)
Graph size (# of nodes, # of edges, and nodes/edge ratio) Flow (shared information)
Degree (in, out, in+out, and average degree connectivity) Flow (shared information)
Centrality (closeness centrality, eccentricity) Flow (shared information)

Figure 7: Distribution of number of nodes in the graph rep-
resentations of the web pages in the dataset. 80% of the web
pages have 250 nodes or fewer.

C Experimental run times

Figures 8 and 9 describe the run times for the experiment de-
scribed in Section 5.3.1 (adversary without collusion). Figure 8
shows the impact of graph size on each iteration of the experi-
ment. As expected, smaller graphs have lower run times since
features have to be calculated over a smaller number of nodes.
Note that graph size is not the only contributing factor to run
times. Other factors such as the complexity of the structure
and flow behaviors would also contribute towards time spent in
each iteration, which is why we observe variations in iteration
time among graphs of the same size. We see that the mean
time per iteration can be as high as ≈ 1200 seconds (median
is ≈ 68 seconds). Figure 9 shows the total experiment time
over all iterations for a graph. Since we increase the sizes of
graphs by 20% of their original size, bigger graphs will have a

17



larger number of iterations. In our dataset, the maximum time
taken for an experiment is 46654.19 seconds, the minimum is
15.67 seconds, and the median is 1745.11 seconds. 39% of the
graphs in our dataset have a run time of more than an hour.

Figure 8: Mean time per iteration vs graph size for the ex-
periment without collusion. Standard deviation over all the
iterations for each graph was less than 2%. Larger graph sizes
take longer time for each iteration.

Figure 9: Distribution of total run time for the experiments in
Section 5.3.1. 39% of the graphs in our dataset have a run time
of more than an hour.

Figure 10 shows the total experiment time over all itera-
tions for the experiment described in Section 5.3.1 (collusion
with first party). The median time is 265.03 seconds, with the
maximum time going up to 992.67 seconds, despite the maxi-
mum graph size being only 50 nodes. In comparison, for the
adversary without collusion, for graph sizes up to 50 nodes,
the median is 21.46 seconds and the maximum is 221.51 sec-
onds. Since the adversary considers all nodes in the graph as
potential parents, each iteration takes a longer amount of time.

Figure 10: Distribution of total run time for the experiments in
Section 5.3.1. The experiment time can be as high as 996.67
seconds for a graph size <= 50 nodes.

D Graph Mutation algorithm

In each iteration, the algorithm mutates WEBGRAPH’s graph
representation and probes the model for classification decisions.
The algorithm takes the following inputs: a graph represen-
tation of a web page, 𝐺0, consisting of all the nodes in the
graph; a set of nodes and edges 𝑇 of size 𝑙𝑇 , representing the
resources loaded by the adversary, hereafter referred to as the
adversary resources; a trained classifier 𝑀 that identifies ATS
in WEBGRAPH; and a maximum number of iterations that the
algorithm can run, max_iter.

The algorithm processes the input as follows: It first uses the
classifier 𝑀 to obtain classifications of all nodes in the original
graph 𝐺0 (lines 1–4 in Algorithm D). Second, it iterates over
the steps from lines 9–20 max_iter times. In each iteration, ev-
ery adversary node tries resource addition, resource re-routing,
and obfuscation, and produces a new mutated graph, 𝐺𝑖 (line
11). Third, it extracts features from the mutated graph 𝐺𝑖 and
uses them to classify all the nodes in this graph (lines 11–12).
Fourth, it compares the predictions in the original and mutated
graphs to obtain the number of desired and undesired switches
(line 13). We assume an adversarial goal for which desired
switches are all those in which an adversary node is switched
from ATS to Non-ATS, whereas undesired switches are all those
where any Non-ATS node is switched to ATS node. We call the
total number of adversarial ATS nodes whose prediction the
adversary wishes to change to Non-ATS the number of required
switches. The switching of nodes not under the adversary’s
control from ATS to Non-ATS do not affect the adversary. These
switches are, therefore, neither desired nor undesired. Finally,
the adversary chooses the mutation that provides the best re-
sult, i.e., the one with the best trade-off between desired and
undesired switches (lines 14–15). The adversary updates its 𝑇
based on the chosen mutation (line 18). To keep memory and
run time manageable, at the end of every iteration the algorithm
randomly samples 𝑙𝑇 adversarial nodes and edges from 𝑇 (line
19) to be considered in the next iteration.

