
A Throughput-Centric View of the Performance of Datacenter
Topologies

Pooria Namyar
University of Southern California

Sucha Supittayapornpong
Vidyasirimedhi Institute of Science

and Technology

Mingyang Zhang
University of Southern California

Minlan Yu
Harvard University

Ramesh Govindan
University of Southern California

ABSTRACT

While prior work has explored many proposed datacenter designs,

only two designs, Clos-based and expander-based, are generally con-

sidered practical because they can scale using commodity switching

chips. Prior work has used two diferent metrics, bisection band-

width and throughput, for evaluating these topologies at scale. Little

is known, theoretically or practically, how these metrics relate to

each other. Exploiting characteristics of these topologies, we prove

an upper bound on their throughput, then show that this upper

bound better estimates worst-case throughput than all previously

proposed throughput estimators and scales better than most of

them. Using this upper bound, we show that for expander-based

topologies, unlike Clos, beyond a certain size of the network, no

topology can have full throughput, even if it has full bisection band-

width; in fact, even relatively small expander-based topologies fail

to achieve full throughput. We conclude by showing that using

throughput to evaluate datacenter performance instead of bisection

bandwidth can alter conclusions in prior work about datacenter

cost, manageability, and reliability.

CCS CONCEPTS

· Networks → Data center networks; Network performance

modeling; Network manageability; Topology analysis and

generation; · General and reference → Metrics;

KEYWORDS

Data centers, Throughput, Clos topologies, Network management

ACM Reference Format:

Pooria Namyar, Sucha Supittayapornpong, Mingyang Zhang, Minlan Yu,

and Ramesh Govindan. 2021. A Throughput-Centric View of the Perfor-

mance of Datacenter Topologies. In ACM SIGCOMM 2021 Conference (SIG-

COMM ’21), August 23ś28, 2021, Virtual Event, USA. ACM, New York, NY,

USA, 21 pages. https://doi.org/10.1145/3452296.3472913

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proit or commercial advantage and that copies bear this notice and the full citation
on the irst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speciic permission and/or a
fee. Request permissions from permissions@acm.org.

SIGCOMM ’21, August 23ś28, 2021, Virtual Event, USA

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8383-7/21/08.
https://doi.org/10.1145/3452296.3472913

1 INTRODUCTION

A primary contributor to the success of cloud computing is the dat-

acenter, a warehouse-style agglomeration of compute and storage

on commodity servers. The performance of distributed applica-

tions running inside a datacenter, like search, reliable storage, and

social networks, is strongly determined by the design of the dat-

acenter network. This network consists of a topology in which

switches interconnect servers. Today, datacenters routinely have

tens of thousands of switches connecting hundreds of thousands

of servers. Our focus, in this paper, is on the design and evaluation

of topologies for such large-scale datacenters.

Datacenter topology designs. Two distinct classes of topology

designs have emerged in recent years. Clos [8] based designs include

Fat-tree [1], VL2 [15], Jupiter [42] and Facebook Fabric [3], and

failure-resilient variants, such as F10 [36]. These hierarchical de-

signs are bi-regular, in which a switch either connects to � servers,

or none at all (Figure 1). More recent alternative designs target

lower installation costs and/or incur lower management costs than

Clos-based topologies. These designs employ an expander-graph to

interconnect switches, and include Jellyish [44], Xpander [47], and

FatClique [52]. These topologies are uni-regular : every switch con-

nects to � servers (Figure 1). In both classes, each server connects

to exactly one switch.1

Measures of topology capacity. The capacity of the data center

network limits the performance of applications it hosts. Intuitively,

a topology with enough capacity to permit every server to send

traic at full line rate simpliies cloud application design: operators

can place application instances anywhere in the network without

impacting performance, and this placement lexibility enables ap-

plications to be more cost eicient and more robust to correlated

failures (e.g., of an entire rack or power domain) [15, 21, 35, 42].

Most prior work [1, 3, 15, 42, 52] has used the network’s bisection

bandwidth, the smallest aggregate capacity of the links crossing the

worst-case cut among all the cuts that divide the topology graph

into two halves, as a measure of its capacity. A topology has full

bisection bandwidth if its bisection bandwidth is at least equal to

half of the total servers; for Clos-based designs, such a topology

permits arbitrary application instance placement.

Other work [24, 26, 27, 50, 51] has explored an alternative mea-

sure of network capacity, throughput, deined as follows. The

throughput under traic matrix � is the highest scaling factor � (�)

such that the topology can support the traic matrix, � · � (�),

1Other topology designs, such as DragonFly [30], and SlimFly [6], do not scale to the
sizes of modern data centers, so we do not consider them in this paper; see ğ7.

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA Namyar .et al.

Figure 1: Uni-regular and bi-regular topologies.

without violating any link’s capacity constraint. The throughput

of a topology denoted by �∗ is the worst-case throughput among

all traic matrices. A topology can support any traic demand if

and only if �∗ is at least 1 (in this case, we say the topology has

full throughput). Because it can support any traic demand, a full

throughput topology also permits arbitrary application instance

placement by deinition.2

How prior work uses these metrics. These metrics can help

evaluate topology design, perform cost comparisons, or assess the

complexity of network expansion. As Table 1 shows a substantial

body of work has used bisection bandwidth to perform these

assessments on large-scale uni-regular and bi-regular topologies.

(Some prior work [27, 43, 44, 47] has used throughput to perform

some of these assessments, but for much smaller-scale topologies

with only a few thousand servers.)

Objective Metric Topology Class Prior work

Evaluate Design BBW
bi-regular [1, 15, 42]
uni-regular [44, 47, 52]

Assess Cost BBW
bi-regular [15, 42, 44, 52]
uni-regular [44, 52]

Estimate Expansion

complexity
BBW

bi-regular [10, 42, 52, 53]
uni-regular [44, 52]

Table 1: Prior work has used bisection bandwidth for large-scale evalua-

tions.

Given this discussion, it is natural to ask: What is the diference

between these metrics for uni-regular and bi-regular topologies?

Should the papers listed in Table 1 have used throughput instead?

How would these assessments change if they did?

To our knowledge, the literature has not explored the precise

diference between these two metrics, but has explored related,

but slightly diferent questions. Bisection bandwidth is a graph-cut

based metric, and [27] has studied the relation between cut based

metrics and throughput at a scale much smaller than those we

consider in this paper. As well, [34] shows that the sparsest cut

of any topology for a given traic matrix is within � (����) of its

throughput for that traic matrix. Finally, Yuan et al. [50] show

that bisection bandwidth cannot predict average throughput of a

topology.

2To actually achieve arbitrary instance placement, one also might need a scalable,
practical routing scheme that can exploit the topology’s available capacity. For Clos-
based networks, ECMP-based routing can do so. For large-scale uni-regular topologies,
we believe this question is open. We don’t address this in this paper since we focus on
topology properties.

In this paper, we take a irst step in understanding the relation-

ship between these metrics by making the following contributions.

Contribution: The Diference Between Full Throughput and

Full Bisection Bandwidth for Uni-regular Topologies. We

prove (ğ4) that for any uni-regular topology, there exists a size (in

terms of the number of servers) beyond which the topology cannot

have full throughput even if it has full bisection bandwidth. This is

true even of small instances of uni-regular topologies with as few

as 10-15K servers (ğ4.2). By contrast, bi-regular Clos topologies are

not subject to this limit, and a full bisection bandwidth topology

always has full throughput (Figure 2). This means that a topology

designer cannot ensure application placement independence (more

precisely, the ability to support any arbitrary traic demand) using

a full bisection bandwidth uni-regular topology (Table 1). Put

diferently, for uni-regular topologies, full bisection bandwidth is

necessary but not suicient to support arbitrary traic demand; by

deinition, full throughput is both necessary and suicient.

Figure 2: Full throughput vs. Full bisection bandwidth.

Contribution: A Throughput-Centric View. Table 1 shows that

prior work has used bisection bandwidth to evaluate uni-regular

and bi-regular topologies; we show that using throughput can lead

to diferent conclusions, impacting cost and management complex-

ity (ğ5.1). It is also the more appropriate metric: as the previous

contribution demonstrates, throughput better captures the capac-

ity of both uni-regular and bi-regular topologies, while bisection

bandwidth does not.

▶ Prior work has argued that a full bisection bandwidth Jellyish,

Xpander or FatClique uses 50% fewer switches than a full bisection

bandwidth Clos [8]. We show that a full throughput Jellyish [44],

Xpander [47] or FatClique [52] uses only 25% fewer switches than a

full throughput Clos. This inding is important, because the smaller

cost diferential may make uni-regular topologies less attractive

relative to Clos (whose packaging and routing simplicity may out-

weigh its higher cost).

▶ Prior work has argued that a Jellyish or FatClique can be ex-

panded: (a) with minor bandwidth loss while keeping the num-

ber of servers per switch constant; (b) using a random rewiring

strategy [52] simpler than that for Clos [53]. This assumes that

bandwidth loss is estimated using bisection bandwidth. We show

that, expanding a full throughput Jellyish or FatClique by even a

small amount, while keeping ixed the number of servers per switch,

can result in a topology without full throughput. Thus, a designer

wishing to maintain full throughput for uni-regular topologies after

expansion may need to re-wire servers, requiring a much more

complex expansion strategy than Clos.

A Throughput-Centric View of the Performance of Datacenter Topologies SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

▶ Datacenter designers have traded of topology capacity for lower

cost by designing over-subscribed topologies. The FatTree [1] paper

deines the over-subscription ratio of a topology as the ratio of

the worst-case achievable throughput between end-hosts to the

aggregate bisection bandwidth. Our results suggest that, for uni-

regular topologies, a more direct deinition of over-subscription

ratio is the throughput itself (a throughput less than 1 indicates an

over-subscribed topology). We ind that, for these topologies, the

bisection-bandwidth based over-subscription ratio overestimates

the throughput by up to 50%. Thus, a designer using that deinition

would build a network whose actual capacity is lower than the

targeted capacity.

Contribution: An Eiciently-Computable, Tight, Through-

put Upper Bound. The previous contributions require a way to

compute the throughput of large uni-regular and bi-regular topolo-

gies. To this end, we make the following contributions.

▶We prove an upper bound on the throughput of uni-regular and

bi-regular topologies (ğ2).

▶ We empirically show (ğ3) that this upper bound is tighter and

scales better than existing approaches of estimating network ca-

pacity or throughput: the throughput bound in [43], heuristics for

estimating throughput in [23, 24, 51], bisection bandwidth, and

sparsest cut [27].

▶ This scalable throughput upper bound can be used to better assess

properties of datacenter topologies at larger scales than previously

possible, giving a designer greater conidence in a particular topol-

ogy (ğ5.2). A concrete example is resilience. Prior work showed that

Jellyish [44] and Xpander [47] degrade gracefully with random link

failure for up to 1K servers; we show that, for a 131K sized Jellyish

or Xpander, degradation is less than graceful (the throughput after

failure can be up to 20% lower than what one might expect with

graceful degradation) under random failure.

Ethics. This work does not raise any ethical issues.

2 AN UPPER BOUND ON THROUGHPUT

In this section, we prove an upper bound on throughput that applies

to uni-regular and bi-regular topologies.

2.1 Complexity of Computing Throughput
Bounds

A permutation matrix is one in which each row and each column

has exactly one non-zero entry. A permutation matrix can indicate

traic either at the server-level (where each entry denotes traic

between two servers), or switch-level. In server-level permutation

matrices, all non-zero entries are normalized to 1 while for switch-

level matrices, they are the number of servers connected to the

switch (�). In this section, we show that this set of switch-level

permutation traicmatrices, denoted by T̂ , is suicient to characterize

the throughput of uni-regular and bi-regular topologies.

Notation. Entry ��� of the switch-level traic matrix � describes

the traic demand from switch � to switch � . LetK be the set of all

switches with servers, and� be the number of servers connected to

each switch inK . To determine the throughput of the topology, we

Notation Description

� Total number of servers

� Total number of switch-to-switch links

� Switch radix

� Number of servers per switch

S Set of switches with and without servers

K Set of switches with � servers (K ⊆ S)

��� Traic demand from � to � where �, � ∈ K

� = [���] |K | × |K | traic matrix with demands ��� ’s

T Saturated hose-model set

T̂ Permutation traic set

� (�) Throughput under traic matrix�

� ∗ Topology throughput (�∗ = min� ∈T � (�))

��� Shortest path length from switch � to �

Table 2: Notation

use the hose model [11]3, where every switch sends and receives

traic at no more than its maximum rate � (for simplicity, each

link has unit capacity). The hose-model traic set is the set of traic

matrices that conform to the hose model:
︃

� ∈ R
|K |×|K |
+ :

︁

�∈K ��� ≤ � ∀� ∈ K
︁

�∈K ��� ≤ � ∀� ∈ K

︃

,

where R+ is the set of non-negative reals. This traic set includes

the commonly-used traic matrices such as all-to-all and random

permutations, and it applies not just to uni-regular topologies, but

to bi-regular topologies as well. A bi-regular topology contains two

types of switches: one without attached servers, and one in which

each switch has� servers. Switches without servers can not source

or sink any traic, and as a result, it suices to describe the traic

matrix only by switches with attached servers (K).

Our hose model deinition is consistent with [27], which bases

its deinition on server-level traic matrices. Our deinition uses

switch-level traic matrices, leveraging the fact that uni-regular

and bi-regular topologies have� servers per switch and each server

connects to exactly one switch.

On computing the throughput of a topology. Since the hose-

model traic set contains an ininite number of traic matrices,

computing the throughput of the topology (the minimum through-

put across all traic matrices) is intractable.

