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Abstract

Advancements in explanation generation for automated plan-
ning algorithms have moved us a step closer towards real-
izing the full potential of human-Al collaboration in real-
world planning applications. Within this context, a frame-
work called model reconciliation has gained a lot of traction,
mostly due to its deep connection with a popular theory in
human psychology, known as the theory of mind. Existing lit-
erature in this setting, however, has mostly been constrained
to algorithmic contributions for generating explanations. To
the best of our knowledge, there has been very little work on
how to effectively convey such explanations to human users,
a critical component in human-Al collaboration systems. In
this paper, we set out to explore to what extent visualiza-
tions are an effective candidate for conveying explanations
in a way that can be easily understood. Particularly, by draw-
ing inspiration from work done in visualization systems for
classical planning, we propose a visualization framework for
visualizing explanations generated from model reconciliation
algorithms. We demonstrate the efficacy of our proposed sys-
tem in a comprehensive user study, where we compare our
framework against a text-based baseline for two types of ex-
planations — domain-based and problem-based explanations.
Results from the user study show that users, on average, un-
derstood explanations better when they are conveyed via our
visualization system compared to when they are conveyed via
a text-based baseline.

Introduction

From its inception, Explainable Al Planning (XAIP) has
garnered increasing interest due to its role in designing
explainable systems that bridge the gap between theoreti-
cal and algorithmic planning literature and real-world ap-
plications. The primary motivation of XAIP systems has
been centered around creating well integrated pipelines that,
given different personas of human users (the explainees),!
they can generate explanations of a plan for a given plan-
ning problem. One of the recurring themes in this context is
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!The current norm in the XAIP literature considers the follow-
ing three personas: end user, domain designer, and algorithm de-
signer (Chakraborti, Sreedharan, and Kambhampati 2020).

the model reconciliation problem (MRP) (Chakraborti et al.
2017) — a seminal work that utilizes a popular theory in
human psychology, called the theory of mind,> and allows
an agent (the explainer) to consider the “mental model” of
the user’ in its explanation generation process. These ex-
planations bring the model of the user closer to the agent’s
model by transferring a minimum number of updates from
the agent’s model to the user’s model. However, most of
the effort on this topic has mostly focused on algorithmic
contributions for generating explanations. To the best of our
knowledge, there has been very little work on how to effec-
tively communicate and convey the explanations generated
to users. For instance, the current state-of-the-art by Sreed-
haran et al. (2020) presents explanations as text, typically in
the PDDL format, which can, arguably, increase the user’s
misunderstanding of the task, especially for novice users.

A well-established educational principle, called the mul-
timedia learning principle, posits that humans learn better
from words and pictures, than from words alone (Mayer
1997). For example, Clark and Mayer (2016) showed that
accompanying text-based instructions with pictures im-
proved students’ performance on a test by a median amount
of 89%. Interestingly, students got around 65% of answers
correct after seeing a combination of text and pictures, com-
pared to less than 40% of answers correct after reading a
text comprised of words alone. Similar results have also
been obtained in object assembly tasks (Brunyé, Taylor, and
Rapp 2008). As such, there is strong evidence within the
psychology community that the use of visual content has a
profound effect on increasing retention and comprehension
when compared to text alone.

Based on this principle, in this paper, we set out to explore
to what extent visualizations constitute an effective candi-
date for conveying explanations (in an MRP setting) in a way
that can be easily understood by human users. In particular,
by drawing inspiration from work done in visualizing clas-
sical planning problems, we propose a visualization frame-
work that can visualize the action-space and state-space of

The theory of mind is the ability to attribute mental states (be-
liefs, intents, knowledge, etc.) to others and recognize that these
mental states may differ from one’s own.

3The mental model is just the user’s version of the problem
which the agent possess, and interestingly, it can be expressed as a
graph, a PDDL model, or even a logic program.



planning problems, and use it as a medium for communicat-
ing explanations between an agent and a user. In addition,
we introduce two taxonomies of explanations that can be vi-
sualized by our framework: (1) Domain-based explanations,
which arise due to discrepancies between the action models
of the agent and the user, and (2) Problem-based explana-
tions, which arise due to differences in the initial or goals
states of the agent and the user. Our proposed framework
is agnostic to how explanations are generated and is thus
orthogonal to all algorithmic contributions for model recon-
ciliation problems. In summary, we make the following con-
tributions: (1) We propose a visualization system for visual-
izing explanations in MRP settings; (2) We define two types
of explanations — domain-based and problem-based explana-
tions; (3) We demonstrate the efficacy of our proposed sys-
tem in a comprehensive user study, where we compare our
framework against a text-based baseline. Results from the
user study show that users, on average, understood expla-
nations better when they are conveyed via our visualization
system compared to when they are conveyed via a text-based
baseline.

