A Throughput-Centric View of the Performance of Datacenter
Topologies

Pooria Namyar
University of Southern California

Sucha Supittayapornpong

Vidyasirimedhi Institute of Science

Mingyang Zhang

University of Southern California

and Technology

Minlan Yu

Harvard University

ABSTRACT

While prior work has explored many proposed datacenter designs,
only two designs, Clos-based and expander-based, are generally con-
sidered practical because they can scale using commodity switching
chips. Prior work has used two different metrics, bisection band-
width and throughput, for evaluating these topologies at scale. Little
is known, theoretically or practically, how these metrics relate to
each other. Exploiting characteristics of these topologies, we prove
an upper bound on their throughput, then show that this upper
bound better estimates worst-case throughput than all previously
proposed throughput estimators and scales better than most of
them. Using this upper bound, we show that for expander-based
topologies, unlike Clos, beyond a certain size of the network, no
topology can have full throughput, even if it has full bisection band-
width; in fact, even relatively small expander-based topologies fail
to achieve full throughput. We conclude by showing that using
throughput to evaluate datacenter performance instead of bisection
bandwidth can alter conclusions in prior work about datacenter
cost, manageability, and reliability.

CCS CONCEPTS

» Networks — Data center networks; Network performance
modeling; Network manageability; Topology analysis and
generation; » General and reference — Metrics;

KEYWORDS

Data centers, Throughput, Clos topologies, Network management

ACM Reference Format:

Pooria Namyar, Sucha Supittayapornpong, Mingyang Zhang, Minlan Yu,
and Ramesh Govindan. 2021. A Throughput-Centric View of the Perfor-
mance of Datacenter Topologies. In ACM SIGCOMM 2021 Conference (SIG-
COMM °21), August 23-28, 2021, Virtual Event, USA. ACM, New York, NY,
USA, 21 pages. https://doi.org/10.1145/3452296.3472913

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGCOMM °21, August 23-28, 2021, Virtual Event, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8383-7/21/08.

https://doi.org/10.1145/3452296.3472913

Ramesh Govindan
University of Southern California

1 INTRODUCTION

A primary contributor to the success of cloud computing is the dat-
acenter, a warehouse-style agglomeration of compute and storage
on commodity servers. The performance of distributed applica-
tions running inside a datacenter, like search, reliable storage, and
social networks, is strongly determined by the design of the dat-
acenter network. This network consists of a topology in which
switches interconnect servers. Today, datacenters routinely have
tens of thousands of switches connecting hundreds of thousands
of servers. Our focus, in this paper, is on the design and evaluation
of topologies for such large-scale datacenters.

Datacenter topology designs. Two distinct classes of topology
designs have emerged in recent years. Clos [8] based designs include
Fat-tree [1], VL2 [15], Jupiter [42] and Facebook Fabric [3], and
failure-resilient variants, such as F10 [36]. These hierarchical de-
signs are bi-regular, in which a switch either connects to H servers,
or none at all (Figure 1). More recent alternative designs target
lower installation costs and/or incur lower management costs than
Clos-based topologies. These designs employ an expander-graph to
interconnect switches, and include Jellyfish [44], Xpander [47], and
FatClique [52]. These topologies are uni-regular: every switch con-
nects to H servers (Figure 1). In both classes, each server connects
to exactly one switch.!

Measures of topology capacity. The capacity of the data center
network limits the performance of applications it hosts. Intuitively,
a topology with enough capacity to permit every server to send
traffic at full line rate simplifies cloud application design: operators
can place application instances anywhere in the network without
impacting performance, and this placement flexibility enables ap-
plications to be more cost efficient and more robust to correlated
failures (e.g., of an entire rack or power domain) [15, 21, 35, 42].

Most prior work [1, 3, 15, 42, 52] has used the network’s bisection
bandwidth, the smallest aggregate capacity of the links crossing the
worst-case cut among all the cuts that divide the topology graph
into two halves, as a measure of its capacity. A topology has full
bisection bandwidth if its bisection bandwidth is at least equal to
half of the total servers; for Clos-based designs, such a topology
permits arbitrary application instance placement.

Other work [24, 26, 27, 50, 51] has explored an alternative mea-
sure of network capacity, throughput, defined as follows. The
throughput under traffic matrix T is the highest scaling factor 6(T)
such that the topology can support the traffic matrix, T - 6(T),

1Other topology designs, such as DragonFly [30], and SlimFly [6], do not scale to the
sizes of modern data centers, so we do not consider them in this paper; see §7.

SIGCOMM 21, August 23-28, 2021, Virtual Event, USA

[]

Switch without Switch with

servers 2 servers

Bi-regular topology Uni-regular topology

FIGURE 1: Uni-regular and bi-regular topologies.

without violating any link’s capacity constraint. The throughput
of a topology denoted by 6* is the worst-case throughput among
all traffic matrices. A topology can support any traffic demand if
and only if 6" is at least 1 (in this case, we say the topology has
full throughput). Because it can support any traffic demand, a full
throughput topology also permits arbitrary application instance
placement by definition.?

How prior work uses these metrics. These metrics can help
evaluate topology design, perform cost comparisons, or assess the
complexity of network expansion. As Table 1 shows a substantial
body of work has used bisection bandwidth to perform these
assessments on large-scale uni-regular and bi-regular topologies.
(Some prior work [27, 43, 44, 47] has used throughput to perform
some of these assessments, but for much smaller-scale topologies
with only a few thousand servers.)

Objective Metric Topology Class Prior work
. bi-regular [1, 15, 42]

Evaluate Design BBW uni-regular 14,47, 52]
bi-regular 15, 42, 44, 52]

Assess Cost BBW uni-regular 14.57]

Estimate Expansion bi-regular 10, 42, 52, 53]

i BBW -
complexity uni-regular 44, 52]

TABLE 1: Prior work has used bisection bandwidth for large-scale evalua-
tions.

Given this discussion, it is natural to ask: What is the difference
between these metrics for uni-regular and bi-regular topologies?
Should the papers listed in Table 1 have used throughput instead?
How would these assessments change if they did?

To our knowledge, the literature has not explored the precise
difference between these two metrics, but has explored related,
but slightly different questions. Bisection bandwidth is a graph-cut
based metric, and [27] has studied the relation between cut based
metrics and throughput at a scale much smaller than those we
consider in this paper. As well, [34] shows that the sparsest cut
of any topology for a given traffic matrix is within O(logN) of its
throughput for that traffic matrix. Finally, Yuan et al. [50] show
that bisection bandwidth cannot predict average throughput of a

topology.

2To actually achieve arbitrary instance placement, one also might need a scalable,
practical routing scheme that can exploit the topology’s available capacity. For Clos-
based networks, ECMP-based routing can do so. For large-scale uni-regular topologies,
we believe this question is open. We don’t address this in this paper since we focus on
topology properties.

Namyar .et al.

In this paper, we take a first step in understanding the relation-
ship between these metrics by making the following contributions.

Contribution: The Difference Between Full Throughput and
Full Bisection Bandwidth for Uni-regular Topologies. We
prove (§4) that for any uni-regular topology, there exists a size (in
terms of the number of servers) beyond which the topology cannot
have full throughput even if it has full bisection bandwidth. This is
true even of small instances of uni-regular topologies with as few
as 10-15K servers (§4.2). By contrast, bi-regular Clos topologies are
not subject to this limit, and a full bisection bandwidth topology
always has full throughput (Figure 2). This means that a topology
designer cannot ensure application placement independence (more
precisely, the ability to support any arbitrary traffic demand) using
a full bisection bandwidth uni-regular topology (Table 1). Put
differently, for uni-regular topologies, full bisection bandwidth is
necessary but not sufficient to support arbitrary traffic demand; by
definition, full throughput is both necessary and sufficient.

Full BBW Full Throughput

Uni-Reg Clos

FIGURE 2: Full throughput vs. Full bisection bandwidth.

Contribution: A Throughput-Centric View. Table 1 shows that
prior work has used bisection bandwidth to evaluate uni-regular
and bi-regular topologies; we show that using throughput can lead
to different conclusions, impacting cost and management complex-
ity (§5.1). It is also the more appropriate metric: as the previous
contribution demonstrates, throughput better captures the capac-
ity of both uni-regular and bi-regular topologies, while bisection
bandwidth does not.

» Prior work has argued that a full bisection bandwidth Jellyfish,
Xpander or FatClique uses 50% fewer switches than a full bisection
bandwidth Clos [8]. We show that a full throughput Jellyfish [44],
Xpander [47] or FatClique [52] uses only 25% fewer switches than a
full throughput Clos. This finding is important, because the smaller
cost differential may make uni-regular topologies less attractive
relative to Clos (whose packaging and routing simplicity may out-
weigh its higher cost).

» Prior work has argued that a Jellyfish or FatClique can be ex-
panded: (a) with minor bandwidth loss while keeping the num-
ber of servers per switch constant; (b) using a random rewiring
strategy [52] simpler than that for Clos [53]. This assumes that
bandwidth loss is estimated using bisection bandwidth. We show
that, expanding a full throughput Jellyfish or FatClique by even a
small amount, while keeping fixed the number of servers per switch,
can result in a topology without full throughput. Thus, a designer
wishing to maintain full throughput for uni-regular topologies after
expansion may need to re-wire servers, requiring a much more
complex expansion strategy than Clos.

A Throughput-Centric View of the Performance of Datacenter Topologies

» Datacenter designers have traded off topology capacity for lower
cost by designing over-subscribed topologies. The FatTree [1] paper
defines the over-subscription ratio of a topology as the ratio of
the worst-case achievable throughput between end-hosts to the
aggregate bisection bandwidth. Our results suggest that, for uni-
regular topologies, a more direct definition of over-subscription
ratio is the throughput itself (a throughput less than 1 indicates an
over-subscribed topology). We find that, for these topologies, the
bisection-bandwidth based over-subscription ratio overestimates
the throughput by up to 50%. Thus, a designer using that definition
would build a network whose actual capacity is lower than the
targeted capacity.

Contribution: An Efficiently-Computable, Tight, Through-
put Upper Bound. The previous contributions require a way to
compute the throughput of large uni-regular and bi-regular topolo-
gies. To this end, we make the following contributions.

» We prove an upper bound on the throughput of uni-regular and
bi-regular topologies (§2).

» We empirically show (§3) that this upper bound is tighter and
scales better than existing approaches of estimating network ca-
pacity or throughput: the throughput bound in [43], heuristics for
estimating throughput in [23, 24, 51], bisection bandwidth, and
sparsest cut [27].

» This scalable throughput upper bound can be used to better assess
properties of datacenter topologies at larger scales than previously
possible, giving a designer greater confidence in a particular topol-
ogy (§5.2). A concrete example is resilience. Prior work showed that
Jellyfish [44] and Xpander [47] degrade gracefully with random link
failure for up to 1K servers; we show that, for a 131K sized Jellyfish
or Xpander, degradation is less than graceful (the throughput after
failure can be up to 20% lower than what one might expect with
graceful degradation) under random failure.

Ethics. This work does not raise any ethical issues.

2 AN UPPER BOUND ON THROUGHPUT

In this section, we prove an upper bound on throughput that applies
to uni-regular and bi-regular topologies.

2.1 Complexity of Computing Throughput
Bounds

A permutation matrix is one in which each row and each column
has exactly one non-zero entry. A permutation matrix can indicate
traffic either at the server-level (where each entry denotes traffic
between two servers), or switch-level. In server-level permutation
matrices, all non-zero entries are normalized to 1 while for switch-
level matrices, they are the number of servers connected to the
switch (H). In this section, we show that this set of switch-level
permutation traffic matrices, denoted by T, is sufficient to characterize
the throughput of uni-regular and bi-regular topologies.

Notation. Entry t,, of the switch-level traffic matrix T describes
the traffic demand from switch u to switch o. Let K be the set of all
switches with servers, and H be the number of servers connected to
each switch in K. To determine the throughput of the topology, we

SIGCOMM 21, August 23-28, 2021, Virtual Event, USA

l Notation [Description]

N Total number of servers
E Total number of switch-to-switch links
R Switch radix
H Number of servers per switch
S Set of switches with and without servers
K Set of switches with H servers (K C S)
tuo Traffic demand from u to o where u,v € K
T = [tuo] | |K|x |K| traffic matrix with demands #,,,’s
T Saturated hose-model set
T Permutation traffic set
6(T) Throughput under traffic matrix T
o* Topology throughput (6* = mingpeq 0(T))
Lo Shortest path length from switch u to v

TABLE 2: Notation

use the hose model [11]3, where every switch sends and receives
traffic at no more than its maximum rate H (for simplicity, each
link has unit capacity). The hose-model traffic set is the set of traffic
matrices that conform to the hose model:

T e pIKIXIKI . Zuex tuo <H VoeXK
* " Yeektuww<H YuekK |’

where R, is the set of non-negative reals. This traffic set includes
the commonly-used traffic matrices such as all-to-all and random
permutations, and it applies not just to uni-regular topologies, but
to bi-regular topologies as well. A bi-regular topology contains two
types of switches: one without attached servers, and one in which
each switch has H servers. Switches without servers can not source
or sink any traffic, and as a result, it suffices to describe the traffic
matrix only by switches with attached servers (%K).

Our hose model definition is consistent with [27], which bases
its definition on server-level traffic matrices. Our definition uses
switch-level traffic matrices, leveraging the fact that uni-regular
and bi-regular topologies have H servers per switch and each server
connects to exactly one switch.

On computing the throughput of a topology. Since the hose-
model traffic set contains an infinite number of traffic matrices,
computing the throughput of the topology (the minimum through-
put across all traffic matrices) is intractable.

