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Abstract: Payments for Ecosystem Services (PES) programs have been implemented in both 
developing and developed countries to conserve ecosystems and the vital services they 
provide. These programs also often seek to maintain or improve the economic wellbeing of 
the populations living in the corresponding (usually rural) areas. Previous studies suggest 
that PES policy design, presence or absence of concurrent PES programs, and a variety of 
socioeconomic and demographic factors can influence decisions of households to participate 
or not in the PES program. However, neighborhood impacts on household participation in 
PES have rarely been addressed. This study explores potential neighborhood effects on 
villagers’ enrollment in the Grain-to-Green Program (GTGP), one of the largest PES pro-
grams in the world, using data from China’s Fanjingshan National Nature Reserve. We utilize 
a fixed effects logistic regression model in combination with the eigenvector spatial filtering 
(ESF) method to explore whether neighborhood size affects household enrollment in GTGP. 
By comparing the results with and without ESF, we find that the ESF method can help ac-
count for spatial autocorrelation properly and reveal neighborhood impacts that are otherwise 
hidden, including the effects of area of forest enrolled in a concurrent PES program, gender 
and household size. The method can thus uncover mechanisms previously undetected due 
to not taking into account neighborhood impacts and thus provides an additional way to 
account for neighborhood impacts in PES programs and other studies. 
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1  Introduction 

Recent years have witnessed a number of studies of neighborhood impacts on human deci-
sion-making. The concept of “neighborhood” (similar to community), via its effects on peo-
ple’s attitudes and values, has been found to be fundamental in many fields, including hu-
man ecology, sociology, and demography. Neighborhoods/communities in which people live 
influence attitudes and activities because people living in the same geographic area possess 
the same or similar natural and social environments and interact with each other (Lee et al., 
1994). Individuals learn from neighbors, make adjustments, and make decisions (Foster and 
Rosenzweig, 1995). As a result, social norms are formed within neighborhoods of various 
sizes, in which people follow these norms (Coleman, 1994; Bendor and Swistak, 2001; 
White and Johnson, 2016). However, the appropriate definition of neighborhood has been 
found to vary depending on the specific context, including the topic of study, data available, 
and scientific method(s) used. In general, neighborhood impacts come into play due to social 
interactions, affecting social norms and individual behavior (Dietz, 2002). The term neigh-
borhood impact has also been used in spatial data analysis involving distance decay to ad-
dress spatial autocorrelation (Case, 1992; Page and Solon, 2003).  

The importance of this concept dates back to the classic sociological study of Amos 
Hawley (1950): “From a spatial standpoint, the community may be defined as comprising 
that area the resident population of which is interrelated and integrated with reference to its 
daily requirements”. Residents within the same neighborhood often affect (and are affected 
by) each other’s values, attitudes, decisions, and activities, making data about these individ-
uals correlated. If we use such correlated data directly without considering neighborhood 
effects, there is a high chance of generating biased modeling results and misinterpreting 
people’s decisions or behavior (Bilsborrow et al., 1984; Chen et al., 2009; Zvoleff et al., 
2013; Bilsborrow 2016; Sullivan et al., 2017).  

One domain to examine potential neighborhood effects on human decision-making is to 
evaluate people’s participation in payments for ecosystem services (PES) programs, for sev-
eral reasons. First, ecosystem preservation and restoration in naturally challenging: an eco-
system is embedded in geographic space, with processes and functions operating at varying 
spatial scales. Such processes and functions, if intervened by major disturbances (e.g., natu-
ral disasters, human actions), may dysfunction or even fail. This fact may explain—at least 
partially—some unsuccessful reports of PES implementation over the last 2–3 decades (Pat-
tanayak et al., 2010). Second, PES programs offer incentives to landowners so that they 
change land use decisions to maintain or restore ecosystem services (Jack et al., 2008; 
Wunder, 2005, 2008). The PES programs require voluntary participation of landowners 
(Wunder, 2005), so factors that influence landowners’ participation and compliance are 
likely to affect the effectiveness of the PES program (Kaczan et al., 2013; Bremer et al., 
2014). Previous PES studies have found that a variety of factors, such as program imple-
mentation procedures, local social norms, and the existence of concurrent PES programs, 
may affect household enrollment decisions (Chen et al., 2009; Layton and Siikamäki, 2009; 
Nordén, 2014; Sarkissian et al., 2017; Sorice et al., 2018; Yost et al., 2020).  

Nevertheless, there is little empirical evidence regarding whether or how spatial factors, 
defined as neighborhoods of various sizes, may affect household participation in PES pro-
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grams. Households within a neighborhood may share characteristics due to spatial autocor-
relation in seemingly “non-spatial” ways (Sullivan et al., 2017). Therefore, it is important to 
account for neighborhood impacts, if any, when seeking to understand household enrollment 
decisions in PES. 

In this context, we examine the Grain-to-Green Program (GTGP) in Fanjingshan National 
Nature Reserve (FNNR), Guizhou Province, China. The GTGP, one of the largest PES pro-
grams in the world, aims to persuade farmers to convert cropland on sloping land back to 
forest or grassland (Liu et al., 2008; Chen et al., 2009). The purpose of this study is to ex-
plore whether and how much neighborhood effects affect household participation in GTGP 
in the FNNR. The eigenvector spatial filtering (ESF) technique (Griffith et al., 2019), inte-
grated with fixed effects logistic regression models (FELRM), is employed to study how 
non-spatial factors, after accounting for neighborhood impacts, impact household enrollment 
in GTGP. This paper extends the work of Yost et al. (2020), which explored the influences of 
non-spatial factors on farmers’ participation in GTGP in the FNNR. In this study, we test 
whether and how household decisions to enroll or not are affected by neighborhood effects, 
controlling for socioeconomic and demographic factors.  

2  Background 

2.1  The Grain-to-Green Program 

The Grain-to-Green Program (GTGP), one of the largest ecological restoration programs in 
the world, has been implemented in China starting in 1999 (Feng et al., 2013). The Chinese 
government has spent about 28.8 billion USD on GTGP during the 1999–2008 period (Lü et 
al., 2012), with a commitment to invest a total of more than 40 billion USD by 2050 (Feng 
et al., 2013, 2016). The goal of GTGP is to significantly reduce soil erosion and land deser-
tification by converting cultivated land to forest or grassland (Uchid et al., 2009). The main 
criterion for enrolling land in GTGP is that the slope of the farmland must be greater than 
25° in southwestern China and greater than 15° in northwestern China (Chen et al., 2009). 
By 2008, 9.27 million ha of farmlands had been transferred to forestland or grassland 
through GTGP (Liu et al., 2008). There are some alternative names of GTGP which aims at 
increasing forestland and reducing farmland, such as Sloping Land Conversion Program 
(SLCP) (Lu and Yin, 2020), Conversion of Cropland to Forest Program (CCFP) (Wang et al., 
2020; Zhang et al., 2020), and Returning Farmland to Forest Program (RFFP) (Li et al., 
2019; Li et al., 2020).  

The ecological effects of GTGP were already noticeable nationwide in that vegetation 
coverage increased, water surface runoff declined, and soil erosion was effectively con-
trolled (Long et al., 2006; Xu et al., 2006; Wang et al., 2016) as the forest area grew by 
952,000 ha from 2000 to 2005 (Yang, 2006). In addition, there were positive socioeconomic 
impacts of GTGP, including poverty alleviation and substantial changes in household in-
come structures due to shifting from on-farm work to off-farm work (Liu et al., 2008). Re-
gardless of these reported benefits, there still exists considerable uncertainty regarding 
GTGP design and implementation, perhaps precluding maximum household participation 
(Adhikari and Boag, 2013).  
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Previous studies revealed that household enrollment in PES programs is influenced by 
PES program features (Zbinden and Lee, 2005; Adhikari and Boag, 2013; Adhikari and 
Agrawal, 2014; Nordén, 2014; Zhang et al., 2018a), social norms (Chen et al., 2012, 2009), 
whether there are concurrent PES programs (Yost et al., 2020), and socioeconomic and de-
mographic factors (Layton and Siikamäki, 2009; Kaczan et al., 2013; Bremer et al., 2014; 
Chen et al., 2017). The amount of payment is one of the major factors, yet not the only one, 
that affects household enrollment in PES programs (Sarkissian et al., 2017; Sorice et al., 
2018). Other factors include program duration, land use options for enrolled parcels, social 
norms in the local community, presence of concurrent PES programs, gender of household 
head, education, financial capital, and household economic factors (Zbinden and Lee, 2005; 
Chen et al., 2009, 2012; Gillenwater, 2012; Balderas et al., 2013; Bremer et al., 2014; Chen 
et al., 2017; Zhang et al., 2018b; Yost et al., 2020). In the existing literature regarding PES 
participation, however, little is known about the role of neighborhood impacts. 

Guizhou Province is located in southwest China. About 73% of the area has developed 
karst landforms and suffers varying levels of soil erosion because of excessive logging and 
conversion to farmland on its steep slopes (Xu et al., 2008; Zhang et al., 2007). FNNR in 
Guizhou Province was one of the first regions to participate in the GTGP, starting in 2000 
when 774 households participated with a total of 1296 mu (1 mu = 1/15 ha). Local farmers 
received an average of 230 yuan/mu/year from 2000, but the compensation dropped to 134 
yuan/mu/year starting in 2007. The GTGP policy always allowed farmers to plant ecological 
trees such as Chinese fir (Cunninghamia lanceolata), but sometimes did and sometimes did 
not allow planting economic or commercial trees such as tea (Camellia sinensis) which pro-
vided cash incomes after only a few years. Usually the local government provided seedlings 
to participating households for planting on the enrolled land parcels. By enrolling farmland 
in GTGP, participants were freed up from on-farm work on that land and thus expected to be 
more likely to seek off-farm employment, giving rise to increases in overall household in-
come and less reliance on agriculture (Liu and Diamond, 2005; Uchida et al., 2009). 