Related Work

The fundamental problem we are addressing in this pa-
per is formulated around the model reconciliation problem
(MRP) (Chakraborti et al. 2017) within the XAIP literature.
In an MRP, the plan of a planning agent is unacceptable
to a human user due to differences in their models of the
problem. As such, the agent needs to provide an explana-
tion of that plan in terms of model differences. In this con-
text, researchers have tackled MRP from various perspec-
tives, such as traditional search-based methods (Sreedharan
et al. 2020), MDP-based models and approaches (Sreedha-
ran et al. 2019), and logic-based formulations (Vasileiou,
Previti, and Yeoh 2021).* Nonetheless, as we mentioned in
the introduction, existing work has mostly focused on de-
veloping algorithms for generating explanations, and not on
how they are to be conveyed to a human user; a common
thread is that the explanations are communicated to users
through text messages.

There has also been some effort by the planning and
scheduling community to create user interfaces for plan-
ning and scheduling problems (Freedman et al. 2018).
While some work aims to show users the space of alter-
nate plans (Gopalakrishnan and Kambhampati 2018; Mag-
naguagno et al. 2020; Chakraborti et al. 2018), others aim
to create systems to aid users in the creation of plans
(e.g., Planimation (Chen et al. 2020)) or for assistance with
domain modeling (e.g., Conductor (Bryce et al. 2017)).5
These kinds of systems are essential steps towards the cre-
ation of a unified planning interface, especially when hu-
mans are involved in the loop. For a system aiming to pro-
vide the complete planning pipeline to a user, a key require-

4 As there is a fast-growing amount of work on MRP and XAIP
in general, we refer the reader to the survey by Chakraborti, Sreed-
haran, and Kambhampati (2020) for more information.

SWe use both Planimation and Conductor as inspiration for the
VizXP framework and discuss the details in a later section.

ment for the XAIP community is the creation of systems
to deliver explanations to users in an interactive and intu-
itive manner. Towards this goal, researchers have created
systems using explanations for human-in-the-loop planning.
For example, RADAR (Sengupta et al. 2017) and RADAR-
X (Karthik et al. 2021) make use of contrastive explanations
in addition to plan suggestions to develop decision-support
systems for interactive explanatory dialogue with users. An-
other recent system (Eifler and Hoffmann 2020) discusses
the design of an iterative planning interface that takes user
preferences into account while helping them create plans via
plan property dependencies. While these systems make use
of interactive user interfaces, and the latter system uses a
visualization to show plan execution, they all present expla-
nations in text, and do not focus on how effectively the ex-
planations are delivered. To the best of our knowledge, this
paper is the first attempt to investigate to what extent visual-
izations are an effective medium for conveying explanations
to users in an MRP setting.

Preliminaries
Classical Planning

A classical planning problem, typically represented in
PDDL (Ghallab et al. 1998), is a tuple Il = (D, I, GG), which
consists of the domain D = (F, A) — where F is a finite set
of fluents representing the world states (s € F') and A a set
of actions — and the initial and goal states [,G C F. An
action a is a tuple (pre,, ef ), where pre, are the pre-
conditions of a — conditions that must hold for the action
to be applied; and ef f are the addition (+) and deletion
(—) effects of a — conditions that must hold after the ac-
tion is applied. The solution to a planning problem II is a
plan ™ = (aq,...,a,) such that oy (I, 7) = G, where oy (+)
is the transition function of problem II. The cost of a plan

m is given by C(m,II) = |x|. Finally, a cost-minimal plan
T = argMiN ¢ {15, (1,7)=cy C(m,11) is called an opti-
mal plan.

Model Reconciliation Problem

A model reconciliation problem (MRP) (Chakraborti et al.
2017) is defined by the tuple ¥ = (®,w), where & =
(ME ME) is a tuple of the agent’s model MF =
(DE T7 G%) and the agent’s approximation of the human’s
model ME = (DE TR GL) | and  is the optimal plan in
M?*. A solution to an MRP is an explanation € such that
when it is used to update the human’s model M }} to ]\//Yg’e,
the plan 7 is optimal in both the agent’s model M and

the updated human model M g’e. The goal is to find a cost-
minimal explanation, where the cost of an explanation is de-
fined as the length of the explanation.