18



Algorithm 1 Greedy random graph mutation. 𝐺0 is a web page
representation, 𝑇 is the set of 𝑙𝑇 nodes and edges controlled
by the adversary, 𝑀 is a trained model, and max_iter is the
maximum number of operations.
Input: 𝐺0,𝑇,𝐶,𝑀,max_iter

1: for v ∈ 𝐺0 do
2: x𝐺0 ← ExtractFeatures(𝑣) ∀ 𝑣 ∈ 𝐺0
3: y𝐺0 ← Classify(𝑀,x) ∀ 𝑥 𝑖𝑛 x𝐺0

4: end for
5: 𝐺← 𝐺0
6: 𝑖← 0
7: graph-info = []
8: while 𝑖 < max_iter do
9: for 𝑡 ∈ 𝑇 do

10: 𝐺𝑡 ← MutateGraph(𝐺, 𝑡)
11: x𝑡 ← ExtractFeatures(𝑣) ∀ 𝑣 ∈ 𝐺𝑡

12: y𝑡 ← Classify(𝑀,x) ∀ 𝑥 𝑖𝑛 x𝑡
13: d,u ← GetDesiredAndUndesired(y𝑡 ,y𝐺0 )
14: Δ𝑡 = d−u
15: graph-info[𝑡] ← (Δ𝑡 , 𝑡,𝐺𝑡 )
16: end for
17: 𝐺← 𝐺𝑡 in graph-info[t] with largest Δ𝑡

18: 𝑇 ← UpdateAdv(𝑇, 𝑡 ∈ graph-info[𝑡])
19: 𝑇 ← sample(𝑇, 𝑙𝑇 )
20: 𝑖← 𝑖 +1
21: end while

Mutation example. An example iteration of the greedy ran-
dom algorithm, using resource addition as the mutation, is
shown in Figure 11. The algorithm proposes two mutations
(right) to the initial graph (left), and chooses the mutation that
provides the best trade-off between the desired and undesired
classification switches. Figure 11 also illustrates that even a
simple node addition may lead to unintended changes in classi-
fication decisions: the adversary may change the classification
decisions for some nodes from ATS to Non-ATS, but as a side ef-
fect nodes previously classified as Non-ATS are now classified
as ATS.

E Mutations on a single web page.

To illustrate how mutations result in classification switches, we
take as an example a web page in which the third party with the
highest number of ATS resources is assets.wogaa.sg, which
has 12 nodes in the graph. Figure 12 shows the breakdown of
classification switches as the adversary mutates the graph using
the greedy mutation algorithm. The ATSAdv or the number of
classifications the adversary wants to switch is 5 (pink line

). From the adversary’s point of view, adversarial nodes
switching from ATS→ Non-ATS are desired (blue line ),
whereas adversarial nodes switching from Non-ATS → ATS
are undesired (orange line ). We consider Non-ATS→ ATS
changes on non-adversarial nodes to be undesired because they

Figure 11: One iteration of the greedy random mutation algo-
rithm. In this iteration the algorithm selected two adversarial
nodes to add a child (Option A: bottom left node, top; Option
B: bottom right node, top;). In option A, the change leads to
one desired (green circle) and one undesired (red circle) mod-
ification. In option B, the change only causes one undesired
modification. The algorithm would pick the graph with best
trade-off between desired and undesired switches for the next
iteration: i.e., Option A.

may have unintended impact on the web page (red line and
brown line ). For instance, a first party Non-ATS → ATS
switch may break the web page. We note that, if the adversary’s
goal is to just create a denial of service and force the user
to disable ad and tracker blocking, the adversary might be
unconcerned about breakage. In our experiments, switches that
do not affect the adversary, such as ATS→ Non-ATS for non-
adversary nodes, are neither considered desired nor undesired
(purple line and green line ).