To improve the tractability, consider the following set of traffic
matrices that we call the saturated hose model set, 7, where each
switch sends and receives traffic at exactly its maximum rate H:

- IKIXIK] . Zyektuw=H VYoeXK
T_{T€R+ ’ Zzze?(tuvzH YVue XK |

This set dominates the hose-model traffic set, since we can always
augment any hose-model traffic matrix with a non-negative value
to produce a saturated hose-model traffic matrix. So, the minimum
throughput across all traffic matrices in the hose model set cannot
be smaller than the minimum throughput across all traffic matri-
ces in 7. However, there are still infinitely many elements in 7.
The following theorem shows that for uni-regular and bi-regular

3In the hose model, the end-host traffic rate is bounded by the port speed, which means
the model only permits admissible traffic patterns for the topology. Our use of the
hose model is consistent with prior work [11, 27].

SIGCOMM 21, August 23-28, 2021, Virtual Event, USA

topologies, it suffices to consider an even smaller traffic set in order
to compute throughput.

THEOREM 2.1. The throughput of a uni-regular or a bi-regular
topology is the minimum throughput across all traffic matrices in the
permutation traffic set T

PRrROOF SKETCH. §A contains the detailed proof, which proceeds
in two steps. First, it shows that T represents the extrema of the
convex polytope formed by the traffic matrices in 7. Second, relying
on the convexity of the set 77, it shows that the minimum through-
put across all traffic matrices must correspond to a permutation
traffic. O

Prior work [45] has used a similar convexity argument in a
slightly different context, and [46] proves a similar theorem in a
more limited context (for oblivious routing). Other prior work ([29],
Conjecture 2.4) has stated Theorem 2.1 as a conjecture.

The size of 7', while finite, grows combinatorially with the matrix
dimension, so it is still infeasible to iterate over all its elements in
order to compute throughput. However, in any traffic matrix in 7,
each switch u sends traffic at full rate to exactly one other switch v.
We exploit this, together with the structure of uni-regular and bi-
regular topologies to derive an efficiently computable upper bound
on the throughput of these topologies (§2.2).

2.2 Throughput Upper Bound

We now use Theorem 2.1 to derive a closed-form expression for
the upper bound on the throughput of a uni-regular or a bi-regular
topology. Throughput is both a function of the topology and the
routing algorithm used to route traffic demands; the derived upper
bound is independent of the routing algorithm.

Upper bound for uni-regular topology throughput. The fol-
lowing theorem establishes a tractable closed-form expression for
the throughput of a uni-regular topology. It assumes, without loss
of generality, a uni-regular topology with H servers per switch, and
unit link capacity.

THEOREM 2.2. The maximum achievable throughput for a uni-
regular topology, under any routing, is bounded by:

" . 2E
6" < min (1)
Te7 H X (uo)ex Luol [tuo > 0]
where E is the number of switch-to-switch links in the topology, Ly,
is the shortest path length from switch u to switchv and 1 [-] is an
indicator function.

PRrooOF SKETCH. §B contains the detailed proof, which relies on
the optimal solution of the path-based multi-commodity flow prob-
lem (§H, commonly used in wide-area network traffic engineer-
ing [33]). For a given traffic matrix T, path-based multi-commodity
flow maximizes throughput 6(T). Now, consider an arbitrary switch
u. Its total ingress traffic consists of two components: the traffic
destined to its servers, which depends on 0(T), and its transit traffic.
We upper-bound the ingress traffic by the aggregate link capacity
at the switch, and lower-bound it by the total transit traffic de-
rived from the path lengths and the flow split ratios. Solving these
inequalities, and applying Theorem 2.1 gives Equation 1. o

Namyar .et al.

Efficiently computing the throughput bound. The RHS of
Equation 1 chooses a permutation traffic matrix that maximizes
total path length. Finding this matrix is equivalent to finding near-
worst-case traffic matrix in [27]. In that work, the authors present
an intuitive form of the throughput upper bound and suggest an
intuitive heuristic for constructing a “difficult” server-level traffic
matrix (near-worst-case). In this paper, we formally prove the
throughput upper bound and use a slightly different approach
(discussed below) that constructs a switch-level traffic matrix to
achieve the minimum of the RHS of Equation 1.

To find the minimum throughput, we construct a complete bipar-
tite graph B (consisting of two disjoint set of nodes U and V) from
the given topology G. U and V represent all the possible source and
destination switches with directly connected servers in G respec-
tively. The weight of the edge (u,v) where u € U and v € V is the
shortest path length from switch U to switch V. The permutation
traffic matrix that determines the throughput bound in Equation 1
corresponds to the weighted maximum matching in B. We call this
the maximal permutation matrix.

Extension to bi-regular topologies. Theorem 2.2 applies to bi-
regular topologies as well. Intuitively, additional switches with no
servers increase capacity for transit traffic which is reflected in
the numerator of Equation 1. We prove this formally in §C. The
theorem also applies to uni-regular and bi-regular topologies in
which each switch u has a different radix R;,; we have omitted the
description of this extension for brevity.

Theorem 2.2 implies that throughput of a topology is propor-
tional to total link capacity and inversely proportional to maxi-
mal total path length of the maximal permutation matrix. Prior
work [43] has computed an upper-bound on the average through-
put of uni-regular topologies across all uniform traffic matrices
(the all-to-all and permutation matrices). In contrast, we bound the
worst-case throughput, and our bound is significantly closer (§3.2)
to the worst-case behavior of uni-regular topologies at all scales
than the bound of [43]. Our bound is also more general: it applies
to bi-regular topologies as well, and across all traffic matrices (as a
consequence of Theorem 2.1).

On server-level vs. switch-level traffic matrices. We exploit the
regularity in uni-regular and bi-regular topologies and reason about
switch-level permutation traffic matrices, rather than server-level
ones. This helps us efficiently compute the upper-bound even for
large topologies (§3). This efficiency does not impact the throughput
estimate, relative to using a server-level permutation matrix, as we
now show.

If we had used the server-level TMs, the throughput upper-bound
would have been the same. A switch-level maximal permutation
matrix T, when converted to server-level f"n, is a solution to the
corresponding server-level weighted maximum matching problem.
We can prove this by contradiction. Let, for any server u, s(u) be
the switch connected to u and assume that Ty, can be improved by
(the total path length of the permutation matrix can be increased
by, see denominator of Equation 1) a set of actions on (u,v) (e.g.,
insertion or deletion of a flow). We can show that T can be also im-
proved by the same amount by a similar set of actions on (s(u), s(v)).
This is because the link from the server to its directly connected

A Throughput-Centric View of the Performance of Datacenter Topologies

0.50—— . H=6 . H=7 + H=g
Q
©0.25 ITYYTITRTY
[V TTILELLEEEEET TTI
0.00 YL 1Y TSRy
) 5k 10k 15k 20k 25k

#Servers (N)

(a) Jellyfish (K=100)

0.50——— . H=6 =« H=7 & H=gf——
o

§0-25 IVETEEETYY
© RVSS T TN

0.00L=set” o
0 5k 10k 15k 20k 35K

#Servers (N)

(b) Xpander (K=100)

0.50 a H[5.5, 6.5) . H[6.5,7.5) " H[7.5, 9]
20 25‘7 “a
Q7 ~
'“ &= mﬁﬁ:ﬂ.'z\ -

0.003 5K 10k 5k 20k 25k

#Servers (N)

(c) FatClique (K=200)

FIGURE 3: Throughput bound vs K-shortest paths Multi-commodity flow.
Gap approaches zero as the number of servers (N) increases for all choices
of uni-regular topologies and servers per switch (H).

switch does not constrain throughput, so all L,,,s do not include
it. Thus, adding/removing (s(u), s(v)) increases/decreases the total
path length by the same amount as adding/removing (u,v) does.
This is a contradiction since we assumed T is the maximal permu-
tation matrix.

However, the actual throughput of the topology under switch-
level maximal permutation matrix is always less than or equal to
the server-level one. If the server-level maximal permutation ma-
trix, when converted to switch-level, is not a permutation matrix, a
similar line of proof as Theorem 2.1 can show that the correspond-
ing switch-level traffic matrix is a convex combination of some
switch-level permutation traffic matrices. So, at least one of the
switch-level permutation matrices has lower throughput than this
TM. Hence, considering switch-level matrices not only improves
the scalability of our throughput bound but also better captures the
minimum throughput of the topology.

3 EVALUATING THE THROUGHPUT UPPER
BOUND

In this section, we show that throughput upper bound (abbreviated
TUB) (a) accurately estimates the worst case throughput and (b) all
previously proposed throughput estimators [23, 24, 43, 51] produce
worse estimates for uni-regular topologies and most scale poorly. *

3.1 Throughput Gap

In this section, we compute the throughput gap between the
throughput upper bound (abbreviated TuB) and the throughput

40ur code is available at https://github.com/USC-NSL/TUB

SIGCOMM 21, August 23-28, 2021, Virtual Event, USA

N sp I nsp BN spl+2 EEE spl+1 EEE spl
1007F -— 500
8 ! il ! "
3 400
£ 75 ! =
s : i < 300
o
> 50 \ 2
2 H | £ 200
2 ' K
3 2 ! % 100
< 1 ‘
ool L I |
X~ X~ X~ ~ X~ X~ X X
o~ < [*e] o < o o o
— o~ m < n
#Servers (N)

(b) Path distribution

(a) Throughput distribution

FIGURE 4: Jellyfish (H=8). (a) Throughput gap appears at topology sizes that
shortest paths does not provide enough diversity. (b) The number of pairwise
shortest paths in the maximal permutation matrix periodically increases
and decreases. (sp=shortest path, nsp=non-shortest path, spl=shortest path
length)

achieved by routing a “worst-case” traffic matrix, and show that
this gap is small.

Methodology. Prior work [27] has shown that maximal permu-
tation matrix can achieve worst-case throughput. We have inde-
pendently verified this. For small topologies, we exhaustively com-
pared the throughput of every TM under KSP-MCF, and the maxi-
mal permutation matrix achieves the lowest throughput. For large
topologies, we compared the throughput of the maximal permuta-
tion matrix with 20 random permutations, and observed that the
throughput of maximal permutation matrix is constantly lower, and
the gap between these two increases with scale.

To demonstrate that the throughput gap is small, we need to
select a routing scheme. We have found that it suffices to solve a
path-based multi-commodity flow [33] over K-shortest paths (KSP-
MCEF, see §H). To compute the throughput gap, we sweep values of
K until increasing K does not increase throughput’; in most cases,
K = 100 suffices to match TuB. As an aside, we do not mean to
suggest that KSP-MCF is practical for large networks; especially for
uni-regular topologies, finding a scalable routing scheme that can
achieve high throughput is an open question left to future work.

Other details. For all results in the paper, we use METIS [28]
to (over) estimate bisection bandwidth, Gurobi [18] to solve linear
programs for MCF, the networkx [19] implementations of K-shortest
paths [49] and the igraph [9] implementation of maximum bipartite
matching [32, 40]. FatClique deviates slightly from our definition
of uni-regular topologies: in a FatClique topology, H can differ by 1
across switches. We have adapted TUB and the maximal permutation
algorithm to deal with this deviation (§I).

For Uni-regular Topologies. Figure 3 shows the throughput gap
for TUB for the three uni-regular topologies, for different H.

Jellyfish. Figure 3(a) shows the throughput gap for K = 100 for
Jellyfish with H = 8 (other values of H are qualitatively similar).
The gap is non-zero at small scales between 3K - 15K. However,
for larger instances, the gap is close to zero.

TUB is loose in the range 3K - 15K because (a) the proof of
Theorem 2.2 uses the observation that throughput is highest when

5§) shows the results for different values of K

SIGCOMM 21, August 23-28, 2021, Virtual Event, USA

all paths between each source-destination pair are shortest paths
and (b) topologies in this size range have fewer shortest paths,
so KSP-MCF routes traffic over non-shortest paths. (Figure 4(a)
plots the distribution of the fraction of flows over shortest and
non-shortest paths for different topology sizes).

Interestingly, topologies with 100K - 180K servers have a smaller
fraction of shortest paths (Figure 4(b)), so we expect TUB to be loose
in that range (we cannot confirm this because KSP-MCF does not
scale to those sizes), but expect the throughput gap to be small
beyond that range because the fraction of shortest paths increases.
However, in §E, we show that the maximum possible throughput
gap approaches zero asymptotically. Future work can explore better
throughput bounds that exploit diversity in non-shortest paths.

Xpander and FatClique. Figure 3 shows the throughput gap
for Xpander and FatClique, for different values of H. Like Jellyfish
at H = 8, the gap is significant at small scales between 5K - 15K for
these topologies and the gap is close to zero for larger instances.

Bi-regular Topologies. For Clos-based bi-regular topologies,
ECMP is able to achieve (close to) full throughput (modulo
differences in flow sizes [15]). We find that TUB’s estimate is also 1
for different Clos topologies, showing that the gap is zero for them
as well (Table A.1).

3.2 Comparison with other throughput metrics

Prior work has proposed other ways of estimating throughput. For
uni-regular topologies, we expect TUB to be (a) faster and (b) more
accurate than these other methods, because it leverages properties
of uni-regular topologies. In this section, we validate this intuition.

Efficiently computing TUB. Before doing so, we briefly discuss
some empirical results for the speed of computing TUB. The bottle-
neck in this computation is the weighted maximum matching in a
complete bipartite graph. Several network analysis tools such as
networkx [19] and igraph [9], have an efficient implementation of
weighted maximum matching. Furthermore, our computation scales
well because we abstract the server-level traffic into a switch-level
traffic matrix, so that the number of nodes in the constructed bipar-
tite graph reduces significantly. On a machine with 64GB of RAM,
we were able to find the throughput upper bound for topologies
with up to 180K servers with H = 8 within 20 minutes. For calibra-
tion, on the same platform, computing the throughput for routing
a permutation traffic matrix using KSP-MCF does not scale beyond
50K servers, and using full-blown MCF does not scale beyond 8K
servers.

