Automated Primary Hyperparathyroidism Screening
with Neural Networks

Noah Ziems
Department of Computer Science
Ball State University
Muncie, IN USA
nmziems @bsu.edu

Abstract—Primary Hyperparathyroidism(PHPT) is a relatively
common disease, affecting about one in every 1,000 adults.
However, screening for PHPT can be difficult, meaning it often
goes undiagnosed for long periods of time. While looking at
specific blood test results independently can help indicate whether
a patient has PHPT, often these blood result levels can all be
within their respective normal ranges despite the patient having
PHPT. Based on the clinic data from the real world, in this
work, we propose a novel approach to screening PHPT with
neural network (NN) architecture, achieving over 97% accuracy
with common blood values as inputs. Further, we propose a
second model achieving over 99% accuracy with additional lab
test values as inputs. Moreover, compared to traditional PHPT
screening methods, our NN models can reduce the false negatives
of traditional screening methods by 99%.

I. INTRODUCTION

Primary Hyperparathyroidism (PHPT) is a widely existing
disease caused when a parathyroid develops a tumor causing
the parathyroid to over produce parathyroid hormone (PTH),
which regulates the amount of calcium in the bloodstream.
Too much calcium in the bloodstream for extended periods of
time leads to various health issues such as osteoporosis, kidney
dysfunction, high blood pressure, and others. Moreover, PHPT

is relatively common, affecting about one in every 1,000 adults.

However, the current medical practice of manual screening for
PHPT is very difficult. While identifying whether a patient
has PHPT can be facilitated by independently inspecting a
few variables of their blood lab results, often these blood
test variable values can all be within normal ranges despite
a patient having PHPT. A more reliable way to screen for
PHPT, therefore, is to consider the values of the blood test
variables coherently as opposed to independently. Because these
blood variable values in lab results are not often significant
individually, millions of patients with PHPT have been missed
in their traditional annual physical exams that have blood lab
results. Only when they show PHPT symptoms later will their
lab results will be examined by a specialist that can diagnose
PHPT. Therefore, it is of utmost importance to design an
automated Al solution to diagnose the patients with PHPT
from their blood lab results in regular visits or physical exams
much earlier than symptoms begin to show.

Deep learning with neural networks(NNs) has been shown to
be surprisingly effective at learning relationships among data,
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often surpassing human performance in data-driven tasks such
as object detection and recognition [10]. Deep learning driven
health informatics in many areas such as cancer diagnosis has
achieved amazing progress in recent years with many solutions
reportedly outperforming human medical experts [2]. In this
work, we present a novel machine learning based solution
for screening PHPT in patients using simple neural networks.
This work is a collaboration between computer science and a
world-class PHPT clinic with the real medical lab result data
of thousands of patients.

More specifically, our solution demonstrates the following
advantages over traditional PHPT screening methods:

1) Speed: By using automated algorithmic methods that can
be run on a computer, each individual patient is evaluated
in a matter of milliseconds where a trained doctor may
take minutes or more to interpret in traditional screening
methods.

2) Cost: The computational cost of evaluating each patient
is significantly less than $0.01, while using a doctor with
traditional screening methods costs significantly more.

3) Scale: Instead of evaluating patients one by one as
a doctor would, our model is able to run in parallel,
evaluating many patients at once.

4) Accuracy: Our method proves itself to be highly accurate
while allowing for future improvements with more data.
However, it remains to be seen how this accuracy
compares to that of an experienced medical expert.

5) Precision: Due to the deterministic nature of computer
software, the same results are always given for the same
inputs. Where doctors may differ in opinion, our method
will always produce the same diagnosis given the same
inputs.

II. RELATED WORK
A. Machine Learning in Health Informatics

Significant progress has been made using state-of-the-art
deep learning based computer vision techniques in health
informatics [1]. Wu et al. develop a computer vision model,
finding it as accurate as experienced radiologists in screening
breast cancer [12]. Moreover, there are a number of bench-
mark datasets that have shown impressive improvements in



performance for disease diagnosis, including CheXpert [4],
SD-198[11], and the International Skin Imaging Collaboration
(ISIC) dataset [9].

However, relatively little progress has been made on more
traditional tabular data that most medical data is comprised
of, typically in the form of Electronic Health Records (EHRs).
There is some debate as to why machine learning has not had
as much impact in health informatics as in other fields. New
studies show this is likely caused by a lack of benchmarks in the
field, preventing machine learning researchers from comparing
new methods to traditional ones [1].