In addition to adding information to the user’s model, an
explanation might also involve the removal of information
from a user’s model such that it is consistent with the agent’s
explanation (Vasileiou, Yeoh, and Son 2020). Therefore, our
notion of explanation is defined as follows:

Definition 1 (Explanation). Given an agent M, a user
MZE, and an optimal plan w, assume that T is only optimal



in M. Then, ¢ = {€*, e} is an explanation from M to
ME for mif m is optimal in M7 = (ME Uet)\ e, where
et CMEande C Mﬁ‘,

As such, e is the addition of information to the user’s model
and e~ is the removal of information from the user’s model.

Taxonomy of Explanations

Most MRP algorithms look at explaining either optimal
or valid plans to human users (Chakraborti et al. 2017;
Vasileiou, Yeoh, and Son 2020). Towards that end, such
explanations, using insights from social sciences (Miller
2019), are considered according to three main properties:
Social explanations for modeling the expectations of the
explainee; selective explanations for choosing the expla-
nations among several competing hypotheses; and con-
trastive explanations for differentiating properties of two
competing hypotheses. Among these properties, contrastive
explanations have received a lot of attention (Hoffmann
and Magazzeni 2019). However, all explanations share two
common elements; They either express discrepancies be-
tween the domain-action models of the agent and the user
(i.e., domain-based explanations) or involve differences in
the initial and/or goal state assumptions of the planning
problems of the agent and the user (i.e., problem-based ex-
planations). Below, we formalize these two notions as char-
acteristics of explanations stemming from MRP scenarios.

Domain-based Explanations: Assume an agent M R auser
ME, and a plan 7 that is optimal in M7 but not M %. We say
that an explanation from M to M £ for 7 is a domain-based
explanation, denoted by €4, if all of its elements involve the
action dynamics in M and/or M 11_12 In other words, the ele-
ments of the explanation must involve addition (or removal)
of actions, preconditions of actions, or effects of actions to
(or from) M }L} More formally,

Definition 2 (Domain-based Explanation). Given an expla-
nation €4 from M to M for 7, we say that e; = {e;r, €t
is a domain-based explanation if et C AR forall et € €}
and e~ C AII?} forall e™ € €, where AR and Ag are the

set of actions in M and MZE, respectively.

Note that we make the assumption that explanations involv-
ing the addition or removal of an entire action can be speci-
fied as a set of preconditions and/or effects accompanied by
the name of the action.

Problem-based Explanations: Assume an agent M, a
user M1, and a plan  that is optimal only in M % but not
M g. We say that an explanation is a problem-based expla-
nation, denoted by ¢, if all of its elements involve the ad-
dition (or removal) of initial and/or goal states to (or from)
M g. More formally,

Definition 3 (Problem-based Explanation). Given an expla-
nation €, from M to ME for m, we say that €, = {e;r, €}
is a problem-based explanation if et C IT U G® for all
et € e;‘ and e~ C IRUGE foralle™ € €, , where TRUGR
and I8 U G are the unions of the initial and goal states in
M?% and ME, respectively.

Figure 1: [llustration of Conductor (Bryce et al. 2017).

These categories make intuitive sense as any planner
takes, as input, a domain file and a problem file, which fully
specify the planning problem II. We will utilize these two
types of explanations in our visualization framework and
posit that they are a suitable categorization for visualizing
explanations for MRPs. We also note that these two kinds
of explanations are not isolated, and some MRPs can have
solutions that include both types of explanations. Further,
the information provided in all explanations discussed above
falls into one of the following two categories:

e Action-space Information: Given a planning problem
I1, and an associated domain D containing actions A =
(prea,ef f;f), the action-space information corresponds
to information about the preconditions and effects for
each action in D. Domain-based explanations will con-
tain this kind of information.

e State-space Information: Given a planning problem II,
a plan 7, and a sequence of states S involved in the
execution of 7, the state-space information corresponds
to information about the predicates in each state in S.
Problem-based explanations, which address errors in the
initial and goal state, contain this kind of information.

