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Abstract

This paper considers a variant of the classical
online learning problem with expert predictions.
Our model’s differences and challenges are due
to lacking any direct feedback on the loss each
expert incurs at each time step t. We propose
an approach that uses peer prediction and iden-
tify conditions where it succeeds. Our tech-
niques revolve around a carefully designed peer
score function s() that scores experts’ predic-
tions based on the peer consensus. We show a
sufficient condition, that we call peer calibra-
tion, under which standard online learning algo-
rithms using loss feedback computed by the care-
fully crafted s() have bounded regret with respect
to the unrevealed ground truth values. We then
demonstrate how suitable s() functions can be
derived for different assumptions and models.

1 Introduction

Consider the following online expert selection problem:
at discretized time steps t = 1, 2, ..., T , each of N ex-
perts will form a forecast about a binary event yt ∈
{1 (happening), 0 (not happening)}. Let’s denote expert
i’s prediction of how likely yt = 1 will happen at time t as
pi(t) ∈ [0, 1]. In the classical online learning setting, after
each round t (at time t+), yt is observed and each expert
incurs a loss ℓi,t := ℓ(pi(t), yt) according to a given loss
function ℓ, which can be the squared loss, a 0-1 loss, or
some other loss function. The best expert is defined as the
one whose predictions minimize the total losses in hind-
sight: a∗ = argmini

∑T
t=1 ℓi,t. At each round t, the algo-

rithm selects an expert (often using randomization) and fol-
lows its prediction, denote the selected expert as a(t). To
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lighten the notation, we denote the prediction made accord-
ing to selection a(t), i.e. pa(t)(t), as pa(t). The algorithm’s
performance is typically evaluated using the following def-
inition of regret:

RT := E

[
T∑
t=1

ℓa(t),t

]
−

T∑
t=1

ℓa∗,t (1)

where the expectation is with respect to the algorithm’s in-
ternal randomization, and the goal is to guarantee small re-
gret RT (e.g. sub-linear in T ).

In several natural applications of online learning, neither
the ground-truth yt values nor the true losses may be im-
mediately available. One example is hiring junior faculty
candidates by committee in a large department. Which fac-
ulty candidates will develop into superstars will only be-
come apparent later in their careers, and many offers must
be issued before this information becomes available. Our
setting involves taking into account the opinions of experts
(committee members) based on the particulars of the appli-
cants at the time of hiring. Similarly school admission and
other selection committees are also applications of our set-
ting. Our goal is to identify and follow the best of these ex-
perts using a peer prediction method, where we will purely
rely on predictions made by peer experts to identify prox-
ies of the true losses. This setting also finds applications in
other domains:

• Crowdsourcing: follow the best labelers, or learn how
to best aggregate their advice, without ever knowing the
ground truth labels.

• Long-term forecasting: use predictions from experts
made long before the outcomes are realized, update fore-
casters’ weights in advance, and make better predictions.
This could correspond to the experts making all of their
predictions at time 0.

• Limited access to ground truth: even when there is lim-
ited access to some ground truth values, peer prediction
allows more efficient use of this limited information.

We study the situation where all (or sometimes most) of the
yt’s are unavailable, and thus the ℓi,t’s cannot be directly
computed. The goal is still to have small regret RT with
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respect to the (now unseen) yt’s as defined in Eqn. (1). Our
model is even more extreme than typical bandit problems:
we do not even get the ℓi,t losses for the chosen experts.

With this paucity of feedback we must relax the adversarial
setting typical in online learning models through some ad-
ditional assumptions. Instead of the unavailable true losses,
we construct peer-score functions, using peer prediction, to
estimate the goodness of the experts’ predictions. A natural
requirement is that the consensus of the expert’s predictions
is somehow correlated with the true outcomes. We enforce
this by requiring that both the original loss function and
the peer-score function be “calibrated” by compatible di-
vergence functions1. Note that even though we require the
consensus to be correlated with the ground truth, this cor-
relation can be a weak one. Our work focuses on selecting
the best experts instead of performing the optimal aggrega-
tion - in practice, a small committee of the best experts can
often outperform the crowd consensus [Tetlock and Gard-
ner, 2016, Goldstein et al., 2014, Liu and Liu, 2015].

Our peer-score functions do not simply take the majority
prediction as a proxy label: they explicitly adjust for biases
in the majority opinion. This enables us to bound the regret
when standard online algorithms are run using these peer
scores as proxy losses.