2.2  Neighborhood impacts 

Neighborhood effects on human decision-making are likely affecting local people’s GTGP 
enrolment decisions, yet little is known about such effects. As an example, Murray and 
Gottsegen (1997) employed a location planning model, where block groups were aggregated 
to different sizes for location planning in the Buffalo (US) metropolitan area. They found 
that different degrees of aggregation led to the same optimal solution with high stability. On 
the other hand, Sullivan et al. (2017) found neighborhood size was influential in affecting 
collective actions to remove the invasive species, Mikania micrantha, that had degraded lo-
cal socio-ecological systems and human wellbeing. Also, neighbor’s opinions were found to 
influence household decisions about removing invasive species after other relevant factors 
were controlled (Sullivan et al., 2017).  

Nevertheless, the literature on household enrollment in PES programs has focused on PES 
program aspects and the impact of socioeconomic, demographic, geographic, and environ-
mental factors, ignoring interactions among people and households. Not considering neigh-
borhood factors (expressed statistically as spatial autocorrelation) is likely to lead to biased 
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regression coefficients of the factors studied (An et al. 2016; Sullivan et al., 2017). Fur-
thermore, it is especially important to account for neighborhood impacts from a policy per-
spective, as policy-makers and implementers seek to maximize the collaboration of neigh-
boring landholders to achieve the intended conservation goals (e.g., reforestation). 

2.3  Eigenvector spatial filtering 

The eigenvector spatial filtering (ESF) method is a relatively recent, non-parametric statis-
tical approach for dealing with spatial autocorrelation (Griffith, 2000; Chun, 2008). Com-
pared with the spatial autoregressive (SAR) model, the ESF method provides a more flexible 
way to account for spatial autocorrelation impacts as the SAR approach uses the maximum 
likelihood method for parameter estimation, which becomes unreliable for small datasets 
(Burden et al., 2015). In addition, the ESF method can be utilized for non-Gaussian models, 
including logistic regression and Poisson regression (Griffith et al., 2019). The aim of the 
ESF method is to decompose key variables in multiple regression models into spatial and 
non-spatial components. Given locational information (often x, y coordinates) of all records 
or observations in a dataset, the ESF method extracts a set of eigenvectors from a given con-
tiguity matrix, which is defined as: 

11 11T T
MCM I C I

n n
   

= − −   
   

, 

where I is an n × n identity matrix, 1 indicates an n×1 matrix or a column vector with n rows 
of 1; T represents the operation of transposing a matrix, C is an n× n binary spatial weights 
matrix; and n is the number of observations. It is noted that the eigenvectors E1, E2, …, En 
are orthogonal and associated with the corresponding eigenvalues λ1>λ2 ...>λn (Chun and 
Griffith, 2013). Eigenvectors can be selected to enter the regression model to eliminate spa-
tial autocorrelation (Tiefelsdorf and Griffith, 2007; Griffith, 2000; Chun and Griffith, 2011). 
A useful way to select the most influential eigenvectors is a stepwise procedure (Chun et al., 
2016), but it is slow when the number of observations is large. The least absolute shrinkage 
and selection operator (LASSO) has thus been proposed to increase efficiency, and is much 
faster than the stepwise procedure (Seya et al., 2015). In addition, some studies have re-
vealed that it is also a practical way to choose the top k eigenvectors to account for neigh-
borhood impacts with extensive research devoted to determining k (Chun and Griffith, 2011; 
An et al., 2016; Sullivan et al., 2017). 

The ESF method has been used in recent years in studying migration (Clairfontaine et al., 
2015; Griffith et al., 2017; Liu and Shen, 2017), real estate prices (Clairfontaine et al., 2015; 
Griffith et al., 2017; Liu and Shen, 2017), crime distribution and dynamics (Chun, 2014; 
Helbich and Arsanjani, 2015; Medina et al., 2018), and ecological and biogeographical 
issues (Michel and Knouft, 2014; Sternberg et al., 2014; Yang et al., 2014; Lara et al., 2016). 
As people residing in the same or close neighorhoods tend to be similar in a variety of 
dimensions, e.g., values, attitudes, incomes, physical environments, and policy contexts, this 
leads to spatial autocorrelation in those measures. The conceptual link between 
neighborhood effects and spatial autocorrelation thus makes methods dealing with the latter 
good candidates to handle neighborhood effects. However, there are few studies on how 
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neighborhood features, through the construction of spatial units (i.e., aggregating data 
records) affect regression results. The ESF method thus has important potential to partition 
the values of certain variables into a component due to neighborhood effects (spatial 
autocorrelation) and a component independent of neighborhood effects. To the best of our 
knowledge, no previous study has used the ESF method to do this for evaluating the effects 
of conventional factors on household participation in PES programs, as proposed here. 
Specifically, we will explore the effects of defining neighborhoods of varying size to correct 
for the usual regression bias, recovering the hidden (due to neighborhood effects) “role” of 
relevant variables.  

3  Methods 

3.1  Study site and data collection 

This study aims to identify the unbiased effects of variables on household enrollment deci-
sions (in GTGP) after correcting potential neighborhood-induced confounding impacts in a 
key ecological study area in China. The study site is Fanjingshan National Nature Reserve 
(27º44´42˝–28º03´11˝N, 108º34´19˝–108º48´30˝E) located in the Wuling Mountains, Gui-
zhou Province, Southwest China (Figure 1). FNNR is a UNESCO Biosphere Reserve 
(I.W.H.E. Report), which has a humid and mid-subtropical monsoon climate with hot and 
humid summers and mild winters. FNNR provides habitats for many wildlife species desig-
nated as endangered by the Chinese government, such as the Guizhou snub-nosed monkey 
(Rhinopithecus brelichi), the Asiatic black bear (Ursus thibetanus), and Elliot’s pheasant 
(Syrmaticus ellioti) (Yang et al., 2002). Moreover, FNNR is home to several endangered 
plant species, including the dove-tree (Davidia involucrata) and the Fangjinshan fir (Abies 
fanjingshanensis) (GEF Project Team, 2004). The steep terrain also helps provide habitats 
for various other species, but increases the risk of soil erosion. 

There are about 13,000 indigenous people living in the 3256 households inside and in the 
immediate buffer zone of FNNR (An et al., 2020). In order to conduct a household survey in 
2014, a representative probability sample of 605 households was selected for interview us-
ing a stratified random sampling strategy (for sampling and survey details, see Yost et al., 
2020). One adult from each household was selected to respond, most often the household 
head. Out of the 605 households, a subset of about one quarter was selected for carrying out 
435 experiments (three per household: see Yost et al., 2020 for experiment details). The re-
sulting 147 households have x and y geographic coordinates and complete data for other 
variables used in the data analysis.  

Payment levels, program duration, and whether neighbors are perceived to be willing to 
participate are considered a priori potentially important variables affecting individual 
household decisions to participate in PES programs (Bremer et al. 2014; Chen et al. 2009; 
Sorice et al 2018; Tsitrou et al. 2013). Following a pretest based on 29 households, Yost et 
al. (2020) developed three hypothetical scenarios for each of four program components: PES 
payment level, PES program duration, post-enrollment land use options allowed, and per-
ceived participation levels of neighbors. Each of these four hypothetical variables was al-
lowed to have three values, from which the interviewer randomly chose one, combined to  
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Figure 1  Fanjingshan National Reserve and sample households in the study site. The core zone designation was 
based on both conservation goals and local people’s livelihood needs, resulting in a small number of households 
located within the core zone. At the same time, some households were included in the survey and subsequent data 
analysis even though they are just outside the reserve’s boundary because they affect the reserve through various 
activities such as fuelwood collection and collection of medicinal herbs. 
 
form a policy scenario. Under a given scenario, we then asked the household respondent if 
he/she would be willing to enroll farmland (additional, if already had enrolled some) in the 
Grain-to-Green Program (GTGP). Data collected on the respondent’s age, gender, and edu-
cation level, household size, agricultural expenses in the past 12 months, total off-farm in-
come in the past 12 months, and area of farmland not currently enrolled in GTGP were 
drawn upon in this study. To examine the impacts of a concurrent PES program on the 
household’s decision to enroll in the GTGP, the study includes a variable on whether the 
household is participating in the Forest Ecological Benefit Compensation (FEBC) program 
(measured by the logarithm of the amount of forested land enrolled, since payments are 
based directly on the area). The resulting 13 independent variables are classified into three 
categories of PES policy dimensions, participation in a concurrent PES program, and socio-
economic and demographic variables (Table 1). 

3.2  Mixed and fixed effects logistic regression model 

The data were collected at individual, household, and village levels, which formed a multi-
level dataset for us to examine local people’s decision-making regarding their GTGP partic-
ipation. However, there were only three experiments per household which were not enough 
for random or fixed effects (Maas et al., 2008; for different opinions in this regard, see Guo 
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Table 1  Variable names, descriptions and summary statistics 

Category Variable Description Type Mean Standard  
deviation Min Max 

PES policy  
dimension 

GTGP payment 
PES payment levels for 
three scenarios (1000 
yuan/mu/year) 

Discrete; 0.1, 0.2, 0.3 
for three scenarios 0.197 0.081 0.1 0.3 

GTGP duration 
PES program duration 
for three different sce-
narios  

Discrete; 4, 8, 12 
years 7.70 3.16 4 12 

Economic trees 
Allowed to plant only 
economic trees after 
enrolling in program 

Dichotomous; yes = 
1; no = 0 0.40 0.49 0 1 

Ecological 
plants 

Allowed to plant only 
ecological trees after 
enrolling in program  

Dichotomous; yes = 
1; no = 0 0.313 0.464 0 1 

Neighbors  
participating 

Hypothetical percentage 
of neighborhood mem-
bers participating in 
GTGP, three different 
scenarios 

Discrete; 25%, 50%, 
75%  0.515 0.185 0.25 0.75 

Concurrent PES 
variable FEBC land area Area of forest land of 

household (mu) 

Continuous; logarithm 
of amount of land 
enrolled in FEBC 

2.37 1.57 –1.2 8.52 

Socioeconomic  
and demographic 
variables 

Age Age of respondent at 
the time of interview Continuous, years 53.9 12.1 21 86 