To improve the tractability, consider the following set of traic

matrices that we call the saturated hose model set, T , where each

switch sends and receives traic at exactly its maximum rate � :

T =

︃

� ∈ R
|K |×|K |
+ :

︁

�∈K ��� = � ∀� ∈ K
︁

�∈K ��� = � ∀� ∈ K

︃

.

This set dominates the hose-model traic set, since we can always

augment any hose-model traic matrix with a non-negative value

to produce a saturated hose-model traic matrix. So, the minimum

throughput across all traic matrices in the hose model set cannot

be smaller than the minimum throughput across all traic matri-

ces in T . However, there are still ininitely many elements in T .

The following theorem shows that for uni-regular and bi-regular

3In the hose model, the end-host traic rate is bounded by the port speed, which means
the model only permits admissible traic patterns for the topology. Our use of the
hose model is consistent with prior work [11, 27].

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA Namyar .et al.

topologies, it suices to consider an even smaller traic set in order

to compute throughput.

Theorem 2.1. The throughput of a uni-regular or a bi-regular

topology is the minimum throughput across all traic matrices in the

permutation traic set T̂ .

Proof Sketch. ğA contains the detailed proof, which proceeds

in two steps. First, it shows that T̂ represents the extrema of the

convex polytope formed by the traicmatrices inT . Second, relying

on the convexity of the set T , it shows that the minimum through-

put across all traic matrices must correspond to a permutation

traic. □

Prior work [45] has used a similar convexity argument in a

slightly diferent context, and [46] proves a similar theorem in a

more limited context (for oblivious routing). Other prior work ([29],

Conjecture 2.4) has stated Theorem 2.1 as a conjecture.

The size of T̂ , while inite, grows combinatorially with thematrix

dimension, so it is still infeasible to iterate over all its elements in

order to compute throughput. However, in any traic matrix in T̂ ,

each switch � sends traic at full rate to exactly one other switch � .

We exploit this, together with the structure of uni-regular and bi-

regular topologies to derive an eiciently computable upper bound

on the throughput of these topologies (ğ2.2).

2.2 Throughput Upper Bound

We now use Theorem 2.1 to derive a closed-form expression for

the upper bound on the throughput of a uni-regular or a bi-regular

topology. Throughput is both a function of the topology and the

routing algorithm used to route traic demands; the derived upper

bound is independent of the routing algorithm.

Upper bound for uni-regular topology throughput. The fol-

lowing theorem establishes a tractable closed-form expression for

the throughput of a uni-regular topology. It assumes, without loss

of generality, a uni-regular topology with� servers per switch, and

unit link capacity.

Theorem 2.2. The maximum achievable throughput for a uni-

regular topology, under any routing, is bounded by:

�∗ ≤ min
� ∈T̂

2�

�
︁

(�,�) ∈K2 ���I [��� > 0]
(1)

where � is the number of switch-to-switch links in the topology, ���
is the shortest path length from switch � to switch � and I [·] is an

indicator function.

Proof Sketch. ğB contains the detailed proof, which relies on

the optimal solution of the path-based multi-commodity low prob-

lem (ğH, commonly used in wide-area network traic engineer-

ing [33]). For a given traic matrix � , path-based multi-commodity

lowmaximizes throughput � (�). Now, consider an arbitrary switch

�. Its total ingress traic consists of two components: the traic

destined to its servers, which depends on � (�), and its transit traic.

We upper-bound the ingress traic by the aggregate link capacity

at the switch, and lower-bound it by the total transit traic de-

rived from the path lengths and the low split ratios. Solving these

inequalities, and applying Theorem 2.1 gives Equation 1. □

Eiciently computing the throughput bound. The RHS of

Equation 1 chooses a permutation traic matrix that maximizes

total path length. Finding this matrix is equivalent to inding near-

worst-case traic matrix in [27]. In that work, the authors present

an intuitive form of the throughput upper bound and suggest an

intuitive heuristic for constructing a łdiicultž server-level traic

matrix (near-worst-case). In this paper, we formally prove the

throughput upper bound and use a slightly diferent approach

(discussed below) that constructs a switch-level traic matrix to

achieve the minimum of the RHS of Equation 1.

To ind the minimum throughput, we construct a complete bipar-

tite graph � (consisting of two disjoint set of nodes � and �) from

the given topology� .� and� represent all the possible source and

destination switches with directly connected servers in� respec-

tively. The weight of the edge (�, �) where � ∈ � and � ∈ � is the

shortest path length from switch � to switch � . The permutation

traic matrix that determines the throughput bound in Equation 1

corresponds to the weighted maximum matching in �. We call this

the maximal permutation matrix.

Extension to bi-regular topologies. Theorem 2.2 applies to bi-

regular topologies as well. Intuitively, additional switches with no

servers increase capacity for transit traic which is relected in

the numerator of Equation 1. We prove this formally in ğC. The

theorem also applies to uni-regular and bi-regular topologies in

which each switch � has a diferent radix �� ; we have omitted the

description of this extension for brevity.

Theorem 2.2 implies that throughput of a topology is propor-

tional to total link capacity and inversely proportional to maxi-

mal total path length of the maximal permutation matrix. Prior

work [43] has computed an upper-bound on the average through-

put of uni-regular topologies across all uniform traic matrices

(the all-to-all and permutation matrices). In contrast, we bound the

worst-case throughput, and our bound is signiicantly closer (ğ3.2)

to the worst-case behavior of uni-regular topologies at all scales

than the bound of [43]. Our bound is also more general: it applies

to bi-regular topologies as well, and across all traic matrices (as a

consequence of Theorem 2.1).

On server-level vs. switch-level traicmatrices.We exploit the

regularity in uni-regular and bi-regular topologies and reason about

switch-level permutation traic matrices, rather than server-level

ones. This helps us eiciently compute the upper-bound even for

large topologies (ğ3). This eiciency does not impact the throughput

estimate, relative to using a server-level permutation matrix, as we

now show.

If we had used the server-level TMs, the throughput upper-bound

would have been the same. A switch-level maximal permutation

matrix �̂ , when converted to server-level �̂� , is a solution to the

corresponding server-level weighted maximum matching problem.

We can prove this by contradiction. Let, for any server �, � (�) be

the switch connected to � and assume that ��̂ can be improved by

(the total path length of the permutation matrix can be increased

by, see denominator of Equation 1) a set of actions on (�, �) (e.g.,

insertion or deletion of a low). We can show that �̂ can be also im-

proved by the same amount by a similar set of actions on (� (�), � (�)).

This is because the link from the server to its directly connected

A Throughput-Centric View of the Performance of Datacenter Topologies SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

0 5k 10k 15k 20k 25k
#Servers (N)

0.00

0.25

0.50
Ga

p
H=6 H=7 H=8

(a) Jellyish (K=100)

0 5k 10k 15k 20k 25k
#Servers (N)

0.00

0.25

0.50

Ga
p

H=6 H=7 H=8

(b) Xpander (K=100)

0 5k 10k 15k 20k 25k
#Servers (N)

0.00

0.25

0.50

Ga
p

H [5.5, 6.5) H [6.5, 7.5) H [7.5, 9]

(c) FatClique (K=200)

Figure 3: Throughput bound vs K-shortest paths Multi-commodity low.

Gap approaches zero as the number of servers (�) increases for all choices

of uni-regular topologies and servers per switch (�).

switch does not constrain throughput, so all ���s do not include

it. Thus, adding/removing (� (�), � (�)) increases/decreases the total

path length by the same amount as adding/removing (�, �) does.

This is a contradiction since we assumed �̂ is the maximal permu-

tation matrix.

However, the actual throughput of the topology under switch-

level maximal permutation matrix is always less than or equal to

the server-level one. If the server-level maximal permutation ma-

trix, when converted to switch-level, is not a permutation matrix, a

similar line of proof as Theorem 2.1 can show that the correspond-

ing switch-level traic matrix is a convex combination of some

switch-level permutation traic matrices. So, at least one of the

switch-level permutation matrices has lower throughput than this

TM. Hence, considering switch-level matrices not only improves

the scalability of our throughput bound but also better captures the

minimum throughput of the topology.

3 EVALUATING THE THROUGHPUT UPPER
BOUND

In this section, we show that throughput upper bound (abbreviated

tub) (a) accurately estimates the worst case throughput and (b) all

previously proposed throughput estimators [23, 24, 43, 51] produce

worse estimates for uni-regular topologies and most scale poorly. 4

3.1 Throughput Gap

In this section, we compute the throughput gap between the

throughput upper bound (abbreviated tub) and the throughput

4Our code is available at https://github.com/USC-NSL/TUB

2k 4k 8k 16
k

24
k

32
k

40
k

50
k

#Servers (N)

0

25

50

75

100

Th
ro

ug
hp

ut
 R

at
io

(%
)

sp nsp

(a) Throughput distribution

2k 4k 8k 16
k

24
k

32
k

40
k

50
k

80
k

10
0k

12
0k

14
0k

18
0k

22
0k

24
0k

28
0k

30
0k

#Servers (N)

0

100

200

300

400

500

#P
ai

rw
ise

 P
at

hs

spl+2 spl+1 spl

(b) Path distribution

Figure 4: Jellyish (H=8). (a) Throughput gap appears at topology sizes that

shortest paths does not provide enough diversity. (b) The number of pairwise

shortest paths in the maximal permutation matrix periodically increases

and decreases. (sp=shortest path, nsp=non-shortest path, spl=shortest path

length)

achieved by routing a łworst-casež traic matrix, and show that

this gap is small.

Methodology. Prior work [27] has shown that maximal permu-

tation matrix can achieve worst-case throughput. We have inde-

pendently veriied this. For small topologies, we exhaustively com-

pared the throughput of every TM under KSP-MCF, and the maxi-

mal permutation matrix achieves the lowest throughput. For large

topologies, we compared the throughput of the maximal permuta-

tion matrix with 20 random permutations, and observed that the

throughput of maximal permutation matrix is constantly lower, and

the gap between these two increases with scale.

To demonstrate that the throughput gap is small, we need to

select a routing scheme. We have found that it suices to solve a

path-based multi-commodity low [33] over K-shortest paths (KSP-

MCF, see ğH). To compute the throughput gap, we sweep values of

� until increasing � does not increase throughput5; in most cases,

� = 100 suices to match tub. As an aside, we do not mean to

suggest that KSP-MCF is practical for large networks; especially for

uni-regular topologies, inding a scalable routing scheme that can

achieve high throughput is an open question left to future work.

Other details. For all results in the paper, we use METIS [28]

to (over) estimate bisection bandwidth, Gurobi [18] to solve linear

programs forMCF, the networkx [19] implementations of�-shortest

paths [49] and the igraph [9] implementation of maximum bipartite

matching [32, 40]. FatClique deviates slightly from our deinition

of uni-regular topologies: in a FatClique topology, � can difer by 1

across switches.We have adapted tub and themaximal permutation

algorithm to deal with this deviation (ğI).

For Uni-regular Topologies. Figure 3 shows the throughput gap

for tub for the three uni-regular topologies, for diferent � .

Jellyish. Figure 3(a) shows the throughput gap for � = 100 for

Jellyish with � = 8 (other values of � are qualitatively similar).

The gap is non-zero at small scales between 3K ś 15K. However,

for larger instances, the gap is close to zero.

tub is loose in the range 3K ś 15K because (a) the proof of

Theorem 2.2 uses the observation that throughput is highest when

5ğJ shows the results for diferent values of �

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA Namyar .et al.

all paths between each source-destination pair are shortest paths

and (b) topologies in this size range have fewer shortest paths,

so KSP-MCF routes traic over non-shortest paths. (Figure 4(a)

plots the distribution of the fraction of lows over shortest and

non-shortest paths for diferent topology sizes).

Interestingly, topologies with 100K ś 180K servers have a smaller

fraction of shortest paths (Figure 4(b)), so we expect tub to be loose

in that range (we cannot conirm this because KSP-MCF does not

scale to those sizes), but expect the throughput gap to be small

beyond that range because the fraction of shortest paths increases.

However, in ğE, we show that the maximum possible throughput

gap approaches zero asymptotically. Future work can explore better

throughput bounds that exploit diversity in non-shortest paths.

Xpander and FatClique. Figure 3 shows the throughput gap

for Xpander and FatClique, for diferent values of � . Like Jellyish

at � = 8, the gap is signiicant at small scales between 5K ś 15K for

these topologies and the gap is close to zero for larger instances.

Bi-regular Topologies. For Clos-based bi-regular topologies,

ECMP is able to achieve (close to) full throughput (modulo

diferences in low sizes [15]). We ind that tub’s estimate is also 1

for diferent Clos topologies, showing that the gap is zero for them

as well (Table A.1).

3.2 Comparison with other throughput metrics

Prior work has proposed other ways of estimating throughput. For

uni-regular topologies, we expect tub to be (a) faster and (b) more

accurate than these other methods, because it leverages properties

of uni-regular topologies. In this section, we validate this intuition.

Eiciently computing tub. Before doing so, we briely discuss

some empirical results for the speed of computing tub. The bottle-

neck in this computation is the weighted maximum matching in a

complete bipartite graph. Several network analysis tools such as

networkx [19] and igraph [9], have an eicient implementation of

weightedmaximummatching. Furthermore, our computation scales

well because we abstract the server-level traic into a switch-level

traic matrix, so that the number of nodes in the constructed bipar-

tite graph reduces signiicantly. On a machine with 64GB of RAM,

we were able to ind the throughput upper bound for topologies

with up to 180K servers with � = 8 within 20 minutes. For calibra-

tion, on the same platform, computing the throughput for routing

a permutation traic matrix using KSP-MCF does not scale beyond

50K servers, and using full-blown MCF does not scale beyond 8K

servers.