It is easy to see the parallels between the two kinds of
explanations and the two kinds of information discussed
above. As one may need to convey both types explanations
when explaining a plan, an ideal system for presenting ex-
planations should be able to convey both types of informa-
tion to the users. In the next section, we discuss two exist-
ing visualization systems that present action-space and state-
space information, and use those ideas to motivate the design
of a framework capable of visualizing plans and their exe-
cution as well as presenting explanations, using both state-
space and action-space information.

Visualization Framework

Our goal was to create a set of guidelines that system de-
signers can utilize when deploying a visualization system
for presenting explanations to users. Borrowing elements
from existing work in plan visualization, such a framework
should be able to show all kinds of explanations discussed
in the previous section. Given an explanation based on the
user’s plan and the agent’s plan, it should support the visu-
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Figure 2: An action-space visualization example, with pre-
conditions at the top of each action, and effects at the bot-
tom. Deletion effects are represented as a flow fading out.
Top: The highlight-based explanation visualization; Bottom:
The port-based explanation visualization.

alization of the following information for the human user’s
model: (1) Plan length; (2) Wrong/missing initial/goal state;
(3) Wrong/missing preconditions; (4) Wrong/missing ef-
fects; and (5) Wrong/missing actions.

As noted earlier, most MRP-based explanations are con-
trastive and, typically, involve a foil provided by the hu-
man user in terms of an alternative plan (Sreedharan, Sri-
vastava, and Kambhampati 2018). In addition, the context
of the user’s own plan may help them in better understand-
ing the agent’s explanation. Hence, the user’s plan provides
an excellent window for presenting explanations, a fact that
is useful for the visualization techniques proposed in the fol-
lowing sections.

Action-space Visualization: Fact Flows

“Fact routes” from Conductor (Bryce et al. 2017) provide an
easy way to visually represent preconditions as “stations’” on
each action that need to be filled, and effects as routes orig-
inating from that action. Conductor, combined with Mar-
shall (Bryce, Benton, and Boldt 2016), is aimed at help-
ing users create domains and plans concurrently. Using fact
routes to show the evolution of facts over time, it aims to use
interactions with users to facilitate creating correct plans and
domains. We found that Conductor’s framework was limited
by the fact that the length of the plan, as well as the number
of predicates involved, increases the number of fact routes
to the extent that it might overwhelm users (see Figure 1).
This makes it unsuitable for all but the simplest of domains
that contain few predicates and have short plans.

To remedy this, we introduce a simplification to Conduc-
tor. Instead of tracking all fact routes as individual columns,
we visualize just the routes moving into and going out of
each action as fact flows. Optionally, a user interaction like
a click may show the history of the fact route for any partic-
ular action, thus retaining all relevant information for users
who require it. This reduces clutter and allows us to present
longer plans with domains that can contain larger number of
predicates within a limited space. For example, consider a
fact flow in (truckl, city2), and an action that does
not use truck location as precondition; Conductor would

show this fact flow before the action, while in our simpli-
fication, this unnecessary fact flow would be hidden.

In order to visualize explanations, we propose two meth-
ods: (1) Highlight-based and (2) Port-based methods. Us-
ing the former, the precondition/effect flows are highlighted
based on whether they are unaffected (colored grey), wrong
(colored red), required/missing (colored yellow), or re-
quired/present (colored green). The latter method employs
“ports” for the preconditions and effect of each action, an
extension of the “stations” used in Conductor. Ports can
be colored based on whether they are unaffected (colored
blue), wrong (colored red) or required (colored green), and
fact flows can be either missing (not plugged in) or present
(plugged in). Figure 2 shows an example of the same infor-
mation conveyed using both methods.

One additional modification we make to Conductor’s
design is the introduction of the fact flows to the initial
state. Instead of visualizing the entire initial state, we only
show predicates that are affected by the explanation (e.g.,
problem-based explanation for the initial state).

State-space Visualization: Abstraction

While the action-space framework is sufficient to visualize
all explanations, it fails to show information about the state
of the world at certain times throughout the execution of the
plan. Many planning domains contain features that can en-
able humans to think about them in terms of physical ab-
stractions. Simple classical domains like BlocksWorld and
Logistics naturally lend themselves to the physical space,
presenting users the ability to keep track of the current state
of the world by tracking their positions in their mental space.
Moreover, planning visualization interfaces like Planimation
(Chen et al. 2020) and WebPlanner (Magnaguagno et al.
2020) utilize state-space visualizations to assist in planning
and display plan execution. Planimation, in particular, al-
lows users to create visualizations for plans using an anima-
tion profile to specify how different elements are visualized.
Inspired by such systems, we propose an abstraction-
based plan visualization which we extend to display expla-
nations as well. We describe states and transitions between
states using containers (objects in the world that can “con-
tain” others), contents (objects that can be “contained” in
others), and links (ways for contents to move between con-
tainers). We note that state-space visualizations like Plani-
mation also fall within the framework described here.