Comparison alternatives. Prior work [27] has compared through-
put (i.e., the solution to MCF) with cut-based metrics, such as
sparsest-cut (using an eigenvector based optimization in [26]) and
bisection bandwidth, and [43] computes an upper bound on average
throughput of uni-regular topologies across uniform traffic matrices.
In addition to these, we compare our method to two other through-
put estimators developed for general graphs. Hoefler’s method [51]
divides a flow into sub-flows on each path between source and
destination, and splits the capacity of a link equally across all flows
traversing it. Jain’s method [24] incrementally routes flows on each
path; at each step it allocates residual capacity on a link to all

Namyar .et al.

new flows added to the link at this step and iterates until no paths
remain.

Results. Figure 5 compares TUB against these alternatives, for
Jellyfish topologies with 8 servers per switch. Results for other
topologies are similar (omitted for brevity).

Small to medium scale. Figure 5(a) shows the throughput gap
(determined using the methodology described in §3.1) for topologies
with up to 25K servers. TUB has the smallest throughput gap across
all alternatives. In the range 15K — 25K, TUB’s throughput gap is
zero, that of others is higher than 0.2, and sometimes as high as 0.4.
To illustrate why it is important to have a small throughput gap,
consider a scenario in which a network operator wishes to design a
full throughput topology; if she uses a loose throughput estimator,
the resulting topology may not actually have full throughput.

Moreover, TUB is among the most efficient of the alternatives
(Figure 5(b)).

It is both more accurate, and faster than Jain’s method (JM)
and Hoefler’s method (HM). These have large throughput gaps at
larger topology sizes (Figure 5(a)). JM and HM exploit edges of each
available path, but their estimates are loose because they assume all
the sub-flows going through each edge get a fair share of the edge’s
capacity. This assumption may not maximize the throughput of a
traffic matrix; to do this, flows that currently have lower throughput
should get more share of the available capacity. JM and HM are
a few orders of magnitude slower than TUB (Figure 5(b)) because
they exploit more of the topological structure.

Bisection bandwidth and [43] scale better than TUB, but their
estimates have large error. Bisection bandwidth is a loose cut-based
estimate of throughput as shown by [27] at small scales, and proven
by us in §4. Figure 5(a) empirically verifies this at much larger
scales than [27]. Computing exact bisection bandwidth for general
networks is intractable [4], so we use a fast heuristic [28] that
approximates the bisection bandwidth. Furthermore, the bound
in [43] relies on average distance among all the pairs of switches,
based on the fact that every switch splits its traffic equally and sends
to all the other switches in the average case. Our bound, however,
considers structural properties (e.g., distance between individual
pairs) to maximize the congestion by routing the traffic between
pairs with the largest distance. Therefore, the gap for TUB is smaller
than that for [43], but TUB is slower since it considers more details
about the topology.

Large scale. Figure 5(c) plots the bisection bandwidth, and the
throughput estimated by TUB, and by [43], for topologies for up to
300K servers. At these scales, we cannot compute KSP-MCF to esti-
mate the throughput, so we depict the absolute throughput values.
[43]’s throughput estimate is consistently and considerably higher
across the entire range compared to TUB’s. The latter’s computa-
tional complexity is comparable to that of [43], except for the range
200K - 280K where TUB exhibits a non-monotonic behavior. TuB
attempts to choose disjoint pairs of switches with large distances
from each other to construct the maximal permutation matrix, but
in topologies of this size range, there are fewer of these pairs with
longest possible distance (i.e., diameter), so it takes longer for the

A Throughput-Centric View of the Performance of Datacenter Topologies

SIGCOMM 21, August 23-28, 2021, Virtual Event, USA

—— TUB BBW SC —=— [42] —=— HM(100) —— JM(100)
1.00 100 ‘
149 12500

=3 m \ —
§0.75 g 7> 51.2]! 410000
o H a c \
5 S S S 7500 |
£050 & 50 3 b3 \
E} o = @ 5000 \
£0.25 E 25 S £ \
F [= 2500 L

0.00 0 TP L

5k 10k 15k 20k 25k S5k 10k 15k 20k 25k 50k 100k 150k 200k 250k 300k 50k 100k 150k 200k 250k 300k
#Servers (N) #Servers (N) #Servers (N) #Servers (N)

(a) Accuracy (b) Efficiency

(c) Accuracy, Large Scale (d) Efficiency, Large Scale

FIGURE 5: TUB is more accurate compared to all the other metrics and almost as fast as bisection bandwidth and throughput bound in [43]. (BBW is bisection
bandwidth, SC is sparsest cut, HM(.) is Hoefler’s method and JM(.) is Jain’s method in which (.) is the number of paths)

algorithm to search for these disjoint pairs. We expect to signifi-
cantly reduce the search by parallelizing the weighted maximum
matching implementation; we have left this to future work.

Summary. TUB’s throughput gap is smaller than those of prior
estimators and scales to up to 300K servers. This enables us to
revisit whether prior evaluations of large-scale topologies using
bisection bandwidth would yield different conclusions if throughput
were used instead (§5).

4 LIMITS ON THE THROUGHPUT OF
UNI-REGULAR TOPOLOGIES

In this section, using Theorem 2.2 we establish asymptotic limits on
the size of full-throughput uni-regular topologies. Then, exploiting
TUB’s scalability and tightness (§3), we establish practical limits
on the size of full-throughput uni-regular topologies for different
values of H.

4.1 Asymptotic Limits

A throughput upper bound for all uni-regular topologies.
Theorem 2.2 determines an upper-bound on the throughput for a
given uni-regular or bi-regular topology, independent of routing.
The following theorem, which applies only to uni-regular topolo-
gies, establishes an upper-bound on the throughput across all uni-
regular topologies, independent of routing.

THEOREM 4.1. The maximum achievable throughput of any uni-
regular topology with N servers, switch radix R and H servers per
switch under any routing is:

« _ N@®R-H)
0F < ———— 2
=~ (2
where;
_ _Hg_1)4_
poaN - R-H (R-H-1?-1
H R-H-2 R-H-2

and d is the minimum diameter required to accommodate N/H
switches computed using Moore bound [39].

Proor SKETCH. §D contains the detailed proof. We observe from
Equation 1 that throughput is lowest for switch pairs (u,v) for
whom the shortest path length Ly, is high. Our constructive proof

Throughput = 5/6

Switch without
servers

Switch with
1 server

Throughput = 1

Throughput = 1

FIGURE 6: uni-regular topologies can have limited throughput.

first bounds the number of switches whose distance is at least m
from a given switch (Lemma 8.1 in §D). Then, we construct (Algo-
rithm 1 in the Appendix) the maximal permutation traffic matrix in
which each switch exchanges traffic with other switches that are
furthest from it (Lemma 8.2 in §D). This construction maximizes
Ly, and from this construction and using Lemma 8.1, we can bound
the number of communicating switch pairs whose distances are at
least m hops of each other. The bound applies to the denominator
of the RHS of Theorem 2.2, resulting in a throughput upper bound
independent of the traffic matrix (Lemma 8.3 in §D).]

This theorem formalizes the intuition captured in Figure 6. Fun-
damentally, a uni-regular topology is constrained by the fact that
every switch has to have H servers. The figure shows topologies in
which 3-port switches have (at most) H = 1 servers. The leftmost
4-switch topology has full throughput. However, the addition of a
single switch (the middle topology) drops throughput significantly.
To recover full throughput in this setting, we need to add four more
switches with no servers; these provide additional transit capacity.
Figure 7 shows the worst-case TM for the middle topology along
with the optimal routing of the TM. It also presents the through-
put of the same TM on the bi-regular topology with 4 additional
switches.

Relationship between bisection bandwidth and throughput.
Using Theorem 4.1, we can derive a necessary condition for any
full throughput uni-regular topology:

N(R-H)
T @
Unlike bi-regular topologies where Clos topologies have full bi-
section bandwidth and full throughput (see below), uni-regular

D <

SIGCOMM 21, August 23-28, 2021, Virtual Event, USA

™
Sq -> 84:
S4 -> Sp!
Sp -> 85!
Sg -> 83!
S3 -> Sq:

[i G Gy

FIGURE 7: The uni-regular topology can support the given worst-case
permutation traffic matrix with throughput=% while the bi-regular topology
with 4 additional switches can support the TM at full throughput. In the
uni-regular topology setup, the optimal routing is the following: % of each
flow is routed through the shortest path while % of each flow is routed
through the non-shortest path.

Topology | Condition | H=8 | H=7 | H=6
Uni-regular | Equation 3 | 111K | 256K | 3.97M

Jellyfish Full-BBW | >20M | >20M | >20M
Xpander Full-BBW | >20M | >20M | >20M
FatClique Full-BBW | >20M | >20M | >20M

TABLE 3: Maximum number of servers, each topology set up can support
without violating the condition.

topologies can have full bisection bandwidth, but not full through-
put (as illustrated in Figure 2). Table 3 shows the maximum number
of servers each topology family can support without violating Equa-
tion 3 (switch radix R is 32). It shows that the largest full throughput
uni-regular topology with 8 servers per switch can only support
111K servers, while the largest full bisection bandwidth Jellyfish,
Xpander, or FatClique topologies can support over 20M servers! (In
Table 3, for all uni-regular topologies, we were unable to estimate
the bisection bandwidth for topologies larger than 20M servers
because of computational limits.)

Scaling limits on uni-regular topologies. Another way of stat-
ing the results in Table 3 is that no uni-regular topology with H = 8
and more than 111K servers can have full throughput. This implies
that there is a bound on the number of servers that a full through-
put uni-regular topology can have. Corollary 1 formalizes this; we
prove it in §G.

COROLLARY 1. For a given switch radix R and servers per switch
H, there exists a N*(R,H) such that for N > N*(R,H), no full
throughput uni-regular topology exists with N servers, switch radix
R and H servers per switch.

Every Clos-based topology always has full throughput. In
contrast to these scaling limits for uni-regular topologies, a fully-
deployed Clos-based topology always has full throughput. In §2.1,
we observed that Theorem 2.1 applies to Clos-based topologies.
Prior work has shown that a multi-stage Clos can (re-arrangeably)
support every permutation traffic matrix [25, 41]. Since Clos is a
bi-regular topology, it must have a throughput of 1 because, by The-
orem 2.1, it suffices to consider only permutation traffic matrices
to compute the throughput, and Clos can support all permutation
traffic matrices (i.e., for each matrix in 7, Clos has a throughput of

Namyar .et al.

1). Thus, bi-regular topologies like VL2 [15] and FatTree [1], being
Clos topologies, have full throughput. We conjecture that F10 [36]
also has full throughput (F10 uses a different striping than Clos),
but have left it to future work to prove that.

4.2 The Full-Throughput Frontier

Table 3 shows the largest possible number of servers any uni-regular
topology can support at full throughput. However, this bound is
loose in part because it applies generically to all uni-regular topolo-
gies. In this section, for each topology family, we characterize, as a
function of H, the largest size beyond which no topology has full-
throughput® (as estimated by TuB). We call this the full-throughput
frontier. For calibration, we also draw the full bisection-bandwidth
frontier, defined similarly. This comparison helps us quantitatively
understand the Venn diagram of Figure 2.

Methodology. To compute these frontier curves, we generate
topologies from each topology family, for different H and N. For
Jellyfish and Xpander, there is a uniquely defined topology given H
and N. (In our experiments, we have assumed a fixed switch radix
of 32 unless otherwise mentioned.) For each value of H, we use
binary search on the total number of servers to find the maximum
N that provides full bisection bandwidth, or full throughput.

For FatClique, we cannot precisely estimate the full-throughput
frontier since its topology instances can be non-monotonic with
respect to throughput. Specifically, because of the way it is con-
structed, for a given H, a topology with N servers can have full
throughput, but a topology with N’ < N servers may not. For this
reason, for FatClique, we generate a large number of instances for
each H and for each, we evaluate whether that instance has both
full bisection bandwidth and full throughput, or only full bisection
bandwidth.

Results. Figure 8 shows the results of these experiments for Jelly-
fish, Xpander, and FatClique.

Jellyfish and Xpander. Figure 8(a) shows the full-throughput
and full-bisection bandwidth frontier curves for Jellyfish, and Fig-
ure 8(b) for Xpander. For both Jellyfish and Xpander, there is a
large gap between these curves; there are many topologies that have
full bisection bandwidth, but do not have full throughput. In some
configurations (specifically H of 7 and 8), these topologies cannot
achieve full throughput even with 10K-15K servers. At H of 9, these
topologies can support a few hundred servers with full throughput.
For H of 6, Jellyfish and Xpander can support full throughput up to
225K servers (off-scale in Figure 8(a), Figure 8(b)).

How does throughput degrade beyond the frontier? At 7 servers
per switch, a Jellyfish with 13K servers has a TUB of 1, with 15K
servers a TUB of 0.94, and with 17K servers a TuB of 0.89. Similar
results hold for Xpander. This appears to suggest that the through-
put of these topologies degrade gracefully beyond the frontier, but
we have left a more detailed analysis to future work.

FatClique. Because FatClique instances can be non-monotonic
with respect to throughput, the full-throughput frontier curve is
approximately the boundary separating the blue (Throughput)
points from the red (BBW) points in Figure 8(c). Like Jellyfish and

®Some topologies smaller than this size may also not have full throughput because
TUB is an upper bound.