Comparison alternatives. Prior work [27] has compared through-

put (i.e., the solution to MCF) with cut-based metrics, such as

sparsest-cut (using an eigenvector based optimization in [26]) and

bisection bandwidth, and [43] computes an upper bound on average

throughput of uni-regular topologies across uniform traicmatrices.

In addition to these, we compare our method to two other through-

put estimators developed for general graphs. Hoeler’s method [51]

divides a low into sub-lows on each path between source and

destination, and splits the capacity of a link equally across all lows

traversing it. Jain’s method [24] incrementally routes lows on each

path; at each step it allocates residual capacity on a link to all

new lows added to the link at this step and iterates until no paths

remain.

Results. Figure 5 compares tub against these alternatives, for

Jellyish topologies with 8 servers per switch. Results for other

topologies are similar (omitted for brevity).

Small to medium scale. Figure 5(a) shows the throughput gap

(determined using themethodology described in ğ3.1) for topologies

with up to 25K servers. tub has the smallest throughput gap across

all alternatives. In the range 15K ś 25K, tub’s throughput gap is

zero, that of others is higher than 0.2, and sometimes as high as 0.4.

To illustrate why it is important to have a small throughput gap,

consider a scenario in which a network operator wishes to design a

full throughput topology; if she uses a loose throughput estimator,

the resulting topology may not actually have full throughput.

Moreover, tub is among the most eicient of the alternatives

(Figure 5(b)).

It is both more accurate, and faster than Jain’s method (JM)

and Hoeler’s method (HM). These have large throughput gaps at

larger topology sizes (Figure 5(a)). JM and HM exploit edges of each

available path, but their estimates are loose because they assume all

the sub-lows going through each edge get a fair share of the edge’s

capacity. This assumption may not maximize the throughput of a

traicmatrix; to do this, lows that currently have lower throughput

should get more share of the available capacity. JM and HM are

a few orders of magnitude slower than tub (Figure 5(b)) because

they exploit more of the topological structure.

Bisection bandwidth and [43] scale better than tub, but their

estimates have large error. Bisection bandwidth is a loose cut-based

estimate of throughput as shown by [27] at small scales, and proven

by us in ğ4. Figure 5(a) empirically veriies this at much larger

scales than [27]. Computing exact bisection bandwidth for general

networks is intractable [4], so we use a fast heuristic [28] that

approximates the bisection bandwidth. Furthermore, the bound

in [43] relies on average distance among all the pairs of switches,

based on the fact that every switch splits its traic equally and sends

to all the other switches in the average case. Our bound, however,

considers structural properties (e.g., distance between individual

pairs) to maximize the congestion by routing the traic between

pairs with the largest distance. Therefore, the gap for tub is smaller

than that for [43], but tub is slower since it considers more details

about the topology.

Large scale. Figure 5(c) plots the bisection bandwidth, and the

throughput estimated by tub, and by [43], for topologies for up to

300K servers. At these scales, we cannot compute KSP-MCF to esti-

mate the throughput, so we depict the absolute throughput values.

[43]’s throughput estimate is consistently and considerably higher

across the entire range compared to tub’s. The latter’s computa-

tional complexity is comparable to that of [43], except for the range

200K ś 280K where tub exhibits a non-monotonic behavior. tub

attempts to choose disjoint pairs of switches with large distances

from each other to construct the maximal permutation matrix, but

in topologies of this size range, there are fewer of these pairs with

longest possible distance (i.e., diameter), so it takes longer for the

A Throughput-Centric View of the Performance of Datacenter Topologies SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

TUB BBW SC [42] HM(100) JM(100)

5k 10k 15k 20k 25k
#Servers (N)

0.00

0.25

0.50

0.75

1.00

Th
ro

ug
hp

ut
 G

ap

(a) Accuracy

5k 10k 15k 20k 25k
#Servers (N)

0

25

50

75

100

Ti
m

e
(s

ec
on

ds
)

(b) Eiciency

50k 100k 150k 200k 250k 300k
#Servers (N)

0.6

0.8

1.0

1.2

1.4

Th
ro

ug
hp

ut

(c) Accuracy, Large Scale

50k 100k 150k 200k 250k 300k
#Servers (N)

0

2500

5000

7500

10000

12500

Ti
m

e
(s

ec
on

ds
)

(d) Eiciency, Large Scale

Figure 5: tub is more accurate compared to all the other metrics and almost as fast as bisection bandwidth and throughput bound in [43]. (BBW is bisection

bandwidth, SC is sparsest cut, HM(.) is Hoeler’s method and JM(.) is Jain’s method in which (.) is the number of paths)

algorithm to search for these disjoint pairs. We expect to signii-

cantly reduce the search by parallelizing the weighted maximum

matching implementation; we have left this to future work.

Summary. tub’s throughput gap is smaller than those of prior

estimators and scales to up to 300K servers. This enables us to

revisit whether prior evaluations of large-scale topologies using

bisection bandwidthwould yield diferent conclusions if throughput

were used instead (ğ5).

4 LIMITS ON THE THROUGHPUT OF
UNI-REGULAR TOPOLOGIES

In this section, using Theorem 2.2 we establish asymptotic limits on

the size of full-throughput uni-regular topologies. Then, exploiting

tub’s scalability and tightness (ğ3), we establish practical limits

on the size of full-throughput uni-regular topologies for diferent

values of � .

4.1 Asymptotic Limits

A throughput upper bound for all uni-regular topologies.

Theorem 2.2 determines an upper-bound on the throughput for a

given uni-regular or bi-regular topology, independent of routing.

The following theorem, which applies only to uni-regular topolo-

gies, establishes an upper-bound on the throughput across all uni-

regular topologies, independent of routing.

Theorem 4.1. The maximum achievable throughput of any uni-

regular topology with � servers, switch radix � and � servers per

switch under any routing is:

�∗ ≤
� (� − �)

�2�
(2)

where;

� = � (
�

�
− 1) −

� − �

� − � − 2

︄

(� − � − 1)� − 1

� − � − 2
− �

︄

and � is the minimum diameter required to accommodate � /�

switches computed using Moore bound [39].

Proof Sketch. ğD contains the detailed proof. We observe from

Equation 1 that throughput is lowest for switch pairs (�, �) for

whom the shortest path length ��� is high. Our constructive proof

Figure 6: uni-regular topologies can have limited throughput.

irst bounds the number of switches whose distance is at least�

from a given switch (Lemma 8.1 in ğD). Then, we construct (Algo-

rithm 1 in the Appendix) the maximal permutation traic matrix in

which each switch exchanges traic with other switches that are

furthest from it (Lemma 8.2 in ğD). This construction maximizes

��� , and from this construction and using Lemma 8.1, we can bound

the number of communicating switch pairs whose distances are at

least� hops of each other. The bound applies to the denominator

of the RHS of Theorem 2.2, resulting in a throughput upper bound

independent of the traic matrix (Lemma 8.3 in ğD). □

This theorem formalizes the intuition captured in Figure 6. Fun-

damentally, a uni-regular topology is constrained by the fact that

every switch has to have � servers. The igure shows topologies in

which 3-port switches have (at most) � = 1 servers. The leftmost

4-switch topology has full throughput. However, the addition of a

single switch (the middle topology) drops throughput signiicantly.

To recover full throughput in this setting, we need to add four more

switches with no servers; these provide additional transit capacity.

Figure 7 shows the worst-case TM for the middle topology along

with the optimal routing of the TM. It also presents the through-

put of the same TM on the bi-regular topology with 4 additional

switches.

Relationship between bisection bandwidth and throughput.

Using Theorem 4.1, we can derive a necessary condition for any

full throughput uni-regular topology:

� ≤
� (� − �)

�2
(3)

Unlike bi-regular topologies where Clos topologies have full bi-

section bandwidth and full throughput (see below), uni-regular

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA Namyar .et al.

s1

s2 s3

s4
s5

1/2

1/3

s1 -> s4: 1
s4 -> s2: 1
s2 -> s5: 1
s5 -> s3: 1
s3 -> s1: 1

TM s1

s2
s3

s4

s5

1.0

1.0 1.0
1.0

1.0

Figure 7: The uni-regular topology can support the given worst-case

permutation traic matrix with throughput= 5
6 while the bi-regular topology

with 4 additional switches can support the TM at full throughput. In the

uni-regular topology setup, the optimal routing is the following: 1
2 of each

low is routed through the shortest path while 1
3 of each low is routed

through the non-shortest path.

Topology Condition � = 8 � = 7 � = 6

Uni-regular Equation 3 111K 256K 3.97M

Jellyish Full-BBW >20M >20M >20M

Xpander Full-BBW >20M >20M >20M

FatClique Full-BBW >20M >20M >20M

Table 3: Maximum number of servers, each topology set up can support

without violating the condition.

topologies can have full bisection bandwidth, but not full through-

put (as illustrated in Figure 2). Table 3 shows the maximum number

of servers each topology family can support without violating Equa-

tion 3 (switch radix � is 32). It shows that the largest full throughput

uni-regular topology with 8 servers per switch can only support

111K servers, while the largest full bisection bandwidth Jellyish,

Xpander, or FatClique topologies can support over 20M servers! (In

Table 3, for all uni-regular topologies, we were unable to estimate

the bisection bandwidth for topologies larger than 20M servers

because of computational limits.)

Scaling limits on uni-regular topologies. Another way of stat-

ing the results in Table 3 is that no uni-regular topology with� = 8

and more than 111K servers can have full throughput. This implies

that there is a bound on the number of servers that a full through-

put uni-regular topology can have. Corollary 1 formalizes this; we

prove it in ğG.

Corollary 1. For a given switch radix � and servers per switch

� , there exists a � ∗ (�,�) such that for � ≥ � ∗ (�,�), no full

throughput uni-regular topology exists with � servers, switch radix

� and � servers per switch.

Every Clos-based topology always has full throughput. In

contrast to these scaling limits for uni-regular topologies, a fully-

deployed Clos-based topology always has full throughput. In ğ2.1,

we observed that Theorem 2.1 applies to Clos-based topologies.

Prior work has shown that a multi-stage Clos can (re-arrangeably)

support every permutation traic matrix [25, 41]. Since Clos is a

bi-regular topology, it must have a throughput of 1 because, by The-

orem 2.1, it suices to consider only permutation traic matrices

to compute the throughput, and Clos can support all permutation

traic matrices (i.e., for each matrix in T̂ , Clos has a throughput of

1). Thus, bi-regular topologies like VL2 [15] and FatTree [1], being

Clos topologies, have full throughput. We conjecture that F10 [36]

also has full throughput (F10 uses a diferent striping than Clos),

but have left it to future work to prove that.

4.2 The Full-Throughput Frontier

Table 3 shows the largest possible number of servers any uni-regular

topology can support at full throughput. However, this bound is

loose in part because it applies generically to all uni-regular topolo-

gies. In this section, for each topology family, we characterize, as a

function of � , the largest size beyond which no topology has full-

throughput6 (as estimated by tub). We call this the full-throughput

frontier. For calibration, we also draw the full bisection-bandwidth

frontier, deined similarly. This comparison helps us quantitatively

understand the Venn diagram of Figure 2.

Methodology. To compute these frontier curves, we generate

topologies from each topology family, for diferent � and � . For

Jellyish and Xpander, there is a uniquely deined topology given �

and � . (In our experiments, we have assumed a ixed switch radix

of 32 unless otherwise mentioned.) For each value of � , we use

binary search on the total number of servers to ind the maximum

� that provides full bisection bandwidth, or full throughput.

For FatClique, we cannot precisely estimate the full-throughput

frontier since its topology instances can be non-monotonic with

respect to throughput. Speciically, because of the way it is con-

structed, for a given � , a topology with � servers can have full

throughput, but a topology with � ′ < � servers may not. For this

reason, for FatClique, we generate a large number of instances for

each � and for each, we evaluate whether that instance has both

full bisection bandwidth and full throughput, or only full bisection

bandwidth.

Results. Figure 8 shows the results of these experiments for Jelly-

ish, Xpander, and FatClique.

Jellyish and Xpander. Figure 8(a) shows the full-throughput

and full-bisection bandwidth frontier curves for Jellyish, and Fig-

ure 8(b) for Xpander. For both Jellyish and Xpander, there is a

large gap between these curves; there are many topologies that have

full bisection bandwidth, but do not have full throughput. In some

conigurations (speciically � of 7 and 8), these topologies cannot

achieve full throughput even with 10K-15K servers. At � of 9, these

topologies can support a few hundred servers with full throughput.

For � of 6, Jellyish and Xpander can support full throughput up to

225K servers (of-scale in Figure 8(a), Figure 8(b)).

How does throughput degrade beyond the frontier? At 7 servers

per switch, a Jellyish with 13K servers has a tub of 1, with 15K

servers a tub of 0.94, and with 17K servers a tub of 0.89. Similar

results hold for Xpander. This appears to suggest that the through-

put of these topologies degrade gracefully beyond the frontier, but

we have left a more detailed analysis to future work.

FatClique. Because FatClique instances can be non-monotonic

with respect to throughput, the full-throughput frontier curve is

approximately the boundary separating the blue (Throughput)

points from the red (BBW) points in Figure 8(c). Like Jellyish and

6Some topologies smaller than this size may also not have full throughput because
tub is an upper bound.

