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Abstract: Payments for Ecosystem Services (PES) programs have been implemented in both
developing and developed countries to conserve ecosystems and the vital services they
provide. These programs also often seek to maintain or improve the economic wellbeing of
the populations living in the corresponding (usually rural) areas. Previous studies suggest
that PES policy design, presence or absence of concurrent PES programs, and a variety of
socioeconomic and demographic factors can influence decisions of households to participate
or not in the PES program. However, neighborhood impacts on household participation in
PES have rarely been addressed. This study explores potential neighborhood effects on
villagers’ enrollment in the Grain-to-Green Program (GTGP), one of the largest PES pro-
grams in the world, using data from China’s Fanjingshan National Nature Reserve. We utilize
a fixed effects logistic regression model in combination with the eigenvector spatial filtering
(ESF) method to explore whether neighborhood size affects household enrollment in GTGP.
By comparing the results with and without ESF, we find that the ESF method can help ac-
count for spatial autocorrelation properly and reveal neighborhood impacts that are otherwise
hidden, including the effects of area of forest enrolled in a concurrent PES program, gender
and household size. The method can thus uncover mechanisms previously undetected due
to not taking into account neighborhood impacts and thus provides an additional way to
account for neighborhood impacts in PES programs and other studies.
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1 Introduction

Recent years have witnessed a number of studies of neighborhood impacts on human deci-
sion-making. The concept of “neighborhood” (similar to community), via its effects on peo-
ple’s attitudes and values, has been found to be fundamental in many fields, including hu-
man ecology, sociology, and demography. Neighborhoods/communities in which people live
influence attitudes and activities because people living in the same geographic area possess
the same or similar natural and social environments and interact with each other (Lee et al.,
1994). Individuals learn from neighbors, make adjustments, and make decisions (Foster and
Rosenzweig, 1995). As a result, social norms are formed within neighborhoods of various
sizes, in which people follow these norms (Coleman, 1994; Bendor and Swistak, 2001;
White and Johnson, 2016). However, the appropriate definition of neighborhood has been
found to vary depending on the specific context, including the topic of study, data available,
and scientific method(s) used. In general, neighborhood impacts come into play due to social
interactions, affecting social norms and individual behavior (Dietz, 2002). The term neigh-
borhood impact has also been used in spatial data analysis involving distance decay to ad-
dress spatial autocorrelation (Case, 1992; Page and Solon, 2003).

The importance of this concept dates back to the classic sociological study of Amos
Hawley (1950): “From a spatial standpoint, the community may be defined as comprising
that area the resident population of which is interrelated and integrated with reference to its
daily requirements”. Residents within the same neighborhood often affect (and are affected
by) each other’s values, attitudes, decisions, and activities, making data about these individ-
uals correlated. If we use such correlated data directly without considering neighborhood
effects, there is a high chance of generating biased modeling results and misinterpreting
people’s decisions or behavior (Bilsborrow et al., 1984; Chen et al., 2009; Zvoleff et al.,
2013; Bilsborrow 2016; Sullivan et al., 2017).

One domain to examine potential neighborhood effects on human decision-making is to
evaluate people’s participation in payments for ecosystem services (PES) programs, for sev-
eral reasons. First, ecosystem preservation and restoration if naturally challenging: an eco-
system is embedded in geographic space, with processes and functions operating at varying
spatial scales. Such processes and functions, if intervened by major disturbances (e.g., natu-
ral disasters, human actions), may dysfunction or even fail. This fact may explain—at least
partially—some unsuccessful reports of PES implementation over the last 2-3 decades (Pat-
tanayak et al., 2010). Second, PES programs offer incentives to landowners so that they
change land use decisions to maintain or restore ecosystem services (Jack et al., 2008;
Wunder, 2005, 2008). The PES programs require voluntary participation of landowners
(Wunder, 2005), so factors that influence landowners’ participation and compliance are
likely to affect the effectiveness of the PES program (Kaczan et al., 2013; Bremer et al.,
2014). Previous PES studies have found that a variety of factors, such as program imple-
mentation procedures, local social norms, and the existence of concurrent PES programs,
may affect household enrollment decisions (Chen et al., 2009; Layton and Siikamiki, 2009;
Nordén, 2014; Sarkissian et al., 2017; Sorice et al., 2018; Yost et al., 2020).

