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Abstract

Advancements in explanation generation for automated plan-
ning algorithms have moved us a step closer towards real-
izing the full potential of human-AI collaboration in real-
world planning applications. Within this context, a frame-
work called model reconciliation has gained a lot of traction,
mostly due to its deep connection with a popular theory in
human psychology, known as the theory of mind. Existing lit-
erature in this setting, however, has mostly been constrained
to algorithmic contributions for generating explanations. To
the best of our knowledge, there has been very little work on
how to effectively convey such explanations to human users,
a critical component in human-AI collaboration systems. In
this paper, we set out to explore to what extent visualiza-
tions are an effective candidate for conveying explanations
in a way that can be easily understood. Particularly, by draw-
ing inspiration from work done in visualization systems for
classical planning, we propose a visualization framework for
visualizing explanations generated from model reconciliation
algorithms. We demonstrate the efficacy of our proposed sys-
tem in a comprehensive user study, where we compare our
framework against a text-based baseline for two types of ex-
planations – domain-based and problem-based explanations.
Results from the user study show that users, on average, un-
derstood explanations better when they are conveyed via our
visualization system compared to when they are conveyed via
a text-based baseline.

Introduction

From its inception, Explainable AI Planning (XAIP) has
garnered increasing interest due to its role in designing
explainable systems that bridge the gap between theoreti-
cal and algorithmic planning literature and real-world ap-
plications. The primary motivation of XAIP systems has
been centered around creating well integrated pipelines that,
given different personas of human users (the explainees),1

they can generate explanations of a plan for a given plan-
ning problem. One of the recurring themes in this context is
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1The current norm in the XAIP literature considers the follow-
ing three personas: end user, domain designer, and algorithm de-
signer (Chakraborti, Sreedharan, and Kambhampati 2020).

the model reconciliation problem (MRP) (Chakraborti et al.
2017) – a seminal work that utilizes a popular theory in
human psychology, called the theory of mind,2 and allows
an agent (the explainer) to consider the “mental model” of
the user3 in its explanation generation process. These ex-
planations bring the model of the user closer to the agent’s
model by transferring a minimum number of updates from
the agent’s model to the user’s model. However, most of
the effort on this topic has mostly focused on algorithmic
contributions for generating explanations. To the best of our
knowledge, there has been very little work on how to effec-
tively communicate and convey the explanations generated
to users. For instance, the current state-of-the-art by Sreed-
haran et al. (2020) presents explanations as text, typically in
the PDDL format, which can, arguably, increase the user’s
misunderstanding of the task, especially for novice users.

A well-established educational principle, called the mul-
timedia learning principle, posits that humans learn better
from words and pictures, than from words alone (Mayer
1997). For example, Clark and Mayer (2016) showed that
accompanying text-based instructions with pictures im-
proved students’ performance on a test by a median amount
of 89%. Interestingly, students got around 65% of answers
correct after seeing a combination of text and pictures, com-
pared to less than 40% of answers correct after reading a
text comprised of words alone. Similar results have also
been obtained in object assembly tasks (Brunyé, Taylor, and
Rapp 2008). As such, there is strong evidence within the
psychology community that the use of visual content has a
profound effect on increasing retention and comprehension
when compared to text alone.

Based on this principle, in this paper, we set out to explore
to what extent visualizations constitute an effective candi-
date for conveying explanations (in an MRP setting) in a way
that can be easily understood by human users. In particular,
by drawing inspiration from work done in visualizing clas-
sical planning problems, we propose a visualization frame-
work that can visualize the action-space and state-space of

2The theory of mind is the ability to attribute mental states (be-
liefs, intents, knowledge, etc.) to others and recognize that these
mental states may differ from one’s own.

3The mental model is just the user’s version of the problem
which the agent possess, and interestingly, it can be expressed as a
graph, a PDDL model, or even a logic program.



planning problems, and use it as a medium for communicat-
ing explanations between an agent and a user. In addition,
we introduce two taxonomies of explanations that can be vi-
sualized by our framework: (1) Domain-based explanations,
which arise due to discrepancies between the action models
of the agent and the user, and (2) Problem-based explana-
tions, which arise due to differences in the initial or goals
states of the agent and the user. Our proposed framework
is agnostic to how explanations are generated and is thus
orthogonal to all algorithmic contributions for model recon-
ciliation problems. In summary, we make the following con-
tributions: (1) We propose a visualization system for visual-
izing explanations in MRP settings; (2) We define two types
of explanations – domain-based and problem-based explana-
tions; (3) We demonstrate the efficacy of our proposed sys-
tem in a comprehensive user study, where we compare our
framework against a text-based baseline. Results from the
user study show that users, on average, understood expla-
nations better when they are conveyed via our visualization
system compared to when they are conveyed via a text-based
baseline.