Gender Gender of respondent Dichotomous; male = 
1; female = 2 1.14 0.35 1 2 

Education Education of respondent Continuous, years 
completed 4.95 3.47 0 13 

Annual agricul-
tural expenses, 
past 12 months 

Agricultural expenses 
(1000 yuan/year) Continuous 0.899 0.812 0.02 5.34 

Local off-farm 
income, past 12 
months  

Local off-farm Income 
(sum of remittances and 
local work/business 
income) (1000 yuan) 

Continuous 4.85 10.2 0 50 

Household size Number of household 
members Continuous 3.06 1.40 1 8 

Non-GTGP land  Area of non-GTGP land 
of household (mu) Continuous 3.88 3.53 0 17 

 
and Hipp, 2004) and, therefore we only considered village level random effects in the mixed 
effects logistic regression model (MELRM). Then we constructed a fixed effects logistic 
regression model (FELRM) and compared it to the MELRM. The dependent variable is 
whether or not the household of interest decides to participate in the GTGP under a certain 
hypothetical scenario, which stands as a binary outcome variable. The MELRM and FELRM 
models that aim to study household enrollment in the GTGP at FNNR can be expressed re-
spectively as follows: 

log
1

ij
i j ij

ij

p
X

p
β µ ε

 
= α + + +  − 

(for MELRM), 
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1

i
i i

i

p X
p

α β ε
 

= + + − 
(for FELRM), 

1, 2,..., , 1, 2,..., ,i I j J= =  
where pij is the probability of individual i in village j choosing to participate in GTGP under 
the hypothetical scenario in MELRM; pi is the probability of individual i participating in 
GTGP in FELRM; α is the intercept; Xi is a row vector of selected independent variables for 
individual i; β is a vector of coefficients for the fixed effects, μj is the random effect at vil-
lage level j in MELRM; and εij and εi are the vectors of random errors in MELRM and 
FELRM, respectively. The comparison of model results between MELRM and FELRM 
helps our model choice: the simpler model FELRM should be employed for the following 
analysis unless significant differences arise from MELRM. We also incorporated a dummy 
variable for each village in the design matrix in the FELRM. 

3.3  Eigenvector spatial filtering 

The ESF method, coupled with logistic regression, is used to explore neighborhood impacts 
on household enrollment in the GTGP. As indicated earlier, the ESF technique is a nonpara-
metric statistical method to account for spatial autocorrelation (Chun, 2014). The effects of 
explanatory variables in regression models can be decomposed into spatial and non-spatial 
components using the ESF method (Chun and Griffith, 2011; An et al., 2016; Xiao et al., 
2017; Yabiku et al., 2017). This study utilizes the ESF method to account for neighborhood 
impacts based on the logistic regression model developed by Yost et al. (2020).  

In this study, a neighborhood is defined as a cluster of households within a certain Eu-
clidean distance to the central point of reference, here the household is under study. The 
Moran’s I statistic, a global measure for testing spatial autocorrelation of a variable under a 
certain predefined neighborhood (Darand et al., 2017; Ord and Getis, 1995), has been used 
in many studies after Moran (1950) introduced it (Sokal and Oden, 1978). Following Good-
child (1987), we calculated the z-score and p-value of Moran’s I for deviance residuals of the 
chosen logistic models for different sizes of neighborhoods. This allows us to explore if the 
spatial autocorrelation represented in Moran’s I and z-scores is statistically significant. We 
examine the performances of the model by varying neighborhood sizes, i.e., using 0.02 km, 
0.04 km, 0.06 km, 0.08 km, 0.1 km, 0.5 km, 1 km, 2 km, 3 km, 4 km, 5 km, and 6 km. The 
neighborhood size is divided into three groups, including neighborhood of small size 
(0.02–0.1 km), moderate size (0.1–1 km), and large size (1–6 km). The small size neighbor-
hood represents potential impacts of people within a very close distance. Within moderate 
size neighborhoods, people may not communicate with others as frequently, but still are 
likely to share most social and environmental features relating to location, such as topogra-
phy, soils, and distance to major roads and markets. At the large neighborhood sizes, house-
holds may still have similar social norms and some local institutions they interact with, but 
are not as likely to interact regularly and may have significant differences in location (on the 
opposite side of hills, substantially different times from a road, leading to different pathways 
to markets, work opportunities, and use of different institutions. These three ranges of dis-
tances represent our hypothetical zones within which households share different degrees of 
similarities, which can impact their enrollment (and other) decisions.  
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We used the ESF method to account for neighborhood impacts (expressed as spatial au-
tocorrelation). Identification of relevant eigenvectors can be achieved in two steps. First, a 
candidate set of eigenvectors can be established if (Moran’s Im/Moran’s Imax) for positive 
spatial autocorrelation or (Moran’s Im/Moran’s Imin) for negative spatial autocorrelation is 
greater than 0.25 (Griffith, 2003). The preselected candidate eigenvectors and independent 
variables were employed together in the full model. Second, a forward stepwise selection 
procedure was used to choose a subset of eigenvectors based on the Akaike’s information 
criteria (AIC) (Griffith, 2000; Chun and Griffith, 2011). The MELRM and FELRM models 
incorporating the ESF method can be written respectively as follows: 

i jlog
1

ij
i ij

ij

p
E X

p
α g β µ ε

 
= + + + +  − 

(for MELRM), 

( )ilog for FELRM
1

i
i i

i

p E X
p

α g β ε
 

= + + + − 
, 

1, 2,..., , 1,2,..., ,i I j J= =  
where Ei is a vector of selected eigenvectors corresponding to individual i, and γ is a vector 
of coefficients of the selected eigenvectors. After integrating the ESF method in the model, 
we calculated the z-score and p-value of Moran’s I for the deviance residuals of each spatial 
model to explore if spatial autocorrelation was properly eliminated. The calculations and 
analyses were conducted in R (Version 1.0.153) with “spdpe” and “lme4” packages.  

Once we have models estimated for different neighborhood sizes and numbers of eigen-
vectors, we selected a best-practice model for practical reasons—for instance, to calculate 
the probability of enrolling land in GTGP under certain policy scenarios and so-
cio-ecological conditions. This model was chosen based on the following criteria: 1) spatial 
autocorrelation is minimized (i.e., the z-score of Moran’s I is close to 0); and 2) the model 
has the best (or close to best) overall fit (i.e., the AIC is minimum or close to it). When the 
above two criteria conflict, we give higher priority to the first criteria. 

4  Results 

4.1  Non-spatial MELRM and FELRM 

We first compared (1) the non-spatial MELRM with village level random effects, (2) 
FELRM without dummy variables for each village, and (3) FELRM with dummy variables 
as fixed effects instead of random effects (Table 2). We found that the significant levels of 
all the independent variables were identical for the non-spatial MELRM and FELMR mod-
els without dummy variables. The variance of the village random effects is also nearly zero 
in the MELRM, suggesting that there is little variability across villages. Examining the 
FELRM with dummy variables for villages, however, reveals it has consistently higher AIC 
values for all the substantive independent variables, suggesting a slightly poorer fit com-
pared to the model without the trivial village effects controlled. In addition, only village 1, 
which is located in the southwest of the FNNR and includes 4 households and 12 experi-
ments, is statistically different from other villages, confirming that there is little difference 
across villages. Therefore, we adopted the FELRM without dummy variables for the re-
maining analyses in the paper. 
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Table 2  Results of non-spatial MELRM, FELRM without dummy variables, and FELRM with dummy variables: 
dependent variable, probability of enrolling in GTGP 

 

Model 1 Model 2 Model 3 

Non-spatial MELRM  Non-spatial FELRM  
without dummy variables 

Non-spatial FELRM  
with dummy variables 

Coef. p-value VIF Coef. p-value VIF Coef. p-value VIF 
(Intercept) –1.544 0.089   –1.544 0.089  –2.299 0.038  
GTGP payment 4.878 <0.001 1.035 4.878 <0.001 1.035 5.520 <0.001 1.075 
GTGP duration 0.008 0.816 1.048 0.008 0.816 1.048 0.022 0.555 1.099 
Economic trees 0.638 0.015 1.430 0.638 0.015 1.430 0.610 0.027 1.482 
Ecological plants 0.100 0.713 1.415 0.100 0.713 1.415 0.140 0.630 1.486 
Neighbors participating 1.626 0.006 1.035 1.626 0.006 1.035 1.602 0.011 1.087 
FEBC land area –0.159 0.033 1.199 –0.159 0.033 1.199 –0.082 0.354 1.453 
Age 0.025 0.009 1.129 0.025 0.009 1.129 0.030 0.006 1.356 
Gender –0.668 0.045 1.179 –0.668 0.045 1.179 –0.801 0.031 1.374 
Education –0.109 0.001 1.210 –0.109 0.001 1.210 –0.137 0.000 1.441 
Annual agricultural expenses –0.556 <0.001 1.196 –0.556 <0.001 1.196 –0.333 0.043 1.438 
Local off-farm income  0.037 0.002 1.259 0.037 0.002 1.259 0.040 0.003 1.369 
Household size –0.204 0.019 1.282 –0.204 0.019 1.282 –0.216 0.029 1.561 
Non-GTGP land  0.086 0.011 1.225 0.086 0.011 1.225 0.115 0.005 1.650 
Dummy1       –1.916 0.028 1.447 
Dummy2       –0.805 0.286 1.470 
Dummy3       –0.506 0.544 1.379 
Dummy4       0.708 0.273 1.709 
Dummy5       –0.394 0.581 1.567 
Dummy6       –0.335 0.553 2.614 
Dummy7       0.353 0.584 1.704 
Dummy8       –0.496 0.437 1.625 
Dummy9       –1.361 0.086 1.599 
Dummy10       2.147 0.070 1.156 
Dummy11       –0.143 0.824 1.643 
Dummy12       0.793 0.241 1.780 
Dummy13       –0.091 0.891 1.566 
Dummy14       –0.487 0.686 1.162 
Dummy15       15.507 0.985 1.000 
Dummy16       1.234 0.113 1.308 
Dummy17       –0.038 0.959 1.457 
Dummy18       0.252 0.673 1.688 
Dummy19       0.406 0.525 1.836 
Dummy20       –0.464 0.631 1.404 
Dummy21       –0.197 0.762 1.629 
Dummy22       –0.162 0.775 1.865 
Dummy23             NA NA NA 
Variance of random 
effect village group 0.000 NA NA 

AIC 545.20 543.18 554.91 
Number of observations: 435. Bold numbers are statistically significant at the 5% level. 
Dummy 23 is the reference village for village groups.  
 