Nevertheless, there is little empirical evidence regarding whether or how spatial factors,
defined as neighborhoods of various sizes, may affect household participation in PES pro-
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grams. Households within a neighborhood may share characteristics due to spatial autocor-
relation in seemingly “non-spatial” ways (Sullivan et al., 2017). Therefore, it is important to
account for neighborhood impacts, if any, when seeking to understand household enrollment
decisions in PES.

In this context, we examine the Grain-to-Green Program (GTGP) in Fanjingshan National
Nature Reserve (FNNR), Guizhou Province, China. The GTGP, one of the largest PES pro-
grams in the world, aims to persuade farmers to convert cropland on sloping land back to
forest or grassland (Liu et al., 2008; Chen et al., 2009). The purpose of this study is to ex-
plore whether and how much neighborhood effects affect household participation in GTGP
in the FNNR. The eigenvector spatial filtering (ESF) technique (Griffith ez al., 2019), inte-
grated with fixed effects logistic regression models (FELRM), is employed to study how
non-spatial factors, after accounting for neighborhood impacts, impact household enrollment
in GTGP. This paper extends the work of Yost et al. (2020), which explored the influences of
non-spatial factors on farmers’ participation in GTGP in the FNNR. In this study, we test
whether and how household decisions to enroll or not are affected by neighborhood effects,
controlling for socioeconomic and demographic factors.

2 Background
2.1 The Grain-to-Green Program

The Grain-to-Green Program (GTGP), one of the largest ecological restoration programs in
the world, has been implemented in China starting in 1999 (Feng ef al., 2013). The Chinese
government has spent about 28.8 billion USD on GTGP during the 1999-2008 period (LU et
al., 2012), with a commitment to invest a total of more than 40 billion USD by 2050 (Feng
et al., 2013, 2016). The goal of GTGP is to significantly reduce soil erosion and land deser-
tification by converting cultivated land to forest or grassland (Uchid et al., 2009). The main
criterion for enrolling land in GTGP is that the slope of the farmland must be greater than
25° in southwestern China and greater than 15° in northwestern China (Chen et al., 2009).
By 2008, 9.27 million ha of farmlands had been transferred to forestland or grassland
through GTGP (Liu et al., 2008). There are some alternative names of GTGP which aims at
increasing forestland and reducing farmland, such as Sloping Land Conversion Program
(SLCP) (Lu and Yin, 2020), Conversion of Cropland to Forest Program (CCFP) (Wang et al.,
2020; Zhang et al., 2020), and Returning Farmland to Forest Program (RFFP) (Li et al.,
2019; Li et al., 2020).

The ecological effects of GTGP were already noticeable nationwide in that vegetation
coverage increased, water surface runoff declined, and soil erosion was effectively con-
trolled (Long et al., 2006; Xu et al., 2006; Wang et al., 2016) as the forest area grew by
952,000 ha from 2000 to 2005 (Yang, 2006). In addition, there were positive socioeconomic
impacts of GTGP, including poverty alleviation and substantial changes in household in-
come structures due to shifting from on-farm work to off-farm work (Liu ef al., 2008). Re-
gardless of these reported benefits, there still exists considerable uncertainty regarding
GTGP design and implementation, perhaps precluding maximum household participation
(Adhikari and Boag, 2013).
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Previous studies revealed that household enrollment in PES programs is influenced by
PES program features (Zbinden and Lee, 2005; Adhikari and Boag, 2013; Adhikari and
Agrawal, 2014; Nordén, 2014; Zhang et al., 2018a), social norms (Chen et al., 2012, 2009),
whether there are concurrent PES programs (Yost ef al., 2020), and socioeconomic and de-
mographic factors (Layton and Siikamiki, 2009; Kaczan et al., 2013; Bremer et al., 2014;
Chen et al., 2017). The amount of payment is one of the major factors, yet not the only one,
that affects household enrollment in PES programs (Sarkissian et al., 2017; Sorice et al.,
2018). Other factors include program duration, land use options for enrolled parcels, social
norms in the local community, presence of concurrent PES programs, gender of household
head, education, financial capital, and household economic factors (Zbinden and Lee, 2005;
Chen et al., 2009, 2012; Gillenwater, 2012; Balderas et al., 2013; Bremer et al., 2014; Chen
et al., 2017; Zhang et al., 2018b; Yost et al., 2020). In the existing literature regarding PES
participation, however, little is known about the role of neighborhood impacts.