Related Work

The fundamental problem we are addressing in this pa-
per is formulated around the model reconciliation problem
(MRP) (Chakraborti et al. 2017) within the XAIP literature.
In an MRP, the plan of a planning agent is unacceptable
to a human user due to differences in their models of the
problem. As such, the agent needs to provide an explana-
tion of that plan in terms of model differences. In this con-
text, researchers have tackled MRP from various perspec-
tives, such as traditional search-based methods (Sreedharan
et al. 2020), MDP-based models and approaches (Sreedha-
ran et al. 2019), and logic-based formulations (Vasileiou,
Previti, and Yeoh 2021).4 Nonetheless, as we mentioned in
the introduction, existing work has mostly focused on de-
veloping algorithms for generating explanations, and not on
how they are to be conveyed to a human user; a common
thread is that the explanations are communicated to users
through text messages.

There has also been some effort by the planning and
scheduling community to create user interfaces for plan-
ning and scheduling problems (Freedman et al. 2018).
While some work aims to show users the space of alter-
nate plans (Gopalakrishnan and Kambhampati 2018; Mag-
naguagno et al. 2020; Chakraborti et al. 2018), others aim
to create systems to aid users in the creation of plans
(e.g., Planimation (Chen et al. 2020)) or for assistance with
domain modeling (e.g., Conductor (Bryce et al. 2017)).5

These kinds of systems are essential steps towards the cre-
ation of a unified planning interface, especially when hu-
mans are involved in the loop. For a system aiming to pro-
vide the complete planning pipeline to a user, a key require-

4As there is a fast-growing amount of work on MRP and XAIP
in general, we refer the reader to the survey by Chakraborti, Sreed-
haran, and Kambhampati (2020) for more information.

5We use both Planimation and Conductor as inspiration for the
VizXP framework and discuss the details in a later section.

ment for the XAIP community is the creation of systems
to deliver explanations to users in an interactive and intu-
itive manner. Towards this goal, researchers have created
systems using explanations for human-in-the-loop planning.
For example, RADAR (Sengupta et al. 2017) and RADAR-
X (Karthik et al. 2021) make use of contrastive explanations
in addition to plan suggestions to develop decision-support
systems for interactive explanatory dialogue with users. An-
other recent system (Eifler and Hoffmann 2020) discusses
the design of an iterative planning interface that takes user
preferences into account while helping them create plans via
plan property dependencies. While these systems make use
of interactive user interfaces, and the latter system uses a
visualization to show plan execution, they all present expla-
nations in text, and do not focus on how effectively the ex-
planations are delivered. To the best of our knowledge, this
paper is the first attempt to investigate to what extent visual-
izations are an effective medium for conveying explanations
to users in an MRP setting.

Preliminaries

Classical Planning

A classical planning problem, typically represented in
PDDL (Ghallab et al. 1998), is a tuple Π = 〈D, I,G〉, which
consists of the domain D = 〈F,A〉 – where F is a finite set
of fluents representing the world states (s ∈ F ) and A a set
of actions – and the initial and goal states I,G ⊆ F . An
action a is a tuple 〈prea, eff

±
a 〉, where prea are the pre-

conditions of a – conditions that must hold for the action
to be applied; and eff±

a are the addition (+) and deletion
(−) effects of a – conditions that must hold after the ac-
tion is applied. The solution to a planning problem Π is a
plan π = 〈a1, . . . , an〉 such that δΠ(I, π) = G, where δΠ(·)
is the transition function of problem Π. The cost of a plan
π is given by C(π,Π) = |π|. Finally, a cost-minimal plan
π∗ = argminπ∈{π′|δΠ(I,π′)=G} C(π,Π) is called an opti-

mal plan.