As described earlier, a total of 435 experiments were performed out of the 147 households 
during the household interview session (a few households did not respond or failed to be 
recorded for a few options). The variation inflation factor (VIF) values are well below 2, 
suggesting that there is not much collinearity in the independent variables. Three of the four 
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PES policy variables are highly significant with positive coefficients: GTGP payment level 
(p < 0.001), being allowed to plant economic trees after enrolling in GTGP (p = 0.015), and 
percentage of neighbors participating in GTGP (p = 0.006). These findings imply that the 
landowners are more likely to enroll in the GTGP when the GTGP payment is higher, when 
allowed to plant economic trees such as tea or walnut trees on the enrolled parcel, and when 
they expect more of their neighbors to participate. On the other hand, a longer GTGP dura-
tion (p = 0.816) and being able to plant ecological trees after enrolling in GTGP (p = 0.713) 
(which yield no income, expect possible after many years as fuelwood) do not significantly 
influence household participation in GTGP (Table 2).  

Regarding the effects of concurrent enrollment in another PES program, the area of forest 
enrolled in that program (i.e., FEBC, the other ongoing PES program) significantly affects 
villagers’ participation in GTGP (p = 0.033). Among the socioeconomic and demographic 
variables, gender (p = 0.045), number of years of education (p = 0.013), annual agriculture 
expenses (p < 0.001), and household size (p = 0.019) are significant, negative predictor var-
iables of household decisions to enroll. These findings suggest that participants who are 
male, less educated, less tied to agriculture, and in smaller households are more likely to 
enroll in GTGP. On the other hand, age (p = 0.009), local off-farm income (p = 0.002), and 
the amount of non-GTGP land available (p = 0.011) have significant, positive effects. These 
findings imply that the probability of household enrollment in GTGP is higher when partic-
ipants are older, have higher incomes from off-farm work (including work for pay on other 
local farms or in local towns, remittances from migrants and income from a local business), 
or possess more farmland (i.e., non-GTGP land).  

4.2  Results with the eigenvector spatial filtering model 

We utilized the ESF method to account for neighborhood impacts when the neighborhood 
size is 0.02 km, 0.1 km, 0.5 km, 5 km and 6 km, as the p-value of Moran’s I for deviance re-
siduals from the non-spatial FELRM is statistically significantly different from zero at each of 
these five distinct neighborhood sizes, suggesting strong spatial autocorrelation (Table 3). At 
other neighborhood sizes, the corresponding Moran’s I is insignificant, suggesting little spatial 
autocorrelation. All the ESF models have lower AIC scores than their counterpart non-spatial 
model, suggesting that spatial models have better fits than the basic FELRM model (Table 4).  
 
Table 3  Results of Moran’s test for deviance residuals of non-spatial FELRM with respect to different settings 
of neighborhood size 

Model (Neighborhood) Contiguity matrix Moran’s I Expected I Variance z-score p-value 
Model 2 (0.02 km) Neighbors within 0.02 km –0.502 –0.003 0.040 –2.485 0.013 
Model 2 (0.04 km) Neighbors within 0.04 km 0.059 –0.005 0.005 0.913 0.361 
Model 2 (0.06 km) Neighbors within 0.06 km 0.022 –0.004 0.002 0.543 0.587 
Model 2 (0.08 km) Neighbors within 0.08 km 0.076 –0.005 0.002 1.953 0.051 
Model 2 (0.1 km) Neighbors within 0.1 km 0.134 –0.004 0.001 3.790 0.000 
Model 2 (0.5 km) Neighbors within 0.5 km 0.093 –0.003 0.000 4.378 0.000 
Model 2 (1.0 km) Neighbors within 1 km –0.016 –0.003 0.000 –0.725 0.468 
Model 2 (2.0 km) Neighbors within 2 km –0.026 –0.003 0.000 –1.829 0.067 
Model 2 (3.0 km) Neighbors within 3 km –0.006 –0.003 0.000 –0.319 0.750 
Model 2 (4.0 km) Neighbors within 4 km –0.006 –0.003 0.000 –0.422 0.673 
Model 2 (5.0 km) Neighbors within 5 km 0.014 –0.003 0.000 2.441 0.015 
Model 2 (6.0 km) Neighbors within 6 km 0.013 –0.003 0.000 2.639 0.008 

Bold indicates Moran’s I statistically significant at 5% level. 
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It is interesting, moreover, that some independent variables change in significance levels, 
with three crossing the 0.05 α level from statistically significant to only marginally signifi-
cant when comparing the basic model with the model incorporating ESF filtering (Table 4). 
First, with regard to the concurrent PES variable, FEBC land area is a significant, negative 
predictor for enrollment in GTGP (p = 0.033) in the non-spatial model, but becomes insig-
nificant in the models with ESF variables when the neighborhood size is 6 km (p = 0.067). 
While many socioeconomic and demographic variables have slightly different effects when 
neighborhood impacts are accounted for with varying neighborhood sizes, it is only gender 
(p = 0.045 in the non-spatial model) and household size (p = 0.019) which each also be-
coming only marginally significant in one of the six versions of the spatial FELRM. This is 
true of gender in Model 6 when the neighborhood size is 0.1 km (p = 0.053), while the coef-
ficient of household size becomes insignificant only when the neighborhood size is very 
small at 0.02 km (Model 4, p = 0.083). An examination of all of the changes in p-values 
between the ESF filter variations and the basic non-spatial models finds the following: for 
Model 4 (only extremely close neighbors), five variables improve p-values, but household 
size is much weaker; in Model 5 (close neighbors), three are slightly better (lower p-value), 
two slightly worse (higher p-value), little change; in Model 6, with one more eigenvector 
added, 4 have better p’s, four worse including gender; Model 7 with medium size definition 
of neighborhood, 6 have better p’s, including all three of the “switch” variables (FEBC, 
gender, household size), and only 2 lower p’s, with the overall AIC highest of all the spatial 
models; while for both the much larger areal definitions of neighborhood, Models 8 and 9 
based on radiuses of 5 km and 6 km, the number of variables with better p’s is one less than 
those with weaker p-values.  

4.3  Spatial autocorrelation 

To further explore spatial autocorrelation of independent variables and model residuals, we 
calculated Moran’s I and p-value of residuals (Tables 3 and 5) and of independent variables 
(Table 6) for both the spatial and non-spatial models with the corresponding contiguity matrix.  

 
Table 5  Results of Moran’s test for deviance residuals in the models of Table 4 

Model (Neighborhood) Contiguity matrix Moran's I Expected I Variance z-score p-value 

Model 2 (0.02 km NB) Neighbors within 0.02 km –0.502 –0.003 0.040 –2.485 0.013 

Model 4 (0.02 km NB) Neighbors within 0.02 km 0.118 0.206 0.035 –0.471 0.637 

Model 2 (0.1 km NB) Neighbors within 0.1 km 0.134 –0.004 0.001 3.790 0.000 

Model 5 (0.1 km NB) Neighbors within 0.1 km 0.099 –0.023 0.001 3.545 0.000 

Model 6 (0.1 km NB) Neighbors within 0.1 km –0.026 –0.025 0.001 –0.019 0.985 

Model 2 (0.5 km NB) Neighbors within 0.5 km 0.093 –0.003 0.000 4.378 0.000 

Model 7 (0.5 km NB) Neighbors within 0.5 km –0.077 –0.032 0.000 –2.542 0.011 

Model 2 (5 km NB) Neighbors within 5 km 0.014 –0.003 0.000 2.441 0.015 

Model 8 (5 km NB) Neighbors within 5 km –0.003 –0.007 0.000 0.705 0.481 

Model 2 (6 km NB) Neighbors within 6 km 0.013 –0.003 0.000 2.639 0.008 

Model 9 (6 km NB) Neighbors within 6 km –0.014 –0.007 0.000 –1.467 0.142 

Bold numbers indicate Moran’s I significant at 5% level. 
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Table 6  Results of Moran’s test for independent variables 

Variable 
Neighbors within 0.02 km Neighbors within 0.1 km Neighbors within 0.5 km 

Moran’s I z-score p-value Moran’s I z-score p-value Moran’s I z-score p-value 

GTGP payment –0.004 –0.009 0.993 0.005 0.169 0.866 0.003 0.186 0.853 

GTGP duration 0.134 1.005 0.315 –0.030 –0.648 0.517 –0.014 –0.442 0.658 

Economic trees 0.003 0.040 0.968 0.025 0.631 0.528 0.005 0.278 0.781 

Ecological plants –0.095 –0.684 0.494 0.078 1.883 0.060 0.011 0.484 0.628 

Neighbors participating –0.141 –1.023 0.306 –0.026 –0.558 0.577 –0.023 –0.782 0.434 

FEBC land area –0.487 –3.585 0.000 0.182 4.337 0.000 0.190 7.163 0.000 

Age 0.487 3.617 0.000 0.054 1.315 0.188 –0.003 –0.023 0.982 

Gender –0.028 –0.192 0.848 –0.056 –1.267 0.205 –0.096 –3.513 0.000 

Education –0.010 –0.055 0.956 0.026 0.678 0.498 0.094 3.589 0.000 

Annual agricultural expenses 0.049 0.384 0.701 0.058 1.446 0.148 0.221 8.430 0.000 

Local off-farm income  0.138 1.046 0.296 0.028 0.712 0.477 –0.083 –3.023 0.003 

Household size 0.329 2.454 0.014 0.097 2.353 0.019 0.137 5.172 0.000 

Non-GTGP land  0.277 2.067 0.039 0.159 3.798 0.000 0.242 9.089 0.000 

Variable 
Neighbors within 5 km Neighbors within 6 km    

Moran’s I z-score p-value Moran’s I z-score p-value    

GTGP payment 0.001 0.321 0.748 0.001 0.362 0.717    

GTGP duration –0.014 –1.339 0.181 –0.013 –1.331 0.183    

Economic trees 0.008 1.117 0.264 0.003 0.603 0.547    

Ecological plants 0.009 1.285 0.199 0.005 0.934 0.350    

Neighbors participating 0.001 0.370 0.712 0.000 0.314 0.754    

FEBC land area 0.112 12.653 0.000 0.063 8.185 0.000    

Age –0.021 –2.022 0.043 –0.017 –1.804 0.071    

Gender 0.058 6.660 0.000 0.062 7.981 0.000    

Education 0.007 1.009 0.313 0.000 0.248 0.804    

Annual agricultural expenses 0.118 13.472 0.000 0.114 14.577 0.000    

Local off-farm income  –0.021 –2.111 0.035 –0.016 –1.681 0.093    

Household size 0.047 5.492 0.000 0.073 9.332 0.000    

Non-GTGP land  0.118 13.311 0.000 0.138 17.419 0.000    

Bold numbers indicate Moran’s I significant at 5% level. 
 