A Throughput-Centric View of the Performance of Datacenter Topologies

SIGCOMM 21, August 23-28, 2021, Virtual Event, USA

—&— BBW —¥— Throughput

N
v
~

v v O 1
‘;VVV A iA Afu
S20k| L wy 4 oa % 43

£ ¥ TN gik

" v A A Ta A
5 15k 4| 2 f
[A ry A‘AL

s v ¥ f A A
Sroelete v o £ P44
Yv v'i" v | 3
Tdy "TVV Y i;ik
sl T v RYE yywy A
vy AR AR
8 9 6 7 8

25k 25k
~ 20k ~ 20k
w15k 215k
g g
@ 10k g 10k
® EA
5k 5k
0 6 7 8 9 0 6
#Servers per Switch (H)
(a) Jellyfish

7

#Servers per Switch (H)

(b) Xpander

#Servers per Switch (H)

(c) FatClique

FIGURE 8: Full-throughput Frontier Curve. Uni-regular topologies with H=8 and H=7 can not scale well while preserving full throughput even though they

maintain full BBW up to a very large size.

Xpander, there are no FatClique topologies above 10K which have
full throughput by the TUB for H values of 7 and 8 (at these values,
above 10K, all instances are labeled BBW).

Takeaways. While uni-regular topologies have elegant designs
(Jellyfish and Xpander) and useful manageability properties (Fat-
Clique), their throughput scaling is fundamentally limited (§4), and
many of their topology instances do not have full-throughput even
at scales far smaller than modern data centers (e.g., Amazon AWS
with more than 50K servers [2], Google Jupiter with more than 30K
servers [42]). At these larger scales, these topologies can use smaller
values of H, but this can negate the cost advantages of uni-regular
topologies, as we show next.

5 A THROUGHPUT-CENTRIC VIEW OF
TOPOLOGY EVALUATIONS

In this section, we revisit prior work on topology evaluation from
a throughput-centric perspective.

5.1 Throughput vs. Bisection Bandwidth

§4.1 shows that, for uni-regular topologies, throughput and bisec-
tion bandwidth are different, and that, by definition, throughput
accurately captures the capacity of the network. Here we explore
whether conclusions from prior work that has used bisection band-
width to evaluate uni-regular topologies would change if through-
put were used instead. Table 4 summarizes our findings.

Topology Cost. Datacenter designers seek highly cost-effective
designs [35]. FatClique [52] and Jellyfish [44] have compared the
cost of their designs against Clos-based topologies by generating
full bisection bandwidth instances of their topology using the mini-
mum number of switches, and then comparing that number against
a Clos with the same number of servers. Figure 9 shows what would
happen if they had, instead, generated full throughput instances,
for topologies with different sizes and switch radices.

Figure 9(a) and Figure 9(b) show that the full throughput Jelly-
fish and Xpander built from 32-port switches use about 33% more
switches than the full bisection bandwidth topology at the scale of
32K and 131K servers (because, to achieve full throughput at larger
sizes, uni-regular topologies must use a smaller H). This increase
in the number of switches for FatClique is approximately 27%. This

30k
mmm BBW EEN TUB

= BBW . TUB

o
~

#Switches
N
~
#Switches
N
S
~

N

~
=
o
=~

0 0

Clos Jellyfish Xpander Fatclique Clos Jellyfish XpanderFatclique

(a) N=32K, R=32 (b) N=131K, R=32

WS
ouwou

Switches (%)

r'y
16 24 32 48 64
switch radix (R)

(c) Jellyfish Full Throughput vs Full BBW

F1GURE 9: Topology Cost. Number of switches to build a full throughput
topology is larger than a full BBW topology. (a) Number of switches to
build a topology with 32K servers using 32-port switches. (b) Number of
switches to build a topology with 131K servers using 32-port switches (At
these scales, TUB is expected to have a small throughput gap.) (c) Number
of switches to build a Jellyfish topology with different switch radices to
support the same number of servers as a 1/8th 4-layer Clos. (Percentages
are Full-Tus/Full-BBW - 1.)

affects the comparison with Clos’: Clos uses 1.8x more switches
compared to uni-regular topologies to achieve full bisection band-
width® but only 1.3x more relative to full throughput uni-regular
topologies.

Figure 9(c) demonstrates that, at higher switch radices, the im-
pact of the choice of metric is more severe for uni-regular topologies.
To do this experiment, we needed to normalize the scale of the topol-
ogy relative to the radix of a switch. A natural way to normalize
this is to design a uni-regular topology with as many servers as a
full Clos with a given switch radix. However, at a radix of 64, a full
Clos has 2.1M servers to which our TUB implementation does not
yet scale. So, we normalize the topology scale by designing Jellyfish

7In this and subsequent evaluations, for Clos topologies the number of servers per
switch for leaf switches is always equal to % where R is the switch radix, while the
rest of the switches have no servers.

8Results for bisection bandwidth are consistent with findings of [44, 52]

SIGCOMM 21, August 23-28, 2021, Virtual Event, USA

Namyar .et al.

3 { [52] [Jellyfish, Xpander, and FatClique use 50% fewer switches to support the same servers as Clos at large-scale.]
3 [Tus | Jellyfish, Xpander, and FatClique use 25% fewer switches to support the same servers as Clos at large-scale. |
o | [44] | Jellyfish using random rewiring can be expanded with minor bandwidth loss while keeping the servers per switch constant (even under large expansion)
é TuB | Expanding jellyfish without considering the target size can cause significant throughput drop when servers per switch is preserved (even under small
= expansion).

TABLE 4: Throughput vs. Bisection Bandwidth. Conclusions can change significantly.

topologies with the same number of servers as a 1/8th Clos for the
corresponding switch radix. At a radix of 64, a 1/8th Clos has 263K
servers. Figure 9(c) shows the percentage increase in the number of
switches required to support Full Throughput over those required
to support Full BBW. This fraction increases with switch radix; with
64-port switches, Full BBW requires almost 50% more switches.

This difference can change a topology designer’s tradeoff analy-
sis. Clos and uni-regular topologies differ in one other important
way: the former has demonstrated, through wide deployment, a
simple and practical routing scheme (ECMP) that can achieve high
throughput, but proposed routing for uni-regular topologies rely
on routing schemes such as MPTCP [48] over K-shortest paths [49],
ECMP-VLB hybrid [29] or FatPaths [7]. The deployment and op-
erational cost of these schemes is not known, so, if the relative
switch cost advantage of uni-regular topologies is low, a designer
might find them less attractive when other costs, such as routing,
are taken into account.

Fabric Expansion. As recent work has shown [52, 53], datacenter
fabrics are rarely deployed at full scale initially. Rather, for a Clos-
based topology like Jupiter [42], a designer starts by determining a
target number of servers in the datacenter and the number of layers
needed in the Clos topology to achieve that scale. Then, they can
incrementally deploy the topology, often in units of superblocks [53].

One attractive aspect of some uni-regular topologies like Jellyfish
over Clos is that, at least conceptually, their expansion is simpler and
requires no advance planning [44, 47, 52]. For example, it is possible
to add one switch and its servers to Jellyfish by randomly removing
links and connecting the opened ports to the new switch. It is easy
to see, from Figure 8(a), that this expansion likely preserves full
bandwidth. For example, if one starts with a 5K Jellyfish topology
with H = 8, and augments it to 10K servers, the resulting topology
is still under the BBW line, so has full bisection bandwidth.

However, this expansion strategy may not always preserve full
throughput. In the same example, at 10K servers with H = 8, the
topology is above the Throughput line: in other words, while the
topology before expansion has full throughput, the final topology
does not.

Thus, when planning a datacenter topology, a designer must
carefully consider future target expansion sizes and choose H ac-
cordingly. If the target size is 10K, the topology designer needs
to plan in advance (as in Clos) and start with a H = 7 instance
in order to preserve throughput after expansion. (The alternative
is to re-wire servers, which can significantly increase the cost of
expansion).

Over-subscription. The Fat-Tree work [1] defined a topology’s
over-subscription ratio as the ratio between the actual bisection
bandwidth and full bisection bandwidth. This definition can be mis-
leading when applied to uni-regular topologies. For these topologies,

Topology | N | H | BBW | Throughput
Jellyfish | 32K | 10 | 34 1:2
Xpander | 32K | 10 | 3:4 1:2
FatClique | 32K | 8.6 | 3:4 2:3
Clos 32K | 32 1:2 1:2

TABLE 5: Throughput-based vs BBW-based over-subscription ratio. Num-
bers in one row are computed on the same topology.

the throughput itself is a measure of over-subscription. A through-
put of f indicates that each server can send traffic at a fraction
f of its line rate, corresponding to an over-subscription ratio of
l:%. Table 5 illustrates the difference between these two definitions

of over-subscription ratio for uni-regular topologies. For all uni-
regular topologies we have measured, the over-subscription ratio
defined using throughput is lower than bisection bandwidth-based
over-subscription ratio.” For Clos, these two values are identical.

This suggests that, for uni-regular topologies, throughput is a
more conservative measure of over-subscription. It is also more
accurate, since it measures the upper bound of the actual achievable
throughput.

5.2 Scaling Throughput Evaluations

§3 shows that TUB better estimates worst-case throughput and
scales better than most of the previous throughput estimators.
Here we revisit the conclusions from prior work that has eval-
uated topology properties at smaller-scales using other ways to
estimate throughput. Table 6 summarizes our findings; we describe
these below.

Cost and Expansion. Singla et al. [44] have estimated throughput
using ideal routing on a few random permutations and show that
Jellyfish can support 27% more servers at full throughput than a
Fat-Tree [1] using the same number of switches. They conjecture
that this advantage improves by using a higher radix switch. In §K,
we show that: (1) the cost advantage at the largest considered
size in [44] is only 8% when TUB is used to estimate throughput,
and (2) the cost advantage does not improve by using a higher
radix switch. Similarly, Xpander has used ideal routing on all-to-all
traffic matrices to estimate the throughput, and has shown that their
topology is more cost efficient than Fat-tree, and allows incremental
expandability up to any size with minor throughput loss. In §L, we
show that throughput of Xpander can drop significantly when

9The instance of FatClique we chose for this experiment uses a different H than the
instances of Jellyfish and Xpander, which is why it has a different throughput.

A Throughput-Centric View of the Performance of Datacenter Topologies

SIGCOMM 21, August 23-28, 2021, Virtual Event, USA

[44] | Jellyfish supports 27% more servers at full throughput than a (same-equipment) Fat-tree (at <900 servers) and this advantage improves by using higher port
switches.
g | TUB Jellyfish supports 8% more servers at considered size and the advantage does not always improve by using higher port switches.
O | [47] | Xpander uses 80% — 85% switches to support the same number of servers as Fat-tree at the scale of <4K servers.
TuB | At the Jargest considered size in [47], Xpander uses more than 95% switches. However, at Iarger scale (>40K servers), Xpander uses 80% switches (matching
the number reported in [47])
& { [47] [Xpander using random rewiring can be incrementally expanded to any size while preserving high performance.
& [Tus | Expanding Xpander without considering the target size can cause significant throughput drop, leading to a topology with Iess than full-throughput. |
° [44] | Jellyfish is highly resilient to random link failures at the scale of <1K servers built using 12-port switches.
= [TUuB | At some scales, Jellyfish can be as much as 20% less resilient compared to optimal resiliency using 32-port switches..
E [47] | Xpander is resilient to failures at the scale of <1K servers built using 14-port switches.
TUB | At some scales, Xpander can be as much as 20% less resilient compared to optimal resiliency using 32-port switches.

TABLE 6: Scaling Throughput Evaluations. Conclusions can change significantly.

®- nominal

-l actual

@ nominal

-l actual

0.7

e
o

Throughput
o
o
Throughput

o

o
e
o

o
»

o
>

0 10 20 30 0 10 20 30
Failure(%) Failure(%)
(a) N=32K (b) N=131K
§o0.12[@ o
+ 0.08 uE
< 0.04 o @9
go.00 o0
25k 50k 75k 100k 125k
#Servers (N)

(c) Variation

F1GURE 10: Throughput of uni-regular topologies under random link failure.
Large uni-regular topologies degrade less than gracefully with failure.

using random rewiring even for very small expansions, resulting
in a topology with less than full-throughput (similar to Jellyfish).

Failure Resiliency. Prior work has explored the resilience of Jel-
lyfish [44] and Xpander [47] to random link failures for relatively
small topologies (at the scale of a few thousand servers). To do
this, they compute the throughput achieved by ideal routing (using
multi-commodity flow, which limits scaling) for a few randomly
chosen permutation matrices. The showed that, at these scales,
these topologies degrade gracefully, defined as follows. If 6 is the
throughput of a topology without failure, and a randomly cho-
sen fraction f of all links fail, then the nominal throughput under
failure is (1 — f)0 (other work [45] has used a similar definition
to assess failure resilience in WAN switches). We say a topology
degrades gracefully if the actual throughput (in our experiments,
the throughput upper bound) under failure closely matches the
nominal throughput under failure.

TUB allows us to evaluate failure resilience of these topologies
at larger scales.

Figure 10 shows the throughput behavior of Jellyfish with 8
servers per switch under random link failures, based on TUB for: (a)
32K, (b) 131K. Jellyfish with 32K servers is perfectly resilient for
up to 30% link failure and deviates by <1% afterward while 131K
server topology is perfectly resilient for up to 11% link failures and
then deviates by 20% from the nominal throughput. This deviation

occurs because, the 131K topology has a relatively smaller number
of shortest paths (compared to the 32K topology) between each
pair in the maximal permutation matrix (Figure 4(b)). Higher rates
of random failures can reduce the available shortest paths even
further, reducing throughput.