Contributions and Outline: Our contributions include
formalizing a peer prediction framework to study online
learning problems without ground truth feedback. This
framework is developed in Section 2, and involves relat-
ing the peer scores to the ground-truth losses through their
calibrating functions. A second contribution is formal-
izing conditions on the peer scoring that guarantees any
good online algorithm using the peer scoring will (w.h.p.)
have good regret with respect to the unseen labels (Theo-
rem 3). In addition, we derive suitable peer scoring func-
tions for the square-loss with a methodology that general-
izes to other calibrated and bounded loss functions in Sec-
tion 3. This methodology assumes that the peer reference
answers are related to the true labels through a known i.i.d.
noise rate. Our third contribution is relaxing this assump-
tion, providing bounds for known asymmetric error rates
and when the noise rate is unknown, but a converging es-
timate of it is available (also in Section 3). We then show
how such a converging estimate of the i.i.d. error rate can
be efficiently produced from limited access to ground truth
(4.1) or even using just the expert’s predictions (4.2). Fi-
nally, we examine time-varying error rates in Section 4.3
and show how a competitive-style regret bound can be de-
rived for that case. Our results can also be viewed as an
effort to achieve self-supervision in online learning. All
proofs can be found in the Appendix of our full version
[Liu and Helmbold, 2019].

1Divergence functions are like distance functions but the trian-
gle inequality may not hold, for instance in Bregman divergences.

Related work: As a well-established research area, it
is impossible to do a thorough survey on online learning
in limited space, and we refer readers to [Cesa-Bianchi
and Lugosi, 2006] for a textbook treatment. Learning re-
sults can be categorized based on the types of feedback
the problem admits, including: full feedback [Littlestone
and Warmuth, 1994, Cesa-Bianchi et al., 1997, Arora et al.,
2012], bandit feedback [Auer et al., 2002], partial feed-
back [Mannor and Shamir, 2011], graph feedback [Alon
et al., 2015], among many others. Our results comple-
ment the online learning literature via introducing a solu-
tion framework that has no feedback but uses assumptions
on peer predictions. The idea of using peer predictions
has appeared in the peer prediction literature [Prelec, 2004,
Miller et al., 2005, Witkowski and Parkes, 2012, Radanovic
and Faltings, 2013, Dasgupta and Ghosh, 2013, Shnay-
der et al., 2016, Kong and Schoenebeck, 2019, Radanovic
et al., 2016]. Peer prediction functions have the nice prop-
erty that experts’ losses will be minimized if the event hap-
pens with exactly their reported/forecasted probabilities.
Our work is also relevant to the literature of learning with
noisy data [Angluin and Laird, 1988, Cesa-Bianchi et al.,
2011, Natarajan et al., 2013, van Rooyen and Williamson,
2015, Scott, 2015, Resler andMansour, 2019] (with [Resler
and Mansour, 2019] focusing particularly on the online
learning settings as we do). The ideas are also tied to es-
tablishing calibrated surrogate losses that are robust to la-
bel noise. However, knowledge of the noise rates are often
assumed to be known. We provide alternatives when such
priori knowledge is absent.

Some of our example applications resemble delayed
feedback settings, which have been studied previously
(e.g. [Mesterharm, 2005, Joulani et al., 2013, Thune et al.,
2019]). Although our paper makes stronger assumptions
on the experts’ predictions, the resulting bounds hold even
if the feedback never arrives.

2 Peer Calibration and Main Result

After stating the prediction model, we define calibrating
functions f() and g() for the original loss function ℓ() and
the peer-scores s(), respectively. We then define the com-
patibility of f() and g() needed for our main result, and
state our main theorem bounding the regret when appropri-
ate peer-scores are used.

2.1 Preliminaries

Prediction model At each t the following happens:

• Nature selects an unknown outcome distribution pt.
• Outcome yt for the occurrence of event t is drawn with
yt ∼ pt.

• Each expert i predicts a probability pi(t) that event t oc-
curs, possibly based on the context of the current and
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previous events.
• The algorithm selects, perhaps with the aid of random-
ization, an expert a(t) and predicts with pa(t)(t), based
only on the experts’ current and past predictions.

Although one can consider the pt and pi(t) values as gen-
erated adversarially, the purpose of the paper is to examine
what reasonable assumptions on the pi(t) values lead to
successful learning with peer feedback.

As mentioned earlier, our goal is to minimize

RT = E

[
T∑
t=1

ℓa(t),t

]
−

T∑
t=1

ℓa∗,t.

We will also use Li :=
∑T
t=1 ℓi,t for the total loss of expert

i with respect to the ground truth yt. Since we appeal to
martingale inequalities, the pt’s must depend only on the
previous trials.

Peer prediction Instead of using yt which remains
largely unavailable, the algorithm uses a reference an-
swer ŷt to evaluate each expert i’s prediction. In short,
ŷt ∈ {0, 1} is some aggregation of the experts’ predictions:
ŷt := A({pi(t)}Ni=1), where A(·) maps the predictions of
all experts to a single estimated label. For instance, A(·)
can be taken as the majority votes of the thresholded ex-
perts’ predictions, or the “most likely” y-value found by
comparing

∏N
i=1 pi(t) with

∏N
i=1(1− pi(t)).

We will call ŷt a peer reference answer. Then a peer-
score function si,t := s(pi(t), ŷt) is used as a proxy for the
loss of expert i’s prediction. We aim to study what s(),
when combined with standard online learning algorithms,
guarantees a small regret RT (with respect to the unseen
yt). Of course, when s or ŷt is not properly designed, the
peer-scores may not characterize the true performance of
each expert. For instance, simply checking each prediction
against the majority opinion of the set of experts may not
properly identify the best expert – rather it will elect the
ones who predict the majority opinion more. We will see
later that suitable s()’s are more subtle.