Guizhou Province is located in southwest China. About 73% of the area has developed
karst landforms and suffers varying levels of soil erosion because of excessive logging and
conversion to farmland on its steep slopes (Xu et al., 2008; Zhang et al., 2007). FNNR in
Guizhou Province was one of the first regions to participate in the GTGP, starting in 2000
when 774 households participated with a total of 1296 mu (1 mu = 1/15 ha). Local farmers
received an average of 230 yuan/mu/year from 2000, but the compensation dropped to 134
yuan/mu/year starting in 2007. The GTGP policy always allowed farmers to plant ecological
trees such as Chinese fir (Cunninghamia lanceolata), but sometimes did and sometimes did
not allow planting economic or commercial trees such as tea (Camellia sinensis) which pro-
vided cash incomes after only a few years. Usually the local government provided seedlings
to participating households for planting on the enrolled land parcels. By enrolling farmland
in GTGP, participants were freed up from on-farm work on that land and thus expected to be
more likely to seek off-farm employment, giving rise to increases in overall household in-
come and less reliance on agriculture (Liu and Diamond, 2005; Uchida et al., 2009).

2.2 Neighborhood impacts

Neighborhood effects on human decision-making are likely affecting local people’s GTGP
enrolment decisions, yet little is known about such effects. As an example, Murray and
Gottsegen (1997) employed a location planning model, where block groups were aggregated
to different sizes for location planning in the Buffalo (US) metropolitan area. They found
that different degrees of aggregation led to the same optimal solution with high stability. On
the other hand, Sullivan et al. (2017) found neighborhood size was influential in affecting
collective actions to remove the invasive species, Mikania micrantha, that had degraded lo-
cal socio-ecological systems and human wellbeing. Also, neighbor’s opinions were found to
influence household decisions about removing invasive species after other relevant factors
were controlled (Sullivan ef al., 2017).

Nevertheless, the literature on household enrollment in PES programs has focused on PES
program aspects and the impact of socioeconomic, demographic, geographic, and environ-
mental factors, ignoring interactions among people and households. Not considering neigh-
borhood factors (expressed statistically as spatial autocorrelation) is likely to lead to biased
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regression coefficients of the factors studied (An e al; 2016; Sullivan et al., 2017). Fur-
thermore, it is especially important to account for neighborhood impacts from a policy per-
spective, as policy-makers and implementers seek to maximize the collaboration of neigh-
boring landholders to achieve the intended conservation goals (e.g., reforestation).

2.3 Eigenvector spatial filtering

The eigenvector spatial filtering (ESF) method is a relatively recent, non-parametric statis-
tical approach for dealing with spatial autocorrelation (Griffith, 2000; Chun, 2008). Com-
pared with the spatial autoregressive (SAR) model, the ESF method provides a more flexible
way to account for spatial autocorrelation impacts as the SAR approach uses the maximum
likelihood method for parameter estimation, which becomes unreliable for small datasets
(Burden et al., 2015). In addition, the ESF method can be utilized for non-Gaussian models,
including logistic regression and Poisson regression (Griffith et al., 2019). The aim of the
ESF method is to decompose key variables in multiple regression models into spatial and
non-spatial components. Given locational information (often x, y coordinates) of all records
or observations in a dataset, the ESF method extracts a set of eigenvectors from a given con-
tiguity matrix, which is defined as:

T T
MCM:[,L]C[[LJ,
n n

where / is an n x n identity matrix, 1 indicates an nx1 matrix or a column vector with n rows
of 1; T represents the operation of transposing a matrix, C is an nx n binary spatial weights
matrix; and #z is the number of observations. It is noted that the eigenvectors Ey, Es, ..., E,
are orthogonal and associated with the corresponding eigenvalues 4;>4y ...>4, (Chun and
Griffith, 2013). Eigenvectors can be selected to enter the regression model to eliminate spa-
tial autocorrelation (Tiefelsdorf and Griffith, 2007; Griffith, 2000; Chun and Griffith, 2011).
A useful way to select the most influential eigenvectors is a stepwise procedure (Chun et al.,
2016), but it is slow when the number of observations is large. The least absolute shrinkage
and selection operator (LASSO) has thus been proposed to increase efficiency, and is much
faster than the stepwise procedure (Seya et al., 2015). In addition, some studies have re-
vealed that it is also a practical way to choose the top k eigenvectors to account for neigh-
borhood impacts with extensive research devoted to determining £ (Chun and Griffith, 2011;
An et al., 2016; Sullivan et al., 2017).