A Throughput-Centric View of the Performance of Datacenter Topologies SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

BBW Throughput

6 7 8 9
#Servers per Switch (H)

0

5k

10k

15k

20k

25k

#S
er

ve
rs

 (N
)

(a) Jellyish

6 7 8 9
#Servers per Switch (H)

0

5k

10k

15k

20k

25k

#S
er

ve
rs

 (N
)

(b) Xpander

6 7 8
#Servers per Switch (H)

5k

10k

15k

20k

25k

#S
er

ve
rs

 (N
)

(c) FatClique

Figure 8: Full-throughput Frontier Curve. Uni-regular topologies with H=8 and H=7 can not scale well while preserving full throughput even though they

maintain full BBW up to a very large size.

Xpander, there are no FatClique topologies above 10K which have

full throughput by the tub for � values of 7 and 8 (at these values,

above 10K, all instances are labeled BBW).

Takeaways. While uni-regular topologies have elegant designs

(Jellyish and Xpander) and useful manageability properties (Fat-

Clique), their throughput scaling is fundamentally limited (ğ4), and

many of their topology instances do not have full-throughput even

at scales far smaller than modern data centers (e.g., Amazon AWS

with more than 50K servers [2], Google Jupiter with more than 30K

servers [42]). At these larger scales, these topologies can use smaller

values of � , but this can negate the cost advantages of uni-regular

topologies, as we show next.

5 A THROUGHPUT-CENTRIC VIEW OF
TOPOLOGY EVALUATIONS

In this section, we revisit prior work on topology evaluation from

a throughput-centric perspective.

5.1 Throughput vs. Bisection Bandwidth

ğ4.1 shows that, for uni-regular topologies, throughput and bisec-

tion bandwidth are diferent, and that, by deinition, throughput

accurately captures the capacity of the network. Here we explore

whether conclusions from prior work that has used bisection band-

width to evaluate uni-regular topologies would change if through-

put were used instead. Table 4 summarizes our indings.

Topology Cost. Datacenter designers seek highly cost-efective

designs [35]. FatClique [52] and Jellyish [44] have compared the

cost of their designs against Clos-based topologies by generating

full bisection bandwidth instances of their topology using the mini-

mum number of switches, and then comparing that number against

a Clos with the same number of servers. Figure 9 shows what would

happen if they had, instead, generated full throughput instances,

for topologies with diferent sizes and switch radices.

Figure 9(a) and Figure 9(b) show that the full throughput Jelly-

ish and Xpander built from 32-port switches use about 33% more

switches than the full bisection bandwidth topology at the scale of

32K and 131K servers (because, to achieve full throughput at larger

sizes, uni-regular topologies must use a smaller �). This increase

in the number of switches for FatClique is approximately 27%. This

Clos Jellyfish Xpander Fatclique0

2k

4k

6k

#S
wi
tc
he

s

BBW TUB

(a) N=32K, R=32

Clos Jellyfish XpanderFatclique0

10k

20k

30k

#S
wi
tc
he

s

BBW TUB

(b) N=131K, R=32

16 24 32 48 64
switch radix (R)

0
15
30
45

Sw
itc

he
s (

%
)

(c) Jellyish Full Throughput vs Full BBW

Figure 9: Topology Cost. Number of switches to build a full throughput

topology is larger than a full BBW topology. (a) Number of switches to

build a topology with 32K servers using 32-port switches. (b) Number of

switches to build a topology with 131K servers using 32-port switches (At

these scales, tub is expected to have a small throughput gap.) (c) Number

of switches to build a Jellyish topology with diferent switch radices to

support the same number of servers as a 1/8th 4-layer Clos. (Percentages

are Full-tub/Full-BBW - 1.)

afects the comparison with Clos7: Clos uses 1.8x more switches

compared to uni-regular topologies to achieve full bisection band-

width8 but only 1.3x more relative to full throughput uni-regular

topologies.

Figure 9(c) demonstrates that, at higher switch radices, the im-

pact of the choice of metric is more severe for uni-regular topologies.

To do this experiment, we needed to normalize the scale of the topol-

ogy relative to the radix of a switch. A natural way to normalize

this is to design a uni-regular topology with as many servers as a

full Clos with a given switch radix. However, at a radix of 64, a full

Clos has 2.1M servers to which our tub implementation does not

yet scale. So, we normalize the topology scale by designing Jellyish

7In this and subsequent evaluations, for Clos topologies the number of servers per

switch for leaf switches is always equal to �
2 , where � is the switch radix, while the

rest of the switches have no servers.
8Results for bisection bandwidth are consistent with indings of [44, 52]

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA Namyar .et al.
C
o
st [52] Jellyish, Xpander, and FatClique use 50% fewer switches to support the same servers as Clos at large-scale.

tub Jellyish, Xpander, and FatClique use 25% fewer switches to support the same servers as Clos at large-scale.

E
x
p
an
. [44] Jellyish using random rewiring can be expanded with minor bandwidth loss while keeping the servers per switch constant (even under large expansion)

tub Expanding jellyish without considering the target size can cause signiicant throughput drop when servers per switch is preserved (even under small
expansion).

Table 4: Throughput vs. Bisection Bandwidth. Conclusions can change signiicantly.

topologies with the same number of servers as a 1/8th Clos for the

corresponding switch radix. At a radix of 64, a 1/8th Clos has 263K

servers. Figure 9(c) shows the percentage increase in the number of

switches required to support Full Throughput over those required

to support Full BBW. This fraction increases with switch radix; with

64-port switches, Full BBW requires almost 50% more switches.

This diference can change a topology designer’s tradeof analy-

sis. Clos and uni-regular topologies difer in one other important

way: the former has demonstrated, through wide deployment, a

simple and practical routing scheme (ECMP) that can achieve high

throughput, but proposed routing for uni-regular topologies rely

on routing schemes such as MPTCP [48] over K-shortest paths [49],

ECMP-VLB hybrid [29] or FatPaths [7]. The deployment and op-

erational cost of these schemes is not known, so, if the relative

switch cost advantage of uni-regular topologies is low, a designer

might ind them less attractive when other costs, such as routing,

are taken into account.

Fabric Expansion. As recent work has shown [52, 53], datacenter

fabrics are rarely deployed at full scale initially. Rather, for a Clos-

based topology like Jupiter [42], a designer starts by determining a

target number of servers in the datacenter and the number of layers

needed in the Clos topology to achieve that scale. Then, they can

incrementally deploy the topology, often in units of superblocks [53].

One attractive aspect of some uni-regular topologies like Jellyish

over Clos is that, at least conceptually, their expansion is simpler and

requires no advance planning [44, 47, 52]. For example, it is possible

to add one switch and its servers to Jellyish by randomly removing

links and connecting the opened ports to the new switch. It is easy

to see, from Figure 8(a), that this expansion likely preserves full

bandwidth. For example, if one starts with a 5K Jellyish topology

with � = 8, and augments it to 10K servers, the resulting topology

is still under the BBW line, so has full bisection bandwidth.

However, this expansion strategy may not always preserve full

throughput. In the same example, at 10K servers with � = 8, the

topology is above the Throughput line: in other words, while the

topology before expansion has full throughput, the inal topology

does not.

Thus, when planning a datacenter topology, a designer must

carefully consider future target expansion sizes and choose � ac-

cordingly. If the target size is 10K, the topology designer needs

to plan in advance (as in Clos) and start with a � = 7 instance

in order to preserve throughput after expansion. (The alternative

is to re-wire servers, which can signiicantly increase the cost of

expansion).

Over-subscription. The Fat-Tree work [1] deined a topology’s

over-subscription ratio as the ratio between the actual bisection

bandwidth and full bisection bandwidth. This deinition can be mis-

leadingwhen applied to uni-regular topologies. For these topologies,

Topology N H BBW Throughput

Jellyish 32K 10 3:4 1:2

Xpander 32K 10 3:4 1:2

FatClique 32K 8.6 3:4 2:3

Clos 32K 32 1:2 1:2

Table 5: Throughput-based vs BBW -based over-subscription ratio. Num-

bers in one row are computed on the same topology.

the throughput itself is a measure of over-subscription. A through-

put of � indicates that each server can send traic at a fraction

� of its line rate, corresponding to an over-subscription ratio of

1: 1
�
. Table 5 illustrates the diference between these two deinitions

of over-subscription ratio for uni-regular topologies. For all uni-

regular topologies we have measured, the over-subscription ratio

deined using throughput is lower than bisection bandwidth-based

over-subscription ratio.9 For Clos, these two values are identical.

This suggests that, for uni-regular topologies, throughput is a

more conservative measure of over-subscription. It is also more

accurate, since it measures the upper bound of the actual achievable

throughput.

5.2 Scaling Throughput Evaluations

ğ3 shows that tub better estimates worst-case throughput and

scales better than most of the previous throughput estimators.

Here we revisit the conclusions from prior work that has eval-

uated topology properties at smaller-scales using other ways to

estimate throughput. Table 6 summarizes our indings; we describe

these below.

Cost and Expansion. Singla et al. [44] have estimated throughput

using ideal routing on a few random permutations and show that

Jellyish can support 27% more servers at full throughput than a

Fat-Tree [1] using the same number of switches. They conjecture

that this advantage improves by using a higher radix switch. In ğK,

we show that: (1) the cost advantage at the largest considered

size in [44] is only 8% when tub is used to estimate throughput,

and (2) the cost advantage does not improve by using a higher

radix switch. Similarly, Xpander has used ideal routing on all-to-all

traicmatrices to estimate the throughput, and has shown that their

topology is more cost eicient than Fat-tree, and allows incremental

expandability up to any size with minor throughput loss. In ğL, we

show that throughput of Xpander can drop signiicantly when

9The instance of FatClique we chose for this experiment uses a diferent � than the
instances of Jellyish and Xpander, which is why it has a diferent throughput.

A Throughput-Centric View of the Performance of Datacenter Topologies SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA
C
o
st

[44] Jellyish supports 27% more servers at full throughput than a (same-equipment) Fat-tree (at <900 servers) and this advantage improves by using higher port
switches.

tub Jellyish supports 8% more servers at considered size and the advantage does not always improve by using higher port switches.
[47] Xpander uses 80% ś 85% switches to support the same number of servers as Fat-tree at the scale of <4K servers.
tub At the largest considered size in [47], Xpander uses more than 95% switches. However, at larger scale (>40K servers), Xpander uses 80% switches (matching

the number reported in [47])

E
x
p
. [47] Xpander using random rewiring can be incrementally expanded to any size while preserving high performance.

tub Expanding Xpander without considering the target size can cause signiicant throughput drop, leading to a topology with less than full-throughput.

Fa
il
u
re

[44] Jellyish is highly resilient to random link failures at the scale of <1K servers built using 12-port switches.
tub At some scales, Jellyish can be as much as 20% less resilient compared to optimal resiliency using 32-port switches..
[47] Xpander is resilient to failures at the scale of <1K servers built using 14-port switches.
tub At some scales, Xpander can be as much as 20% less resilient compared to optimal resiliency using 32-port switches.

Table 6: Scaling Throughput Evaluations. Conclusions can change signiicantly.

0 10 20 30
Failure(%)

0.4

0.5

0.6

0.7

0.8

Th
ro
ug

hp
ut

nominal
actual

(a) N=32K

0 10 20 30
Failure(%)

0.4

0.5

0.6

0.7

0.8

Th
ro
ug

hp
ut

nominal
actual

(b) N=131K

25k 50k 75k 100k 125k
#Servers (N)

0.00
0.04
0.08
0.12

De
vi

at
io

n

(c) Variation

Figure 10: Throughput of uni-regular topologies under random link failure.

Large uni-regular topologies degrade less than gracefully with failure.

using random rewiring even for very small expansions, resulting

in a topology with less than full-throughput (similar to Jellyish).

Failure Resiliency. Prior work has explored the resilience of Jel-

lyish [44] and Xpander [47] to random link failures for relatively

small topologies (at the scale of a few thousand servers). To do

this, they compute the throughput achieved by ideal routing (using

multi-commodity low, which limits scaling) for a few randomly

chosen permutation matrices. The showed that, at these scales,

these topologies degrade gracefully, deined as follows. If � is the

throughput of a topology without failure, and a randomly cho-

sen fraction � of all links fail, then the nominal throughput under

failure is (1 − �)� (other work [45] has used a similar deinition

to assess failure resilience in WAN switches). We say a topology

degrades gracefully if the actual throughput (in our experiments,

the throughput upper bound) under failure closely matches the

nominal throughput under failure.

tub allows us to evaluate failure resilience of these topologies

at larger scales.

Figure 10 shows the throughput behavior of Jellyish with 8

servers per switch under random link failures, based on tub for: (a)

32K , (b) 131K. Jellyish with 32K servers is perfectly resilient for

up to 30% link failure and deviates by <1% afterward while 131K

server topology is perfectly resilient for up to 11% link failures and

then deviates by 20% from the nominal throughput. This deviation

occurs because, the 131K topology has a relatively smaller number

of shortest paths (compared to the 32K topology) between each

pair in the maximal permutation matrix (Figure 4(b)). Higher rates

of random failures can reduce the available shortest paths even

further, reducing throughput.

This relationship between deviation from the nominal, and the

number of shortest paths, is more evident when comparing Fig-

ure 10(c) with Figure 4(b). The former plots the root mean square

deviation from the nominal as a function of topology size. In the

latter, the number of shortest paths decreases steadily from 24K

to 131K; in Figure 10(c), the deviation increases correspondingly.

Xpander exhibits same behavior as Jellyish under random link

failures.