2.2 Loss calibration

Definition 1. A loss function ℓ is f -calibrated if

Ey∼p[ℓ(p′, y)]− Ey∼p[ℓ(p, y)] = f(p′, p),

where f() is a (non-negative) divergence function that
measures the difference between p and p′.

If the loss is f -calibrated, then the second term
Ey∼p[ℓ(p, y)] is the minimum expected loss that can be
achieved, and it corresponds to the loss of a genie who
predicts with the true distribution of y. We now give an
example of an f -calibrated loss.

Lemma 1. Squared loss ℓ(pa(t), y) = (y − pa(t))
2 is cal-

ibrated with f(pa(t), pt)) = (pt − pa(t))
2.

Throughout this paper, we will use squared loss as the run-
ning example, but our results generalize to other bounded
proper losses, thanks to the Savage representation [Gneit-
ing and Raftery, 2007] (see Appendix of our full version
[Liu and Helmbold, 2019]). If ℓ is f -calibrated, we have
the following:

T∑
t=1

Eyt∼pt [ℓi,t]−
T∑
t=1

Eyt∼pt [ℓ(pt, yt)] =
T∑
t=1

f(pi(t), pt)

The second term,
∑T
t=1 Eyt∼pt [ℓ(pt, yt)] corresponds to

the best possible forecaster that predicts with the distribu-
tions used to draw the outcomes yt. Let a∗f be the best
expert w.r.t. f(): a∗f = argmini

∑T
t=1 f(pi(t), pt).

We’d like to argue that the best expert a∗ in hind-
sight should roughly (and with high probability) minimize∑T
t=1 f(pi(t), pt), due to the convergence of

∑T
t=1 ℓi,t and∑T

t=1 ℓ(pt, yt). Define Ht as the information set of rel-
evant history up to time t, including all earlier yt′ ’s, and
pi(t

′)’s, t′ ≤ t. We will use the following martingale
lemma:

Lemma 2. Let q(1), q(2), . . . be a sequence of predic-
tion distributions where each q(t) depends only on Ht−1

(and is thus conditionally independent of yt), then ℓt :=∑t
τ=1 ℓ(q(τ), yτ ) −

∑t
τ=1 ℓ(pτ , yτ ) −

∑t
τ=1 f(q(τ), pτ )

formulates a martingale.

The above lemma, together with the convergence proper-
ties of martingales, implies that, with high probability, the
expert with the minimum sum of f scores also has low
loss with respect to the true labels, so La∗f ≈ La∗ . More
precisely, the Hoeffding-Azuma inequality for martingales
gives the following bound for any Emart > 0:

P
(∣∣∣∣ t∑

τ=1

ℓ(q(τ), yτ )−
t∑

τ=1

ℓ(pτ , yτ )−
t∑

τ=1

f(q(τ), pτ )

∣∣∣∣
≥ Emart

)
≤ 2 exp

(
−E2

mart

8t

)
(2)

Lemma 3. With prob. at least 1−2N · exp
(
−E2

mart

32T

)
, we

have La∗f ≤ La∗ + Emart.

Recall that p is the probability that y = 1, and let p̂ be the
probability that the reference feedback ŷ = 1. We define
calibration for the peer-score function as follows.

Definition 2. A peer-score function s() is g-calibrated if

Eŷ∼p̂[s(p′, ŷ)]− Eŷ∼p̂[s(p, ŷ)] = g(p′, p) (3)

where g() is a divergence function measuring the difference
between p and p′ in the context of p̂.
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Since p̂ appears on the left-hand-side, g() will in general
depend on p̂ and it could be treated as an additional argu-
ment. However, we assume that p̂ is the same function of
p over all rounds, and thus are able to suppress this depen-
dency. This is the case if, for example, each ŷt is an i.i.d.
η-perturbation of yt so P(ŷt ̸= yt) = η. Later in the paper
we will consider alternative ways of generating the refer-
ence labels, but the analysis will implicitly use a function
g() whose p̂t probabilities are a fixed function of pt.

Let a∗g be the best expert with respect to g and the pt values:
a∗g = argmini

∑T
t=1 g(pi(t), pt), and let a∗peer be the best

expert with respect to s(): a∗peer = argmini
∑T
t=1 si,t.

Consider running a “no regret" online learning algorithm
over the experts using s(pi(t), ŷt) for the expert’s losses.
The guarantee of the online learning algorithm bounds the
following regret [Cesa-Bianchi and Lugosi, 2006]:

RpeerT := E

[
T∑
t=1

sa(t),t

]
−

T∑
t=1

sa∗peer,t (4)

Our goal is to use this bound on RpeerT to obtain bounds on
RT . As before, the Hoeffding-Azuma inequality for mar-
tingales easily gives the following bound for any r > 0,

where σg ≥ |s(q(τ), ŷτ )− s(pτ , ŷτ )− g(q(τ), pτ )|

is a scale parameter bounding the magnitude of the random
variables:

P
(∣∣∣∣ t∑

τ=1

s(q(τ), ŷτ )−
t∑

τ=1

s(pτ , ŷτ )−

t∑
τ=1

g(q(τ), pτ )

∣∣∣∣ ≥ r

)
≤ 2exp

(
− r2

2σ2
g · t

)
(5)

It is important to realize that although the true loss ℓ is
needed (counterfactually) to evaluate for the ultimate re-
gret, and the peer-score function s() is needed to run the
algorithm, the corresponding calibrating functions f() and
g() are used only for the analysis.