The ESF method has been used in recent years in studying migration (Clairfontaine et al.,
2015; Griffith et al., 2017; Liu and Shen, 2017), real estate prices (Clairfontaine et al., 2015;
Griffith et al., 2017; Liu and Shen, 2017), crime distribution and dynamics (Chun, 2014;
Helbich and Arsanjani, 2015; Medina et al., 2018), and ecological and biogeographical
issues (Michel and Knouft, 2014; Sternberg et al., 2014; Yang et al., 2014; Lara et al., 2016).
As people residing in the same or close neighorhoods tend to be similar in a variety of
dimensions, e.g., values, attitudes, incomes, physical environments, and policy contexts, this
leads to spatial autocorrelation in those measures. The conceptual link between
neighborhood effects and spatial autocorrelation thus makes methods dealing with the latter
good candidates to handle neighborhood effects. However, there are few studies on how
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neighborhood features, through the construction of spatial units (i.e., aggregating data
records) affect regression results. The ESF method thus has important potential to partition
the values of certain variables into a component due to neighborhood effects (spatial
autocorrelation) and a component independent of neighborhood effects. To the best of our
knowledge, no previous study has used the ESF method to do this for evaluating the effects
of conventional factors on household participation in PES programs, as proposed here.
Specifically, we will explore the effects of defining neighborhoods of varying size to correct
for the usual regression bias, recovering the hidden (due to neighborhood effects) “role” of
relevant variables.

3 Methods
3.1 Study site and data collection

This study aims to identify the unbiased effects of variables on household enrollment deci-
sions (in GTGP) after correcting potential neighborhood-induced confounding impacts in a
key ecological study area in China. The study site is Fanjingshan National Nature Reserve
(27°44°42"-28°03"11"N, 108°34°19"-108°48°30"E) located in the Wuling Mountains, Gui-
zhou Province, Southwest China (Figure 1). FNNR is a UNESCO Biosphere Reserve
(LW.H.E. Report), which has a humid and mid-subtropical monsoon climate with hot and
humid summers and mild winters. FNNR provides habitats for many wildlife species desig-
nated as endangered by the Chinese government, such as the Guizhou snub-nosed monkey
(Rhinopithecus brelichi), the Asiatic black bear (Ursus thibetanus), and Elliot’s pheasant
(Syrmaticus ellioti) (Yang et al., 2002). Moreover, FNNR is home to several endangered
plant species, including the dove-tree (Davidia involucrata) and the Fangjinshan fir (4bies
fanjingshanensis) (GEF Project Team, 2004). The steep terrain also helps provide habitats
for various other species, but increases the risk of soil erosion.

There are about 13,000 indigenous people living in the 3256 households inside and in the
immediate buffer zone of FNNR (An et al., 2020). In order to conduct a household survey in
2014, a representative probability sample of 605 households was selected for interview us-
ing a stratified random sampling strategy (for sampling and survey details, see Yost et al.,
2020). One adult from each household was selected to respond, most often the household
head. Out of the 605 households, a subset of about one quarter was selected for carrying out
435 experiments (three per household: see Yost et al., 2020 for experiment details). The re-
sulting 147 households have x and y geographic coordinates and complete data for other
variables used in the data analysis.

Payment levels, program duration, and whether neighbors are perceived to be willing to
participate are considered a priori potentially important variables affecting individual
household decisions to participate in PES programs (Bremer et al, 2014; Chen et al, 2009;
Sorice et aj 2018; Tsitrou et al; 2013). Following a pretest based on 29 households, Yost et
al. (2020) developed three hypothetical scenarios for each of four program components: PES
payment level, PES program duration, post-enrollment land use options allowed, and per-
ceived participation levels of neighbors. Each of these four hypothetical variables was al-
lowed to have three values, from which the interviewer randomly chose one, combined to
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Figure 1 Fanjingshan National Reserve and sample households in the study site. The core zone designation was
based on both conservation goals and local people’s livelihood needs, resulting in a small number of households
located within the core zone. At the same time, some households were included in the survey and subsequent data
analysis even though they are just outside the reserve’s boundary because they affect the reserve through various
activities such as fuelwood collection and collection of medicinal herbs.

form a policy scenario. Under a given scenario, we then asked the household respondent if
he/she would be willing to enroll farmland (additional, if already had enrolled some) in the
Grain-to-Green Program (GTGP). Data collected on the respondent’s age, gender, and edu-
cation level, household size, agricultural expenses in the past 12 months, total off-farm in-
come in the past 12 months, and area of farmland not currently enrolled in GTGP were
drawn upon in this study. To examine the impacts of a concurrent PES program on the
household’s decision to enroll in the GTGP, the study includes a variable on whether the
household is participating in the Forest Ecological Benefit Compensation (FEBC) program
(measured by the logarithm of the amount of forested land enrolled, since payments are
based directly on the area). The resulting 13 independent variables are classified into three
categories of PES policy dimensions, participation in a concurrent PES program, and socio-
economic and demographic variables (Table 1).