Model Reconciliation Problem

A model reconciliation problem (MRP) (Chakraborti et al.
2017) is defined by the tuple Ψ = 〈Φ, π〉, where Φ =
〈MR,MR

H〉 is a tuple of the agent’s model MR =
〈DR, IR, GR〉 and the agent’s approximation of the human’s
model MR

H = 〈DR
H , IRH , GR

H〉 , and π is the optimal plan in

MR. A solution to an MRP is an explanation ε such that

when it is used to update the human’s model MR
H to M̂

R,ε
H ,

the plan π is optimal in both the agent’s model MR and

the updated human model M̂
R,ε
H . The goal is to find a cost-

minimal explanation, where the cost of an explanation is de-
fined as the length of the explanation.

In addition to adding information to the user’s model, an
explanation might also involve the removal of information
from a user’s model such that it is consistent with the agent’s
explanation (Vasileiou, Yeoh, and Son 2020). Therefore, our
notion of explanation is defined as follows:

Definition 1 (Explanation). Given an agent MR, a user
MR

H , and an optimal plan π, assume that π is only optimal



in MR. Then, ε = {ε+, ε−} is an explanation from MR to

MR
H for π if π is optimal in M̂

R,ε
H = (MR

H ∪ ε+)\ ε−, where

ε+ ⊆ MR and ε− ⊆ MR
H ,

As such, ε+ is the addition of information to the user’s model
and ε− is the removal of information from the user’s model.

Taxonomy of Explanations

Most MRP algorithms look at explaining either optimal
or valid plans to human users (Chakraborti et al. 2017;
Vasileiou, Yeoh, and Son 2020). Towards that end, such
explanations, using insights from social sciences (Miller
2019), are considered according to three main properties:
Social explanations for modeling the expectations of the
explainee; selective explanations for choosing the expla-
nations among several competing hypotheses; and con-
trastive explanations for differentiating properties of two
competing hypotheses. Among these properties, contrastive
explanations have received a lot of attention (Hoffmann
and Magazzeni 2019). However, all explanations share two
common elements; They either express discrepancies be-
tween the domain-action models of the agent and the user
(i.e., domain-based explanations) or involve differences in
the initial and/or goal state assumptions of the planning
problems of the agent and the user (i.e., problem-based ex-
planations). Below, we formalize these two notions as char-
acteristics of explanations stemming from MRP scenarios.

Domain-based Explanations: Assume an agent MR, a user
MR

H , and a plan π that is optimal in MR but not MR
H . We say

that an explanation from MR to MR
H for π is a domain-based

explanation, denoted by εd, if all of its elements involve the
action dynamics in MR and/or MR

H . In other words, the ele-
ments of the explanation must involve addition (or removal)
of actions, preconditions of actions, or effects of actions to
(or from) MR

H . More formally,

Definition 2 (Domain-based Explanation). Given an expla-
nation εd from MR to MR

H for π, we say that εd = {ε+d , ε
−
d }

is a domain-based explanation if e+ ⊆ AR for all e+ ∈ ε+d
and e− ⊆ AR

H for all e− ∈ ε−d , where AR and AR
H are the

set of actions in MR and MR
H , respectively.

Note that we make the assumption that explanations involv-
ing the addition or removal of an entire action can be speci-
fied as a set of preconditions and/or effects accompanied by
the name of the action.

Problem-based Explanations: Assume an agent MR, a
user MR

H , and a plan π that is optimal only in MR but not

MR
H . We say that an explanation is a problem-based expla-

nation, denoted by εp, if all of its elements involve the ad-
dition (or removal) of initial and/or goal states to (or from)
MR

H . More formally,

Definition 3 (Problem-based Explanation). Given an expla-
nation εp from MR to MR

H for π, we say that εp = {ε+p , ε
−
p }

is a problem-based explanation if e+ ⊆ IR ∪ GR for all
e+ ∈ ε+p and e− ⊆ IRH∪GR

H for all e− ∈ ε−p , where IR∪GR

and IRH ∪GR
H are the unions of the initial and goal states in

MR and MR
H , respectively.

Figure 1: Illustration of Conductor (Bryce et al. 2017).

These categories make intuitive sense as any planner
takes, as input, a domain file and a problem file, which fully
specify the planning problem Π. We will utilize these two
types of explanations in our visualization framework and
posit that they are a suitable categorization for visualizing
explanations for MRPs. We also note that these two kinds
of explanations are not isolated, and some MRPs can have
solutions that include both types of explanations. Further,
the information provided in all explanations discussed above
falls into one of the following two categories:

• Action-space Information: Given a planning problem
Π, and an associated domain D containing actions A =
〈preA, eff

±
A 〉, the action-space information corresponds

to information about the preconditions and effects for
each action in D. Domain-based explanations will con-
tain this kind of information.