We now come to the key definition of the paper. This defi-
nition establishes a connection between the true losses ℓ()
and the peer-scores s() through a relationship between their
calibrating functions f() and g(). Very informally, it says
that if the algorithm’s predictions and the predictions of the
best expert with respect to g() have related g-divergences,
then the algorithm’s predictions and the predictions of the
best expert with respect to f() have somewhat similar f -
divergences. This is what will allow us to move from peer-
score regrets to regrets on the true losses. It may be more
surprising that peer scoring functions with the needed prop-
erty can be constructed for natural situations than that this
connection leads to good regret bounds.
Definition 3. We call g “ψ-compatible with f” if there ex-
ists an invertible, increasing, and convex function ψ with

ψ(0) = 0 such that for all pt

f(pa(t),pt)− f(pa∗
f
(t), pt) ≤ ψ−1

(
g(pa(t), pt)− g(pa∗

g
(t), pt)

)

This definition is essentially the ψ-transform in supervised
learning [Bartlett et al., 2006]. Compatibility gives a very
strong relationship between f and g. In particular, If f and
g are ψ-compatible, then immediately:

Fact 1 ψ−1 is concave and increasing, and ψ−1(0) = 0.

This peer calibration leads us to the following propositions
(proven in the Appendix of [Liu and Helmbold, 2019]):
Proposition 1. If g is ψ-compatible with f , then:

T∑
t=1

f(pa(t), pt)−
T∑
t=1

f(pa∗f (t), pt)

≤ T · ψ−1

(∑T
t=1 g(pa(t), pt)−

∑T
t=1 g(pa∗g (t), pt)

T

)
Proposition 2. If g is ψ-compatible with f , then: there
exist a∗g, a

∗
f such that a∗g = a∗f .

2.3 Peer calibration is sufficient

We are now ready to sketch the proof of our main theorem:
that learning from the peer-score s() losses leads to low-
regret with respect to the ℓ() losses on the unseen ground-
truth yt values. The proof proceeds by first observing that
the peer-scored loss of the algorithm is at most the peer-
scored loss of a∗peer plus the algorithm’s expected regret
bound, which we write as Eonline(T,N) ∈ O(

√
T lnN).

We use the martingale relationship between the s() losses
and its g() calibration and the Hoeffding-Azuma inequal-
ity to show that the s() losses for a∗peer and the predic-
tions used by the algorithm are closely related to their
calibrating g() values. We denote the tolerable gap with

Emart(δ, σg, T ) =
√

2σ2
g · T · ln 2

δ (recall that σg is the

scale parameter for martingale sequence), this guarantees
that each is within the gap with probability 1− δ.

The optimalities of a∗peer and a∗g for s(·) and g(·) re-
spectively imply that the total sum of g() values for
the algorithm’s predictions are within Eonline(T,N) +
2Emart(δ, σg, T ) of the total for the optimizing a∗g (with
probability at least 1− 2δ). The compatibility between f()
and g() ensures that a∗f = a∗g , so the algorithm is also likely
to incur similar g(·) as a∗f . The ψ-compatibility also allows
us to use ψ−1 to convert average per-trial closeness wrt g()
into closeness wrt f().

Another pair of martingale inequalities show the ℓ() actual
losses with respect to the ground-truth yt’s are closely re-
lated to the calibrated f() functions for a∗f and the a(t) pre-
dictions used by the algorithm. Gaps of Emart(δ, 2, T ) =
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√
2 · 22 · T · ln 2

δ are needed to show that each is within
the gap with probability 1 − δ. Adding these gaps to the
regret bound (and subtracting another 2δ from the confi-
dence) gives the following theorem:
Theorem 3. If g is ψ-compatible with f , then with proba-
bility at least 1− 4δ,

RT ≤ T · ψ−1

(
2Emart(δ, σg, T ) + Eonline(T,N)

T

)
+ 2Emart(δ, 2, T ) (6)

3 Application to Square Loss

When the loss and peer-score functions are calibrated with
compatible functions, a small regret with respect to the un-
seen y outcomes results using the peer-score for the ex-
perts’ losses. In this section, we derive a suitable peer-score
s() and compatible calibrating g() for the square loss.