Abstract Space: The positional relationships between var-

ious objects (e.g., On, In, etc.) and the motion of objects

between containers form the basis of the state-space abstrac-

tion visualization. We present one hierarchy based approach

for visualizing state-space information for planning domains

that possess these kinds of relationships. Concretely, this ap-

proach requires the following properties:

e Domain objects are classified as either containers, con-
tents, or both.

e Domain objects are either movable objects or immovable
objects.

e All domain actions must move items between containers.
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Figure 3: A state-space visualization example. Left: The ini-
tial state; Right: The goal state.

e Predicates must identify and fully specify the relationship
between objects for any state.

Note that in some cases it might be necessary to intro-
duce pseudo-predicates to allow for the last property. For
example, in BlocksWorld, onTable (a) can be “reified”
to onTable (a, table) with “table” being a dummy
object created to represent the implicit table. This is only
needed for the visualization, and need not change the plan-
ning process.

Any planning domain satisfying the above properties can
be used to create a visual representation of the state of the
world at any given step. We can visualize a network of con-
tainers connected by edges that movable contents or con-
tainers can traverse, with each edge-type represented by cer-
tain actions (e.g., in Logistics, the move—airplane action
moves an airplane between two locations), with each action
causing an object to move across one of these edges, with
optional animations. This is a basic setup and may be spe-
cialized and modified for each domain. For example, Fig-
ure 3 shows the initial/goal states for a Logistics problem.

Within the state-space visualization, it is much easier to
see “why” some positional relationships are not true. Simple
preconditions like the requirement for different actions to
have objects “in” certain locations are intuitively shown in
the state if true, and effects of an action can be clearly seen
with the motion of objects across these edges. This can help
users during plan creation.

For presenting explanations within the state-space visual-
ization, we employ the highlighting technique discussed in
the action-space visualization. For each state in the execu-
tion of the plan, starting from the initial state, we display
the current state with respect to the actions that are executed
in the human’s plan, using the agent’s domain. Each object
involved in a missing/wrong precondition or effect is shown
similarly to the highlight-based approach in the action-space
visualization.

Integrated Action- and State-space Visualization

We now present Visualizations for eXplainable Planning
(VizXP), a visualization framework that combines the
action-space and state-space elements discussed previously.
It can visualize plans and their execution as well as present
explanations to human users, using both state-space and
action-space information. The inclusion of the action-space

information also conveniently presents a simple way for
users to select and view different states. Highlights in the
action-space visualization provide an overview of the steps
where the users’ plan went wrong, with the state-space vi-
sualization providing more detail about what exactly went
wrong. In addition, VizXP also allows users to debug and
correct their plans during the creation phase.

Finally, we note that depending on the application, an ad-
ditional visualization might present the agent’s correct plan
alongside the human’s plan, similar to contrastive explana-
tion methods. This can then be used to display the 'required’
information with the human’s plan only visualizing the miss-
ing and wrong information. This is required for domain-
based explanations that involve actions not in the user’s plan.

Evaluation Setup: User Study

We now discuss the setup for our evaluation, where we com-
pared VizXP against a text-based benchmark, an approach
commonly used by current state-of-the-art systems (Eifler
and Hoffmann 2020; Karthik et al. 2021), through a user
study conducted on the online crowdsourcing platform Pro-
lific (Palan and Schitter 2018). The goal of the evaluation is
to investigate to what degree MRP explanations presented by
VizXP are effective and easily understood by humans com-
pared to the text-based benchmark. Based on insights from
other research communities, such as the multimedia learning
principled described in the Introduction section, we hypoth-
esize that participants will perform significantly better with
VizXP compared to the text-based baseline.