3.2 Mixed and fixed effects logistic regression model

The data were collected at individual, household, and village levels, which formed a multi-
level dataset for us to examine local people’s decision-making regarding their GTGP partic-
ipation. However, there were only three experiments per household which were not enough
for random or fixed effects (Maas et al., 2008; for different opinions in this regard, see Guo
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Table 1 Variable names, descriptions and summary statistics

. _r Standard .
Category Variable Description Type Mean deviation Min Max

PES payment levels for
GTGP payment three scenarios (1000
yuan/mu/year)

Discrete; 0.1, 0.2, 0.3

for three scenarios 0.197 0081 0.1 03

PES program duration
GTGP duration  for three different sce-
narios

Discrete; 4, 8, 12
years

7.70  3.16 4 12

Allowed to plant only
PES policy Economic trees  economic trees after
enrolling in program

Dichotomous; yes =

lino=0 040 049 0 1

dimension
. Allowed to plant only . . _
Ecological ecological trees after chhoiomous, yes 0.313 0.464 0 1
plants A 1;n0=0
enrolling in program
Hypothetical percentage
. of neighborhood mem- . = zo o
N:r‘t“;’fib‘;ﬁn bers participating in %ﬁfrete’ 25%.30%. 515 0185 025 0.75
Participaliig  GTGP, three different °
scenarios
Continuous; logarithm
S;?;&rerem PES FEBC land area ﬁorz:e%folfgrfgul;l nd of of amount of land 2.37 1.57 -1.2 8.52
enrolled in FEBC
Age of respondent at .
Age the time of interview Continuous, years 53.9 12.1 21 86
Gender Gender of respondent chhotom(_)us; male = 1.14  0.35 1 2
1; female =2
Education Education of respondent Continuous, years 4.95 3.47 0 13
completed
Annual agricul- Agricultural expenses
Socioeconomic ~ tural 1e;pense}?, (1000 yuan/year) Continuous 0.899 0.812 0.02 5.34
and demographic past 12 months
variables Local off-farm Income
Local off-farm (sum of remittances and
income, past 12 . Continuous 4.85 10.2 0 50
months local work/business
income) (1000 yuan)
Household size Number of household Continuous 3.06 1.40 1 8
members
Non-GTGP land \r¢a ofnon-GTGPland - g 388 353 0 17
of household (mu)

and Hipp, 2004) and, therefore we only considered village level random effects in the mixed
effects logistic regression model (MELRM). Then we constructed a fixed effects logistic
regression model (FELRM) and compared it to the MELRM. The dependent variable is
whether or not the household of interest decides to participate in the GTGP under a certain
hypothetical scenario, which stands as a binary outcome variable. The MELRM and FELRM
models that aim to study household enrollment in the GTGP at FNNR can be expressed re-
spectively as follows:

log IL =a+ X, B+ u; +&;(for MELRM),
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log [%J = a + X, +¢,(for FELRM),
i=12,.,1, j=12,.,J,
where p;; is the probability of individual i in village j choosing to participate in GTGP under
the hypothetical scenario in MELRM; p; is the probability of individual i participating in
GTGP in FELRM; a is the intercept; X;is a row vector of selected independent variables for
individual i; f is a vector of coefficients for the fixed effects, y; is the random effect at vil-
lage level j in MELRM; and g; and & are the vectors of random errors in MELRM and
FELRM, respectively. The comparison of model results between MELRM and FELRM
helps our model choice: the simpler model FELRM should be employed for the following
analysis unless significant differences arise from MELRM. We also incorporated a dummy
variable for each village in the design matrix in the FELRM.

3.3 Eigenvector spatial filtering

The ESF method, coupled with logistic regression, is used to explore neighborhood impacts
on household enrollment in the GTGP. As indicated earlier, the ESF technique is a nonpara-
metric statistical method to account for spatial autocorrelation (Chun, 2014). The effects of
explanatory variables in regression models can be decomposed into spatial and non-spatial
components using the ESF method (Chun and Griffith, 2011; An et al., 2016; Xiao et al.,
2017; Yabiku et al., 2017). This study utilizes the ESF method to account for neighborhood
impacts based on the logistic regression model developed by Yost et al. (2020).