We start by assuming each reference ŷt is a perturbed ver-
sion of yt with a symmetric (label independent) and ho-
mogeneous (time independent) perturbation probability η:
P(ŷt ̸= yt) = η, with η < 0.5 , i.e. ŷ is better than random
guessing. Although this homogeneous error rate assump-
tion looks restrictive, it is weaker than the common one in
the inference literature in crowdsourcing where all agents’
error rates are assumed to be homogeneous. In practice,
an aggregated reference answer is relatively more stable
across tasks, especially when the population is large.

We initially assume η is known, but then extend the anal-
ysis to the non-symmetric case and when only an approxi-
mation to η is available. Further extensions are in the fol-
lowing section.

3.1 A peer prediction function and its regret

Take ℓ as the squared loss: ℓ(pa(t), y) = (y − pa(t))
2.

From Lemma 1, f(pa(t), pt) = (pt − pa(t))
2 calibrates

ℓ(), therefore:

Eyt∼pt
[ T∑
t=1

ℓi,t

]
− Eyt∼pt

[ T∑
t=1

ℓ(pt, yt)

]

=
T∑
t=1

f(pi(t), pt) =
T∑
t=1

(pt − pi(t))
2

Denote the true probability of ŷt = 1 with p̂t. Simple
algebra shows that

p̂t := P(ŷt = 1)

= P(ŷt = 1|yt = 1)P(yt = 1) + P(ŷt = 1|yt = 0)P(yt = 0)

= (1− η) · pt + η · (1− pt) = (1− 2η) · pt + η. (7)

This observation enables us to prove the following lemma
with a bit of simple algebra. First we define:

F (η, pt) := −η(1− η)(1− 2pt)
2 + 2η · p2t − 2η · pt + η

which is independent of i.

Lemma 4. For expert i = 1, ..., N and time 1 ≤ t ≤ T :

Eŷt∼p̂t
[
ℓ(pi(t), ŷt)

]
− Eŷt∼p̂t

[
ℓ(pt, ŷt)

]
= (1− 2η)f(pi(t), pt)− 2η · pi(t)(1− pi(t))− F (η, pt).

The above lemma inspires us to design the following
peer-score function s(·) by first cancelling the pi(t)(1 −
pi(t)) terms in ℓ(pi(t), ŷt) and then observing that (1 −
2η)f(pi(t), pt) − F (η, pt) is compatible with f since
F (η, pt) is invariant across all experts.

Theorem 4. If the peer-score function and g(pi(t), pt) are:

si,t := ℓ(pi(t), ŷt) + 2η · pi(t)(1− pi(t)), (8)

g (pi(t), pt) := (1− 2η)(pt − pi(t))
2

− F (η, pt)− 2ηpt(1− pt), (9)

then s() is g()-calibrated and g is ψ−1(x) = x/(1 − 2η)-
compatible with f().

Therefore Theorem 3 gives the following regret bound,
which holds with probability 1− 4δ:

RT ≤T · ψ−1

(
2Emart(δ, σg, T ) + Eonline(T,N)

T

)
+ 2Emart(δ, 2, T )

=
2Emart(δ, σg, T ) + Eonline(T,N)

1− 2η
+ 2Emart(δ, 2, T )

where σg = max{4 + maxF (η, pt), 2 − minF (η, pt)}.
A couple of remarks follow:

• The above bound assumes η < 0.5 and diverges as the ŷ
become uninformative (η → 1/2).

• Theorem 4’s peer-score construction can be general-
ized to other calibrated loss functions ℓ using the Sav-
age representation of proper scoring rules [Gneiting and
Raftery, 2007] (Appendix of [Liu and Helmbold, 2019]).

3.2 Asymmetric error rate

We now relax the assumption of symmetric label
noise: for known η0 and η1, let P(ŷt = 1|yt = 0) = η0,
P(ŷt = 0|yt = 1) = η1, with η0 + η1 < 1 (better than ran-
dom guessing) Liu and Chen [2017]. A more general ap-
proach relates to learning with noisy data [Natarajan et al.,
2013, Scott, 2015, Menon et al., 2015, van Rooyen and
Williamson, 2015], where the goal is to design a surrogate
loss function that calibrates the true losses in the presence
of label biases. For instance, one such s is

s(pa(t), ŷt) =(1− η1−ŷt)ℓ(pa(t), ŷt)− ηŷtℓ(pa(t), 1− ŷt)
(10)

Then we have

Lemma 5 (Natarajan et al. [2013]). For each time t,
E[s(pa(t), ŷt)] = (1− η0 − η1) · E[ℓ(pa(t), yt)].
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Following above lemma immediately we will have

Proposition 5. s() defined in Eqn.(10) is g-calibrated
where g() := (1 − η0 − η1)f() is ψ-compatible with f
for ψ−1(x) = x/(1− η0 − η1).

Therefore we establish the following regret bound from
Theorem 3

2Emart(δ, σg, T ) + Eonline(T,N)

1− η0 − η1
+ 2Emart(δ, 2, T ).

Estimating the two error rates η0 and η1 is generally a
harder task than estimating a single error rate, especially
when the errors may vary over time (a challenge addressed
in Section 4 and 4.3).