Takeaway. This example illustrates how tub can reveal previously

unobserved properties of a topology at larger scales. Using our

bound, we are able to measure the resiliency of uni-regular topolo-

gies for up to 131K. Using the throughput estimators in [44, 47]

(full-blown MCF), we are unable to scale beyond 8K servers on our

platform.

6 PRACTICAL CONSIDERATIONS

The importance of worst-case bounds. Focusing on worst-case

bounds can result in pessimistic designs and evaluations. In many

situations, it may be appropriate to focus on average case perfor-

mance. However, datacenter topologies, once deployed, are used

for several years [42]; in this time, traic demands can grow signii-

cantly. Because it is hard to predict demand over longer time-frames,

datacenter designers have focused on worst-case measures (like bi-

section bandwidth) as a design aid to maximize the lifetime of their

designs. tub follows this line of thinking: this paper shows that

tub is a better measure of worst-case performance for uni-regular

topologies than bisection bandwidth.

Clos-based deployments.Most deployed datacenter designs to-

day are Clos-based. However, designers are actively exploring other

lower-cost designs, one of which is the spine-free design [22], in

which the spine or topmost layer of switch blocks is replaced by

direct connections between the intermediate-layer (or aggregation

layer) pods [1]. Pods may carry transit traic between other pods.

In this design, the inter-pod topology is efectively uni-regular, for

which tub can be used to understand performance.

Practical Workloads. In this paper, we have compared full-

bisection bandwidth topologies with full throughput topologies.

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA Namyar .et al.

Deployed topologies are often over-subscribed; a deployed Clos

might have less than full bisection bandwidth. These deployments

work well because operators carefully manage datacenter work-

loads to ensure that they don’t exceed fabric capacity. They also

leave spare capacity for management operations such as expansion

and upgrade [42, 53]. For Clos, the bisection bandwidth of the

oversubscribed topology is a good measure of the capacity. For

uni-regular topologies, tub is a better measure of capacity for an

oversubscribed network (ğ5.1).

Benchmarking routing designs. Aside from topology, routing

design also determines whether the datacenter is able efectively

utilize its capacity in serving workloads. For uni-regular topologies,

or variants thereof, tub can be used to understand how well a

proposed routing design can utilize capacity.

7 RELATED WORK

Datacenter Designs. Prior work has investigated a large body

of topology designs focusing on high bisection bandwidth, cost-

efective topologies with low diameter [8, 30, 44, 47, 52]. Our paper

addresses the performance of many of these topology designs. We

do not evaluate topologies such as SlimFly [6] and Dragonly [30].

These focus on reducing latency, but, to scale to today’s datacen-

ters, they generally need switches with much higher port counts

than available with merchant silicon. For instance, with a 64-port

switch, a SlimFly can support 32K servers, but a 4-stage Clos can

accommodate 2.1M. We emphasize that tub applies to these two

topologies as well as they are uni-regular. Prior work has described

server-centric topologies such as DCell [17] and BCube [16] which

equip servers with multiple ports and route packets through servers.

Server-based forwarding can be highly unreliable [42], so deployed

datacenters have not adopted these designs, and we have not con-

sidered these in this paper. Future work can explore throughput

bounds for this class of topologies.

A more recent direction focuses on reconigurable topology de-

signs [13, 14, 20, 37, 38, 54] that adapt the topology in response to

the observed traic. Most reconigurable topology designs adapt

instantaneously to shifts in traic demand, and attempt to minimize

low completion times. To the extent that each adapted topology is

uni-regular or bi-regular, Theorem 2.2 will apply to the topology.

However, we have left it to future work to understand how topology

throughput relates to the objective of minimizing low completion

times, the focus of topology reconiguration.

Throughput. As discussed earlier, signiicant prior work exists

on throughput in datacenters. Some work [50] has explored the

application-level throughput under diferent traic conditions. Prior

work has developed a theoretical understanding of throughput [12,

27, 43]. Of these, [12] compares performance of 3 throughput-

approximating algorithms (Jain [24], Hoeler [23, 51], and an LP-

based approximation), and show that Jain method is a more accurate

approximation model compared to the other two in capturing the

average throughput over all the lows. More recently, [43] focuses

on approximating average throughput under uniform traic, and

[27] studies the relationship between traic-dependent sparsest-

cut and throughput at the scale of few thousand servers. Inspired

especially by the latter two papers, we derive a tight throughput

upper bound across all traic matrices and explore it to understand

practical scaling limits for uni-regular topologies, and the utility

of a throughput-centric view in evaluating properties of datacen-

ter topologies. We also compare tub against many of these prior

approaches.

Practical Routing. In practice, throughput highly depends on the

routing algorithm and the underlying topology. ECMP is optimal

for the Clos family [1, 15, 42]. For Jellyish, Xpander, and FatClique,

routing strategies like an ECMP-VLB hybrid [29] and FatPaths [7]

have shown promising throughput performance. We have left it to

future work to understand the gap between achievable throughput

using these more practical routing strategies and tub.

8 CONCLUSIONS AND FUTUREWORK

This paper broadens our understanding of the throughput metric

for datacenter topology performance, and its relationship to bi-

section bandwidth. We derive a closed-form expression for the

upper bound of the throughput (tub) of a given topology that is

independent of routing. This bound applies to most proposed dat-

acenter topologies. For a sub-class of these designs, uni-regular

topologies, we are able to derive an upper-bound on throughput

that applies to any instance in this sub-class, using which we show

that uni-regular topologies are fundamentally limited: beyond a

certain scale, they cannot have full throughput even if they have

full bisection bandwidth. In practice, many instances of uni-regular

topologies with 10-15K servers cannot have full throughput. Finally,

we demonstrate that tub to evaluate properties of a topology can

result in diferent conclusions compared to using other metrics.

Future work can explore the throughput gap between tub and the

throughput achievable using practical routing algorithms, explore

the throughput of Clos-variants like [36], scale tub to even larger

topologies, and improve its tightness.

Acknowledgements. We thank our shepherd Michael Schapira,

and the anonymous reviewers for their feedback on the paper. This

material is based upon work supported by the U.S. National Science

Foundation under grants No. CNS-1901523, CNS-1705086, and CNS-

1955422.

A Throughput-Centric View of the Performance of Datacenter Topologies SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

REFERENCES
[1] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. 2008. A Scalable,

Commodity Data Center Network Architecture. In Proceedings of the ACM SIG-
COMM 2008 Conference on Data Communication (SIGCOMM ’08). Association
for Computing Machinery, New York, NY, USA, 63ś74. https://doi.org/10.1145/
1402958.1402967

[2] Shahbaz Alam, Pawan Agnihotri, and Greg Dumont. 2016. AWSre:Invent. Enter-
prise fundamentals: design your account and VPC architecture for enterprise op-
erating models. https://www.slideshare.net/AmazonWebServices/aws-reinvent-
2016-enterprise-fundamentals-design-your-account-and-vpc-architecture-for-
enterprise-operating-models-ent203. (2016).

[3] Alexey Andreyev. 2014. Introducing Data Center Fabric, the Next-generation
Facebook Data Center Network. https://engineering.fb.com/production-
engineering/introducing-data-center-fabric-the-next-generation-facebook-
data-center-network/. (2014).

[4] Jordi Arjona Aroca and Antonio Fernández Anta. 2014. Bisection (Band)Width
of Product Networks with Application to Data Centers. IEEE Transactions on
Parallel and Distributed Systems 25, 3 (2014), 570ś580. https://doi.org/10.1109/
TPDS.2013.95

[5] Dimitri P. Bertsekas, Angelia Nedić, and Asuman E. Ozdaglar. 2003. Convex
Analysis and Optimization. Athena Scientiic.

[6] Maciej Besta and Torsten Hoeler. 2014. Slim Fly: A Cost Efective Low-Diameter
Network Topology. In Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis (SC ’14). IEEE Press, 348ś359.
https://doi.org/10.1109/SC.2014.34

[7] Maciej Besta, Marcel Schneider, Karolina W Cynk, Marek Konieczny, Erik Hen-
riksson, Salvatore Di Girolamo, Ankit Singla, and Torsten Hoeler. 2019. FatPaths:
Routing in Supercomputers, Data Centers, and Clouds with Low-Diameter Net-
works When Shortest Paths Fall Short. ArXiv abs/1906.10885 (2019).

[8] C. Clos. 1953. A Study of Non-blocking Switching Networks. The Bell System
Technical Journal 32, 2 (Mar. 1953).

[9] Gabor Csardi and Tamas Nepusz. 2006. The Igraph Software Package for Complex
Network Research. InterJournal Complex Systems (2006), 1695. http://igraph.org

[10] Andrew R. Curtis, Tommy Carpenter, Mustafa Elsheikh, Alejandro López-Ortiz,
and S. Keshav. 2012. REWIRE: An optimization-based framework for unstructured
data center network design. In 2012 Proceedings IEEE INFOCOM. 1116ś1124.
https://doi.org/10.1109/INFCOM.2012.6195470

[11] N. G. Duield, Pawan Goyal, Albert Greenberg, Partho Mishra, K. K. Ramakr-
ishnan, and Jacobus E. van der Merive. 1999. A Flexible Model for Resource
Management in Virtual Private Networks. SIGCOMM Comput. Commun. Rev. 29,
4 (Aug. 1999), 95ś108. https://doi.org/10.1145/316194.316209

[12] Peyman Faizian, Md Atiqul Mollah, Md Shafayat Rahman, Xin Yuan, Scott Pakin,
and Mike Lang. 2017. Throughput Models of Interconnection Networks: The
Good, the Bad, and the Ugly. In 2017 IEEE 25th Annual Symposium on High-
Performance Interconnects (HOTI). 33ś40.

[13] Nathan Farrington, George Porter, Sivasankar Radhakrishnan, Hamid Hajabdolali
Bazzaz, Vikram Subramanya, Yeshaiahu Fainman, George Papen, and Amin
Vahdat. 2010. Helios: AHybrid Electrical/Optical Switch Architecture forModular
Data Centers. In Proceedings of the ACM SIGCOMM 2010 Conference (SIGCOMM
’10). Association for Computing Machinery, New York, NY, USA, 339ś350. https:
//doi.org/10.1145/1851182.1851223

[14] Monia Ghobadi, Ratul Mahajan, Amar Phanishayee, Nikhil Devanur, Janard-
han Kulkarni, Gireeja Ranade, Pierre-Alexandre Blanche, Houman Rastegarfar,
Madeleine Glick, and Daniel Kilper. 2016. ProjecToR: Agile Reconigurable Data
Center Interconnect. In Proceedings of the 2016 ACM SIGCOMM Conference (SIG-
COMM ’16). Association for Computing Machinery, New York, NY, USA, 216ś229.
https://doi.org/10.1145/2934872.2934911

[15] Albert Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kandula,
Changhoon Kim, Parantap Lahiri, David A. Maltz, Parveen Patel, and Sudipta
Sengupta. 2009. VL2: A Scalable and Flexible Data Center Network. In Pro-
ceedings of the ACM SIGCOMM 2009 Conference on Data Communication (SIG-
COMM ’09). Association for Computing Machinery, New York, NY, USA, 51ś62.
https://doi.org/10.1145/1592568.1592576

[16] Chuanxiong Guo, Guohan Lu, Dan Li, Haitao Wu, Xuan Zhang, Yunfeng Shi,
Chen Tian, Yongguang Zhang, and Songwu Lu. 2009. BCube: AHigh Performance,
Server-Centric Network Architecture for Modular Data Centers. In Proceedings
of the ACM SIGCOMM 2009 Conference on Data Communication (SIGCOMM
’09). Association for Computing Machinery, New York, NY, USA, 63ś74. https:
//doi.org/10.1145/1592568.1592577

[17] Chuanxiong Guo, Haitao Wu, Kun Tan, Lei Shi, Yongguang Zhang, and Songwu
Lu. 2008. Dcell: A Scalable and Fault-Tolerant Network Structure for Data Centers.
Proceedings of the ACM SIGCOMM 2008 conference on Data communication 38, 4
(Aug. 2008), 75ś86. https://doi.org/10.1145/1402946.1402968

[18] LLC Gurobi Optimization. 2020. Gurobi Optimizer Reference Manual. (2020).
http://www.gurobi.com

[19] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. 2008. Exploring Network
Structure, Dynamics, and Function using NetworkX. In Proceedings of the 7th

Python in Science Conference, Gaël Varoquaux, Travis Vaught, and Jarrod Millman
(Eds.). Pasadena, CA USA, 11 ś 15.

[20] Navid Hamedazimi, Zafar Qazi, Himanshu Gupta, Vyas Sekar, Samir R. Das, Jon P.
Longtin, Himanshu Shah, and Ashish Tanwer. 2014. FireFly: A Reconigurable
Wireless Data Center Fabric Using Free-Space Optics. In Proceedings of the 2014
ACM Conference on SIGCOMM (SIGCOMM ’14). Association for Computing Ma-
chinery, New York, NY, USA, 319ś330. https://doi.org/10.1145/2619239.2626328

[21] James Hamilton. 2010. Datacenter Networks are inmyWay. http://goo.gl/Ho6mA.
(2010).

[22] Vipul Harsh, Sangeetha Abdu Jyothi, and P. Brighten Godfrey. 2020. Spineless
Data Centers. In Proceedings of the 19th ACMWorkshop on Hot Topics in Networks
(HotNets ’20). Association for Computing Machinery, New York, NY, USA, 67ś73.
https://doi.org/10.1145/3422604.3425945

[23] Torsten Hoeler, Timo Schneider, and Andrew Lumsdaine. 2008. Multistage
switches are not crossbars: Efects of static routing in high-performance networks.
In 2008 IEEE International Conference on Cluster Computing. 116ś125.