B. PHPT Screening in Endocrinology

If there is no prior suspicion of PHPT, screening of PHPT
is only done when the patient has a metabolic panel drawn to
check his or her general health. A high serum calcium level
from a metabolic panel is often an indication of PHPT. However,
very often doctors disregard this because many other factors
can contribute to high calcium levels. The true normal range of
serum calcium varies based on other factors, such as age and
gender, which are not often taken into account by traditional
screening methods. Instead, these traditional screening methods
only evaluate a patient based on the normal range of a blood lab
value for the general population irrespective of the other blood
lab values. How to accurately diagnose PHPT in an integrative
consideration of all these factors remains open, which also
motivates our work of achieving such a goal with machine
learning.

ITII. CLINICAL DATASET

In this work, we propose using machine learning to accu-
rately diagnose PHPT by considering the factors including
serum calcium level that can be obtained in blood lab results,
age and gender. The data supporting our machine learning
model consists of two separate parts. The first part comes from
real PHPT patient data while the second part is synthetic data
generated using the observed distribution metrics of patients
without PHPT.

The data stemming from real patients comes from the
Norman Parathyroid Center [7], which annually conducts the
most parathyroid surgeries in the United States. The dataset
is comprised of the data from 20,000 patients having positive
diagnosis of PHPT. In the data, each record consists of
parameters including age, gender, pre-operative serum calcium
level, and pre-operative parathyroid (PTH) hormone, all of
which are the input to our machine learning PHPT screening
model, as well as some other information about each patient.
The extra information is not taken into account by our model
because their measurements are only taken after a patient is
suspected to have PHPT and thus would not fall into the
category of screening. It is worth noting that each patient in
the dataset had the serum calcium and parathyroid hormone
levels measured at least times which are then averaged before
they are put into the dataset. During training time, the record of
each patient in this portion of the dataset is labeled as having

PHPT. In the dataset, patient privacy information such as name
and address has been stripped off.

To supplement our dataset with non-PHPT data, which is
necessary for training a machine learning model, we have
generated synthetic data based on the previously learned distri-
butions of serum calcium and parathyroid hormone in patients
without PHPT. Each synthetic data point is given a calcium
level drawn with a Gaussian distribution of ;1 = 9.6mg/dl and
o = 0.15 and a PTH level with a Gaussian distribution of
w = 34pg/ml and o = 4.5 [7]. To maintain a dataset that is
independent and identically distributed(IID), the synthetic data
has the exactly same number of data points as the real patient
data, yielding a total dataset of around 40,000 data points.

Based on the distributions our synthetic data is drawn from,
half of the data labeled as PHPT-Negative is male with the
other half being female. For those who are labeled in the
dataset as PHPT-Positive, 76% are female. This may appear to
indicate a dataset which is not independently and identically
distributed (IID). However, this proportion is in line with
previously observed distribution of PHPT Positive incidence
in clinical settings [5].

Figure 1 shows the distributions of the important continuous
data used by our models. Areas in blue indicate PHPT-Positive
distributions where areas in orange indicate PHPT-Negative
distributions. The distributions have relatively little overlap,
which further indicates machine learning is a promising solution
for PHPT screening. It is worth noting that the distribution of
PHPT-Negative in Figure la is intentionally uniform from the
assumption that age of the general population is uniform as
opposed to Gaussian.

IV. NEURAL NETWORK SCREENING FOR PRIMARY
HYPERPARATHYROIDISM

This paper proposes using neural network (NN) models
to automate the PHPT screening based on four factors: age,
gender, pre-operative serum calcium level, and pre-operative
parathyroid (PTH) hormone level. Due to the relatively low
dimensionality of the input data and output data, a simple
neural network architecture has been chosen. We have designed
and implemented two nearly-identical NN models for PHPT
screening, with the only difference being the number of inputs.
The generic architecture of the PHPT NN is illustrated on
Figure 2.

A. PHPT Neural Network Inputs

For both models, gender, age, and average serum cal-
cium(Avg Ca) are taken as inputs. However, one of the models
also takes average parathyroid hormone(PTH) into account
while the other does not. To avoid any confusion, we refer
to these models as PTH-Included and PTH-Ignored. For both
models, gender is treated as a categorical variable that is one-
hot encoded. Age, average calcium, and average PTH are all
treated as continuous inputs.