Mapping to a class-independent error rate setting In
light of above discussion, we propose an approach to map
the asymmetric error rate case to a symmetric one. At each
time t the trial is “flipped” with probability 1/2. When a
trial is “flipped” we use outcome ỹt := 1 − yt and flipped
predictions p̃i(t) := 1 − pi(t), so ŷt is also flipped. After
flipping, ŷt has the nice property:

Lemma 6. ŷt has class-independent error rates w.r.t. ỹt.

This result allows us to focus on the class-independent error
rate setting.

3.3 Using estimated noise rates

In practice, the error rate of ŷ is unknown a priori. Be-
fore considering the learning of error rates, we general-
ize Theorem 3 and show how using an estimate η̂t for
ηt = P(ŷt ̸= yt) affects the regret bounds. Suppose the
peer-score becomes (adapted from Eqn. (8))

si,t := ℓ(pi(t), ŷt) + 2η̂t · pi(t)(1− pi(t)),

with η̂t replacing η, and we have a bound |η̂t−η| ≤ ϵt then
we get the following.

Theorem 6. Suppose noisy estimates η̂t replace the true
noise rate η in Eqn. (9) where each |η̂t − η| ≤ ϵt, and the
algorithm uses the resulting peer-scores. Then Theorems 3
and 4 imply, with probability at least 1− 4δ

RT ≤
2Emart(δ, σg, T ) + Eonline(T,N) +

∑T
t=1 ϵt

1− 2η

+ 2Emart(δ, 2, T )

where σg = max{4 + maxF (η, pt), 2−minF (η, pt)}.

4 Approximating the error rates

Here we extend the analysis to when the error rates of the
reference answers are unknown (Section 4.1 and 4.2) and
heterogeneous across time (Section 4.3), expanding the ap-
plicability of our results.

4.1 Limited access to ground truth

Suppose the error rate η = P(ŷt ̸= yt) of the reference an-
swer is homogeneous but is unknown a priori. We start with
an easier setting where we occasionally get the yt ground
truth feedback with some known probability. We show that
this limited access to ground truth can be better utilized to
estimate the ŷt error rate, rather than directly estimating
each of the losses.

Suppose, at each time t, the ground truth label becomes
available with probability p∗. We apply standard impor-
tance weighting to estimate the error rate η as follows:

1̂(ŷt, yt) =

{
1(ŷt=yt)

p∗ , if ground truth becomes available
0, otherwise

then we estimate η as follows at step t: η̂t :=
∑t

n=1 1̂(ŷt,yt)

t .
The expectation E[η̂t] = η, next we show this estima-

tion costs another O(

√
T ·ln 2

δ

p∗ ) regret term in ψ−1( ·
T ) with

probability at least 1− δ (using Theorem 6).

The martingale nature of the yts imply 1̂(ŷt, yt) also forms
a martingale sequence. By the “maximal" version of
Hoeffding-Azuma inequality we know

P
(
max
t≤T

|
t∑

n=1

1̂(ŷt, yt)− η · t| > ϵ

)
≤ 2exp

(
−2ϵ2

t · ( 1
p∗ )

2

)

Setting ϵ =
√

t
2(p∗)2 ln

2
δ , we have with probability at most

δ that:
∣∣∣∣∑t

n=1 1̂(ŷt, yt)−η · t
∣∣∣∣ >√ t

2(p∗)2 ln
2
δ . Therefore

|η̂t − η| =

∣∣∣∣∣
∑t

n=1 1̂(ŷt, yt)

t
− η · t

t

∣∣∣∣∣ ≤
√

ln 2
δ

p∗
√
2t
, ∀t (11)

with probability at least 1 − δ. According to Theorem 6,
this will introduce another regret term:

T∑
t=1

|η̂t − η| =
T∑
t=1

√
ln 2

δ

p∗
√
2t

= O


√
T · ln 2

δ

p∗


Estimating a single error rate allows the 1

p∗ term to be inde-
pendent of the number of experts, as opposed to the typical√
T ln(N/δ)

p∗ regret [Cesa-Bianchi and Lugosi, 2006].

4.2 No access to ground truth

The task of estimating the error rate η is much harder when
there is no ground truth information available. We propose
the following method to estimate it:

• Randomly partition the experts into two groups, namely
groups A,B. Denote the aggregated reference answers
within each group as ŷA,t and ŷB,t respectively.
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• Denote the error rates for ŷA,t and ŷB,t as ηA, ηB re-
spectively. Assume ηA, ηB < 0.5, the error rates stay
constant over time, and they are conditionally inde-
pendent given the ground truth yt: P(ŷA,t, ŷB,t|yt) =
P(ŷA,t|yt)P(ŷB,t|yt).

We leverage the comparison between the two groups. De-
fine c1,t, c2,t, c3,t as the following (unknown) parameters
estimatable without yts:

c1,t =

∑t
τ=1 P(ŷA,τ = 1)

t
, c2,t =

∑t
τ=1 P(ŷB,τ = 1)

t
,

c3,t =

∑t
τ=1 P(ŷA,τ = ŷB,τ = 1)

t

We have the following theorem:

Theorem 7. Rates ηA, ηB < 1/2 are uniquely character-
ized by the following three equations:

P0,t · ηA + (1− P0,t)(1− ηA) = c1,t,

P0,t · ηB + (1− P0,t)(1− ηB) = c2,t

P0,t · ηA · ηB + (1− P0,t)(1− ηA)(1− ηB) = c3,t,

where P0,t =
∑t

τ=1 1(yτ=0)

t , ηA, and ηB are the unknowns.