There are positive spatial autocorrelations in the residuals of the non-spatial model when the 
contiguity matrix are neighbors within 0.1 km (Moran’s I = 0.134, p < 0.001), 0.5 km (Mo-
ran’s I = 0.093, p < 0.001), 5 km (Moran’s I = 0.014, p = 0.015), and 6 km (Moran’s I = 
0.013, p = 0.008), and negative spatial autocorrelations when the neighborhood size is 0.02 
km (Moran’s I = –0.502, p = 0.013) (Table 3). After incorporating the ESF method, no sig-
nificant spatial autocorrelations are detected in the residuals of spatial models with respect to 
the neighborhood sizes of 0.02 km (Model 4, Moran’s I = 0.118, p =0.637), 0.1 km (Model 6, 
Moran’s I = –0.026, p =0.985), 5 km (Model 8, Moran’s I = –0.003, p =0.481), and 6 km 
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(Model 9, Moran’s I = –0.014, p =0.142) (Table 5). The results indicate that the selected ei-
genvectors in these four models control spatial autocorrelation well. 

There is significant spatial autocorrelation in spatial Model 5 (Moran’s I = 0.099, p < 
0.001), but this becomes insignificant in Model 6 when a fifth eigenvector (EV17) is added 
stepwise. We also tried incorporating various eigenvectors for the spatial ESF model of 0.1 
km neighborhood size (Supplementary Tables S1 and S2), and found that Models 10, 11 and 
12, which had fewer than the top 17 eigenvectors (Supplementary Table S1), had significant 
positive spatial autocorrelations in the residuals (indicated by high positive z-scores in Sup-
plementary Table S3), while Models 13, 14, 15 and 16 (Supplementary Table S2), which 
incorporated the top 17 or more eigenvectors, had significant negative spatial autocorrela-
tions (indicated by negative z-scores with p<0.05 in Supplementary Table S3). The results 
suggest that EV17 is the turning point for the significant positive and negative spatial auto-
correlations in the residuals, and accounts for most of the spatial autocorrelation in Model 6. 

4.4  Best-practice model 

AIC is defined to account for changes in degrees of freedom (Burnham and Anderson, 2002), 
therefore lower AIC scores stand for better fit. So we chose Model 6 as our best model (Ta-
ble 4), to use for, e.g., policy recommendations. Nevertheless, we recognize that different 
independent variables may be spatially autocorrelated at different neighborhood sizes, so in 
this study, we are not able to identify a single neighborhood size, and therefore a “best” 
model that solves all neighborhood impact issues (see discussion below) is presented. 

5  Discussion 

5.1  ESF accounting for neighborhood impacts at different ranges of distance  

Spatial autocorrelation is detected in our study on population in China in some shorter (0.02 
km, 0.1 km), moderate (0.5 km), and longer distance (5 km, 6 km) neighborhood sizes. The 
short neighborhood sizes (from 0.02 km to 0.1 km) reflect considerable interactions with 
(immediate) neighbors, within a walking time of just a few minutes, a nearby cluster of 
dwellings. Within such a short distance, villagers can communicate with each other conven-
iently and frequently, and are more likely to be affected by them. For the moderate neigh-
borhood sizes from 0.1 km to 1 km, people will not interact with some people as much, yet 
may still be subject to similar environmental and geographical features such as topography 
and distances to (the same) schools, roads and markets. For longer distances of 5 km to 6 km 
as the crow flies, in the mountains, they may use different roads and off-farm work access, 
have children who go to different schools, be located on different hill/mountain sides, or 
differ in some attitudes and social norms. Thus, different substantive aspects of neighbor-
hood impacts are likely to operate across different distances (see also Hawley, 1950; Bils-
borrow et al., 1984). It is important to point out that these neighborhood impacts are likely 
to be even greater in most real world sites (Sullivan et al., 2017), especially larger ones, as 
the data used in this paper come from a subset of fairly similar low-income rural households 
in a single Chinese nature reserve in China. 

The ESF method is useful since it can eliminate spatial autocorrelation that is inherent in 
human populations living close to each other at some neighborhood sizes (0.02 km, 0.1 km, 
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1 km, 5 km, and 6 km). Although spatial autocorrelation is significant at the neighborhood 
size of 0.5 km (in both the non-spatial and spatial models; Table 5), the p-value of Moran’s I 
for the ESF model increases compared to the non-spatial model, suggesting that we are less 
likely to reject the null hypothesis that the spatial distribution of feature values is the result 
of a random spatial process. We can learn from the Moran’s test of Models 5 and 6 that 
EV17 can explain most of the positive spatial autocorrelation when the neighborhood size is 
0.1 km (Tables S1 and S2). The reason why there is a big difference in Moran’s I in models 
with and without this one eigenvector (EV17) may be the physical structure of the neigh-
borhoods used here, which vary a lot from clusters of households horizontally close but ver-
tically not close. For situations when all the polygons have at least one-point in common 
(Chun and Griffith, 2014; Xiao et al., 2017), eigenvalues change gradually from the largest 
to the smallest. For the FNNR dataset with different definitions of neighborhood, the neigh-
bor structure is not fully connected, which means that a group of observations are not con-
nected with other groups of observations based on a specific distance. As a result, the weight 
matrix has a block structure, and the eigenvector has nonzero values for one group and zeros 
for other groups, indicating that an eigenvector based on one neighborhood size specifica-
tion may account for a high level of spatial autocorrelation among observations for some 
populations but not others, for which a different neighborhood specification may work better. 
Determining a priori an optimal general “neighborhood size” is risky as it may vary with 
topography, soil quality, population density, level of development, and cultural factors (how 
much space people feel they need varies).  

5.2  Impacts of independent variables in non-spatial and spatial models 

The results here for aspects of PES policy differ little in this study between the non-spatial 
model and the spatial models incorporating spatial filtering. This suggests that there are no 
particular neighborhood differences in these policy choice variables, which is not surprising 
given the similarities in the characteristics of the populations of the various clusters 
(low-income rural households, minority populations, mountainous terrain, much 
out-migration, etc.). Of course, it is not surprising to find that once controlling for other 
variables, the social norm (represented as the percentage of neighbors expected to participate 
in GTGP) is a significant, positive predictor of a household’s willingness to participate in 
GTGP regardless of neighborhood size. One previous study similarly found that when 
neighbors anticipated reconverting land enrolled in GTGP back to agriculture from forest 
once the PES program ends, so did the household under study (Chen et al., 2009). Thus, 
households who live in the same community have many opportunities to interact, which 
fosters and maintains social norms, including motivations to sign up for GTGP, or abandon 
it.  

Significance levels of involvement in a concurrent PES program and some socioeconomic 
and demographic variables may change when neighborhood impacts are taken into account 
through filtering out spatial autocorrelation using the ESF method. While a few earlier stud-
ies used the ESF method to eliminate spatial autocorrelation in regression residuals, they did 
not detect changes in the significance levels of independent variables (Chun and Griffith, 
2011; Xiao et al., 2017). Similarly, in this study only a few variables’ significance levels 
changed when different neighborhood sizes were used. The area of forest enrolled in a con-
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current FEBC program has a significantly negative effect in the non-spatial model, likely 
due to the FEBC program increasing farmer’s incomes and making them less dependent on 
the incentives of the GTGP program (Zhang et al. 2018b). In addition, in FNNR participants 
reported needing to spend time safeguarding their FEBC land to avoid forest fires and theft, 
which may have weakened motivations to enroll in the GTGP program and have to plant and 
care for economic or ecological trees (Yost et al., 2020). We found there is spatial autocor-
relation in the variable FEBC land area at all detected neighborhood sizes (Table 6) but its 
significance level changes from significant to insignificant only at the largest neighborhood 
size of 6 km in the ESF model (Table 4). This may suggest that a large neighborhood may 
involve some households with very different characteristics and sizes of forestland. As a 
result, the spatial dimension of the FEBC variable might lose its effects on local people’s 
intensions to enroll or not in GTGP. However, even here, as the p-value (0.067) just barely 
crosses the 0.05 threshold, there is no basis for totally rejecting the result that FEBC area 
(and the resulting household income it generates) is negatively linked to the probability of 
enrolling in GTGP, even after controlling for spatial autocorrelation. 

The influence of gender on household participation in PES program has been observed to 
vary across studies (Stevens et al., 1999; Zbinden and Lee, 2005; Chen et al., 2009; Chen et 
al., 2012; Kaczan et al., 2013; Chen et al., 2017). In our study site, the coefficient for gender 
of respondent has been found invariably negative, that is, female-headed households are less 
likely to enroll in GTGP. This can be thought of as arising from women heads’ thinking that 
they have fewer opportunities to get involved in local off-farm work so need to keep their 
land to farm for food security. The coefficient of gender varies as does its significance level 
by neighborhood size (Table 4), but the effect is generally quite strong for all neighborhood 
sizes used in ESF filtering. In the non-spatial model, its significance level is p=0.045, which 
falls only slightly to 0.053 in Model 6 at the neighborhood size of 0.1 km but has better 
p-values (lower) than 0.045 at all other neighborhood sizes (and lowest in Model 7 at 0.5 km 
at p = 0.009). The size of its coefficient is fairly stable, from –0.7 to –1.0, indicating a strong 
effect.  