In this study, a neighborhood is defined as a cluster of households within a certain Eu-
clidean distance to the central point of reference, here the household is under study. The
Moran’s I statistic, a global measure for testing spatial autocorrelation of a variable under a
certain predefined neighborhood (Darand ef al., 2017; Ord and Getis, 1995), has been used
in many studies after Moran (1950) introduced it (Sokal and Oden, 1978). Following Good-
child (1987), we calculated the z-score and p-value of Moran’s I for deviance residuals of the
chosen logistic models for different sizes of neighborhoods. This allows us to explore if the
spatial autocorrelation represented in Moran’s I and z-scores is statistically significant. We
examine the performances of the model by varying neighborhood sizes, i.e., using 0.02 km,
0.04 km, 0.06 km, 0.08 km, 0.1 km, 0.5 km, 1 km, 2 km, 3 km, 4 km, 5 km, and 6 km. The
neighborhood size is divided into three groups, including neighborhood of small size
(0.02—0.1 km), moderate size (0.1-1 km), and large size (1-6 km). The small size neighbor-
hood represents potential impacts of people within a very close distance. Within moderate
size neighborhoods, people may not communicate with others as frequently, but still are
likely to share most social and environmental features relating to location, such as topogra-
phy, soils, and distance to major roads and markets. At the large neighborhood sizes, house-
holds may still have similar social norms and some local institutions they interact with, but
are not as likely to interact regularly and may have significant differences in location (on the
opposite side of hills, substantially different times from a road, leading to different pathways
to markets, work opportunities, and use of different institutions. These three ranges of dis-
tances represent our hypothetical zones within which households share different degrees of
similarities, which can impact their enrollment (and other) decisions.
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We used the ESF method to account for neighborhood impacts (expressed as spatial au-
tocorrelation). Identification of relevant eigenvectors can be achieved in two steps. First, a
candidate set of eigenvectors can be established if (Moran’s I,,/Moran’s l,,) for positive
spatial autocorrelation or (Moran’s I,/Moran’s I,;;,) for negative spatial autocorrelation is
greater than 0.25 (Griffith, 2003). The preselected candidate eigenvectors and independent
variables were employed together in the full model. Second, a forward stepwise selection
procedure was used to choose a subset of eigenvectors based on the Akaike’s information
criteria (AIC) (Griffith, 2000; Chun and Griffith, 2011). The MELRM and FELRM models
incorporating the ESF method can be written respectively as follows:

log [L] =a+Ey+X,f+u +é&(for MELRM),
sy

1og[LJ —a+Ejy+ X, +¢, (for FELRM),
i=1,2,.,1,j=12,..,J,

where E; is a vector of selected eigenvectors corresponding to individual #, and y is a vector

of coefficients of the selected eigenvectors. After integrating the ESF method in the model,

we calculated the z-score and p-value of Moran’s I for the deviance residuals of each spatial

model to explore if spatial autocorrelation was properly eliminated. The calculations and

analyses were conducted in R (Version 1.0.153) with “spdpe” and “Ime4” packages.

Once we have models estimated for different neighborhood sizes and numbers of eigen-
vectors, we selected a best-practice model for practical reasons—for instance, to calculate
the probability of enrolling land in GTGP under certain policy scenarios and so-
cio-ecological conditions. This model was chosen based on the following criteria: 1) spatial
autocorrelation is minimized (i.e., the z-score of Moran’s I is close to 0); and 2) the model
has the best (or close to best) overall fit (i.e., the AIC is minimum or close to it). When the
above two criteria conflict, we give higher priority to the first criteria.

4 Results
4.1 Non-spatial MELRM and FELRM

We first compared (1) the non-spatial MELRM with village level random effects, (2)
FELRM without dummy variables for each village, and (3) FELRM with dummy variables
as fixed effects instead of random effects (Table 2). We found that the significant levels of
all the independent variables were identical for the non-spatial MELRM and FELMR mod-
els without dummy variables. The variance of the village random effects is also nearly zero
in the MELRM, suggesting that there is little variability across villages. Examining the
FELRM with dummy variables for villages, however, reveals it has consistently higher AIC
values for all the substantive independent variables, suggesting a slightly poorer fit com-
pared to the model without the trivial village effects controlled. In addition, only village 1,
which is located in the southwest of the FNNR and includes 4 households and 12 experi-
ments, is statistically different from other villages, confirming that there is little difference
across villages. Therefore, we adopted the FELRM without dummy variables for the re-
maining analyses in the paper.
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Table 2 Results of non-spatial MELRM, FELRM without dummy variables, and FELRM with dummy variables:
dependent variable, probability of enrolling in GTGP