[24] Nikhil Jain, Abhinav Bhatele, Xiang Ni, Nicholas J. Wright, and Laxmikant V. Kale.
2014. Maximizing Throughput on a Dragonly Network. In SC ’14: Proceedings of
the International Conference for High Performance Computing, Networking, Storage
and Analysis. 336ś347.

[25] A. Jajszczyk. 2003. Nonblocking, Repackable, and Rearrangeable Clos Networks:
Fifty Years of the Theory Evolution. IEEE Communications Magazine 41, 10 (2003),
28ś33.

[26] Sangeetha Abdu Jyothi, Ankit Singla, P Godfrey, and Alexandra Kolla. 2014.
Measuring and Understanding Throughput of Network Topologies. arXiv preprint
arXiv:1402.2531 (2014).

[27] Sangeetha Abdu Jyothi, Ankit Singla, P. Brighten Godfrey, and Alexandra Kolla.
2016. Measuring and Understanding Throughput of Network Topologies. In
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (SC ’16). IEEE Press, Article 65, 12 pages.

[28] George Karypis and Vipin Kumar. 1998. A Fast and High Quality Multilevel
Scheme for Partitioning Irregular Graphs. SIAM J. Sci. Comput. 20, 1 (Dec. 1998),
359ś392.

[29] Simon Kassing, Asaf Valadarsky, Gal Shahaf, Michael Schapira, and Ankit Singla.
2017. Beyond Fat-Trees Without Antennae, Mirrors, and Disco-Balls. In Proceed-
ings of the Conference of the ACM Special Interest Group on Data Communication
(SIGCOMM ’17). Association for Computing Machinery, New York, NY, USA,
281ś294. https://doi.org/10.1145/3098822.3098836

[30] John Kim, Wiliam J. Dally, Steve Scott, and Dennis Abts. 2008. Technology-
Driven, Highly-Scalable Dragonly Topology. In Proceedings of the 35th Annual
International Symposium on Computer Architecture (ISCA ’08). IEEE Computer
Society, USA, 77ś88. https://doi.org/10.1109/ISCA.2008.19

[31] Murali Kodialam, T. V. Lakshman, and Sudipta Sengupta. 2011. Traic-Oblivious
Routing in the Hose Model. IEEE/ACM Trans. Netw. 19, 3 (June 2011), 774ś787.
https://doi.org/10.1109/TNET.2010.2099666

[32] HaroldW Kuhn. 1955. The Hungarian method for the assignment problem. Naval
research logistics quarterly 2, 1-2 (1955), 83ś97.

[33] Praveen Kumar, Yang Yuan, Chris Yu, Nate Foster, Robert Kleinberg, Petr La-
pukhov, Chiun Lin Lim, and Robert Soulé. 2018. Semi-Oblivious Traic Engi-
neering: The Road Not Taken. In 15th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 18). USENIX Association, Renton, WA, 157ś170.
https://www.usenix.org/conference/nsdi18/presentation/kumar

[34] Tom Leighton and Satish Rao. 1999. Multicommodity Max-Flow Min-Cut Theo-
rems and Their Use in Designing Approximation Algorithms. J. ACM 46, 6 (Nov.
1999), 787ś832. https://doi.org/10.1145/331524.331526

[35] Hong Liu, Ryohei Urata, Xiang Zhou, and Amin Vahdat. 2020. Evolving Require-
ments and Trends of Datacenters Networks. Springer International Publishing,
Cham, 707ś724. https://doi.org/10.1007/978-3-030-16250-4_21

[36] Vincent Liu, Daniel Halperin, Arvind Krishnamurthy, and Thomas Anderson.
2013. F10: A Fault-Tolerant Engineered Network. In Proceedings of the 10th
USENIX Conference on Networked Systems Design and Implementation (NSDI’13).
USENIX Association, USA, 399ś412.

[37] William M. Mellette, Rajdeep Das, Yibo Guo, Rob McGuinness, Alex C. Snoeren,
and George Porter. 2020. Expanding Across Time to Deliver Bandwidth Eiciency
and Low Latency. In 17th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 20). USENIX Association, Santa Clara, CA, 1ś18. https:
//www.usenix.org/conference/nsdi20/presentation/mellette

[38] William M. Mellette, Rob McGuinness, Arjun Roy, Alex Forencich, George Pa-
pen, Alex C. Snoeren, and George Porter. 2017. RotorNet: A Scalable, Low-
Complexity, Optical Datacenter Network. In Proceedings of the Conference of
the ACM Special Interest Group on Data Communication (SIGCOMM ’17). As-
sociation for Computing Machinery, New York, NY, USA, 267ś280. https:
//doi.org/10.1145/3098822.3098838

[39] Mirka Miller and Jozef vSirávn. 2005. Moore Graphs and Beyond: A Survey of the
Degree/diameter Problem. Electronic Journal of Combinatorics, Dynamic survey
14 (12 2005), 1ś61.

[40] James Munkres. 1957. Algorithms for the assignment and transportation prob-
lems. Journal of the society for industrial and applied mathematics 5, 1 (1957),

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA Namyar .et al.

32ś38.
[41] S. Ohta. 1987. A Simple Control Algorithm for Rearrangeable Switching Net-

works with Time Division Multiplexed Links. IEEE Journal on Selected Areas in
Communications 5, 8 (1987), 1302ś1308.

[42] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armistead, Roy
Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie Germano, Anand
Kanagala, Jef Provost, Jason Simmons, Eiichi Tanda, Jim Wanderer, Urs Hölzle,
Stephen Stuart, and Amin Vahdat. 2015. Jupiter Rising: A Decade of Clos Topolo-
gies and Centralized Control in Google’s Datacenter Network. In Proceedings
of the 2015 ACM Conference on Special Interest Group on Data Communication
(SIGCOMM ’15). Association for Computing Machinery, New York, NY, USA,
183ś197. https://doi.org/10.1145/2785956.2787508

[43] Ankit Singla, P. Brighten Godfrey, and Alexandra Kolla. 2014. High Throughput
Data Center Topology Design. In Proceedings of the 11th USENIX Conference on
Networked Systems Design and Implementation (NSDI’14). USENIX Association,
USA, 29ś41.

[44] Ankit Singla, Chi-Yao Hong, Lucian Popa, and P. Brighten Godfrey. 2012. Jellyish:
Networking Data Centers Randomly. In 9th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 12). USENIX, San Jose, CA, 225ś238. https:
//www.usenix.org/conference/nsdi12/technical-sessions/presentation/singla

[45] Sucha Supittayapornpong, Barath Raghavan, and Ramesh Govindan. 2019. To-
wards Highly Available Clos-Based WAN Routers. In Proceedings of the ACM
Special Interest Group on Data Communication (SIGCOMM ’19). Association for
Computing Machinery, New York, NY, USA, 424ś440. https://doi.org/10.1145/
3341302.3342086

[46] Brian Towles andWilliam J. Dally. 2002. Worst-Case Traic for Oblivious Routing
Functions. In Proceedings of the Fourteenth Annual ACM Symposium on Parallel
Algorithms and Architectures (SPAA ’02). Association for Computing Machinery,
New York, NY, USA, 1ś8. https://doi.org/10.1145/564870.564872

[47] Asaf Valadarsky, Gal Shahaf, Michael Dinitz, andMichael Schapira. 2016. Xpander:
Towards Optimal-Performance Datacenters. In Proceedings of the 12th Inter-
national on Conference on Emerging Networking EXperiments and Technologies
(CoNEXT ’16). Association for Computing Machinery, New York, NY, USA,
205ś219. https://doi.org/10.1145/2999572.2999580

[48] Damon Wischik, Costin Raiciu, Adam Greenhalgh, and Mark Handley. 2011.
Design, Implementation and Evaluation of Congestion Control for Multipath
TCP. In Proceedings of the 8th USENIX Conference on Networked Systems Design
and Implementation (NSDI’11). USENIX Association, USA, 99ś112.

[49] Jin Y. Yen. 1971. Finding the K Shortest Loopless Paths in a Network. Management
Science 17, 11 (1971), 712ś716. http://www.jstor.org/stable/2629312

[50] Xin Yuan, Santosh Mahapatra, Michael Lang, and Scott Pakin. 2014. LFTI: A New
Performance Metric for Assessing Interconnect Designs for Extreme-Scale HPC
Systems. In IEEE 28th International Parallel and Distributed Processing Symposium.
273ś282.

[51] Xin Yuan, Santosh Mahapatra, Wickus Nienaber, Scott Pakin, and Michael
Lang. 2013. A New Routing Scheme for Jellyish and Its Performance with
HPC Workloads. In Proceedings of the International Conference on High Per-
formance Computing, Networking, Storage and Analysis (SC ’13). Association
for Computing Machinery, New York, NY, USA, Article 36, 11 pages. https:
//doi.org/10.1145/2503210.2503229

[52] Mingyang Zhang, Radhika Niranjan Mysore, Sucha Supittayapornpong, and
Ramesh Govindan. 2019. Understanding Lifecycle Management Complexity
of Datacenter Topologies. In 16th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 19). USENIX Association, Boston, MA, 235ś254.
https://www.usenix.org/conference/nsdi19/presentation/zhang

[53] Shizhen Zhao, Rui Wang, Junlan Zhou, Joon Ong, Jefrey C. Mogul, and Amin
Vahdat. 2019. Minimal Rewiring: Eicient Live Expansion for Clos Data Center
Networks. In Proc. USENIX NSDI.

[54] Xia Zhou, Zengbin Zhang, Yibo Zhu, Yubo Li, Saipriya Kumar, Amin Vahdat,
Ben Y. Zhao, and Haitao Zheng. 2012. Mirror Mirror on the Ceiling: Flexible
Wireless Links for Data Centers. In Proceedings of the ACM SIGCOMM 2012
Conference on Applications, Technologies, Architectures, and Protocols for Computer
Communication (SIGCOMM ’12). Association for Computing Machinery, New
York, NY, USA, 443ś454. https://doi.org/10.1145/2342356.2342440

A Throughput-Centric View of the Performance of Datacenter Topologies SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

APPENDIX

Appendices are supporting material that have not been peer-

reviewed.

A Proof of Theorem 2.1

Proof. In a doubly-stochastic matrix, each row and each column

contain non-negative values that add up to 1. The Birkhof-von

Neumann theorem states that the � × � permutation matrices form

the vertices of the convex polytope containing the set of � × �

doubly-stochastic matrices. We observe that T contains all doubly-

stochastic matrices scaled by � . From the Birkhof-von Neumann

theorem, it follows that the vertices of the convex polytope con-

taining T is the set of traic matrices in T̂ . It remains to show that

the minimum throughput across T̂ is always equal to that across

T .

To prove that min� ∈T � (�) = min
� ∈T̂

� (�), let �∗ = � (� ∗) be

the minimum of the LHS achieved at traic matrix � ∗ ∈ T . We

will show by contradiction that at least one permutation traic

� ∈ T̂ leads to this �∗. Speciically, let �∗ = min
� ∈T̂

� (�). Sup-

pose there is no such permutation traic matrix. Let �̂ > �∗ and

�̂ = min
� ∈T̂

� (�) be the minimum achieved by some permutation

traic matrix in T̂ . Caratheodory’s theorem [5] implies that there

exists at most |K |2 + 1 permutation traic matrices {�� } in T̂ such

that

� ∗ =

|K |2+1
︂

�=1

���� ,

|K |2+1
︂

�=1

�� = 1, and �� ∈ [0, 1] ∀� .

Given this, we can use a convex combination of permutation

traic matrices {�� } and {�� } to construct traic matrix � ∗ and

a solution to the multi-commodity low problem under � ∗. The

throughput of this solution cannot be less than �̂ , since all permu-

tation traic matrices have a throughput of at least �̂ . This leads

to a contradiction, because we have assumed that �∗ < �̂ . Thus,

there must exist a permutation traic matrix �� ∈ T̂ such that

�∗ = � (��).

□

B Proof of Throughput Bound for uni-regular
Topology

Proof. Let K denote the set of all switches with � servers.

Fix a permutation traic matrix � from T̂ . We solve a path-based

multi-commodity low problem (ğH, commonly used in wide-area

network traic engineering [33]) that maximizes throughput � (�)

under this traic matrix � . At each switch �, the ingress traic

consists of 1) traic destined to servers attached to � and 2) transit

traic �� (�). This ingress traic is bounded by the capacity of

network-facing ports, so we have �� (�) + � (�)
︁

�∈K\{� } ��� ≤

�� − � for every � ∈ K , where �� is the number of used ports in

switch�. (This models the fact that, for many uni-regular topologies,

some ports are left unused on switches.) Summing over� ∈ K gives
︂

�∈K

�� (�) ≤
︂

�∈K

(�� − �) − � (�)
︂

�∈K

︂

�∈K\{� }

��� . (4)

The LHS of the above inequality is equal to the total transit traic

in the network caused by traic matrix � . Alternatively, we can

compute the total transit traic based on the set of paths P�� and

split ratios for those paths {�� (�)} as
︂

�∈K

�� (�) = � (�)
︂

�∈K

︂

�∈K\{� }

���

︂

�∈P��

�� (�) (���(�) −1). (5)

Since all the paths in P�� are at least the shortest path and
︁

�∈P�� �� (�) = 1 for all �, � ∈ K2, we can rewrite the above

equation as an inequality:
︂

�∈K

�� (�) ≥ � (�)
︂

�∈K

︂

�∈K\{� }

��� (��� − 1) . (6)

From Equation 4 and Equation 6, we have

� (�) ≤

︁

�∈K (�� − �)
︁

�∈K
︁

�∈K\{� } ������
.