Similarly, there is evidence on how neighborhood size affects the roles of socioeconomic 
variables. At the larger neighborhood sizes (0.1 km, 0.5 km, 5 km and 6 km), households of 
larger size (more members) are found to be more reluctant to participate in GTGP. This ef-
fect is insignificant at the smallest neighborhood size (0.02 km), with the p value switching 
from 0.019 (non-spatial model) to 0.083 and less significance in the spatial model. What 
might cause this? Perhaps at such a small neighborhood size, it is very common for individ-
uals to communicate with neighbors on issues related to participating in the GTGP, making 
household size not relevant.  

Finally, are there differences in the effects of neighborhood size on the effects of the var-
iable non-GTGP land (or land not yet enrolled in GTGP) on the enrolment of (additional) 
farmland in GTGP? As hypothesized, this variable is positively linked to the GTGP enroll-
ment decision in the non-spatial and all spatial ESF models, regardless of neighborhood size. 
Having more available non-GTGP land provides a wider variety of options for land use, 
such as continuing to grow crops even with participation in GTGP (Chen et al., 2009; Chen 
et al., 2012). This is also consistent with common sense as more available non-GTGP land 
should alleviate concerns about household food security (Wandersee et al., 2012; Liu et al., 
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2014; Wang et al., 2019), at the same time as some land may already be enrolled in GTGP, 
modestly contributing to income (Liu et al., 2008; Yin et al., 2014; Wang et al., 2017). The 
z-scores of Moran’s I for both household size and non-GTGP land are greater than 1.96 at all 
distances, with Moran’s I larger than zero and increasing dramatically with size of neigh-
borhood (as for household size), which suggests that there is positive spatial autocorrelation 
at all neighborhood sizes for these two variables. One reason for this spatial autocorrelation 
might be that household size and non-GTGP land are fairly homogeneous even over large 
areas in rural China. This is likely for several reasons. First, the one-child policy, terminated 
in 2015 only after the survey data were collected (Deng et al., 2016), has led to very similar 
and small family sizes, making household size vary little across space. Similarly, the total 
area of land allocated via long-term lease to rural households (including nearby and within 
FNNR) in the opening-up period in the 1980s varied very little as land in government col-
lective (communal) farms was simply divided up among the local commune member 
households (Lin, 1987).  

In sum, when we incorporate the ESF method at different neighborhood sizes, signifi-
cance levels of household size, gender, and FEBC land area change from significant to in-
significant at neighborhood sizes of 0.02 km, 0.5 km, and 6 km, respectively. Overall, we 
posit that the selected ESFs capture more heterogeneity and (relatively) more local spatial 
differentiation at these neighborhood sizes compared to the other sizes. Further research 
might help determine reasons for these spatial differences. Also worthy of mention is that 
our results are not much dependent on the way we define neighborhood. For instance, we 
selected neighborhoods based on the Queen’s or Rook’s definitions at the first, second, … up 
to the fifth orders. The corresponding results (Supplementary Tables S4, S5, S6 and S7) are 
largely consistent with the ones above. 

6  Conclusions 

In this article, we have modeled the determinants of household participation in PES pro-
grams in a case study in Guizhou province of China, with a focus on how to control neigh-
borhood or contextual effects. Alternative neighborhood sizes were used to control neigh-
borhood impacts on coefficients in a standard fixed effects logistic regression model 
(FELRM). We found that once spatial autocorrelation (owing to neighborhood effects) is 
suitably accounted for, several more reasonable coefficients and significance levels are ob-
tained but tend to differ according to neighborhood size. Therefore, not accounting for 
neighborhood impacts may often lead to biased parameter estimates and even improper con-
clusions. This issue has been largely overlooked so far in this literature, particularly with 
reference to studies on the impacts of PES policies. In this study, the eigenvector spatial fil-
tering (ESF) method is shown to be effective in controlling spatial autocorrelation in the 
analysis of spatial data. Therefore, we recommend the ESF method be considered an effec-
tive way to control neighborhood impacts and thereby reduce bias in estimates of parameters 
and improve inferences about causation and policy effects.  

The study here also makes substantive contributions to the PES and conservation litera-
tures in several respects. First, there has been little previous work investigating neighbor-
hood impacts on household decisions to participate in PES programs. Our analysis shows 
that examining such impacts may uncover mechanisms underlying PES participation (and 
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more broadly, any decisions involving spatially referenced data) that are otherwise unde-
tectable. This can help planners, policymakers, and researchers take into account community 
interests and/or spatial features in the PES programs prior to seeking to enroll households. 
Second, we observe that different kinds of neighborhood impacts may exist at different 
neighborhood sizes, so a one-scale-fits-all approach may not work well. Indeed, researchers 
should seek to identify differences in neighborhood size impacts based on theory in the field 
of study pertaining to the variables being studied and/or data-mining (experimenting with 
different neighborhood sizes). In our study, we mainly used the latter but sought to offer 
theory-based interpretations for different neighborhood size effects detected. Last but not 
least, our data-mining approach can be used to explore the effects of different sizes of 
neighborhoods, a theoretically and empirically important topic in many fields of social sci-
ence, for example, in sociology, demography, and public health (Medina et al., 2013; Zvoleff 
et al., 2013; Liu and Shen, 2017), as well as in environmental studies such as the present one.  

Our approach here may be viewed by some as only a more complex alternative to the 
more standard fixed effects model. Such a model incorporates a set of dummy variables with 
one for each spatial unit (neighborhood or community) to control contextual differences to 
obtain more unbiased estimates of parameters at lower (e.g., household and individual) lev-
els. But the fixed effects approach is statistically inefficient in costing degrees of freedom in 
the estimation (if k= number of communities, then k-1 degrees of freedom are lost). As our 
approach does not need any prior knowledge about neighborhood size, it can complement 
the usual multilevel model (or a random effects) approach, which needs to know the group-
ing of higher level units beforehand (e.g., administrative units, spatial regions). It can be 
used to explore at what size a particular neighborhood is most relevant for a certain top-
ic—viz., smaller areas within which local people influence each another in decisions related 
to purchasing foods or children walking to a primary school, larger ones for health care, 
older children attending secondary schools, and even larger ones for employment involving 
commuting to work (Hawley, 1950; Bilsborrow et al., 1984). Neighborhood size is also a 
key factor to consider in environmental conservation and natural resources management. 
Spatial effects are likely for many variables at some neighborhood size, and a 
one-size-fits-all management policy and implementation measure is likely to be inefficient. 
It is important for policymakers to develop (for example) infrastructure loca-
tion/management plans that vary with the type of infrastructure and service. We hope that 
this research will not only lead to a greater recognition of the importance of neighborhood 
effects in PES and other conservation decisions, but also provide a practical, data-mining 
based approach that helps other researchers and planners address these effects. 
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Table S1  Results of non-spatial and spatial models with neighbors within 0.1 km for probability of enrolling in 
GTGP (with fewer than the top 17 eigenvectors) 

 Model 2 Model 10 Model 11 Model 12 

Neighborhood size Non-spatial Neighbors within  
0.1 km  

Neighbors within  
0.1 km  

Neighbors within 
0.1 km  

Number of eigenvectors 0 14 15 16 

Eigenvectors NA EV1-EV14 EV1-EV15 EV1-EV16 

 Coef. p–value VIF Coef. p–value VIF Coef. p–value VIF Coef. p–value VIF 

(Intercept) –1.544 0.089  –1.352 0.168  –1.079 0.278  –1.628 0.138  

GTGP payment 4.878 <0.001 1.035 5.035 <0.001 1.046 5.217 <0.001 1.055 5.859 <0.001 1.053 

GTGP duration 0.008 0.816 1.048 –0.015 0.686 1.091 –0.018 0.616 1.097 –0.019 0.629 1.098 

Economic trees 0.638 0.015 1.430 0.719 0.009 1.455 0.726 0.009 1.465 0.850 0.004 1.464 

Ecological plants 0.100 0.713 1.415 0.085 0.766 1.441 0.152 0.599 1.477 0.181 0.557 1.473 

Neighbors participating 1.626 0.006 1.035 1.680 0.006 1.048 1.708 0.006 1.052 2.037 0.002 1.053 

FEBC land area –0.159 0.033 1.199 –0.190 0.017 1.311 –0.191 0.017 1.314 –0.224 0.008 1.315 

Age 0.025 0.009 1.129 0.027 0.013 1.366 0.025 0.026 1.380 0.030 0.013 1.408 

Gender –0.668 0.045 1.179 –0.509 0.164 1.296 –0.608 0.103 1.339 –0.605 0.138 1.436 

Education –0.109 0.001 1.210 –0.143 <0.001 1.335 –0.158 <0.001 1.428 –0.162 <0.001 1.444 
Annual agricultural 
expenses –0.556 <0.001 1.196 –0.494 0.001 1.254 –0.486 0.002 1.257 –0.431 0.009 1.266 

Local off-farm income  0.037 0.002 1.259 0.044 <0.001 1.394 0.046 <0.001 1.418 0.045 0.001 1.427 

Household size –0.204 0.019 1.282 –0.224 0.020 1.492 –0.258 0.009 1.569 –0.267 0.010 1.595 

Non-GTGP land  0.086 0.011 1.225 0.087 0.018 1.325 0.091 0.013 1.331 0.099 0.011 1.332 

AIC 543.18 541.01 539.74 539.48 

Number of observations: 435. Bold indicates change of significance level from significant at 5% level to not significant 
at 5% level 
 

Table S2  Results of non-spatial and spatial models with neighbors within 0.1 km for probability of enrolling in 
GTGP (with the top 17 or more eigenvectors) 