The motivation of designing two different identical NN
models lies in medical application use cases. The goal of this
work is to improve screening for PHPT. PTH is a critical
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(a) The distributions of age in our dataset.
Note the PHPT-Positive distribution is from
real patients with PHPT where the PHPT-
Negative distribution is generated from a
uniform distribution.
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(b) The distributions of calcium in our
dataset. Note the PHPT-Positive distribu-
tion is from real patients with PHPT where
the PHPT-Negative distribution is generated
from a normal distribution.
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(c) The distributions of PTH in our dataset.
Note the PHPT-Positive distribution is from
real patients with PHPT where the PHPT-
Negative distribution is generated from a
normal distribution.

Fig. 1: The distributions of age, calcium and PTH in the clinic dataset
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Fig. 2: The generic neural network architecture used by both
models

component in diagnosing PHPT, however it is rarely tested
if there is no prior suspicion of PHPT. In contrast, serum

calcium is far more commonly tested in regular blood lab work.

Therefore, we create another model, PTH-Ignored, which only
takes inputs that are common in regular lab tests for patients
who are not suspected to have PHPT. The PTH-Ignored model
can then be used to screen a much broader set of patients in
hopes of finding more PHPT patients even if there is no prior
suspicion of PHPT.

B. PHPT Neural Network Hidden Layers

As stated above, both NN model architectures are identical
in their internal structures. They both have two hidden layers
with the first layer containing 200 neurons and the second
layer containing 100 neurons. A ReLU[6] is used in between
these two layers, serving as the necessary nonlinear activation
function.

C. PHPT Neural Network Outputs

The output of the last hidden layer is a vector that is run
through a Softmax function to find the final classification

probabilities as the final output of the NN for PHPT screening.
For both models, there are only two output classes, one for
PHPT-Positive and the other for PHPT-Negative.

D. PHPT Neural Network Model Training

For the PHPT NN model training, the dataset is split using
standard 5-fold cross validation. The training set accounts for
80% of the original dataset and the test set accounts for the
remaining 20%. For each training iteration, the patient lab
values in the training dataset are given as input to the models.
After the models computes the outputs, a loss function is used
to measure the deviation of the prediction from its real value.
The loss then backpropagates through the models and weights
are updated so the models are more correct next time they
are given similar data as inputs. After many thousands of
iterations, the models converge on a particular set of weights
that has minimal loss. In each of our experiments, the models
are trained for five epochs with a triangular cyclical learning
rate and minimal hyperparameter tuning. It is worth noting
that both models are trained in the exactly same way with the
only difference being on the input of the PTH values or not.

V. PERFORMANCE EVALUATION

A. Experiment Platform and Settings

We have implemented and evaluated our PHPT NN models
with PyTorch [8]. On the top of PyTorch we use FastAl [3] due
to it’s existing API designed for tabular data, which evaluating
our dataset requires. After training the models on the training
dataset, we then assessed them on the test dataset, which is data
the trained models have never seen before. This test dataset
is meant to represent the data the models would come across
when used in practice.

For fair comparison, we have evaluated the same dataset
using traditional screening methods. For traditional PHPT
screening, any calcium level between 8.4 mg/dl and 10.5 mg/dl
is considered normal and anything outside of that is flagged
as abnormal. For PTH, anything between 9 pg/ml and 69
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(a) A confusion matrix showing our model’s predictions
versus the ground truth of the PHT-Included model
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(b) A confusion matrix showing our model’s predictions
versus the ground truth of the PHT-Ignored model

Fig. 3: Confusion Matrices

pg/ml is considered normal while anything outside that range
is considered abnormal.

B. Performance Metrics

The key performance metrics used to evaluate our models are
accuracy, precision, and recall. Accuracy in our case indicates
how often our models’ prediction is correct in recognizing
a patient has PHPT based on the input clinic data. Higher
accuracy is better. Precision indicates the percentage of positive
predictions our models correctly predict a patient has PHPT
based the input data. Precision is much more sensitive to false
positives than accuracy. Recall is very similar to Precision,
but is instead sensitive to false negatives. The definition and
calculation for accuracy, precision, and recall are shown below.

N B TP + TN
Y = TP Y TN + FP+ FN
b TP
recision = TP + FP
TP
Recall = m

Here T P stands for true positive, T'N for true negative, F'P
for false positive and F'N for false negative.