Model 1 Model 2 Model 3
Notspatial MELRM (000 hriables it dummy varabls
Coef.  p-value VIF Coef.  p-value  VIF Coef.  p-value VIF
(Intercept) —-1.544 0.089 -1.544  0.089 —2.299 0.038
GTGP payment 4.878  <0.001 1.035 4.878 <0.001 1.035 5.520  <0.001 1.075
GTGP duration 0.008 0.816  1.048 0.008 0816  1.048 0.022 0.555  1.099
Economic trees 0.638 0.015  1.430 0.638  0.015 1.430 0.610 0.027  1.482
Ecological plants 0.100 0.713 1.415 0.100  0.713 1.415 0.140 0.630  1.486
Neighbors participating 1.626 0.006 1.035 1.626  0.006 1.035 1.602 0.011 1.087
FEBC land area —0.159 0.033 1.199 -0.159 0.033 1.199 —0.082 0354  1.453
Age 0.025 0.009 1.129 0.025  0.009 1.129 0.030 0.006 1.356
Gender —0.668 0.045 1.179 —-0.668  0.045 1.179 -0.801 0.031 1.374
Education -0.109 0.001 1.210  -0.109  0.001 1.210 -0.137 0.000 1.441
Annual agricultural expenses —0.556  <0.001 1.196  -0.556 <0.001 1.196  -0.333 0.043  1.438
Local off-farm income 0.037 0.002 1.259 0.037  0.002 1.259 0.040 0.003 1.369
Household size -0.204 0.019 1282 -0.204 0.019 1282 -0.216 0.029 1.561
Non-GTGP land 0.086 0.011 1.225 0.086  0.011 1.225 0.115 0.005  1.650
Dummy1 -1.916 0.028  1.447
Dummy?2 —0.805 0286  1.470
Dummy3 —0.506 0.544  1.379
Dummy4 0.708 0273 1.709
Dummy5 -0.394 0.581 1.567
Dummy6 -0.335 0.553 2.614
Dummy7 0.353 0.584  1.704
Dummy8 —0.496 0437  1.625
Dummy9 -1.361 0.086  1.599
Dummy10 2.147 0.070  1.156
Dummy!1 —0.143 0.824  1.643
Dummy12 0.793 0.241 1.780
Dummy13 —0.091 0.891 1.566
Dummy14 —0.487 0.686 1.162
Dummy15 15.507 0.985 1.000
Dummyl16 1.234 0.113 1.308
Dummy17 —0.038 0.959  1.457
Dummy18 0.252 0.673  1.688
Dummy19 0.406 0.525  1.836
Dummy20 -0.464 0.631 1.404
Dummy21 —0.197 0.762  1.629
Dummy22 —-0.162 0.775 1.865
Dummy?23 NA NA NA
Variance of random 0.000 NA NA

effect village group
AIC 545.20 543.18 554.91

Number of observations: 435. Bold numbers are statistically significant at the 5% level.
Dummy 23 is the reference village for village groups.

As described earlier, a total of 435 experiments were performed out of the 147 households
during the household interview session (a few households did not respond or failed to be
recorded for a few options). The variation inflation factor (VIF) values are well below 2,
suggesting that there is not much collinearity in the independent variables. Three of the four
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PES policy variables are highly significant with positive coefficients: GTGP payment level
(» <0.001), being allowed to plant economic trees after enrolling in GTGP (p = 0.015), and
percentage of neighbors participating in GTGP (p = 0.006). These findings imply that the
landowners are more likely to enroll in the GTGP when the GTGP payment is higher, when
allowed to plant economic trees such as tea or walnut trees on the enrolled parcel, and when
they expect more of their neighbors to participate. On the other hand, a longer GTGP dura-
tion (p = 0.816) and being able to plant ecological trees after enrolling in GTGP (p = 0.713)
(which yield no income, expect possible after many years as fuelwood) do not significantly
influence household participation in GTGP (Table 2).

Regarding the effects of concurrent enrollment in another PES program, the area of forest
enrolled in that program (i.e., FEBC, the other ongoing PES program) significantly affects
villagers’ participation in GTGP (p = 0.033). Among the socioeconomic and demographic
variables, gender (p = 0.045), number of years of education (p = 0.013), annual agriculture
expenses (p < 0.001), and household size (p = 0.019) are significant, negative predictor var-
iables of household decisions to enroll. These findings suggest that participants who are
male, less educated, less tied to agriculture, and in smaller households are more likely to
enroll in GTGP. On the other hand, age (p = 0.009), local off-farm income (p = 0.002), and
the amount of non-GTGP land available (p = 0.011) have significant, positive effects. These
findings imply that the probability of household enrollment in GTGP is higher when partic-
ipants are older, have higher incomes from off-farm work (including work for pay on other
local farms or in local towns, remittances from migrants and income from a local business),
or possess more farmland (i.e., non-GTGP land).