  Model 2 Model 13 Model 14 

Neighborhood size Non-spatial Neighbors within 0.1 km  Neighbors within 0.1 km  

Number of eigenvectors  0 17 18 

Eigenvectors NA EV1–EV17 EV1–EV18 

  Coef. p–value VIF Coef. p–value VIF Coef. p–value VIF 

(Intercept) –1.544 0.089  –0.806 0.428  –1.684 0.126  

GTGP payment 4.878 <0.001 1.035 5.126 <0.001 1.082 5.888 <0.001 1.083 

GTGP duration 0.008 0.816 1.048 –0.021 0.568 1.121 –0.013 0.738 1.129 

Economic trees 0.638 0.015 1.430 0.713 0.010 1.520 0.842 0.005 1.517 

Ecological plants 0.100 0.713 1.415 0.142 0.624 1.481 0.204 0.508 1.486 

Neighbors participating 1.626 0.006 1.035 1.727 0.006 1.088 2.118 0.002 1.097 

FEBC land area –0.159 0.033 1.199 –0.190 0.018 1.363 –0.250 0.004 1.429 

Age 0.025 0.009 1.129 0.022 0.046 1.477 0.032 0.009 1.482 

Gender –0.668 0.045 1.179 –0.752 0.054 1.423 –0.628 0.123 1.432 

Education –0.109 0.001 1.210 –0.165 <0.001 1.451 –0.166 <0.001 1.470 

(To be continued on the next page) 
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(Continued) 

  Model 2 Model 13 Model 14 

Neighborhood size Non–spatial Neighbors within 0.1 km Neighbors within 0.1 km 
Number of eigenvectors  0 17 18 

Eigenvectors NA EV1–EV17 EV1–EV18 
 Coef. p–value VIF Coef. p–value VIF Coef. p–value VIF 
Annual agricultural expenses –0.556 <0.001 1.196 –0.502 0.001 1.270 –0.446 0.007 1.273 
Local off–farm income  0.037 0.002 1.259 0.046 <0.001 1.428 0.046 <0.001 1.434 
Household size –0.204 0.019 1.282 –0.274 0.006 1.558 –0.265 0.010 1.549 
Non–GTGP land  0.086 0.011 1.225 0.090 0.014 1.365 0.092 0.019 1.373 

AIC 543.18 497.92 497.27 

 Model 15 Model 16 

Neighborhood size Neighbors within 0.1 km  Neighbors within 0.1 km 
Number of eigenvectors  19 20 

Eigenvectors EV1–EV19 EV1–EV20 
  Coef. p–value VIF Coef. p–value VIF 
(Intercept) –1.661 0.133  –1.411 0.211  
GTGP payment 5.930 <0.001 1.085 6.059 <0.001 1.090 
GTGP duration –0.013 0.745 1.134 –0.005 0.896 1.139 
Economic trees 0.865 0.004 1.520 0.843 0.005 1.511 
Ecological plants 0.238 0.444 1.490 0.213 0.498 1.463 
Neighbors participating 2.150 0.001 1.101 2.016 0.003 1.097 
FEBC land area –0.252 0.004 1.414 –0.293 0.001 1.457 
Age 0.030 0.013 1.496 0.028 0.027 1.526 
Gender –0.685 0.096 1.462 –0.648 0.117 1.450 
Education –0.163 <0.001 1.475 –0.157 <0.001 1.468 
Annual agricultural expenses –0.479 0.004 1.318 –0.459 0.009 1.356 
Local off–farm income  0.046 <0.001 1.444 0.048 <0.001 1.476 
Household size –0.261 0.012 1.558 –0.247 0.020 1.566 
Non–GTGP land  0.097 0.014 1.373 0.082 0.042 1.373 

AIC 497.5 487.28 

Number of observations: 435. Bold numbers with asterisk indicate change of significance level from significant at 5% 
level to not significant at 5% level 

 
Table S3  Results of Moran’s test for deviance residuals in the models of Tables S1 and S2 

Model (Neighborhood) Contiguity matrix Eigenvectors Moran’s I Expected I Variance z–score p–value 

Model 2 (non-spatial model) Neighbors within 0.1 km NA 0.134 –0.004 0.001 3.790 0.000 

Model 10 (0.1 km NB) Neighbors within 0.1 km EV1–EV14 0.042 –0.072 0.001 4.382 0.000 

Model 11 (0.1 km NB) Neighbors within 0.1 km EV1–EV15 0.031 –0.074 0.001 4.106 0.000 

Model 12 (0.1 km NB) Neighbors within 0.1 km EV1–EV16 0.021 –0.077 0.001 3.829 0.000 

Model 13 (0.1 km NB) Neighbors within 0.1 km EV1–EV17 –0.143 –0.079 0.001 –2.507 0.012 

Model 14 (0.1 km NB) Neighbors within 0.1 km EV1–EV18 –0.148 –0.082 0.001 –2.629 0.009 

Model 15 (0.1 km NB) Neighbors within 0.1 km EV1–EV19 –0.155 –0.084 0.001 –2.801 0.005 

Model 16 (0.1 km NB) Neighbors within 0.1 km EV1–EV20 –0.194 –0.087 0.001 –4.303 0.000 
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Table S4  Comparison for the non-spatial model, best-practice model, and Rook 3rd order ESF model: dependent 
variable, probability of enrolling in GTGP 

  Model 2 Model 6 Model 24 
Contiguity Non–spatial Neighbors within 0.1 km  Rook 3rd order 
Number of candidate eigenvectors 
for stepwise procedure NA 12 16 

Number of eigenvectors  0 5 4 

Eigenvectors NA EV9, EV4, EV6,  
EV10, EV17 EV16, EV2, EV10, EV5 

  Coef. p–value VIF Coef. p–value VIF Coef. p–value VIF 
(Intercept) –1.544 0.089  –2.239 0.027  –1.028 0.288  
GTGP payment 4.878 <0.001 1.035 5.571 <0.001 1.057 4.422 0.001 1.036 
GTGP duration 0.008 0.816 1.048 –0.002 0.959 1.084 –0.006 0.877 1.065 
Economic trees 0.638 0.015 1.430 0.748 0.008 1.490 0.590 0.028 1.424 
Ecological plants 0.1 0.713 1.415 0.087 0.766 1.455 –0.070 0.805 1.425 
Neighbors participating 1.626 0.006 1.035 1.791 0.004 1.053 1.597 0.009 1.038 
FEBC land area –0.159 0.033 1.199 –0.180 0.021 1.231 –0.169 0.031 1.248 
Age 0.025 0.009 1.129 0.034 0.001 1.240 0.022 0.032 1.185 
Gender –0.668 0.045 1.179 –0.713 0.053 1.259 –0.577 0.093 1.200 
Education –0.109 0.001 1.210 –0.100 0.008 1.278 –0.100 0.006 1.290 
Annual agricultural expenses –0.556 <0.001 1.196 –0.504 0.002 1.221 –0.598 <0.001 1.267 
Local off–farm income  0.037 0.002 1.259 0.039 0.002 1.309 0.041 0.001 1.233 
Household size –0.204 0.019 1.282 –0.201 0.032 1.346 –0.248 0.008 1.355 
Non–GTGP land  0.086 0.011 1.225 0.091 0.011 1.267 0.117 0.002 1.365 

AIC 543.18 506.44 527.84 

Number of observations: 435. Bold indicates change of significance level from significant at 5% level to not significant 
at 5% level. 
We first generated eigenvectors for Queen and Rook 1st to 5th order contiguity and cooperated with the FELRM using 
stepwise procedure respectively (Tables S5 and S6). We calculated Moran’s I and p-value for each model (Table S7). 
There are spatial autocorrelations detected in the non-spatial models with 1st order queen contiguity, 2nd order queen 
contiguity, 3rd order queen contiguity, 1st order rook contiguity, 2nd order rook contiguity, 3rd order rook contiguity, 4th 
order rook contiguity, and 5th order rook contiguity. ESF method can account the spatial autocorrelations properly for 
these models (Table S7). Model 24 has the highest p-value for Moran’s I compared to other Queen and Rook ESF models. 
The best-practice model (Model 6) has the lowest AIC score and highest Moran’s I p-value compared to other distance 
based ESF models. 
 
Table S5  Results of non-spatial and spatial (Queen 1st–5th order) models for probability of enrolling in GTGP 

 Model 2 Model 17 Model 18 
Contiguity Non-spatial Queen 1st order Queen 2nd order 
Number of candidate  
eigenvectors for  
stepwise procedure 

NA 29 18 

Number of eigenvectors  0 19 4 

Eigenvectors NA 

EV16, EV31, EV40, EV34, 
EV28, EV38, EV2, EV5, 

EV39, EV22, EV35, EV18, 
EV19, EV10, EV24, EV6, 

EV25, EV13, EV4 

EV16, EV2, EV10, EV5 

  Coef. p–value VIF Coef. p–value VIF Coef. p–value VIF 

(Intercept) –1.544 0.089  –0.65 0.551  –1.028 0.288  
GTGP payment 4.878 <0.001 1.035 6.005 <0.001 1.102 4.422 0.001 1.036 
GTGP duration 0.008 0.816 1.048 0.015 0.709 1.156 –0.006 0.877 1.065 

(To be continued on the next page) 
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 (Continued) 
 Model 2 Model 17 Model 18 

Contiguity Non-spatial Queen 1st order Queen 2nd order 
Number of candidate  
eigenvectors for  
stepwise procedure 