This throughput holds under every traic matrix� for every� ∈ T̂ .

Taking the minimum over the set yields

�∗ = min
� ∈T̂

� (�) ≤ min
� ∈T̂

︁

�∈K (�� − �)
︁

�∈K
︁

�∈K\{� } ������
.

Finally, using the facts that (a)
︁

�∈K (�� − �) = 2�, (b) every

traic matrix is a permutation traic, and (c) the length of the

shortest path from a switch to itself is equal to 0, we have the

throughput upper bound in Equation 1. □

C Proof of Throughput Bound for bi-regular
Topology

Proof. Let S and K denote the set of all switches and switches

with � servers respectively. Fix a permutation traic matrix �

from T̂ . We solve a path-based multi-commodity low problem

that maximizes throughput � (�) under this traic matrix � . At

each switch �, the ingress traic consists of 1) traic destined to

servers attached to� and 2) transit traic�� (�). This ingress traic

is bounded by the capacity of network-facing ports, and we have

�� (�) + � (�)
︁

�∈K\{� } ��� ≤ �� −�� for every � ∈ K . Summing

over � ∈ K gives
︂

�∈K

�� (�) ≤
︂

�∈K

(�� − ��) − � (�)
︂

�∈K

︂

�∈K\{� }

��� . (7)

Similarly, at every switch � with no directly connected server,

the ingress traic only consists of transit traic�� (�), and we have

�� (�) ≤ �� − �� for every � ∈ S \ K . Summing over � ∈ S \ K

gives
︂

�∈S\K

�� (�) ≤
︂

�∈S\K

(�� − ��) . (8)

From Equation 7 and Equation 8, we have
︂

�∈S

�� (�) ≤
︂

�∈S

(�� − ��) − � (�)
︂

�∈K

︂

�∈K\{� }

��� . (9)

The rest of the proof is similar to Theorem 2.2 (ğB). □

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA Namyar .et al.

Algorithm 1: Construction of traic matrix

Input: Topology � = (K, E), Server per switch �

Output: Traic matrix �

1 Q ← ∅

2 � ← 0 ∈ R |K |×|K |

3 for � ∈ K \ Q do

4 � ← argmax�′∈K\Q ���′

5 (���, ���) ← (�,�)

6 Q ← Q ∪ {�, �}

7 end

D Proof of Theorem 4.1.

Lemma 8.1. Given a uni-regular topology with total servers � and

� servers per switch, for every switch �, the number of switches with

at least� hops away from the switch is at least

�� =

�

�
−1− (�−�)

(� − � − 1)�−1 − 1

� − � − 2
, � ∈ {1, . . . , �} (10)

where � is the minimum diameter computed using Moore bound [39].

Proof. Fix switch �. Let �� be the number of switches with

distance � from switch �. Since every switch has � − � switch-

to-switch ports, the number of switches with distance 1 from �

is bouned by �1 ≤ � − � . The number of switches with distance

� hops away from switch � can be recursively bounded by �� ≤

(� − � − 1)��−1 = (� − � − 1)
�−1 (� − �), as each �-th switch has

one port connecting to (� − 1)-th switch. Since there are total � /�

switches, the number of switches with at least� hops away from

switch � is �� − 1 −
︁�−1
�=1 �� and is at least

�

�
− 1 −

�−1︂

�=1

�� ≥
�

�
− 1 − (� − �)

(� − � − 1)�−1 − 1

� − � − 2

□

Algorithm 1 generates a traic matrix with high pair-wise short-

est path length. In each iteration (Line 3-7), from unpicked switches,

it arbitrarily picks a switch � and then a switch � which maximizes

the shortest path length from � (Line 4). Then, it updates entries

��� and ��� of the traic matrix � with � .

Lemma 8.2. Given a uni-regular topology with total servers � and

� servers per switch, Algorithm 1 constructs a traic matrix with at

least�� non-zero entries whose shortest path lengths are at least�,

for� ∈ {1, . . . , �}.

Proof. We will show that there are at least�� non-zero entries

whose shortest path lengths are at least � at the end of ��-th

iteration of Algorithm 1 for every�. Fix� and�� from Lemma 8.1.

Let Q� be the set of switches already picked after �-th iteration

and Q0 = ∅. In the �-th iteration, switches � and � are picked

from unpicked switches in K \ Q�−1 such that � maximizes the

shortest path length from �. Let V�� denote the set of switches

with distance of at least� hops from switch �. We observe that

(a) if
︁

︁V�� \ Q�−1
︁

︁ is non-empty, � will be picked fromV�� \ Q�−1;

(b) if�� − 2(� − 1) > 0, then V�� \ Q�−1 is non-empty because

|V�� \ Q�−1 | ≥ |V
�
� | − |Q�−1 | ≥ �� − 2(� − 1) > 0. (We use

Lemma 8.1 that |V�� | ≥�� and the fact that |Q�−1 | = 2(� − 1).)

Then, we choose �� = ⌊(�� + 1)/2⌋, which always exists because

�� is monotonically decreasing and at the highest�1 = |K |−1, the

chosen �1 = ⌊|K | /2⌋ is feasible. Therefore, in the ��-th iteration,

we have�� − 2(�� − 1) > 0 (satisfying (b)), so
︁

︁V�� \ Q�−1
︁

︁ is non-

empty (satisfying (a)), and � is picked fromV�� . Thus, at the end of

the iteration, there are 2�� pairs and all of them have shortest path

lengths at least� since they are selected from
︁

�∈K V
�
� . Further,

their number is at least �� because 2�� = 2⌊(�� + 1)/2⌋ ≥

�� . □

Lemma 8.3. Given a uni-regular topology with total servers � and

� servers per switches, a traicmatrix� constructed fromAlgorithm 1

has the following property:

max
� ′∈T̂

︂

(�,�) ∈K2

���I
︁

� ′�� > 0
︁

≥

�︂

�=1

��, (11)

where�� for� ∈ {1, . . . , �} is deined in Lemma 8.1 and � is the

minimum diameter from Moore bound [39].

Proof. Since the traic matrix � constructed from Algorithm 1

is a permutation traic matrix, it follows that

max
� ′∈T̂

︂

(�,�) ∈K2

���I
︁

� ′�� > 0
︁

≥
︂

(�,�) ∈K2

���I [��� > 0] .

It remains to show that
︁

(�,�) ∈K2 ���I [��� > 0] ≥
︁�
�=1�� . In

the traic matrix� , letV� be the set of switch pairs whose shortest

path lengths are at least� hops. From the deinition, we know that

V� ⊆ V�−1 ⊆ . . . ⊆ V1, andV� \V�+1 only contains switch pairs

with exactly� hops for� ∈ {1, . . . , � − 1}. It follows that

︂

(�,�) ∈K2

���I [��� > 0] ≥ � |V� | +

�−1︂

�=1

� |V� \ V�+1 |

≥ � |V� | +

�−1︂

�=1

�(|V� | − |V�+1 |) =

�︂

�=1

|V� | .

Applying the fact that |V� | ≥�� for every� ∈ {1, . . . , �} from

Lemma 8.1, we have

︂

(�,�) ∈K2

���I [��� > 0] ≥

�︂

�=1

�� .

□

Proof of Theorem 4.1.

Proof. To prove this theorem, we apply Lemma 8.1 and

Lemma 8.3 to the RHS of Theorem 2.2. We have;

�∗ ≤ min
� ∈T̂

2�

�
︁

(�,�) ∈K2 ���I [��� > 0]

=

2�

� max
� ∈T̂

︁

(�,�) ∈K2 ���I [��� > 0]
≤

2�

��

(12)

where

� =

�︂

�=1

�� = � (
�

�
− 1) −

� − �

� − � − 2

︄

(� − � − 1)� − 1

� − � − 2
− �

︄

A Throughput-Centric View of the Performance of Datacenter Topologies SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

From Equation 12 and using the fact that in uni-regular topologies,

2� =
�
� (� − �), we have the upper bound in Equation 2. □

E Asymptotic behavior of throughput gap

In ğ3.1, we pointed out that the throughput gap for Jellyish might

be expected to be non-zero in the range 100K ś 180K servers, but

could not conirm this because our KSP-MCF implementation does

not scale to these sizes. To be able to quantify the throughput gap

for topologies larger than our computational limit for KSP-MCF, we

compute a lower bound on throughput when routing can exploit all

paths of length equal to or less than the length of the shortest path

plus� (� is a parameter to the lower bound calculation) in Theo-

rem 8.4. Deine the theoretical throughput gap to be the diference

between the upper and lower bounds (for a given�). Intuitively,

the theoretical throughput gap shows the maximum possible gap

one can expect when using our bound in Theorem 2.2. Figure A.1

shows that the magnitude of the theoretical gap as a function of the

topology size. (we use� = 1; at this setting, each topology has at

least 300 distinct paths between each source-destination pair across

the entire range of topology sizes we have considered, which is

suicient for our path-based MCF computation ğH).

Figure A.1 shows that themaximumpossible gap at these scales is

going to be smaller than that of 3K ś 15K. Moreover, the theoretical

gap decreases as the size of the topology grows. We prove this

observation in Corollary 2 showing that the theoretical throughput

gap approaches zero asymptotically. In other words, for very large

topologies, we expect our throughput bound to match the actual

topology throughput.

10
k

10
0k

#Servers (N)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Th
ro

ug
hp

ut
 G

ap

Figure A.1: Theoretical throughput gap.

We irst start by stating the following assumption that always

holds in all of our experiments.

Assumption 1. Given a traic matrix � and a corresponding

solution of our path-based MCF, the ingress capacity of network-

facing ports is saturated by traic at every switch:

�� (�) + � (�)
︂

�∈K\{� }

��� = �� − �� for every � ∈ K

�� (�) = �� for every � ∈ S \ K,

where �� (�) is the amount of transit traic on switch � as a result of

routing the traic matrix � . Note that �� = 0 for every switch with

no servers, and it is omitted in the second equality.

Intuitively, the assumption holds in practice because datacenter

topologies are designed such that all the link capacities can be fully

utilized, as are the ingress capacities. We use this assumption to

prove a bound on throughput gap. Let� denote the additive path

length such that every path length is bounded by

���(�) ≤ ��� +� for every � ∈ P��, and every (�, �) ∈ K2 .

Theorem 8.4. Under a permutation traic matrix � ∈ T̂ , when

Assumption 1 holds with the additive path length �� (depending

on �), the maximum achievable throughput of a topology (either

uni-regular or bi-regular) is at least;

� (�) ≥
2�

��� + �
︁

(�,�) ∈K2 ���I [��� > 0]
. (13)

Proof. Let S denote the set of all switches. From Assumption

1, we sum the transit traic �� (�) over all switches and have the

following equality
︂

�∈S

�� (�) =
︂

�∈S

(�� − ��) − � (�)
︂

�∈K

︂

�∈K\{� }

��� . (14)

Note that Assumption 1 changes the inequality in Equation 9 to

equality due to all ingress capacity is fully utilized.

Alternatively, we can compute the total transit traic

(
︁

�∈S �� (�)) based on Equation 5;
︂

�∈S

�� (�) = � (�)
︂

�∈K

︂

�∈K\{� }

���

︂

�∈P��

�� (�) (���(�) − 1).

Since length of all the paths in P�� is at most ��� +�� from the

deinition of the additive path length, we have;
︂

�∈S

�� (�) ≤ � (�)
︂

�∈K

︂

�∈K\{� }

��� (��� +�� − 1) . (15)

From Equation 14 and Equation 15, we have

� (�) ≥

︁

�∈S (�� − ��)
︁

�∈K
︁

�∈K\{� } ��� (��� +��)
.

Finally, using the fact that a)
︁

�∈S (�� − ��) = 2�, b)� is a permu-

tation traic matrix, c) ��� = 0 for every switch � and d) the sum of

all the entries except the diagonals of the traic matrix� is at most

� , we can derive the throughput lower bound in Equation 13. □

The above theorem states the lower bound of throughput with

respect to the additive path length�� depending on a given per-

mutation traic matrix � . Our path-based MCF computation shows

that�� = 1 is suicient to provide enough path diversity to make

Assumption 1 valid for all Jellyish, Xpander and FatClique. Us-

ing Theorem 8.4, we show that the gap between the upper bound

and the lower bound can be arbitrarily small when the network

size is suiciently large and when a mild assumption holds.

Assumption 2. The additive path length for the maximal permu-

tation traic matrix �̂ does not increase with a topology size such that

�
�̂
= � (1).

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA Namyar .et al.

Corollary 2. When Assumptions 1 and 2 hold, for any positive

value � > 0, any uni-regular topology with � servers has � ∗� such

that for every � ≥ � ∗� ;

�∗ − ��� ≤ �

where �∗ is the throughput upper bound from Theorem 2.2 and ��� =

min
� ∈T̂

��� (�) is the mininum of throughput lower bound ��� (�)

from Theorem 8.4.

Proof. From Assumption 1, it holds for every permutation ma-

trix � ∈ T̂ that

�∗ − ��� (�) ≤ �
∗ − min

� ∈T̂
��� (�) ≤

�∗ − min
� ∈T̂

2�

��� + �
︁

(�,�) ∈K2 ���I [��� > 0]
.