This relationship between deviation from the nominal, and the
number of shortest paths, is more evident when comparing Fig-
ure 10(c) with Figure 4(b). The former plots the root mean square
deviation from the nominal as a function of topology size. In the
latter, the number of shortest paths decreases steadily from 24K
to 131K; in Figure 10(c), the deviation increases correspondingly.
Xpander exhibits same behavior as Jellyfish under random link
failures.

Takeaway. This example illustrates how TUB can reveal previously
unobserved properties of a topology at larger scales. Using our
bound, we are able to measure the resiliency of uni-regular topolo-
gies for up to 131K. Using the throughput estimators in [44, 47]
(full-blown MCF), we are unable to scale beyond 8K servers on our
platform.

6 PRACTICAL CONSIDERATIONS

The importance of worst-case bounds. Focusing on worst-case
bounds can result in pessimistic designs and evaluations. In many
situations, it may be appropriate to focus on average case perfor-
mance. However, datacenter topologies, once deployed, are used
for several years [42]; in this time, traffic demands can grow signifi-
cantly. Because it is hard to predict demand over longer time-frames,
datacenter designers have focused on worst-case measures (like bi-
section bandwidth) as a design aid to maximize the lifetime of their
designs. TUB follows this line of thinking: this paper shows that
TUB is a better measure of worst-case performance for uni-regular
topologies than bisection bandwidth.

Clos-based deployments. Most deployed datacenter designs to-
day are Clos-based. However, designers are actively exploring other
lower-cost designs, one of which is the spine-free design [22], in
which the spine or topmost layer of switch blocks is replaced by
direct connections between the intermediate-layer (or aggregation
layer) pods [1]. Pods may carry transit traffic between other pods.
In this design, the inter-pod topology is effectively uni-regular, for
which TUB can be used to understand performance.

Practical Workloads. In this paper, we have compared full-
bisection bandwidth topologies with full throughput topologies.

SIGCOMM 21, August 23-28, 2021, Virtual Event, USA

Deployed topologies are often over-subscribed; a deployed Clos
might have less than full bisection bandwidth. These deployments
work well because operators carefully manage datacenter work-
loads to ensure that they don’t exceed fabric capacity. They also
leave spare capacity for management operations such as expansion
and upgrade [42, 53]. For Clos, the bisection bandwidth of the
oversubscribed topology is a good measure of the capacity. For
uni-regular topologies, TUB is a better measure of capacity for an
oversubscribed network (§5.1).

Benchmarking routing designs. Aside from topology, routing
design also determines whether the datacenter is able effectively
utilize its capacity in serving workloads. For uni-regular topologies,
or variants thereof, TUB can be used to understand how well a
proposed routing design can utilize capacity.

7 RELATED WORK

Datacenter Designs. Prior work has investigated a large body
of topology designs focusing on high bisection bandwidth, cost-
effective topologies with low diameter [8, 30, 44, 47, 52]. Our paper
addresses the performance of many of these topology designs. We
do not evaluate topologies such as SlimFly [6] and Dragonfly [30].
These focus on reducing latency, but, to scale to today’s datacen-
ters, they generally need switches with much higher port counts
than available with merchant silicon. For instance, with a 64-port
switch, a SlimFly can support 32K servers, but a 4-stage Clos can
accommodate 2.1M. We emphasize that TUB applies to these two
topologies as well as they are uni-regular. Prior work has described
server-centric topologies such as DCell [17] and BCube [16] which
equip servers with multiple ports and route packets through servers.
Server-based forwarding can be highly unreliable [42], so deployed
datacenters have not adopted these designs, and we have not con-
sidered these in this paper. Future work can explore throughput
bounds for this class of topologies.

A more recent direction focuses on reconfigurable topology de-
signs [13, 14, 20, 37, 38, 54] that adapt the topology in response to
the observed traffic. Most reconfigurable topology designs adapt
instantaneously to shifts in traffic demand, and attempt to minimize
flow completion times. To the extent that each adapted topology is
uni-regular or bi-regular, Theorem 2.2 will apply to the topology.
However, we have left it to future work to understand how topology
throughput relates to the objective of minimizing flow completion
times, the focus of topology reconfiguration.

Throughput. As discussed earlier, significant prior work exists
on throughput in datacenters. Some work [50] has explored the
application-level throughput under different traffic conditions. Prior
work has developed a theoretical understanding of throughput [12,
27, 43]. Of these, [12] compares performance of 3 throughput-
approximating algorithms (Jain [24], Hoefler [23, 51], and an LP-
based approximation), and show that Jain method is a more accurate
approximation model compared to the other two in capturing the
average throughput over all the flows. More recently, [43] focuses
on approximating average throughput under uniform traffic, and
[27] studies the relationship between traffic-dependent sparsest-
cut and throughput at the scale of few thousand servers. Inspired
especially by the latter two papers, we derive a tight throughput

Namyar .et al.

upper bound across all traffic matrices and explore it to understand
practical scaling limits for uni-regular topologies, and the utility
of a throughput-centric view in evaluating properties of datacen-
ter topologies. We also compare TUB against many of these prior
approaches.

Practical Routing. In practice, throughput highly depends on the
routing algorithm and the underlying topology. ECMP is optimal
for the Clos family [1, 15, 42]. For Jellyfish, Xpander, and FatClique,
routing strategies like an ECMP-VLB hybrid [29] and FatPaths [7]
have shown promising throughput performance. We have left it to
future work to understand the gap between achievable throughput
using these more practical routing strategies and TUB.

8 CONCLUSIONS AND FUTURE WORK

This paper broadens our understanding of the throughput metric
for datacenter topology performance, and its relationship to bi-
section bandwidth. We derive a closed-form expression for the
upper bound of the throughput (TUB) of a given topology that is
independent of routing. This bound applies to most proposed dat-
acenter topologies. For a sub-class of these designs, uni-regular
topologies, we are able to derive an upper-bound on throughput
that applies to any instance in this sub-class, using which we show
that uni-regular topologies are fundamentally limited: beyond a
certain scale, they cannot have full throughput even if they have
full bisection bandwidth. In practice, many instances of uni-regular
topologies with 10-15K servers cannot have full throughput. Finally,
we demonstrate that TUB to evaluate properties of a topology can
result in different conclusions compared to using other metrics.
Future work can explore the throughput gap between TuB and the
throughput achievable using practical routing algorithms, explore
the throughput of Clos-variants like [36], scale TUB to even larger
topologies, and improve its tightness.

Acknowledgements. We thank our shepherd Michael Schapira,
and the anonymous reviewers for their feedback on the paper. This
material is based upon work supported by the U.S. National Science
Foundation under grants No. CNS-1901523, CNS-1705086, and CNS-
1955422.

A Throughput-Centric View of the Performance of Datacenter Topologies

REFERENCES

(1]

(4]

[10]

[11]

[12]

[13

[14]

[15]

[16]

[17]

(18]

[19]

Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. 2008. A Scalable,
Commodity Data Center Network Architecture. In Proceedings of the ACM SIG-
COMM 2008 Conference on Data Communication (SIGCOMM °08). Association
for Computing Machinery, New York, NY, USA, 63-74. https://doi.org/10.1145/
1402958.1402967

Shahbaz Alam, Pawan Agnihotri, and Greg Dumont. 2016. AWSre:Invent. Enter-
prise fundamentals: design your account and VPC architecture for enterprise op-
erating models. https://www.slideshare.net/ AmazonWebServices/aws-reinvent-
2016-enterprise-fundamentals-design-your-account-and-vpc-architecture-for-
enterprise-operating-models-ent203. (2016).

Alexey Andreyev. 2014. Introducing Data Center Fabric, the Next-generation
Facebook Data Center Network. https://engineering.fb.com/production-
engineering/introducing-data-center-fabric-the-next-generation-facebook-
data-center-network/. (2014).

Jordi Arjona Aroca and Antonio Ferndndez Anta. 2014. Bisection (Band)Width
of Product Networks with Application to Data Centers. IEEE Transactions on
Parallel and Distributed Systems 25, 3 (2014), 570-580. https://doi.org/10.1109/
TPDS.2013.95

Dimitri P. Bertsekas, Angelia Nedi¢, and Asuman E. Ozdaglar. 2003. Convex
Analysis and Optimization. Athena Scientific.

Maciej Besta and Torsten Hoefler. 2014. Slim Fly: A Cost Effective Low-Diameter
Network Topology. In Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis (SC ’14). IEEE Press, 348-359.
https://doi.org/10.1109/SC.2014.34

Maciej Besta, Marcel Schneider, Karolina W Cynk, Marek Konieczny, Erik Hen-
riksson, Salvatore Di Girolamo, Ankit Singla, and Torsten Hoefler. 2019. FatPaths:
Routing in Supercomputers, Data Centers, and Clouds with Low-Diameter Net-
works When Shortest Paths Fall Short. ArXiv abs/1906.10885 (2019).

C. Clos. 1953. A Study of Non-blocking Switching Networks. The Bell System
Technical Journal 32, 2 (Mar. 1953).

Gabor Csardi and Tamas Nepusz. 2006. The Igraph Software Package for Complex
Network Research. Interjournal Complex Systems (2006), 1695. http://igraph.org
Andrew R. Curtis, Tommy Carpenter, Mustafa Elsheikh, Alejandro Lopez-Ortiz,
and S. Keshav. 2012. REWIRE: An optimization-based framework for unstructured
data center network design. In 2012 Proceedings IEEE INFOCOM. 1116-1124.
https://doi.org/10.1109/INFCOM.2012.6195470

N. G. Duffield, Pawan Goyal, Albert Greenberg, Partho Mishra, K. K. Ramakr-
ishnan, and Jacobus E. van der Merive. 1999. A Flexible Model for Resource
Management in Virtual Private Networks. SIGCOMM Comput. Commun. Rev. 29,
4 (Aug. 1999), 95-108. https://doi.org/10.1145/316194.316209

Peyman Faizian, Md Atiqul Mollah, Md Shafayat Rahman, Xin Yuan, Scott Pakin,
and Mike Lang. 2017. Throughput Models of Interconnection Networks: The
Good, the Bad, and the Ugly. In 2017 IEEE 25th Annual Symposium on High-
Performance Interconnects (HOTI). 33-40.

Nathan Farrington, George Porter, Sivasankar Radhakrishnan, Hamid Hajabdolali
Bazzaz, Vikram Subramanya, Yeshaiahu Fainman, George Papen, and Amin
Vahdat. 2010. Helios: A Hybrid Electrical/Optical Switch Architecture for Modular
Data Centers. In Proceedings of the ACM SIGCOMM 2010 Conference (SSIGCOMM
’10). Association for Computing Machinery, New York, NY, USA, 339-350. https:
//doi.org/10.1145/1851182.1851223

Monia Ghobadi, Ratul Mahajan, Amar Phanishayee, Nikhil Devanur, Janard-
han Kulkarni, Gireeja Ranade, Pierre-Alexandre Blanche, Houman Rastegarfar,
Madeleine Glick, and Daniel Kilper. 2016. ProjecToR: Agile Reconfigurable Data
Center Interconnect. In Proceedings of the 2016 ACM SIGCOMM Conference (SIG-
COMM ’16). Association for Computing Machinery, New York, NY, USA, 216-229.
https://doi.org/10.1145/2934872.2934911

Albert Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kandula,
Changhoon Kim, Parantap Lahiri, David A. Maltz, Parveen Patel, and Sudipta
Sengupta. 2009. VL2: A Scalable and Flexible Data Center Network. In Pro-
ceedings of the ACM SIGCOMM 2009 Conference on Data Communication (SIG-
COMM ’09). Association for Computing Machinery, New York, NY, USA, 51-62.
https://doi.org/10.1145/1592568.1592576

Chuanxiong Guo, Guohan Lu, Dan Li, Haitao Wu, Xuan Zhang, Yunfeng Shi,
Chen Tian, Yongguang Zhang, and Songwu Lu. 2009. BCube: A High Performance,
Server-Centric Network Architecture for Modular Data Centers. In Proceedings
of the ACM SIGCOMM 2009 Conference on Data Communication (SIGCOMM
’09). Association for Computing Machinery, New York, NY, USA, 63-74. https:
//doi.org/10.1145/1592568.1592577

Chuanxiong Guo, Haitao Wu, Kun Tan, Lei Shi, Yongguang Zhang, and Songwu
Lu. 2008. Dcell: A Scalable and Fault-Tolerant Network Structure for Data Centers.
Proceedings of the ACM SIGCOMM 2008 conference on Data communication 38, 4
(Aug. 2008), 75-86. https://doi.org/10.1145/1402946.1402968

LLC Gurobi Optimization. 2020. Gurobi Optimizer Reference Manual. (2020).
http://www.gurobi.com

Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. 2008. Exploring Network
Structure, Dynamics, and Function using NetworkX. In Proceedings of the 7th

[20

[21]

[22]

[23

[24

[25

[26

~
=

[28

[29]

(30]

[31

[32

[33

[34

[35

[36

(37

'@
&

[39

[40]

SIGCOMM 21, August 23-28, 2021, Virtual Event, USA

Python in Science Conference, Gaél Varoquaux, Travis Vaught, and Jarrod Millman
(Eds.). Pasadena, CA USA, 11 - 15.

Navid Hamedazimi, Zafar Qazi, Himanshu Gupta, Vyas Sekar, Samir R. Das, Jon P.
Longtin, Himanshu Shah, and Ashish Tanwer. 2014. FireFly: A Reconfigurable
Wireless Data Center Fabric Using Free-Space Optics. In Proceedings of the 2014
ACM Conference on SIGCOMM (SIGCOMM ’14). Association for Computing Ma-
chinery, New York, NY, USA, 319-330. https://doi.org/10.1145/2619239.2626328
James Hamilton. 2010. Datacenter Networks are in my Way. http://goo.gl/Ho6mA.
(2010).