Parameters c1,t, c2,t, c3,t can be empirically estimated
along the way, providing estimates for ηA, ηB via solving
the equations. Then we can set ŷt as either ŷA,t or ŷB,t,
and use the estimated η̂A, η̂B correspondingly.

Denote the estimation of ηA, ηB at time t as η̂A,t, η̂B,t re-
spectively using estimates of c1,t, c2,t, c3,t. A finer degree
analysis also gives us:

Theorem 8. At t, w.p. ≥ 1 − 3δ, |η̂A,t − ηA| ≤

O(

√
ln 2

δ

2t ), |η̂B,t− ηB | ≤ O(

√
ln 2

δ

2t ), when P0 is bounded
away from 0.5.2

This leads to a O(
√

ln(6/δ)
2t ) regret for ηA, ηB with

probability ≥ 1 − δ, which incurs an additional∑T
t=1O(

√
ln(6/δ)

2t ) = O(
√
T · ln 6

δ ) regret (Theorem 6).

4.3 Heterogeneous error rates

Now we consider a setting where the error rates, now de-
noted ηt < 0.5, change. The challenge is the previous tech-
niques lead to minimizing a term like (according to Lemma
4 and Theorem 4):

T∑
t=1

(1− 2ηt)f(pa(t), pt) ∼
T∑
t=1

(1− 2ηt)(ℓa,t − ℓ(pt, yt))

2When P0 is close to 0.5, the first and second equations pre-
sented in the estimation equations in Theorem 7 can uniquely de-
termine ηA, ηB separately.

instead of the constant 1 − 2η coefficient, which enables
compatible calibration. Our previous error estimation pro-
cedure estimates the average error rate instead of treating
each ηt separately.

Inspired by the uniform noise case, if the ηts can be made
similar enough, then peer calibration techniques can give
bounds even in the heterogeneous case. We use the follow-
ing flipping based mechanism to reduce the heterogeneity:
randomly flip the peer reference answer with probability p̂:

ỹt :=

{
ŷt, w.p. 1− p̂

1− ŷt, w.p. p̂

and use this newly flipped ỹt as our peer reference out-
come. With this flipping, the error rate η̃t for reference
answer ỹt becomes: η̃t = ηt(1− p̂) + (1− ηt)p̂. This im-
plies that for any two times t1, t2 we have |η̃t1 − η̃t2 | :=
(1−2p̂)|ηt1 −ηt2 |. Let η̃ be the average

∑T
t=1 η̃t
T , implying

|η̃t − η̃| ≤ (1 − 2p̂)maxt1,t2 |ηt1 − ηt2 |. As p̂ → 0.5, the
slack in this inequality becomes arbitrarily small, and the
different error rates at different t become similar (homoge-
neous). Thus a properly chosen p̂ can make |ηt − η̃| small
enough to exploit the similarity between the f() and g()
functions almost as if they were compatible.

With this flipping, we can estimate ηt as the average error
rate up to time t using methods from Sections 4.1 and 4.2
for use in the peer-scores, denoting as η̂t. And then let

si,t = ℓ(pi(t), ỹt) + η̂t · pi(t) · (1− pi(t)).

We now focus on binary expert predictions where pi(t) ∈
{0, 1}. Note all our previous results hold for the binary
prediction case as pi(t)s can be interpreted as with prob-
ability 0 or 1. For the competitive ratio ccomp(α) :=
α
(

1
1−2maxt η̃t

+ 1
)
, we have:

Theorem 9. For any α = 2 + ϵ (ϵ > 0), there exists a
0 < p̂ < 1/2 (bounded away from 0.5) such that, with
probability at least 1 − δ − δg , the above process’s regret
RT is bounded as follows:

RT ≤
Emart( δ

2N , 2, T ) + Emart( δ
2N , σg, T ) + Eonline(T,N)

1− 2maxt η̃t

+ ccomp(α) · La∗ .

Thus we achieve a competitive ratio w.r.t. the optimal
loss, up to an additional sub-linear term. Note maxt η̃t is
bounded away from 0.5 if both p̂ and ηts are.

Without the estimation of error rates? A recent work
[Liu and Guo, 2019] provides instructions on construct-
ing peer-calibrated (in a similar notion) score/loss func-
tions (peer loss) when facing noisy supervisions for a su-
pervised learning setting, but without the need of speci-
fying/estimating the noise rates. Peer loss is similarly in-
spired by peer prediction functions. In the future we will
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explore how the results in [Liu and Guo, 2019] can be re-
produced in our online learning setting.