NA 29 18 

Number of eigenvectors  0 19 4 

Eigenvectors NA 

EV16, EV31, EV40, EV34, 
EV28, EV38, EV2, EV5, 

EV39, EV22, EV35, EV18, 
EV19, EV10, EV24, EV6, 

EV25, EV13, EV4 

EV16, EV2, EV10, EV5 

  Coef. p–value VIF Coef. p–value VIF Coef. p–value VIF 
Economic trees 0.638 0.015 1.430 0.657 0.024 1.478 0.59 0.028 1.424 
Ecological plants 0.1 0.713 1.415 0.095 0.759 1.511 –0.07 0.805 1.425 
Neighbors participating 1.626 0.006 1.035 1.362 0.039 1.083 1.597 0.009 1.038 
FEBC land area –0.159 0.033 1.199 –0.326 <0.001 1.490 –0.169 0.031 1.248 
Age 0.025 0.009 1.129 0.022 0.058 1.331 0.022 0.032 1.185 
Gender –0.668 0.045 1.179 –0.653 0.103 1.425 –0.577 0.093 1.200 
Education –0.109 0.001 1.210 –0.154 <0.001 1.454 –0.1 0.006 1.290 
Annual agricultural expenses –0.556 <0.001 1.196 –0.449 0.009 1.460 –0.598 <0.001 1.267 
Local off–farm income  0.037 0.002 1.259 0.056 <0.001 1.423 0.041 0.001 1.233 
Household size –0.204 0.019 1.282 –0.364 0.001 1.616 –0.248 0.008 1.355 
Non–GTGP land  0.086 0.011 1.225 0.127 0.002 1.454 0.117 0.002 1.365 

AIC 543.18 509.58 527.84 

 Model 19 Model 20 Model 21 
Contiguity Queen 3rd order Queen 4th order Queen 5th order 
Number of candidate eigen-
vectors for stepwise procedure 10 9 8 

Number of eigenvectors  4 4 4 

Eigenvectors EV5, EV4, EV2, EV6 EV5, EV4, EV2, EV6 EV5, EV4, EV2, EV6 
  Coef. p–value VIF Coef. p–value VIF Coef. p–value VIF 
(Intercept) –1.363 0.148  –1.368 0.146  –1.371 0.145  
GTGP payment 5.049 <0.001 1.047 5.049 <0.001 1.047 5.048 <0.001 1.047 
GTGP duration 0.005 0.887 1.057 0.005 0.897 1.058 0.004 0.901 1.058 
Economic trees 0.59 0.027 1.434 0.591 0.026 1.434 0.591 0.026 1.433 
Ecological plants 0.093 0.739 1.427 0.095 0.733 1.426 0.096 0.73 1.426 
Neighbors participating 1.58 0.009 1.047 1.589 0.008 1.047 1.595 0.008 1.048 
FEBC land area –0.167 0.029 1.216 –0.165 0.03 1.215 –0.164 0.031 1.214 
Age 0.026 0.01 1.158 0.026 0.009 1.158 0.026 0.009 1.157 
Gender –0.74 0.03 1.224 –0.738 0.031 1.223 –0.736 0.031 1.222 
Education –0.119 0.001 1.251 –0.119 0.001 1.250 –0.119 0.001 1.250 
Annual agricultural expenses –0.477 0.001 1.217 –0.475 0.001 1.220 –0.475 0.001 1.222 
Local off–farm income  0.041 0.001 1.302 0.041 0.001 1.304 0.041 0.001 1.305 
Household size –0.296 0.001 1.424 –0.299 0.001 1.428 –0.3 0.001 1.431 
Non–GTGP land  0.111 0.002 1.340 0.11 0.003 1.336 0.109 0.003 1.334 

AIC 538.44 538.44 538.08   

Number of observations: 435. 
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Table S6  Results of non-spatial and spatial (Rook 1st–5th order) models for probability of enrolling in GTGP 

 Model 2 Model 22 Model 23 

Contiguity Non-spatial Rook 1st order Rook 2nd order 
Number of candidate eigen-
vectors for stepwise procedure NA 43 18 

Number of Eigenvectors  0 19 4 

Eigenvectors NA 

EV16, EV31, EV40, EV34, 
EV28, EV38, EV2, EV5, 

EV39, EV22, EV35, EV18, 
EV19, EV10, EV24, EV6, 

EV25, EV13, EV4 

EV16, EV2, EV10, EV5 

  Coef. p–value VIF Coef. p–value VIF Coef. p–value VIF 
(Intercept) –1.544 0.089  –0.65 0.551  –1.068 0.269  

GTGP payment 4.878 <0.001 1.035 6.005 <0.001 1.102 4.392 0.001 1.036 

GTGP duration 0.008 0.816 1.048 0.015 0.709 1.156 –0.006 0.876 1.066 

Economic trees 0.638 0.015 1.430 0.657 0.024 1.478 0.593 0.027 1.423 

Ecological plants 0.1 0.713 1.415 0.095 0.759 1.511 –0.06 0.831 1.423 

Neighbors participating 1.626 0.006 1.035 1.362 0.039 1.083 1.601 0.009 1.039 

FEBC land area –0.159 0.033 1.199 –0.326 <0.001 1.490 –0.168 0.032 1.249 

Age 0.025 0.009 1.129 0.022 0.058 1.331 0.022 0.028 1.180 

Gender –0.668 0.045 1.179 –0.653 0.103 1.425 –0.595 0.083 1.198 

Education –0.109 0.001 1.210 –0.154 <0.001 1.454 –0.1 0.006 1.288 

Annual agricultural expenses –0.556 <0.001 1.196 –0.449 0.009 1.460 –0.597 <0.001 1.268 

Local off–farm income  0.037 0.002 1.259 0.056 <0.001 1.423 0.04 0.001 1.237 

Household size –0.204 0.019 1.282 –0.364 0.001 1.616 –0.242 0.009 1.355 

Non–GTGP land  0.086 0.011 1.225 0.127 0.002 1.454 0.116 0.002 1.361 

AIC 543.18 509.58 528.8 

 Model 24 Model 25 Model 26 

Contiguity Rook 3rd order Rook 4th order Rook 5th order 
Number of candidate eigen-
vectors for stepwise procedure 16 15 15 

Number of Eigenvectors  4 5 4 
Eigenvectors EV16, EV2, EV10, EV5 EV2, EV5, EV10, EV14, EV6 EV2, EV5, EV10, EV14 

  Coef. p–value VIF Coef. p–value VIF p–value p–value VIF 
(Intercept) –1.028 0.288  –1.324 0.158  –1.433 0.123  

GTGP payment 4.422 0.001 1.036 4.822 <0.001 1.041 4.727 0.001 1.037 

GTGP duration –0.006 0.877 1.065 0.003 0.934 1.058 0.003 0.942 1.057 
Economic trees 0.59 0.028 1.424 0.574 0.031 1.429 0.598 0.024 1.425 
Ecological plants –0.07 0.805 1.425 0.039 0.889 1.416 0.029 0.916 1.416 
Neighbors participating 1.597 0.009 1.038 1.518 0.011 1.042 1.572 0.009 1.039 
FEBC land area –0.169 0.031 1.248 –0.152 0.049 1.215 –0.147 0.055 1.209 

Age 0.022 0.032 1.185 0.025 0.011 1.147 0.026 0.008 1.140 
Gender –0.577 0.093 1.200 –0.642 0.059 1.201 –0.609 0.072 1.184 
Education –0.1 0.006 1.290 –0.119 0.001 1.290 –0.116 0.001 1.281 
Annual agricultural expenses –0.598 <0.001 1.267 –0.497 0.001 1.234 –0.519 0.001 1.227 
Local off–farm income  0.041 0.001 1.233 0.038 0.001 1.254 0.038 0.002 1.254 
Household size –0.248 0.008 1.355 –0.255 0.006 1.391 –0.243 0.008 1.372 
Non–GTGP land  0.117 0.002 1.365 0.103 0.005 1.348 0.102 0.005 1.353 
AIC 527.84 538.92 538.9   
Number of observations: 435. Bold indicates change of significance level from significant at 5% level to not significant 
at 5% level. 
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Table S7  Results of Moran’s test for deviance residuals in the models of Tables S5 and S6 

Model (Neighborhood) Contiguity matrix Moran’s I Expected I Variance Z–score p–value 

Model 2 (Queen 1st order) Queen 1st order 0.034 –0.005 0.000 2.611 0.009 

Model 17 (Queen 1st order) Queen 1st order –0.055 –0.032 0.000 –1.906 0.057 

Model 2 (Queen 2nd order) Queen 2nd order 0.022 –0.004 0.000 3.147 0.002 

Model 18 (Queen 2nd order) Queen 2nd order –0.004 –0.009 0.000 0.658 0.511 

Model 2 (Queen 3rd order) Queen 3rd order 0.007 –0.003 0.000 2.117 0.034 

Model 19 (Queen 3rd order) Queen 3rd order –0.007 –0.003 0.000 –0.752 0.452 

Model 2 (Queen 4th order) Queen 4th order 0.004 –0.003 0.000 1.377 0.169 

Model 20 (Queen 4th order) Queen 4th order –0.010 –0.003 0.000 –1.357 0.175 

Model 2 (Queen 5th order) Queen 5th order 0.002 –0.003 0.000 1.036 0.300 

Model 21 (Queen 5th order) Queen 5th order –0.011 –0.003 0.000 –1.625 0.104 

Model 2 (Rook 1st order) Rook 1st order 0.034 –0.005 0.000 2.611 0.009 

Model 22 (Rook 1st order) Rook 1st order –0.055 –0.032 0.000 –1.906 0.057 

Model 2 (Rook 2nd order) Rook 2nd order 0.022 –0.004 0.000 3.147 0.002 

Model 23 (Rook 2nd order) Rook 2nd order –0.004 –0.009 0.000 0.637 0.524 

Model 2 (Rook 3rd order) Rook 3rd order 0.019 –0.004 0.000 2.867 0.004 

Model 24 (Rook 3rd order) Rook 3rd order –0.005 –0.009 0.000 0.524 0.601 

Model 2 (Rook 4th order) Rook 4th order 0.018 –0.004 0.000 2.750 0.006 

Model 25 (Rook 4th order) Rook 4th order –0.001 –0.010 0.000 1.399 0.162 

Model 2 (Rook 5th order) Rook 5th order 0.018 –0.004 0.000 2.686 0.007 

Model 26 (Rook 5th order) Rook 5th order 0.001 –0.009 0.000 1.446 0.148 

Bold numbers indicate Moran’s I significant at 5% level. 
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