Vipul Harsh, Sangeetha Abdu Jyothi, and P. Brighten Godfrey. 2020. Spineless
Data Centers. In Proceedings of the 19th ACM Workshop on Hot Topics in Networks
(HotNets "20). Association for Computing Machinery, New York, NY, USA, 67-73.
https://doi.org/10.1145/3422604.3425945

Torsten Hoefler, Timo Schneider, and Andrew Lumsdaine. 2008. Multistage
switches are not crossbars: Effects of static routing in high-performance networks.
In 2008 IEEE International Conference on Cluster Computing. 116-125.

Nikhil Jain, Abhinav Bhatele, Xiang Ni, Nicholas J. Wright, and Laxmikant V. Kale.
2014. Maximizing Throughput on a Dragonfly Network. In SC ’14: Proceedings of
the International Conference for High Performance Computing, Networking, Storage
and Analysis. 336-347.

A. Jajszczyk. 2003. Nonblocking, Repackable, and Rearrangeable Clos Networks:
Fifty Years of the Theory Evolution. IEEE Communications Magazine 41, 10 (2003),
28-33.

Sangeetha Abdu Jyothi, Ankit Singla, P Godfrey, and Alexandra Kolla. 2014.
Measuring and Understanding Throughput of Network Topologies. arXiv preprint
arXiv:1402.2531 (2014).

Sangeetha Abdu Jyothi, Ankit Singla, P. Brighten Godfrey, and Alexandra Kolla.
2016. Measuring and Understanding Throughput of Network Topologies. In
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (SC ’16). IEEE Press, Article 65, 12 pages.
George Karypis and Vipin Kumar. 1998. A Fast and High Quality Multilevel
Scheme for Partitioning Irregular Graphs. SIAM J. Sci. Comput. 20, 1 (Dec. 1998),
359-392.

Simon Kassing, Asaf Valadarsky, Gal Shahaf, Michael Schapira, and Ankit Singla.
2017. Beyond Fat-Trees Without Antennae, Mirrors, and Disco-Balls. In Proceed-
ings of the Conference of the ACM Special Interest Group on Data Communication
(SIGCOMM °17). Association for Computing Machinery, New York, NY, USA,
281-294. https://doi.org/10.1145/3098822.3098836

John Kim, Wiliam J. Dally, Steve Scott, and Dennis Abts. 2008. Technology-
Driven, Highly-Scalable Dragonfly Topology. In Proceedings of the 35th Annual
International Symposium on Computer Architecture (ISCA °08). IEEE Computer
Society, USA, 77-88. https://doi.org/10.1109/ISCA.2008.19

Murali Kodialam, T. V. Lakshman, and Sudipta Sengupta. 2011. Traffic-Oblivious
Routing in the Hose Model. IEEE/ACM Trans. Netw. 19, 3 (June 2011), 774-787.
https://doi.org/10.1109/TNET.2010.2099666

Harold W Kuhn. 1955. The Hungarian method for the assignment problem. Naval
research logistics quarterly 2, 1-2 (1955), 83-97.

Praveen Kumar, Yang Yuan, Chris Yu, Nate Foster, Robert Kleinberg, Petr La-
pukhov, Chiun Lin Lim, and Robert Soulé. 2018. Semi-Oblivious Traffic Engi-
neering: The Road Not Taken. In 15th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 18). USENIX Association, Renton, WA, 157-170.
https://www.usenix.org/conference/nsdi18/presentation/kumar

Tom Leighton and Satish Rao. 1999. Multicommodity Max-Flow Min-Cut Theo-
rems and Their Use in Designing Approximation Algorithms. 7. ACM 46, 6 (Nov.
1999), 787-832. https://doi.org/10.1145/331524.331526

Hong Liu, Ryohei Urata, Xiang Zhou, and Amin Vahdat. 2020. Evolving Require-
ments and Trends of Datacenters Networks. Springer International Publishing,
Cham, 707-724. https://doi.org/10.1007/978-3-030-16250-4_21

Vincent Liu, Daniel Halperin, Arvind Krishnamurthy, and Thomas Anderson.
2013. F10: A Fault-Tolerant Engineered Network. In Proceedings of the 10th
USENIX Conference on Networked Systems Design and Implementation (NSDI'13).
USENIX Association, USA, 399-412.

William M. Mellette, Rajdeep Das, Yibo Guo, Rob McGuinness, Alex C. Snoeren,
and George Porter. 2020. Expanding Across Time to Deliver Bandwidth Efficiency
and Low Latency. In 17th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 20). USENIX Association, Santa Clara, CA, 1-18. https:
//www.usenix.org/conference/nsdi20/presentation/mellette

William M. Mellette, Rob McGuinness, Arjun Roy, Alex Forencich, George Pa-
pen, Alex C. Snoeren, and George Porter. 2017. RotorNet: A Scalable, Low-
Complexity, Optical Datacenter Network. In Proceedings of the Conference of
the ACM Special Interest Group on Data Communication (SSIGCOMM °17). As-
sociation for Computing Machinery, New York, NY, USA, 267-280. https:
//doi.org/10.1145/3098822.3098838

Mirka Miller and Jozef vSiravn. 2005. Moore Graphs and Beyond: A Survey of the
Degree/diameter Problem. Electronic Journal of Combinatorics, Dynamic survey
14 (12 2005), 1-61.

James Munkres. 1957. Algorithms for the assignment and transportation prob-
lems. Journal of the society for industrial and applied mathematics 5, 1 (1957),

SIGCOMM 21, August 23-28, 2021, Virtual Event, USA

[41]

[42

S
&

[44]

[45]

[46]

[47]

[48]

[49

[50]

[51]

[52]

[53

[54]

32-38.

S. Ohta. 1987. A Simple Control Algorithm for Rearrangeable Switching Net-
works with Time Division Multiplexed Links. IEEE Journal on Selected Areas in
Communications 5, 8 (1987), 1302-1308.

Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armistead, Roy
Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie Germano, Anand
Kanagala, Jeff Provost, Jason Simmons, Eiichi Tanda, Jim Wanderer, Urs Holzle,
Stephen Stuart, and Amin Vahdat. 2015. Jupiter Rising: A Decade of Clos Topolo-
gies and Centralized Control in Google’s Datacenter Network. In Proceedings
of the 2015 ACM Conference on Special Interest Group on Data Communication
(SIGCOMM °15). Association for Computing Machinery, New York, NY, USA,
183-197. https://doi.org/10.1145/2785956.2787508

Ankit Singla, P. Brighten Godfrey, and Alexandra Kolla. 2014. High Throughput
Data Center Topology Design. In Proceedings of the 11th USENIX Conference on
Networked Systems Design and Implementation (NSDI’14). USENIX Association,
USA, 29-41.

Ankit Singla, Chi-Yao Hong, Lucian Popa, and P. Brighten Godfrey. 2012. Jellyfish:
Networking Data Centers Randomly. In 9th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 12). USENIX, San Jose, CA, 225-238. https:
//www.usenix.org/conference/nsdil2/technical- sessions/presentation/singla
Sucha Supittayapornpong, Barath Raghavan, and Ramesh Govindan. 2019. To-
wards Highly Available Clos-Based WAN Routers. In Proceedings of the ACM
Special Interest Group on Data Communication (SIGCOMM ’19). Association for
Computing Machinery, New York, NY, USA, 424-440. https://doi.org/10.1145/
3341302.3342086

Brian Towles and William J. Dally. 2002. Worst-Case Traffic for Oblivious Routing
Functions. In Proceedings of the Fourteenth Annual ACM Symposium on Parallel
Algorithms and Architectures (SPAA °02). Association for Computing Machinery,
New York, NY, USA, 1-8. https://doi.org/10.1145/564870.564872

Asaf Valadarsky, Gal Shahaf, Michael Dinitz, and Michael Schapira. 2016. Xpander:
Towards Optimal-Performance Datacenters. In Proceedings of the 12th Inter-
national on Conference on Emerging Networking EXperiments and Technologies
(CoNEXT ’16). Association for Computing Machinery, New York, NY, USA,
205-219. https://doi.org/10.1145/2999572.2999580

Damon Wischik, Costin Raiciu, Adam Greenhalgh, and Mark Handley. 2011.
Design, Implementation and Evaluation of Congestion Control for Multipath
TCP. In Proceedings of the 8th USENIX Conference on Networked Systems Design
and Implementation (NSDI'11). USENIX Association, USA, 99-112.

JinY. Yen. 1971. Finding the K Shortest Loopless Paths in a Network. Management
Science 17, 11 (1971), 712-716. http://www.jstor.org/stable/2629312

Xin Yuan, Santosh Mahapatra, Michael Lang, and Scott Pakin. 2014. LFTI: A New
Performance Metric for Assessing Interconnect Designs for Extreme-Scale HPC
Systems. In IEEE 28th International Parallel and Distributed Processing Symposium.
273-282.

Xin Yuan, Santosh Mahapatra, Wickus Nienaber, Scott Pakin, and Michael
Lang. 2013. A New Routing Scheme for Jellyfish and Its Performance with
HPC Workloads. In Proceedings of the International Conference on High Per-
formance Computing, Networking, Storage and Analysis (SC ’13). Association
for Computing Machinery, New York, NY, USA, Article 36, 11 pages. https:
//doi.org/10.1145/2503210.2503229

Mingyang Zhang, Radhika Niranjan Mysore, Sucha Supittayapornpong, and
Ramesh Govindan. 2019. Understanding Lifecycle Management Complexity
of Datacenter Topologies. In 16th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 19). USENIX Association, Boston, MA, 235-254.
https://www.usenix.org/conference/nsdi19/presentation/zhang

Shizhen Zhao, Rui Wang, Junlan Zhou, Joon Ong, Jeffrey C. Mogul, and Amin
Vahdat. 2019. Minimal Rewiring: Efficient Live Expansion for Clos Data Center
Networks. In Proc. USENIX NSDL

Xia Zhou, Zengbin Zhang, Yibo Zhu, Yubo Li, Saipriya Kumar, Amin Vahdat,
Ben Y. Zhao, and Haitao Zheng. 2012. Mirror Mirror on the Ceiling: Flexible
Wireless Links for Data Centers. In Proceedings of the ACM SIGCOMM 2012
Conference on Applications, Technologies, Architectures, and Protocols for Computer
Communication (SIGCOMM ’12). Association for Computing Machinery, New
York, NY, USA, 443-454. https://doi.org/10.1145/2342356.2342440

Namyar .et al.

A Throughput-Centric View of the Performance of Datacenter Topologies

APPENDIX

Appendices are supporting material that have not been peer-
reviewed.

A Proof of Theorem 2.1

Proor. Inadoubly-stochastic matrix, each row and each column
contain non-negative values that add up to 1. The Birkhoff-von
Neumann theorem states that the n X n permutation matrices form
the vertices of the convex polytope containing the set of n X n
doubly-stochastic matrices. We observe that 7 contains all doubly-
stochastic matrices scaled by H. From the Birkhoff-von Neumann
theorem, it follows that the vertices of the convex polytope con-
taining 7~ is the set of traffic matrices in 7. It remains to show that
the minimum throughput across 7~ is always equal to that across
T.

To prove that mingeq 0(T) = miny 4 0(T), let 0° = 6(T*) be
the minimum of the LHS achieved at traffic matrix T* € 7. We
will show by contradiction that at least one permutation traffic
T € 7 leads to this 6*. Specifically, let 6* = ming 4 6(T). Sup-
pose there is no such permutation traffic matrix. Let 6 > 6* and
0= min,. s 0(T) be the minimum achieved by some permutation
traffic matrix in 7", Caratheodory’s theorem [5] implies that there

exists at most |%|% + 1 permutation traffic matrices {Ty} in 9 such
that

| %2 +1 |52 +1
T* = Z AT, Z Ac=1 and Ay € [0,1] V.
x=1 x=1

Given this, we can use a convex combination of permutation
traffic matrices {Ty} and {1y} to construct traffic matrix T* and
a solution to the multi-commodity flow problem under T*. The
throughput of this solution cannot be less than 0, since all permu-
tation traffic matrices have a throughput of at least 6. This leads
to a contradiction, because we have assumed that 0* < 0. Thus,
there must exist a permutation traffic matrix T, € 7" such that
0" = 0(Ty).

|

B Proof of Throughput Bound for uni-regular
Topology

Proor. Let K denote the set of all switches with H servers.
Fix a permutation traffic matrix T from 7. We solve a path-based
multi-commodity flow problem (§H, commonly used in wide-area
network traffic engineering [33]) that maximizes throughput 6(T)
under this traffic matrix T. At each switch u, the ingress traffic
consists of 1) traffic destined to servers attached to u and 2) transit
traffic X;,(T). This ingress traffic is bounded by the capacity of
network-facing ports, so we have Xy (T) + 0(T) Xpee\ {u} tou <
Ry, — H for every u € K, where Ry, is the number of used ports in
switch u. (This models the fact that, for many uni-regular topologies,
some ports are left unused on switches.) Summing over u € K gives

D XM) Ru=H) =) D, D tow (@)

uek uek ueKoeK\{u}

SIGCOMM 21, August 23-28, 2021, Virtual Event, USA

The LHS of the above inequality is equal to the total transit traffic
in the network caused by traffic matrix T. Alternatively, we can
compute the total transit traffic based on the set of paths $y, and
split ratios for those paths {f,(T)} as

DX =00) Y. > tw Y Bp(Dlen(p)-1). (5)
uek ueKoekK\{u} PePuo

Since all the paths in Py, are at least the shortest path and
2pePus Pp(T) = 1forall u,0 € K2, we can rewrite the above
equation as an inequality:

DX Z0T) D Y tuo(Luo = 1). (6)
uek ueKoeK\{u}
From Equation 4 and Equation 6, we have
Zue'K (Ru - H)
Zuek Loek\ (u} tuoLluo

0(T) <

This throughput holds under every traffic matrix T for every T € 7.
Taking the minimum over the set yields

0" = min 6(T) < min Zuck (Ru = H) .