As existing MRP solvers require that the explaining agent
knows both its “correct” model and the “wrong” model
of the human user receiving the explanation, we needed a
mechanism to enforce this assumption. To do this, we used a
simplified Logistics domain (McDermott 2000) as the “cor-
rect” model of the explaining agent, tweaked that model by
removing some preconditions and changing the initial state,
and assigned this tweaked “wrong” model to participating
users. This assignment is done by describing the tweaked
model to the users at the start of the study and asking them
to create a plan for this wrong model. Then, users were pro-
vided MRP explanations and were asked to answer a series
of questions as well as correct their plans based on those ex-
planations. The users’ answers to those questions as well as
their ability to correct their plans reflect their understanding
of the explanations provided.

Domain and Problem: Our choice of domain was the Lo-
gistics domain (McDermott 2000), which we simplified to
make it less complex for people with no background in
planning. Predicates in-city, in, and at were com-
bined into one in predicate to avoid confusion. We renamed
airports to hubs and changed the corresponding predi-
cates to allow for some ambiguity to introduce errors in the
domain. We created a simple problem with two cities con-
taining two locations each. One location within each city
is a hub. Figure 3 shows the initial and goal states for this
problem. There are two airplanes and two trucks distributed
across the locations, and one package that needs to be trans-
ported to the goal city. We considered two changes for the
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Figure 4: A view of the explanation visualization in the user study. (1) The state-space visualization; (2) The action-space

visualization; (3) The text-based explanation.
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Figure 5: A view of the plan editor for the user study. (1) Ac-
tion selection; (2) The initial and goal states; (3) User’s cur-
rent plan; (4) Test visualization showing validity of the plan.

“wrong” model of the user:

e C1: We modified the action move-airplane by re-
moving its precondition that the source and destination
location must be hubs. Therefore, a domain-based expla-
nation is needed to correct this error.

e (C2: We changed the initial location of the package,
thereby requiring a problem-based explanation to correct
this error.

Prototype Implementation: We used elements from VizXP
to create a visualization system for the selected domain.
For the state-space visualization, we used circles to mark
cities and locations and icons for trucks, airplanes, and pack-

ages. There were two types of links: Transporting objects be-
tween locations (visible); and loading and unloading pack-
ages from trucks or airplanes (invisible). An alternate de-
sign could further separate these out by type, having dif-
ferent edges for the move-airplane action and for the
move-truck action, but we chose to use only two kinds
for the sake of simplicity. We used animations to show ob-
jects moving between containers. For the action-space vi-
sualization, we used a limited version of the system where
only the flows into the current action are visualized instead
of the entire fact route like in Conductor. Since none of the
explanations would involve any change to the effects of ac-
tions, we decided to omit effect flows from the visualiza-
tion. Figure 4 shows a view of the visualization presenting
an explanation. We created the implementation to run on a
browser, using Flask and Python as back-end, and D3.js and
JavaScript for the front-end.

As VizXP is agnostic to the choice of algorithm to gen-
erate MRP explanations, we used one of the existing state-
of-the-art solvers to generate the explantions. To display the
explanations, we chose the highlight-based approach, with
tooltips providing additional information.

Study Design: The study was designed to have two groups:
The experimental group using VizXP and the control group
using text. Each group was tested on two types of “wrong”
models, modified using changes C1 and C2 (see “Domain
and Problem” paragraph), each requiring a different type
of explanation. Therefore, we have four scenarios in to-
tal, which we tested independently. We created two tasks for
each user as follows:

e Task 1: For this task, participants were asked to create
a plan based on the modified domain and problem in-
formation provided to them using a simple plan editing
interface. This interface also allows users to “test” their



Table 1: User Study Results.

| [ || Population Size | Correction Ratio [ Correction Time (mean) | Comprehension Score |

all users 86 0.698 203.35 5.402

VizXP computer science users 29 0.793 199.84 5.400
domain-based explanations 43 0.674 193.23 5.091
problem-based explanations 43 0.721 213.74 5.720

all users 83 0.627 251.05 4.759

Text | cOMputer science users 41 0.585 246.98 4.340
domain-based explanations 40 0.625 252.36 4.475
problem-based explanations 43 0.628 249.84 5.023

plans, which will provide information about the errors in
their plans due to their misunderstanding of the provided
domain and problem information. Depending on the sce-
nario, this interface might be either VizXP® (shown in
Figure 5) or a sequence of steps with markers for incor-
rect actions. A participant succeeded in Task 1 if they
created and submitted a valid plan given their domain
and problem. Users that succeeded in Task 1 continue to
Task 2, and users that failed in Task 1 were filtered out
and ignored. This is important since MRP explanation-
generation algorithms assume that the user’s model is
known.

e Task 2: For this task, we informed the participants that the
initial domain and problem information provided to them
contained errors and presented explanations for those er-
rors using either VizXP or text based on the group of the
participant. They were then asked a series of questions
to evaluate their understanding of the explanation pro-
vided (Task 2a). Then, they were shown the plan editor
again and asked to correct their plan, this time without the
ability to “test” their plans for correctness (Task 2b). A
participant succeeded in Task 2b if their corrected plan is
valid in the agent’s model.