• State-space Information: Given a planning problem Π,
a plan π, and a sequence of states S involved in the
execution of π, the state-space information corresponds
to information about the predicates in each state in S.
Problem-based explanations, which address errors in the
initial and goal state, contain this kind of information.

It is easy to see the parallels between the two kinds of
explanations and the two kinds of information discussed
above. As one may need to convey both types explanations
when explaining a plan, an ideal system for presenting ex-
planations should be able to convey both types of informa-
tion to the users. In the next section, we discuss two exist-
ing visualization systems that present action-space and state-
space information, and use those ideas to motivate the design
of a framework capable of visualizing plans and their exe-
cution as well as presenting explanations, using both state-
space and action-space information.

Visualization Framework

Our goal was to create a set of guidelines that system de-
signers can utilize when deploying a visualization system
for presenting explanations to users. Borrowing elements
from existing work in plan visualization, such a framework
should be able to show all kinds of explanations discussed
in the previous section. Given an explanation based on the
user’s plan and the agent’s plan, it should support the visu-





Figure 3: A state-space visualization example. Left: The ini-
tial state; Right: The goal state.

• Predicates must identify and fully specify the relationship
between objects for any state.

Note that in some cases it might be necessary to intro-
duce pseudo-predicates to allow for the last property. For
example, in BlocksWorld, onTable(a) can be “reified”
to onTable(a, table) with “table” being a dummy
object created to represent the implicit table. This is only
needed for the visualization, and need not change the plan-
ning process.

Any planning domain satisfying the above properties can
be used to create a visual representation of the state of the
world at any given step. We can visualize a network of con-
tainers connected by edges that movable contents or con-
tainers can traverse, with each edge-type represented by cer-
tain actions (e.g., in Logistics, the move-airplane action
moves an airplane between two locations), with each action
causing an object to move across one of these edges, with
optional animations. This is a basic setup and may be spe-
cialized and modified for each domain. For example, Fig-
ure 3 shows the initial/goal states for a Logistics problem.

Within the state-space visualization, it is much easier to
see “why” some positional relationships are not true. Simple
preconditions like the requirement for different actions to
have objects “in” certain locations are intuitively shown in
the state if true, and effects of an action can be clearly seen
with the motion of objects across these edges. This can help
users during plan creation.

For presenting explanations within the state-space visual-
ization, we employ the highlighting technique discussed in
the action-space visualization. For each state in the execu-
tion of the plan, starting from the initial state, we display
the current state with respect to the actions that are executed
in the human’s plan, using the agent’s domain. Each object
involved in a missing/wrong precondition or effect is shown
similarly to the highlight-based approach in the action-space
visualization.

Integrated Action- and State-space Visualization

We now present Visualizations for eXplainable Planning
(VizXP), a visualization framework that combines the
action-space and state-space elements discussed previously.
It can visualize plans and their execution as well as present
explanations to human users, using both state-space and
action-space information. The inclusion of the action-space

information also conveniently presents a simple way for
users to select and view different states. Highlights in the
action-space visualization provide an overview of the steps
where the users’ plan went wrong, with the state-space vi-
sualization providing more detail about what exactly went
wrong. In addition, VizXP also allows users to debug and
correct their plans during the creation phase.

Finally, we note that depending on the application, an ad-
ditional visualization might present the agent’s correct plan
alongside the human’s plan, similar to contrastive explana-
tion methods. This can then be used to display the ’required’
information with the human’s plan only visualizing the miss-
ing and wrong information. This is required for domain-
based explanations that involve actions not in the user’s plan.

Evaluation Setup: User Study

We now discuss the setup for our evaluation, where we com-
pared VizXP against a text-based benchmark, an approach
commonly used by current state-of-the-art systems (Eifler
and Hoffmann 2020; Karthik et al. 2021), through a user
study conducted on the online crowdsourcing platform Pro-
lific (Palan and Schitter 2018). The goal of the evaluation is
to investigate to what degree MRP explanations presented by
VizXP are effective and easily understood by humans com-
pared to the text-based benchmark. Based on insights from
other research communities, such as the multimedia learning
principled described in the Introduction section, we hypoth-
esize that participants will perform significantly better with
VizXP compared to the text-based baseline.