Let �̂ = [�̂��] be the maximal traic matrix that minimizes the right
side of Equation 1. We observe that it also minimizes the last term
above, and we have

� ∗ − ��� (�) ≤

2���
�̂

(��
�̂
+�

︁

(�,�)∈K2
��� I

︁

�̂�� > 0
︁

) (�
︁

(�,�)∈K2
��� I

︁

�̂�� > 0
︁

)
. (16)

Using Lemma 8.3 and Lemma 8.1, we have;
︂

(�,�) ∈K2

���I
︁

�̂�� > 0
︁

≥

� (
�

�
− 1) −

� − �

� − � − 2

︄

(� − � − 1)� − 1

� − � − 2
− �

︄

= �. (17)

Equation 16 and Equation 17 lead to

�∗ − ��� (�) ≤
2���

�̂

(��
�̂
+ ��) (��)

Since the above inequality holds for every � ∈ T̂ , it holds at the

worst-case gap

��� − min
� ∈T̂

��� (�) ≤
2���

�̂

(��
�̂
+ ��) (��)

.

Similar to Corollary 1, we can prove that above inequality goes

to 0 as � increases because every �� is bounded by a constant

independent of � under Assumption 2. □

F Throughput of bi-regular Clos topologies
under tub

tub is tight for bi-regular Clos topologies as well, giving throughput

equal to 1 for diferent topology sizes (Table A.1).

N #Layers #SWs tub

8192 3 1280 1.00

32768 4 7168 1.00

131072 4 28672 1.00

Table A.1: Clos: tub is always 1.

G Proof of Corollary 1

Proof. This follows directly from Equation 2 in Theorem 4.1.

We can show that, in � , the term containing �� dominates the

other terms for large enough � . This is a direct consequence of

deining � as the minimum diameter that required to accommodate

� /� switches (Moore bound [39]). As a result, in the RHS of the

Equation 2, the numerator grows as � and the denominator grows

as �� . Therefore, �∗ approaches zero with increasing � , so there

must always exist a � ∗ at which �∗ falls below 1. □

H Path-based Multi-commodity Flow LP
formulation

In this section, we briely introduce the path-based MCF formula-

tion (common in WAN traic engineering [33]) used throughout

the paper. Given a traic matrix� = [���] and set of paths between

every pair of switches with servers (P��), the throughput of the

traic matrix is the solution to the following LP formula in which

�� denotes the amount of low on path �;

maximize �

subject to
︁

�∈P�� �� ≥ ���� ∀(�, �) ∈ K2
︁

(�,�) ∈K2
︁

�∈P�� �� I [� ∈ �] ≤ 1 ∀� ∈ E

�� ≥ 0 ∀(�, �) ∈ K2,∀� ∈ P��,

where E is the set of directional links with unit capacity.

I Metric Adjustments for FatClique

In a FatClique, the number of servers attached to each switch can

difer by at most 1. To generalize the maximal permutation traic

matrix generation to accommodate this case, we changed weight

assignment of edges in the complete bipartite graph from��→� =

��� to ��→� = ��� min(�� , ��). The latter weight assignment

takes into account the maximum amount of low between each �, �

pair along with their distance. More precisely, if in a permutation

traic matrix ��� is non zero, it should be the minimum of �� and

�� since it should conform to the hose-model traic constraints ğ2.

So, Equation 1 can be re-written as;

�∗ ≤ min
� ∈T̂

2�
︁

(�,�) ∈K2 ��� min(�� , ��)I [��� > 0]
(18)

Equation 18 is exactly same as Equation 1 when all the switches

have exactly the same � . To ind the maximal permutation traf-

ic matrix, we need to ind the traic matrix that minimizes the

LHS of Equation 18. This is equivalent to solving the maximum

weight matching in a bipartite graph (ğ2), with the revised weight

assignment.

This approach does not yield the global minimum of the through-

put bound since Theorem 2.1 does not hold when H difers accross

the switches. A linear programming (LP) formulation can compute

the global minimum [31]. However, we use our matching method

to infer the maximal permutation traic matrix for FatClique, for

three reasons. First, in FatClique, the number of servers connected

to each switch can difer only by 1, so the diference between global

minimum and throughput bound computed using this approach is

negligible. Second, algorithms for solvingmaximal weight matching

are more eicient than solving an LP. Third, the permutation traic

A Throughput-Centric View of the Performance of Datacenter Topologies SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

0 200k 400k 600k 800k 1M 1.2 M
Equipment Cost (#Ports)

5

10

15

20

25

Se
rv
er
s a

t F
ul
l t
hr

ou
gh

pu
t (

%
)

Figure A.2: Topology Cost (Jellyish vs Fat-tree). The relative diference

of the maximum servers supported at full throughput (per tub) between

Jellyish and Fat-tree built with the same equipment using {14, 24, 32, 48, 56,

64, 68, 72, 78, 84, 90, 98}-port switches averaged over 5 runs.

matrix generated using our approach is harder to route compared

to an LP generated traic matrix.

J Throughput Gap for diferent values of K

Figure A.5 illustrates the absolute diference between path-based

multi-commodity low over �-shortest paths and our throughput

bound for diferent values of � (i.e., throughput gap). The results

for � = 60, 100, 200 are very similar to each other; a gap of non-

zero for small size topologies, followed by a close-to-zero gap for

larger instances. The only exception is some instances of FatClique

exhibit large throughput gaps in the 5K ś 15K compared to Jelly-

ish and Xpander because FatClique cannot fully utilize available

capacity with � = 60, 100 for KSP-MCF. However, after increasing

� to 200 (Figure 5(l)), the throughput gap behavior for FatClique is

comparable to Jellyish and Xpander.

For � = 20, the gap remains signiicant even at large topolo-

gies since 20-shortest paths does not provide enough diversity to

completely exploit the network capacity, and some of the capacity

remains unused.

K Scaling of Throughput-based Cost
Comparison

Other than bisection bandwidth, Jellyish [44] and Xpander [47]

used full throughput of random permutations and all-to-all traic

matrices under MCF to assess the cost advantage of their topolo-

gies. However, throughput under random permutations and all-

to-all traic matrices can be signiicantly larger than (worst-case)

throughput [27]. Moreover, as discussed in ğ3.1, MCF and KSP-

MCF can not scale to the size of current datacenters. In this section,

we show how conclusions can change when using our bound to

perform cost comparisons at larger scale.

Jellyish. Singla et al. [44] have shown that at the scale of <900

servers Jellyish can support 27% more servers than a Fat-tree [1]

built with same equipment, and conjecture that this cost advan-

tage increases by using a higher radix switch. Figure A.2 shows

the relative diference of the maximum servers between Jellyish

and Fat-tree for diferent switch radices. Using tub, at the scale of

686 servers (� = 14, which is the largest scale considered in [44]),

Jellyish can support only 8% more servers than a (same equipment)

Fat-tree (the leftmost point in Figure A.2), dropping the cost ad-

vantage of Jellyish by 3x. Moreover, using a higher radix switch

0 20k 40k 60k 80k
#Servers (N)

80

85

90

95

Sw
itc

he
s a

t F
ul

l t
hr

ou
gh

pu
t (

%
)

Figure A.3: Topology Cost (Xpander vs Fat-tree). Number of Switches

required to support � servers. Percentages are Xpander/Fat-tree.

does not result in higher cost advantage of Jellyish over Fat-tree.

In fact, using a higher radix switch might result in drop in the cost

advantage. For example, using 98-port switches instead of 64-port

causes the cost advantage to drop slightly from 25% to 22%.

Xpander. Valadarsky et al. [47] have shown that at the scale of

<4K servers, Xpander can support the same number of servers as

Fat-Tree [1] at full throughput using 80% ś 85% of the switches.

As Figure A.3 shows at the maximum considered scale in [47]

(3.5K servers, the left most point), Xpander should use more than

95% switches compared to the same size Fat-tree. However, as the

scale grows, the cost advantage of Xpander over Fat-tree increases,

matching the numbers reported in [47].

L Throughput of uni-regular topologies under
expansion

Jellyish [44] and Xpander [47] have shown that using a very sim-

ple expansion algorithm (random rewiring), their design can be

expanded to any size with minor throughput loss while preserv-

ing the number of servers per switch � . Jellyish uses bisection

bandwidth as their throughput metric while Xpander assesses the

throughput by solving MCF on all-to-all traic matrix.

Jellyish. In ğ5.1, we show that Jellyish requires advanced plan-

ning in order to preserve full throughput, otherwise, even very

small expansion can turn Jellyish into a topology with less than

full throughput. To better understand the amount of throughput

degradation, Figure A.4 shows the throughput (computing using

tub), normalized by the topologies initial throughput (before ex-

pansion). At each step, we expand the topology by 20% of the initial

size until its size reaches the 2.6x of the initial topology. For 10K

servers, Figure A.4 shows that throughput drops by more than 20%

when expanding the topology by only 0.6x. On the other hand,

when the initial topology size is 32K, throughput drop is negligible

(<1%). We emphasize that these results are consistent with ğ4.2;

Jellyish with H=6 and initial size 8K has full throughput even after

expanding by 2.6x. However, it faces the throughput drop as well.

This suggests that operators should be cautious when expand-

ing uni-regular topologies depending on the topology’s initial and

target size as they might face signiicant throughput drops. tub,

therefore, helps topology designers to identify and understand these

scenarios before deploying and expanding their desired topology.

Xpander. Using tub to assess the Xpander’s performance under

expansion results in similar conclusions as expanding Jellyish does.

Similar to Jellyish, operators who adopt Xpander should have the

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA Namyar .et al.

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6
Expansion Ratio

0.75

0.80

0.85

0.90

0.95

1.00

No
rm

al
ize

d
Th

ro
ug

hp
ut

Init N=10K, H=6
Init N=10K, H=7
Init N=10K, H=8
Init N=32K, H=6
Init N=32K, H=7
Init N=32K, H=8

Figure A.4: Throughput of uni-regular topologies under expansion.

target size inmind and choose� accordingly. Otherwise, they either

end up having a topology with less than full throughput or have

to rewire the servers, bearing a signiicant cost. The throughput

degradation is also very similar to Jellyish (Figure A.4); at some

scales (e.g., 10K), expanding the Xpander even by a very small ratio

degrades the throughput by as much as 25%.

A Throughput-Centric View of the Performance of Datacenter Topologies SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

0 5k 10k 15k 20k 25k
#Servers (N)

0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut
 G

ap

H=6
H=7
H=8

(a) Jellyish, K=20

0 5k 10k 15k 20k 25k
#Servers (N)

0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut
 G

ap

H=6
H=7
H=8

(b) Jellyish, K=60

0 5k 10k 15k 20k 25k
#Servers (N)

0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut
 G

ap

H=6
H=7
H=8

(c) Jellyish, K=100

0 5k 10k 15k 20k 25k
#Servers (N)

0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut
 G

ap

H=6
H=7
H=8

(d) Jellyish, K=200

0 5k 10k 15k 20k 25k
#Servers (N)

0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut
 G

ap

H=6
H=7
H=8

(e) Xpander, K=20

0 5k 10k 15k 20k 25k
#Servers (N)

0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut
 G

ap

H=6
H=7
H=8

(f) Xpander, K=60

0 5k 10k 15k 20k 25k
#Servers (N)

0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut
 G

ap

H=6
H=7
H=8

(g) Xpander, K=100

0 5k 10k 15k 20k 25k
#Servers (N)

0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut
 G

ap

H=6
H=7
H=8

(h) Xpander, K=200

0 5k 10k 15k 20k 25k
#Servers (N)

0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut
 G

ap

H [5.5, 6.5)
H [6.5, 7.5)
H [7.5, 8]

(i) FatClique, K=20

0 5k 10k 15k 20k 25k
#Servers (N)

0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut
 G

ap

H [5.5, 6.5)
H [6.5, 7.5)
H [7.5, 8]

(j) FatClique, K=60

0 5k 10k 15k 20k 25k
#Servers (N)

0.0

0.2

0.4

0.6

0.8

1.0

Th
ro
ug

hp
ut
 G
ap

H [5.5, 6.5)
H [6.5, 7.5)
H [7.5, 9]

(k) FatClique, K=100

0 5k 10k 15k 20k 25k
#Servers (N)

0.0

0.2

0.4

0.6

0.8

1.0

Th
ro
ug

hp
ut
 G
ap

H [7.5, 9]
H [6.5, 7.5)
H [5.5, 6.5)

(l) FatClique, K=200

Figure A.5: Throughput bound vs K-shortest paths Multi-commodity low for diferent values of K (20, 60, 100, 200).

	Abstract
	1 Introduction
	2 An Upper Bound on Throughput
	2.1 Complexity of Computing Throughput Bounds
	2.2 Throughput Upper Bound

	3 Evaluating the Throughput Upper Bound
	3.1 Throughput Gap
	3.2 Comparison with other throughput metrics

	4 Limits on the Throughput of Uni-regular Topologies
	4.1 Asymptotic Limits
	4.2 The Full-Throughput Frontier

	5 A Throughput-Centric View of Topology Evaluations
	5.1 Throughput vs. Bisection Bandwidth
	5.2 Scaling Throughput Evaluations

	6 Practical Considerations
	7 Related Work
	8 Conclusions and Future Work
	References
	A Proof of Theorem 2.1
	B Proof of Throughput Bound for uni-regular Topology
	C Proof of Throughput Bound for bi-regular Topology
	D Proof of Theorem 4.1.
	E Asymptotic behavior of throughput gap
	F Throughput of bi-regular Clos topologies under tub
	G Proof of Corollary 1
	H Path-based Multi-commodity Flow LP formulation
	I Metric Adjustments for FatClique
	J Throughput Gap for different values of K
	K Scaling of Throughput-based Cost Comparison
	L Throughput of uni-regular topologies under expansion