To incentivize participants to provide answers to the best of
their ability, we provided a bonus to participants who suc-
ceeded in Task 1 and an additional bonus to participants
who also succeeded in Task 2b. Further, we also included
two questions for attention checks in the study, where par-
ticipants were asked to type a particular string or select a
particular answer in a multiple choice question. Participants
who wrongly answered both of these questions were filtered
out of the study.

Each participant had the following interactions in the
study: (1) They arrive at the webpage following the link from
Prolific, where they enter their demographics and some in-
formation on their educational background. (2) To ensure
that they have the background necessary to solve the tasks,
they are given tutorials on classical planning, the logistics
domain, and the plan editing interface. (3) Following the tu-
torials, they are asked to complete Task 1. (4) If they suc-
ceeded in Task 1, they are asked to complete Tasks 2a and 2b.
(5) All participants, including those who failed Task 1, are

SUsers in the experimental group are shown VizXP in Task 1
to ensure that they are familiar with the system before receiving an
explanation using that interface to eliminate any learning effects.

then asked to provide feedback on the system’s usability
(Holzinger, Carrington, and Miiller 2020) and are informed
of their payments before being redirected back to Prolific.

Participants: We conducted the study with 200 participants
(66 female, 132 male, 2 non-binary) with each of the four
scenarios getting 50 random participants. Out of the 200 par-
ticipants, only results from 169 participants were used as 30
failed Task 1 and one participant succeeded in Task 1 but
wrongly answered the questions on attention checks.

Measures: To measure comprehension of explanations pro-

vided, we used the following measures:

e Correction Ratio: Proportion of users who succeeded in
Task 1 who also succeeded in Task 2b.

e Correction Time: Time taken by users who succeeded in
Task 2b in correcting their plan.

e Comprehension Score: Number of questions users an-
swered correctly in Task 2a.

Evaluation Results

We now discuss the results of our evaluations using the mea-
sures above to evaluate the performance of VizXP in aiding
users understand explanations provided. For statistical sig-
nificance, we used a p-value of 0.05 as a threshold.

Table 1 summarizes our results for four different groups
of users who succeeded in Task 1: all users, the subgroup
of users with a computer science (CS) background, the sub-
group of users who were given the model with change C1
and domain-based explanations, and the subgroup of users
who were given the model with change C2 and problem-
based explanations. For each group of users, we report the
population size of that group and our three measures. We
now discuss the results for each of those measures:

e Correction Ratio: More users were able to accurately
correct their plans with VizXP (= 69.8%) than with the
text-based baseline (= 62.7%). However, the difference
is not statistically significant (x> = 0.6652 and p =
0.4147 with two-proportion z-tests). Among the subgroup
of users with a CS background, the difference is larger —
79.3% of users succeeded in correcting their plans with
VizXP compared to 58.5% with the text-based baseline.
This difference is more statistically significant (x? =
2.4477 and p = 0.1177). The likely reason is that a frac-
tion of users without a CS background failed to suffi-
ciently understand the planning problem and succeeded
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Figure 6: Comprehension Score Distribution for All Users.

in Task 1 due to the aid of the “test” functionality in the
plan editing interface. And this fraction of users is similar
across both VizXP and text-based baseline groups.

e Correction Time: In general, users were able to correct
their plans faster with VizXP (average time of 203.35s)
compared to with the text-based baseline (251.05s).
However, the difference is not statistically significant
(3(1,N = 112) = 0.4901, p = 0.4839, and ¢ = 1
with Kruskal-Wallis H non-parametric tests). This trend is
also consistent for the subgroup of users with a CS back-
ground. We do not observe the improved performance of
VizXP with this measure because the “test” functionality
is absent in Task 2b. Thus, users who succeeded in Task 1
due to that functionality are not considered here.

e Comprehension Score: Similar to the previous two mea-
sures, users scored better on this measure with VizXP
(= 5.402 out of 7 questions answered correctly on aver-
age) compared to with the text-based baseline (= 4.759).
Unlike the other two measures, this difference is statisti-
cally significant (x*(1, N = 193) = 5.2252, p = 0.0222,
and €2 = 0.0371 with Kruskal-Wallis H non-parametric
tests). This difference and statistical significance is further
amplified among the subgroup of users with a CS back-
ground. Figure 6 plots the distribution of comprehension
scores for all users.