There are two points worth highlighting from Figure 12: (1)
Even if an adversary achieves the maximum number of desired
switches, the mutations may produce undesirable changes, to
both the adversary’s nodes and others. For instance, at 20%
of growth, 3 of the adversary’s ATS nodes are classified as
Non-ATS, but also 7 Non-ATS nodes (3 adversary and 4 non-
adversary) switch to the undesired ATS classification. (2) The
evolution of desired and undesired switches is not monotonic,
i.e. the classification of nodes may change in both directions

19

assets.wogaa.sg


Figure 12: Example breakdown of classification switches for
the adversary’s and other nodes on the graph. NATS is shorthand
for Non-ATS. ATSAdv = 5 (pink line), Non-ATSAdv = 7, ATSWeb
= 62, ATSWeb = 13 (not shown in plot). At 20% growth, the ad-
versary achieves 3 desired switches, 7 undesired switches
and 1 neutral switch. This leads to a success rate of 60%,
a collateral damage of 10.14% and other changes of 7.7%.

as the adversary mutates the graph, resulting in increasing
or decreasing counts. This finding reinforces our argument
that it can be cumbersome for an adversary to create targeted
structural mutations without any unintended consequences. Not
only it is hard to predict how mutations will affect adversary’s
own desired classification, but also how those mutations may
result in undesirable changes to others.

F WEBGRAPH robustness experiments

We show the success rate vs. collateral damage plots for the
experiments described in Sections 5.3.1 and 5.3.3.

Figures 13 and 14 show the results for an adversary that
performs only resource addition against ADGRAPH (with only
structural features) and WEBGRAPH respectively. ADGRAPH
shows a higher number of successes for the adversary (44 pages
with success rate > 50% as compared to 30 for WEBGRAPH).
At the same time, ADGRAPH also shows a higher amount of
collateral damage (which is not beneficial for the adversary) –
66 pages with non-zero collateral damage, as compared to 47
for WEBGRAPH. Hence, there is no clear-cut winner between
the two classifiers in terms of robustness. However, we do
see that ADGRAPH has lower successes and higher collateral
damage than WEBGRAPH against the powerful adversary that
can do all mutations as shown in Figure 6(a) (note that this
adversary cannot be used against ADGRAPH since ADGRAPH
does not use information flow edges), since this adversary
targets the effective, but costly, information sharing patterns.

Figure 13: Adversary’s success rate vs. collateral damage for
each web page in the test data at 20% graph growth, for re-
source addition against WEBGRAPH. Color denotes the num-
ber of required switches.

Figure 14: Adversary’s success rate vs. collateral damage for
each web page in the test data at up to 20% graph growth,
for resource addition against WEBGRAPH. Color denotes the
number of required switches.

Figures 15 and 16 show the results for an adversary that
colludes against an adversary with no collusion (Section 5.3.1).
A colluding adversary shows a higher number of successes (63
pages with success rate > 50% as compared to 60 for the non-
colluding adversary), and a lower collateral damage (9 pages
with damage >0% compared to 18 pages for a non-colluding
adversary).

20



Figure 15: Adversary’s success rate vs. collateral damage for
each web page in the test data at 20% graph growth, for a
colluding adversary. Color denotes the number of required
switches.

Figure 16: Adversary’s success rate vs. collateral damage for
each web page in the test data at up to 20% graph growth, for a
non-colluding adversary. Color denotes the number of required
switches.

21


	1 Introduction
	2 Background & Related Work
	3 AdGraph Robustness
	3.1 Threat Model & Attack
	3.2 Results

	4 WebGraph
	4.1 Design & Implementation
	4.1.1 Graph Construction
	4.1.2 Features

	4.2 Evaluation
	4.3 Efficiency

	5 WebGraph Robustness
	5.1 Content mutation attacks
	5.2 Structure mutation attacks
	5.3 Empirical evaluation
	5.3.1 Adversary's success
	5.3.2 Impact of mutation choice
	5.3.3 Comparison with AdGraph.


	6 Limitations
	7 Conclusion
	A Comparison between AdGraph and WebGraph features
	B Distribution of graph sizes 
	C Experimental run times
	D Graph Mutation algorithm
	E Mutations on a single web page.
	F WebGraph robustness experiments