5 Concluding remarks

In this paper, we developed a framework for online learning
problems where peer assessment is the only feedback. We
derived appropriate peer-score functions that can be used
as proxies for the experts’ losses and showed they result in
low-regret algorithms. With this lower level of feedback,
additional assumptions are needed. To a certain degree, our
solution provides a solution template for self-supervised
online learning under different assumptions.

Appendix

All missing details can be found in [Liu and Helmbold,
2019]. Below we sketch the main proof of Theorem 3.

Step 1 Using Martingale inequality we know
T∑
t=1

sa(t),t −
T∑
t=1

spt,t →
T∑
t=1

g(pa(t), pt),

T∑
t=1

ℓa(t),t −
T∑
t=1

ℓpt,t →
T∑
t=1

f(pa(t), pt)

The above approximation incurs at most Emart(δ, σg, T )
(for s) and Emart(δ, 2, T ) (for ℓ) error with probability at
least 1 − 4δ. In particular, from Eqn. (5), with probability
at least 1− 2δ, the following holds:∣∣∣∣ T∑

t=1

sa(t),t −
T∑

t=1

spt,t −
T∑

t=1

g(pa(t), pt)

∣∣∣∣ ≤ Emart(δ, σg, T )

∣∣∣∣ T∑
t=1

sa∗
peer,t −

T∑
t=1

spt,t

T∑
t=1

g(pa∗
peer

(t), pt)

∣∣∣∣ ≤ Emart(δ, σg, T )

Similarly with probability at least 1− 2δ,∣∣∣∣ T∑
t=1

ℓa(t),t −
T∑

t=1

ℓpt,t −
T∑

t=1

f(pa(t), pt)

∣∣∣∣ ≤ Emart(δ, 2, T )

∣∣∣∣ T∑
t=1

ℓa∗
peer,t −

T∑
t=1

ℓpt,t −
T∑

t=1

f(pa∗
peer

(t), pt)

∣∣∣∣ ≤ Emart(δ, 2, T )

Step 2 Using facts in Step 1, the following holds
T∑

t=1

g(pa(t), pt)−
T∑

t=1

g(pa∗
g
(t), pt)

≤
T∑

t=1

g(pa(t), pt)−
T∑

t=1

sa(t),t +

T∑
t=1

spt,t +

T∑
t=1

sa∗
g ,t

−
T∑

t=1

spt,t −
T∑

t=1

g(pa∗
g
(t), pt) +

T∑
t=1

sa(t),t −
T∑

t=1

sa∗
peer,t

≤ 2Emart(δ, σg, T ) +

T∑
t=1

sa(t),t −
T∑

t=1

sa∗
peer,t

The first inequality is because
∑T
t=1 sa∗peer,t ≤

∑T
t=1 sa∗g,t

(optimality of a∗peer).

Step 3 By Proposition 1 we know

T∑
t=1

f(pa(t), pt)−
T∑

t=1

f(pa∗
f
(t), pt)

≤T · ψ−1

(∑T
t=1 g(pa(t), pt)−

∑T
t=1 g(pa∗

g
(t), pt)

T

)
≤T · ψ−1

(
2Emart(δ, σg, T ) +

∑T
t=1 sa(t),t −

∑T
t=1 sa∗

peer,t

T

)

Step 4 Then
∑T
t=1 ℓa(t),t −

∑T
t=1 ℓa∗,t becomes

T∑
t=1

ℓa(t),t −
T∑

t=1

ℓa∗,t

=(

T∑
t=1

ℓa(t),t −
T∑

t=1

ℓpt,t)− (

T∑
t=1

ℓa∗,t −
T∑

t=1

ℓpt,t)

≤
T∑

t=1

f(pa(t), pt)−
T∑

t=1

f(pa∗(t), pt) + 2Emart(δ, 2, T )

≤
T∑

t=1

f(pa(t), pt)−
T∑

t=1

f(pa∗
f
(t), pt) + 2Emart(δ, 2, T )

≤Tψ−1

(
2Emart(δ, σg, T ) +

∑T
t=1 sa(t),t −

∑T
t=1 sa∗

peer,t

T

)
+ 2Emart(δ, 2, T )

Step 5 From the guarantee of running an online learning
algorithm, we have

E

[
T∑
t=1

sa(t),t

]
−

T∑
t=1

sa∗peer,t ≤ Eonline(T,N) (12)

Further

E
[

T∑
t=1

ℓa(t),t

]
−

T∑
t=1

ℓa∗,t

≤ TE

ψ−1

( 2Emart(δ, σg, T ) +
∑T

t=1 sa(t),t −
∑T

t=1 sa∗
peer,t

T

)
+ 2Emart(δ, 2, T )

≤ Tψ
−1

 2Emart(δ, σg, T ) + E
[∑T

t=1 sa(t),t −
∑T

t=1 sa∗
peer,t

]
T


+ 2Emart(δ, 2, T ) (Concavity of ψ−1

(·))

≤ Tψ
−1

(
2Emart(δ, σg, T ) + Eonline(T,N)

T

)
+ 2Emart(δ, 2, T ).

This completes the proof.
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