The trends above generally apply for the two subgroups who
were given domain- and problem-based explanations also.
However, there are not much noticeable differences between
the two subgroups, indicating that VizXP (and the text-based
baseline as well) perform equally well for both subgroups.

Discussions

While the statistically significant results with the compre-
hension score measure are consistent with our expectations,
we were surprised by the lack of statistical significance on
the results with the correction ratio and correction time mea-
sures. We suspect the reason is that a non-trivial number
of users succeeded in Task 1 despite not understanding the
planning problem well due to the aid of the “test” function-
ality due to the following observations combined:

e The difference in the correction ratio is more statistically
significant for the subgroup with a CS background, but the
difference in the correction time is not more statistically
significant for the same subgroup.

e All users who succeeded in Task 1 were included in the

correction ratio measure, but only users who succeeded in
both Tasks 1 and 2b were included in the correction time
measure.

Further, the statistical significance tests used are sensitive
to the population sizes. Should the correction ratios remain
unchanged for larger population sizes, then the differences
between the users using VizXP and the users using the text-
based baseline will also become more statistically signifi-
cant. Therefore, we anticipate that the results for the cor-
rection ratio measure will be statistically significant with a
larger user study and a better way of ensuring that users suf-
ficiently understand the planning problem.

Additionally, we were surprised to find that 11 users an-
swered at least 6 of the 7 comprehension questions correctly,
implying that they understood the explanations well, but
failed to accurately correct their plans. This observation im-
plied that their error is due to typos and not misunderstand-
ing of the explanations. This observation thus hints that the
comprehension score measure, for which VizXP is statisti-
cally better than the text-based baseline, is more accurate at
measuring how well users understand the explanations pro-
vided than the correction ratio measure.

Finally, we would also like to highlight that while user
studies have been conducted in the XAIP literature, they are
at a significantly smaller scale as they are meant to be feasi-
bility studies only. For example, Eifler and Hoffmann (2020)
and Chakraborti et al. (2019) conducted user studies with
only 6 and 39 participants, respectively. Therefore, this pa-
per spearheads the important need for larger-scale user stud-
ies that are necessary for measuring the efficacy of explana-
tions with human users, laying critical foundations for inter-
active two-way dialogues with users in future XAIP systems.

We note some limitations of this work as well. In the user
study, we require users to create full alternate plans, but in
many contrastive explanation systems, users are also able to
use partial foils. It is possible to envision a system designed
using VizXP that can use partial foils by splitting the plan
at the point of interest and comparing the partial plans, but
further work will be required to test that ability and its ap-
plicability to real systems.

Additionally, the scope of the container based visualiza-
tion needs to be better defined. For example, it is not trivial
to fit object properties like color or capacity (e.g. fuellevel
in NoMystery) into the container framework. However, not
all information needs to be captured in the abstraction. With
simple augmentations to denote properties (like a blip with
current fuel), even such properties can be described in the
state space visualization. However, that is domain-specific,
and thus will need to be done on a case-by-case basis.

Conclusions

In this paper, we proposed VizXP, a visualization framework
for visualizing MRP explanations. Through a combination
of state-space and action-space visualizations, we showed
how one can visualize both domain-based and problem-
based explanations. Through a comprehensive user study,
we evaluated the performance of VizXP and found that
users, on average, understood explanations better when us-



ing VizXP than when using a text-based baseline, which is
commonly used by existing state-of-the-art systems. Fur-
ther, the improvement of VizXP over the baseline is even
more pronounced in users with a computer science back-
ground, indicating its usefulness for experienced users. In
conclusion, this paper makes the important contribution of
improving the medium by which explanations are conveyed
to users, orthogonal to most existing work focusing on ad-
vancing the state of the art in generating explanations, and
laying the necessary foundations for successful deployment
of XAIP systems in the real world.
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