As existing MRP solvers require that the explaining agent
knows both its “correct” model and the “wrong” model
of the human user receiving the explanation, we needed a
mechanism to enforce this assumption. To do this, we used a
simplified Logistics domain (McDermott 2000) as the “cor-
rect” model of the explaining agent, tweaked that model by
removing some preconditions and changing the initial state,
and assigned this tweaked “wrong” model to participating
users. This assignment is done by describing the tweaked
model to the users at the start of the study and asking them
to create a plan for this wrong model. Then, users were pro-
vided MRP explanations and were asked to answer a series
of questions as well as correct their plans based on those ex-
planations. The users’ answers to those questions as well as
their ability to correct their plans reflect their understanding
of the explanations provided.

Domain and Problem: Our choice of domain was the Lo-
gistics domain (McDermott 2000), which we simplified to
make it less complex for people with no background in
planning. Predicates in-city, in, and at were com-
bined into one in predicate to avoid confusion. We renamed
airports to hubs and changed the corresponding predi-
cates to allow for some ambiguity to introduce errors in the
domain. We created a simple problem with two cities con-
taining two locations each. One location within each city
is a hub. Figure 3 shows the initial and goal states for this
problem. There are two airplanes and two trucks distributed
across the locations, and one package that needs to be trans-
ported to the goal city. We considered two changes for the



Figure 4: A view of the explanation visualization in the user study. (1) The state-space visualization; (2) The action-space
visualization; (3) The text-based explanation.

Figure 5: A view of the plan editor for the user study. (1) Ac-
tion selection; (2) The initial and goal states; (3) User’s cur-
rent plan; (4) Test visualization showing validity of the plan.

“wrong” model of the user:

• C1: We modified the action move-airplane by re-
moving its precondition that the source and destination
location must be hubs. Therefore, a domain-based expla-
nation is needed to correct this error.

• C2: We changed the initial location of the package,
thereby requiring a problem-based explanation to correct
this error.

Prototype Implementation: We used elements from VizXP
to create a visualization system for the selected domain.
For the state-space visualization, we used circles to mark
cities and locations and icons for trucks, airplanes, and pack-

ages. There were two types of links: Transporting objects be-
tween locations (visible); and loading and unloading pack-
ages from trucks or airplanes (invisible). An alternate de-
sign could further separate these out by type, having dif-
ferent edges for the move-airplane action and for the
move-truck action, but we chose to use only two kinds
for the sake of simplicity. We used animations to show ob-
jects moving between containers. For the action-space vi-
sualization, we used a limited version of the system where
only the flows into the current action are visualized instead
of the entire fact route like in Conductor. Since none of the
explanations would involve any change to the effects of ac-
tions, we decided to omit effect flows from the visualiza-
tion. Figure 4 shows a view of the visualization presenting
an explanation. We created the implementation to run on a
browser, using Flask and Python as back-end, and D3.js and
JavaScript for the front-end.

As VizXP is agnostic to the choice of algorithm to gen-
erate MRP explanations, we used one of the existing state-
of-the-art solvers to generate the explantions. To display the
explanations, we chose the highlight-based approach, with
tooltips providing additional information.

Study Design: The study was designed to have two groups:
The experimental group using VizXP and the control group
using text. Each group was tested on two types of “wrong”
models, modified using changes C1 and C2 (see “Domain
and Problem” paragraph), each requiring a different type
of explanation. Therefore, we have four scenarios in to-
tal, which we tested independently. We created two tasks for
each user as follows:

• Task 1: For this task, participants were asked to create
a plan based on the modified domain and problem in-
formation provided to them using a simple plan editing
interface. This interface also allows users to “test” their



Table 1: User Study Results.

Population Size Correction Ratio Correction Time (mean) Comprehension Score

all users 86 0.698 203.35 5.402
computer science users 29 0.793 199.84 5.400
domain-based explanations 43 0.674 193.23 5.091

VizXP

problem-based explanations 43 0.721 213.74 5.720

all users 83 0.627 251.05 4.759
computer science users 41 0.585 246.98 4.340
domain-based explanations 40 0.625 252.36 4.475

Text

problem-based explanations 43 0.628 249.84 5.023

plans, which will provide information about the errors in
their plans due to their misunderstanding of the provided
domain and problem information. Depending on the sce-
nario, this interface might be either VizXP6 (shown in
Figure 5) or a sequence of steps with markers for incor-
rect actions. A participant succeeded in Task 1 if they
created and submitted a valid plan given their domain
and problem. Users that succeeded in Task 1 continue to
Task 2, and users that failed in Task 1 were filtered out
and ignored. This is important since MRP explanation-
generation algorithms assume that the user’s model is
known.