TeJ TeT Zuek Loek\{u} tuoluo
Finally, using the facts that (a) >, cx (Ry — H) = 2E, (b) every
traffic matrix is a permutation traffic, and (c) the length of the
shortest path from a switch to itself is equal to 0, we have the
throughput upper bound in Equation 1. O

C Proof of Throughput Bound for bi-regular
Topology
Proor. Let S and K denote the set of all switches and switches
with H servers respectively. Fix a permutation traffic matrix T
from 7. We solve a path-based multi-commodity flow problem
that maximizes throughput 6(T) under this traffic matrix T. At
each switch u, the ingress traffic consists of 1) traffic destined to
servers attached to u and 2) transit traffic X;,(T). This ingress traffic
is bounded by the capacity of network-facing ports, and we have
Xu(T) +0(T) Zyexe\ {u} tou < Ry — Hy, for every u € K. Summing
over u € K gives

D XD < Y Ry=H)=0(T) Y > o (7)
uek uek ueKoeK\{u}

Similarly, at every switch u with no directly connected server,
the ingress traffic only consists of transit traffic X;,(T), and we have
Xu(T) < R, — Hy for every u € S \ K. Summing overu € S \ K
gives

D, Xu(D < Y (Ru=Hy). ®)
ueS\K ueS\K
From Equation 7 and Equation 8, we have
DXlT) < D Ru=H)=0(D) Y. > o ()
ueS ueS ueKoeK\{u}
The rest of the proof is similar to Theorem 2.2 (§B). m]

SIGCOMM 21, August 23-28, 2021, Virtual Event, USA

Algorithm 1: Construction of traffic matrix

Input: Topology G = (K, &), Server per switch H
Output: Traffic matrix T

1Q«0

2 T — 0 e RIKIXIK]

3 forue K\ Qdo

4 0 argmaxy e\ Q Luv

5 (tuv, tou) < (H, H)

6 Q — QU {u,v}

7 end

D Proof of Theorem 4.1.

LEmMA 8.1. Given a uni-regular topology with total servers N and
H servers per switch, for every switch u, the number of switches with
at least m hops away from the switch is at least

N (R-H-1)™1-1
Wp=—-1-(R-H)———F——
H R-H-2

where d is the minimum diameter computed using Moore bound [39].

, me{L....d} (10)

Proor. Fix switch u. Let y; be the number of switches with
distance i from switch u. Since every switch has R — H switch-
to-switch ports, the number of switches with distance 1 from u
is bouned by y; < R — H. The number of switches with distance
i hops away from switch u can be recursively bounded by y; <
(R—H -1)yi—1 = (R— H—1)""1(R - H), as each i-th switch has
one port connecting to (i — 1)-th switch. Since there are total N/H
switches, the number of switches with at least m hops away from

switch u is % -1- Z;’ill y; and is at least

m—1

N N (R-H-1n™1-1
——1—§ i >—=-1-(R-H)~—FF——
H L =g (R—H)

R-H-2
O

Algorithm 1 generates a traffic matrix with high pair-wise short-
est path length. In each iteration (Line 3-7), from unpicked switches,
it arbitrarily picks a switch u and then a switch v which maximizes
the shortest path length from u (Line 4). Then, it updates entries
tup and tyy, of the traffic matrix T with H.

LEmMMA 8.2. Given a uni-regular topology with total servers N and
H servers per switch, Algorithm 1 constructs a traffic matrix with at
least Wy, non-zero entries whose shortest path lengths are at least m,
forme{1,...,d}.

Proor. We will show that there are at least Wj,, non-zero entries
whose shortest path lengths are at least m at the end of k,,-th
iteration of Algorithm 1 for every m. Fix m and Wy, from Lemma 8.1.
Let Qg be the set of switches already picked after k-th iteration
and Qp = 0. In the k-th iteration, switches u and v are picked
from unpicked switches in K\ Qg_; such that v maximizes the
shortest path length from u. Let V% denote the set of switches
with distance of at least m hops from switch u. We observe that
(a) if |"V,',‘L \ Qk—ll is non-empty, v will be picked from V% \ Qi_1;
(b) if Wy, — 2(k — 1) > 0, then V& \ Qk_; is non-empty because
[VEN Q1| = |VE] = |Qk_1] = Wi — 2(k — 1) > 0. (We use
Lemma 8.1 that |V%| > W, and the fact that |Qx_¢| = 2(k — 1).)

Namyar .et al.

Then, we choose k, = [(W, + 1)/2], which always exists because
Wiy, is monotonically decreasing and at the highest Wy = || -1, the
chosen k; = ||| /2] is feasible. Therefore, in the ky,-th iteration,
we have Wi, —2(kp, — 1) > 0 (satisfying (b)), so |'V% \ Qk_;| is non-
empty (satisfying (a)), and v is picked from V. Thus, at the end of
the iteration, there are 2k, pairs and all of them have shortest path
lengths at least m since they are selected from |J, cgc V,s. Further,
their number is at least W,;, because 2k, = 2|(W, + 1)/2] >
Wm. m]

LEmMA 8.3. Given a uni-regular topology with total servers N and
H servers per switches, a traffic matrix T constructed from Algorithm 1
has the following property:

d

max > Lyl [ty > 0] 2) Wi, 11)
T'eT (wo)ek? m=1

where Wy, form € {1,...,d} is defined in Lemma 8.1 and d is the

minimum diameter from Moore bound [39].

Proor. Since the traffic matrix T constructed from Algorithm 1
is a permutation traffic matrix, it follows that

max Z Lyl [t,’w > O] > Z Lyl [ty > 0] .
T'eT (uoyex? (u,0) €K

It remains to show that X, o) e Luol [tuo > 0] = an:l Wi In
the traffic matrix T, let Vi, be the set of switch pairs whose shortest
path lengths are at least m hops. From the definition, we know that
Vi C Vi C... CVi,and Vi \ Vi1 only contains switch pairs
with exactly m hops for m € {1,...,d — 1}. It follows that

d-1
Luol [tug > 0] 2 d [Vgl + 3 m |V \ Va1
(u,0) €K? m=1
d-1 d
> d|Vyl+) m(Viml = [Vimsa)) =) Vil
m=1 m=1

Applying the fact that |V,,| > Wy, for every m € {1,...,d} from
Lemma 8.1, we have
>0 Luolltuo > 0] 2 > W,

(u,0) eK?

e

Proof of Theorem 4.1.

Proor. To prove this theorem, we apply Lemma 8.1 and
Lemma 8.3 to the RHS of Theorem 2.2. We have;

. 2E
0" < min
Ted H X (u0) ex Luol [tuo > 0] (12)
2E 2E

= < —
HmaXTe,i_Z(u’v) e Luol [tuo > 0] HD

where

d _ oy \d _
D:ZWm:d(N—l) R-H ((R H-1) 1_d)

" R-H-2 R-—H-2

A Throughput-Centric View of the Performance of Datacenter Topologies

From Equation 12 and using the fact that in uni-regular topologies,
2E = % (R — H), we have the upper bound in Equation 2.]

E Asymptotic behavior of throughput gap

In §3.1, we pointed out that the throughput gap for Jellyfish might
be expected to be non-zero in the range 100K - 180K servers, but
could not confirm this because our KSP-MCF implementation does
not scale to these sizes. To be able to quantify the throughput gap
for topologies larger than our computational limit for KSP-MCF, we
compute a lower bound on throughput when routing can exploit all
paths of length equal to or less than the length of the shortest path
plus M (M is a parameter to the lower bound calculation) in Theo-
rem 8.4. Define the theoretical throughput gap to be the difference
between the upper and lower bounds (for a given M). Intuitively,
the theoretical throughput gap shows the maximum possible gap
one can expect when using our bound in Theorem 2.2. Figure A.1
shows that the magnitude of the theoretical gap as a function of the
topology size. (we use M = 1; at this setting, each topology has at
least 300 distinct paths between each source-destination pair across
the entire range of topology sizes we have considered, which is
sufficient for our path-based MCF computation §H).

Figure A.1 shows that the maximum possible gap at these scales is
going to be smaller than that of 3K — 15K. Moreover, the theoretical
gap decreases as the size of the topology grows. We prove this
observation in Corollary 2 showing that the theoretical throughput
gap approaches zero asymptotically. In other words, for very large
topologies, we expect our throughput bound to match the actual
topology throughput.

0.30

Throughput Gap
o o o o
B R ONN
o (6, o U'|

o
o
%y

o
o
=)

& &
o o
~ K

#Servers (N)

F1GURE A.1: Theoretical throughput gap.

We first start by stating the following assumption that always
holds in all of our experiments.

AssumPTION 1. Given a traffic matrix T and a corresponding
solution of our path-based MCF, the ingress capacity of network-
facing ports is saturated by traffic at every switch:

Xu(T) +0(T) Z tou =Ry —Hy, forevery ue¥X
veK\{u}

Xy (T) =Ry forevery ueS\XK,

SIGCOMM 21, August 23-28, 2021, Virtual Event, USA

where Xy, (T) is the amount of transit traffic on switch u as a result of
routing the traffic matrix T. Note that H,, = 0 for every switch with
no servers, and it is omitted in the second equality.

Intuitively, the assumption holds in practice because datacenter
topologies are designed such that all the link capacities can be fully
utilized, as are the ingress capacities. We use this assumption to
prove a bound on throughput gap. Let M denote the additive path
length such that every path length is bounded by

len(p) < Lyy + M for every p € Py, and every (u,0) € K*.

THEOREM 8.4. Under a permutation traffic matrix T € T, when
Assumption 1 holds with the additive path length Mt (depending
on T), the maximum achievable throughput of a topology (either
uni-regular or bi-regular) is at least;

2E
NMr +H2(u,v) cK? Lyl [tuv > 0] ’

o(T) > (13)

Proor. Let S denote the set of all switches. From Assumption
1, we sum the transit traffic X;,(T) over all switches and have the
following equality

D XM=) Ru=H)=0T) Y >t (14)

uesS uesS ueKoeK\{u}

Note that Assumption 1 changes the inequality in Equation 9 to
equality due to all ingress capacity is fully utilized.

Alternatively, we can compute the total transit traffic
(X ues Xu(T)) based on Equation 5;

DX =0T) D > tw Y Bp(D)(len(p) = 1).
uesS ueK oeK\{u} PePuo

Since length of all the paths in Py, is at most Ly, + My from the
definition of the additive path length, we have;

D XM <O Y Y tw(luw+ My =1, (15)
uesS ueKoeK\{u}
From Equation 14 and Equation 15, we have
ues (Ru — Hy)
Yuek Zve’K\{u} tuo(Luo + Mr)
Finally, using the fact thata))} ,,c s (R, — Hy) = 2E,b) T is a permu-
tation traffic matrix, c) Ly, = 0 for every switch u and d) the sum of

all the entries except the diagonals of the traffic matrix T is at most
N, we can derive the throughput lower bound in Equation 13. O

o(T) >

The above theorem states the lower bound of throughput with
respect to the additive path length Mr depending on a given per-
mutation traffic matrix T. Our path-based MCF computation shows
that Mt = 1 is sufficient to provide enough path diversity to make
Assumption 1 valid for all Jellyfish, Xpander and FatClique. Us-
ing Theorem 8.4, we show that the gap between the upper bound
and the lower bound can be arbitrarily small when the network
size is sufficiently large and when a mild assumption holds.

AssuMPTION 2. The additive path length for the maximal permu-
tation traffic matrix T does not increase with a topology size such that
My = o(1).

SIGCOMM 21, August 23-28, 2021, Virtual Event, USA

COROLLARY 2. When Assumptions 1 and 2 hold, for any positive
value € > 0, any uni-regular topology with N servers has N} such
that for every N > NZ;

0" — 0 <€

where 0% is the throughput upper bound from Theorem 2.2 and 0y, =
ming g 05, (T) is the mininum of throughput lower bound 0y, (T)
from Theorem 8.4.

Proor. From Assumption 1, it holds for every permutation ma-
trix T € 7 that

0" — 0;,(T) < 0" - min 01, (T) <
TeT
2E

0* — min .
Tef NMr +H Z(u,l)) eK? Lyl [tuz) > 0]

Let T = [}45] be the maximal traffic matrix that minimizes the right
side of Equation 1. We observe that it also minimizes the last term
above, and we have
0" — 01, (T) <
2ENM;.

(NMj+H Y Luol[tuo > 0)(H 3 Luol [fuo > 0])
(u,0) %2 (u,0) %2

(16)

Using Lemma 8.3 and Lemma 8.1, we have;

Luol [tuo > 0] >

(u,0) €K?
_ _H-1)4_
d(ﬁ—l)— R-H (R-H-1) l—d -D. (17)
H R-H-2 R-H-2

Equation 16 and Equation 17 lead to
6 —oy(T) < — o Mp
(NM; + HD)(HD)
Since the above inequality holds for every T € 7, it holds at the
worst-case gap
. 2ENM;.
P = ey) = T+) D)

Similar to Corollary 1, we can prove that above inequality goes
to 0 as N increases because every Mr is bounded by a constant
independent of N under Assumption 2. O

F Throughput of bi-regular Clos topologies
under TUB

TUB is tight for bi-regular Clos topologies as well, giving throughput
equal to 1 for different topology sizes (Table A.1).