C. Confusion Matrices

The confusion matrices in Figure 3 show all data needed to
compute the results shown in Table I. The numbers in the top
left and bottom right in dark blue are 7'P and T'N indicating
how many datapoints are correctly classified in the dataset
whereas the numbers in the top right and bottom left in light
grey are F'P and F'N indicating how many datapoints in the
dataset are misclassified. As shown in Figure 3a, the PTH-
Included model has significantly fewer false negatives when
compared to the PTH-Ignored model shown in Figure 3b.

Architecture Accuracy  Precision  Recall

PTH-Included 99.73% 99.87% 99.60%
PTH-Ignored 97.61% 99.03% 96.12%
Traditional Screening  93.06% 100% 88.69%

TABLE I: Performance summary of PHPT screening with two
NN models and traditional screening

D. Results and Observations

The results of our experiments are summarized in Table 1.

From the results, it can be observed that the screening
accuracy of both models far surpassed the performance of
traditional screening methods. It is worth noting that the PTH-
Included model performed significantly better than the PTH-
Ignored model, as the PTH-Included model has access to more
information relevant to diagnosis than the PTH-Ignored model.
This is an intentional design choice.

A surprising observation is that, although the traditional
screening method had O false positives after evaluating all
patients in the dataset, it had over 2,000 false negatives. In
other words, a significant portion of patients with PHPT in
the dataset would not have been recognized as having PHPT.
In contrast, the PHPT-Included NN model only had 5 false
positives and 16 false negatives. Therefore, our best PHPT
NN model can reduce the false negatives of traditional expert-
screening by 99.27%.

The accuracy of both PHPT NN models suggest that
screening for PHPT with machine learning is not only possible,
but could be incredibly effective in practice. Moreover, the total
marginal cost of evaluating a single patient is only from the
cost of electricity to support the computation of the model that
takes on average seven milliseconds on our current hardware.

VI. MODEL CAPABILITIES AND LIMITATIONS

The diagrams on Figure 4 are prediction maps showing how
the model’s predictions change when given different inputs.
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Fig. 4: Model Predication Maps

These can also be thought of as the decision boundaries, where
yellow indicates high confidence that a patient has PHPT and
blue indicates high confidence that a patient does not have
PHPT. Green areas indicate where the model is unsure whether
the patient has PHPT or not based on the data given.

A. Model Capabilities

Shown in Figure 4a and Figure 4b, our model begins flagging
patients as PHPT positive when calcium goes above 10.5 mg/dl
or when PTH goes above 55pg/ml. However, the decision
boundary changes shape as the input age increases, flagging

patients as PHPT Positive with lower calcium and PTH levels.

This is inline with the observed PHPT incidence rate as

age increases, particularly with post-menopausal women[5].

Traditional screening methods do not often take this into
account, ignoring age as a factor all together.

Moreover, Figure 4d and Figure 4e show the PTH-Ignored
model’s prediction map when comparing male and female
patients. The decision boundary is slightly lower with females
than males, which is also in line with observed distributions
in clinical data. In both cases, the CA level needed to flag a
patient as PHTP positive decreases with age, with the decrease
being slightly more aggressive for females around age 40.

It is worth noting all of these decision boundaries are
statistically learned with no input from the authors aside from
the generated synthetic data.

B. Model Limitations

We have further investigated the limitations and potential
issues of the PHPT NN models when the training data is out
of expected distribution. As shown in Figure 4c, the models
can yield mistakes when exposed to data that is substantially
out of the distribution it has been trained on. For age 60 and
older, the probability of PHPT begins to decrease even when
average serum calcium levels increase. To our best knowledge,
this is medically incorrect and likely caused by the uniform
distribution that was used for age in the synthetic portion of our
dataset. Further, when the average serum calcium goes below
9.0 as in Figure 4d, the model begins increasingly classifying
patients as PHPT-Positive. This also is likely incorrect. Both
of these problems would be solved with real data sourced from
patients that do not have PHPT, rather than using the synthetic
data.

VII. CONCLUSIONS

This paper proposes an automated PHPT screening solution
with neural network machine learning models. With the real
clinic data, the solution shows the ability of simple neural
networks to achieve surprising when trained to screen for
PHPT. Compared to traditional screening, our solution can
significantly improve the accuracy while it can reduce the false
negative by 99%. Moreover, we show our approach to screening
for PHPT has numerous advantages to the traditional methods,



including speed, scale, and consistency. The robustness and
reliability of the model can be even more improved with real
data of patients without PHPT.
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