• Task 2: For this task, we informed the participants that the
initial domain and problem information provided to them
contained errors and presented explanations for those er-
rors using either VizXP or text based on the group of the
participant. They were then asked a series of questions
to evaluate their understanding of the explanation pro-
vided (Task 2a). Then, they were shown the plan editor
again and asked to correct their plan, this time without the
ability to “test” their plans for correctness (Task 2b). A
participant succeeded in Task 2b if their corrected plan is
valid in the agent’s model.

To incentivize participants to provide answers to the best of
their ability, we provided a bonus to participants who suc-
ceeded in Task 1 and an additional bonus to participants
who also succeeded in Task 2b. Further, we also included
two questions for attention checks in the study, where par-
ticipants were asked to type a particular string or select a
particular answer in a multiple choice question. Participants
who wrongly answered both of these questions were filtered
out of the study.

Each participant had the following interactions in the
study: (1) They arrive at the webpage following the link from
Prolific, where they enter their demographics and some in-
formation on their educational background. (2) To ensure
that they have the background necessary to solve the tasks,
they are given tutorials on classical planning, the logistics
domain, and the plan editing interface. (3) Following the tu-
torials, they are asked to complete Task 1. (4) If they suc-
ceeded in Task 1, they are asked to complete Tasks 2a and 2b.
(5) All participants, including those who failed Task 1, are

6Users in the experimental group are shown VizXP in Task 1
to ensure that they are familiar with the system before receiving an
explanation using that interface to eliminate any learning effects.

then asked to provide feedback on the system’s usability
(Holzinger, Carrington, and Müller 2020) and are informed
of their payments before being redirected back to Prolific.

Participants: We conducted the study with 200 participants
(66 female, 132 male, 2 non-binary) with each of the four
scenarios getting 50 random participants. Out of the 200 par-
ticipants, only results from 169 participants were used as 30
failed Task 1 and one participant succeeded in Task 1 but
wrongly answered the questions on attention checks.

Measures: To measure comprehension of explanations pro-
vided, we used the following measures:

• Correction Ratio: Proportion of users who succeeded in
Task 1 who also succeeded in Task 2b.

• Correction Time: Time taken by users who succeeded in
Task 2b in correcting their plan.

• Comprehension Score: Number of questions users an-
swered correctly in Task 2a.

Evaluation Results

We now discuss the results of our evaluations using the mea-
sures above to evaluate the performance of VizXP in aiding
users understand explanations provided. For statistical sig-
nificance, we used a p-value of 0.05 as a threshold.

Table 1 summarizes our results for four different groups
of users who succeeded in Task 1: all users, the subgroup
of users with a computer science (CS) background, the sub-
group of users who were given the model with change C1
and domain-based explanations, and the subgroup of users
who were given the model with change C2 and problem-
based explanations. For each group of users, we report the
population size of that group and our three measures. We
now discuss the results for each of those measures:

• Correction Ratio: More users were able to accurately
correct their plans with VizXP (= 69.8%) than with the
text-based baseline (= 62.7%). However, the difference
is not statistically significant (χ2 = 0.6652 and p =
0.4147 with two-proportion z-tests). Among the subgroup
of users with a CS background, the difference is larger –
79.3% of users succeeded in correcting their plans with
VizXP compared to 58.5% with the text-based baseline.
This difference is more statistically significant (χ2 =
2.4477 and p = 0.1177). The likely reason is that a frac-
tion of users without a CS background failed to suffi-
ciently understand the planning problem and succeeded





ing VizXP than when using a text-based baseline, which is
commonly used by existing state-of-the-art systems. Fur-
ther, the improvement of VizXP over the baseline is even
more pronounced in users with a computer science back-
ground, indicating its usefulness for experienced users. In
conclusion, this paper makes the important contribution of
improving the medium by which explanations are conveyed
to users, orthogonal to most existing work focusing on ad-
vancing the state of the art in generating explanations, and
laying the necessary foundations for successful deployment
of XAIP systems in the real world.
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