N #Layers | #SWs | TUB
8192 3 1280 | 1.00
32768 4 7168 | 1.00
131072 4 28672 | 1.00

TaBLE A.1: Clos: TUB is always 1.

Namyar .et al.

G Proof of Corollary 1

Proor. This follows directly from Equation 2 in Theorem 4.1.
We can show that, in D, the term containing Nd dominates the
other terms for large enough N. This is a direct consequence of
defining d as the minimum diameter that required to accommodate
N/H switches (Moore bound [39]). As a result, in the RHS of the
Equation 2, the numerator grows as N and the denominator grows
as Nd. Therefore, 0* approaches zero with increasing N, so there
must always exist a N* at which 0" falls below 1. O

H Path-based Multi-commodity Flow LP
formulation

In this section, we briefly introduce the path-based MCF formula-
tion (common in WAN traffic engineering [33]) used throughout
the paper. Given a traffic matrix T = [#,,] and set of paths between
every pair of switches with servers (Pyy), the throughput of the
traffic matrix is the solution to the following LP formula in which
fp denotes the amount of flow on path p;

maximize 0
subject to Ypep,, fp = Otuy Y(u,0) € K2

Suoere Dpep,, fplle € pl <1
foz0 Y(uo) e KEVp € Puy,

where & is the set of directional links with unit capacity.

Vee &

I Metric Adjustments for FatClique

In a FatClique, the number of servers attached to each switch can
differ by at most 1. To generalize the maximal permutation traffic
matrix generation to accommodate this case, we changed weight
assignment of edges in the complete bipartite graph from wy,_,, =
Lyy to wy—y = Ly min(Hy, Hy). The latter weight assignment
takes into account the maximum amount of flow between each u, v
pair along with their distance. More precisely, if in a permutation
traffic matrix t,, is non zero, it should be the minimum of H,, and
H, since it should conform to the hose-model traffic constraints §2.
So, Equation 1 can be re-written as;

6" < min _ZE (18)

TeF Z(u,z))e‘Kz Ly min(Hy, Hy)I [ty > 0]

Equation 18 is exactly same as Equation 1 when all the switches
have exactly the same H. To find the maximal permutation traf-
fic matrix, we need to find the traffic matrix that minimizes the
LHS of Equation 18. This is equivalent to solving the maximum
weight matching in a bipartite graph (§2), with the revised weight
assignment.

This approach does not yield the global minimum of the through-
put bound since Theorem 2.1 does not hold when H differs accross
the switches. A linear programming (LP) formulation can compute
the global minimum [31]. However, we use our matching method
to infer the maximal permutation traffic matrix for FatClique, for
three reasons. First, in FatClique, the number of servers connected
to each switch can differ only by 1, so the difference between global
minimum and throughput bound computed using this approach is
negligible. Second, algorithms for solving maximal weight matching
are more efficient than solving an LP. Third, the permutation traffic

A Throughput-Centric View of the Performance of Datacenter Topologies

N
%

N
=)

=
o

v

Servers at Full throughput (%)
—
v

0 200k 400k 600k 800k 1M 12M
Equipment Cost (#Ports)
FIGURE A.2: Topology Cost (Jellyfish vs Fat-tree). The relative difference
of the maximum servers supported at full throughput (per TUB) between
Jellyfish and Fat-tree built with the same equipment using {14, 24, 32, 48, 56,
64, 68, 72, 78, 84, 90, 98}-port switches averaged over 5 runs.

matrix generated using our approach is harder to route compared
to an LP generated traffic matrix.

J Throughput Gap for different values of K

Figure A5 illustrates the absolute difference between path-based
multi-commodity flow over K-shortest paths and our throughput
bound for different values of K (i.e., throughput gap). The results
for K = 60, 100, 200 are very similar to each other; a gap of non-
zero for small size topologies, followed by a close-to-zero gap for
larger instances. The only exception is some instances of FatClique
exhibit large throughput gaps in the 5K — 15K compared to Jelly-
fish and Xpander because FatClique cannot fully utilize available
capacity with K = 60, 100 for KSP-MCF. However, after increasing
K to 200 (Figure 5(1)), the throughput gap behavior for FatClique is
comparable to Jellyfish and Xpander.

For K = 20, the gap remains significant even at large topolo-
gies since 20-shortest paths does not provide enough diversity to
completely exploit the network capacity, and some of the capacity
remains unused.

K Scaling of Throughput-based Cost
Comparison

Other than bisection bandwidth, Jellyfish [44] and Xpander [47]
used full throughput of random permutations and all-to-all traffic
matrices under MCF to assess the cost advantage of their topolo-
gies. However, throughput under random permutations and all-
to-all traffic matrices can be significantly larger than (worst-case)
throughput [27]. Moreover, as discussed in §3.1, MCF and KSP-
MCEF can not scale to the size of current datacenters. In this section,
we show how conclusions can change when using our bound to
perform cost comparisons at larger scale.

Jellyfish. Singla et al. [44] have shown that at the scale of <900
servers Jellyfish can support 27% more servers than a Fat-tree [1]
built with same equipment, and conjecture that this cost advan-
tage increases by using a higher radix switch. Figure A.2 shows
the relative difference of the maximum servers between Jellyfish
and Fat-tree for different switch radices. Using TUB, at the scale of
686 servers (R = 14, which is the largest scale considered in [44]),
Jellyfish can support only 8% more servers than a (same equipment)
Fat-tree (the leftmost point in Figure A.2), dropping the cost ad-
vantage of Jellyfish by 3x. Moreover, using a higher radix switch

SIGCOMM 21, August 23-28, 2021, Virtual Event, USA

95

Switches at Full throughput (%)

0 20k 40k 60k 80k
#Servers (N)

FIGURE A.3: Topology Cost (Xpander vs Fat-tree). Number of Switches
required to support N servers. Percentages are Xpander/Fat-tree.

does not result in higher cost advantage of Jellyfish over Fat-tree.
In fact, using a higher radix switch might result in drop in the cost
advantage. For example, using 98-port switches instead of 64-port
causes the cost advantage to drop slightly from 25% to 22%.

Xpander. Valadarsky et al. [47] have shown that at the scale of
<4K servers, Xpander can support the same number of servers as
Fat-Tree [1] at full throughput using 80% — 85% of the switches.
As Figure A.3 shows at the maximum considered scale in [47]
(3.5K servers, the left most point), Xpander should use more than
95% switches compared to the same size Fat-tree. However, as the
scale grows, the cost advantage of Xpander over Fat-tree increases,
matching the numbers reported in [47].

L Throughput of uni-regular topologies under
expansion

Jellyfish [44] and Xpander [47] have shown that using a very sim-
ple expansion algorithm (random rewiring), their design can be
expanded to any size with minor throughput loss while preserv-
ing the number of servers per switch H. Jellyfish uses bisection
bandwidth as their throughput metric while Xpander assesses the
throughput by solving MCF on all-to-all traffic matrix.

Jellyfish. In §5.1, we show that Jellyfish requires advanced plan-
ning in order to preserve full throughput, otherwise, even very
small expansion can turn Jellyfish into a topology with less than
full throughput. To better understand the amount of throughput
degradation, Figure A.4 shows the throughput (computing using
TUB), normalized by the topologies initial throughput (before ex-
pansion). At each step, we expand the topology by 20% of the initial
size until its size reaches the 2.6x of the initial topology. For 10K
servers, Figure A.4 shows that throughput drops by more than 20%
when expanding the topology by only 0.6x. On the other hand,
when the initial topology size is 32K, throughput drop is negligible
(<1%). We emphasize that these results are consistent with §4.2;
Jellyfish with H=6 and initial size 8K has full throughput even after
expanding by 2.6x. However, it faces the throughput drop as well.
This suggests that operators should be cautious when expand-
ing uni-regular topologies depending on the topology’s initial and
target size as they might face significant throughput drops. TUB,
therefore, helps topology designers to identify and understand these
scenarios before deploying and expanding their desired topology.

Xpander. Using TUB to assess the Xpander’s performance under
expansion results in similar conclusions as expanding Jellyfish does.
Similar to Jellyfish, operators who adopt Xpander should have the

SIGCOMM 21, August 23-28, 2021, Virtual Event, USA

1.00
o
2
<0.95
B —#— Init N=10K, H=6
3 ~e- Init N=10K, H=7
[g
£ 090 -~ Init N=10K, H=8

%

o - Init N=32K, H=6
Noss & - Init N=32K, H=7
5 Init N=32K, H=8
£0.80
z

0.75

10 12 14 16 18 2.0 22 24 26
Expansion Ratio

F1GURE A.4: Throughput of uni-regular topologies under expansion.

target size in mind and choose H accordingly. Otherwise, they either
end up having a topology with less than full throughput or have
to rewire the servers, bearing a significant cost. The throughput
degradation is also very similar to Jellyfish (Figure A.4); at some
scales (e.g., 10K), expanding the Xpander even by a very small ratio
degrades the throughput by as much as 25%.

Namyar .et al.

A Throughput-Centric View of the Performance of Datacenter Topologies

SIGCOMM 21, August 23-28, 2021, Virtual Event, USA

1.0 1.0 1.0 1.0
» H=6 4+ H=6 » H=6 4+ H=6
e H=7 e H=7 e H=7 e H=7
g0? . - H=8 2%® - H=8 2*® - H=8 P - H=8
] cah t V] V] V]
5061, S A 5 0.6 5 0.6 5 0.6
g oy |, e eeale” .::.u“ £ £ g
3041 wopanst™ oy Ten e thititsibin, So.4 0.4 So0.4
° L) '0.«::.] iy Sosessetesess o aasssiia, o °
£ o R IS 4 - [S aadhabs, =
0.2 0.2 %qa 0.2 S~ 5 0.2 " Y
, P! e
0.0 ool eV 0.0 oo 0.0 s oe
0 5k 10k 15k 20k 25k 0 5k 10k 15k 20k 25k 0 5k 10k 15k 20k 25k 0 5k 10k 15k 20k 25k
#Servers (N) #Servers (N) #Servers (N) #Servers (N)
(a) Jellyfish, K=20 (b) Jellyfish, K=60 (c) Jellyfish, K=100 (d) Jellyfish, K=200
1.0 1.0 1.0 1.0
» H=6 4+ H=6 » H=6 s+ H=6
o 0.8 = . Hj7 08 . Hi7 L 08 . Hf7 08 . Hi7
8 = H=8 8 = H=8 8 = H=8 8 = H=8
5 0.6 5 0.6 5 0.6 5 0.6
Q Q Q Q
< < < <
So4 Soa4 o4 Soa4
< < < <
£ £ [S £
0.2 0.2 0.2 T 0.2
, oy i
‘J‘? ‘MA .tﬁ ‘.‘*II- 4“‘ L
0.0 0.0 — 0.0+= — 0.0
0 5k 10k 15k 20k 25k 0 5k 10k 15k 20k 25k 5k 10k 15k 20k 25k 0 5k 10k 15k 20k 25k
#Servers (N) #Servers (N) #Servers (N) #Servers (N)
e) Xpander, K=20 f) Xpander, K=60 Xpander, K=100 h) Xpander, K=200
p P g) Ap p
1.0 1.0 1.0 1.0
. » HI[5.5,6.5) 4+ HI[55,6.5) 4+ HI[5.5,6.5) = HJ[7.5,09]
038 o « HI6.5,7.5) 08 e HI6.5,7.5) 08 . HI6.5,7.5) 038 e HI6.5, 7.5)
5] B :f“ = H[7.5,8] © = H[75,8] © = H[7.5,9] o] s+ HI[5.5,6.5)
V] e o]]
3 0.6 " 5 0.6 x 0.6 5 0.6
2 A€ . 2 o 2 . 2
S04 %3 fua 4, 4 0.4 L0 S04 slad, S04
] * g X g :]
< [< ‘ {d < & < =YY
Fo.2 Fo.2 bt 2 Fo2 %’g-;‘ - Fo.2 ;
G P B, it
0.0 0.0 S rtinate. 0.0 P WS 0.0 B P N—
0 5k 10k 15k 20k 25k 0 5k 10k 15k 20k 25k 0 5k 10k 15k 20k 25k 0 5k 10k 15k 20k 25k
#Servers (N) #Servers (N) #Servers (N) #Servers (N)

(i) FatClique, K=20

(j) FatClique, K=60

(k) FatClique, K=100

() FatClique, K=200

FIGURE A.5: Throughput bound vs K-shortest paths Multi-commodity flow for different values of K (20, 60, 100, 200).

	Abstract
	1 Introduction
	2 An Upper Bound on Throughput
	2.1 Complexity of Computing Throughput Bounds
	2.2 Throughput Upper Bound

	3 Evaluating the Throughput Upper Bound
	3.1 Throughput Gap
	3.2 Comparison with other throughput metrics

	4 Limits on the Throughput of Uni-regular Topologies
	4.1 Asymptotic Limits
	4.2 The Full-Throughput Frontier

	5 A Throughput-Centric View of Topology Evaluations
	5.1 Throughput vs. Bisection Bandwidth
	5.2 Scaling Throughput Evaluations

	6 Practical Considerations
	7 Related Work
	8 Conclusions and Future Work
	References
	A Proof of Theorem 2.1
	B Proof of Throughput Bound for uni-regular Topology
	C Proof of Throughput Bound for bi-regular Topology
	D Proof of Theorem 4.1.
	E Asymptotic behavior of throughput gap
	F Throughput of bi-regular Clos topologies under tub
	G Proof of Corollary 1
	H Path-based Multi-commodity Flow LP formulation
	I Metric Adjustments for FatClique
	J Throughput Gap for different values of K
	K Scaling of Throughput-based Cost Comparison
	L Throughput of uni-regular topologies under expansion