4.2 Results with the eigenvector spatial filtering model

We utilized the ESF method to account for neighborhood impacts when the neighborhood
size 18 0.02 km, 0.1 km, 0.5 km, 5 km and 6 km, as the p-value of Moran’s I for deviance re-
siduals from the non-spatial FELRM is statistically significantly different from zero at each of
these five distinct neighborhood sizes, suggesting strong spatial autocorrelation (Table 3). At
other neighborhood sizes, the corresponding Moran’s 1 is insignificant, suggesting little spatial
autocorrelation. All the ESF models have lower AIC scores than their counterpart non-spatial
model, suggesting that spatial models have better fits than the basic FELRM model (Table 4).

Table 3 Results of Moran’s test for deviance residuals of non-spatial FELRM with respect to different settings
of neighborhood size

Model (Neighborhood) Contiguity matrix Moran’s1  Expected I ~ Variance z-score  p-value
Model 2 (0.02 km) Neighbors within 0.02 km  —0.502 —0.003 0.040 —2.485 0.013
Model 2 (0.04 km) Neighbors within 0.04 km 0.059 —0.005 0.005 0.913 0.361
Model 2 (0.06 km) Neighbors within 0.06 km 0.022 —0.004 0.002 0.543 0.587
Model 2 (0.08 km) Neighbors within 0.08 km 0.076 —0.005 0.002 1.953 0.051
Model 2 (0.1 km) Neighbors within 0.1 km 0.134 —-0.004 0.001 3.790 0.000
Model 2 (0.5 km) Neighbors within 0.5 km 0.093 —-0.003 0.000 4.378 0.000
Model 2 (1.0 km) Neighbors within 1 km —-0.016 —0.003 0.000 —0.725 0.468
Model 2 (2.0 km) Neighbors within 2 km —0.026 —0.003 0.000 —-1.829 0.067
Model 2 (3.0 km) Neighbors within 3 km —0.006 —0.003 0.000 -0.319 0.750
Model 2 (4.0 km) Neighbors within 4 km —0.006 —0.003 0.000 —0.422 0.673
Model 2 (5.0 km) Neighbors within 5 km 0.014 —-0.003 0.000 2.441 0.015
Model 2 (6.0 km) Neighbors within 6 km 0.013 —-0.003 0.000 2.639 0.008

Bold indicates Moran’s I statistically significant at 5% level.
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It is interesting, moreover, that some independent variables change in significance levels,
with three crossing the 0.05 a level from statistically significant to only marginally signifi-
cant when comparing the basic model with the model incorporating ESF filtering (Table 4).
First, with regard to the concurrent PES variable, FEBC land area is a significant, negative
predictor for enrollment in GTGP (p = 0.033) in the non-spatial model, but becomes insig-
nificant in the models with ESF variables when the neighborhood size is 6 km (p = 0.067).
While many socioeconomic and demographic variables have slightly different effects when
neighborhood impacts are accounted for with varying neighborhood sizes, it is only gender
(p = 0.045 in the non-spatial model) and household size (p = 0.019) which each also be-
coming only marginally significant in one of the six versions of the spatial FELRM. This is
true of gender in Model 6 when the neighborhood size is 0.1 km (p = 0.053), while the coef-
ficient of household size becomes insignificant only when the neighborhood size is very
small at 0.02 km (Model 4, p = 0.083). An examination of all of the changes in p-values
between the ESF filter variations and the basic non-spatial models finds the following: for
Model 4 (only extremely close neighbors), five variables improve p-values, but household
size is much weaker; in Model 5 (close neighbors), three are slightly better (lower p-value),
two slightly worse (higher p-value), little change; in Model 6, with one more eigenvector
added, 4 have better p’s, four worse including gender; Model 7 with medium size definition
of neighborhood, 6 have better p’s, including all three of the “switch” variables (FEBC,
gender, household size), and only 2 lower p’s, with the overall AIC highest of all the spatial
models; while for both the much larger areal definitions of neighborhood, Models 8 and 9
based on radiuses of 5 km and 6 km, the number of variables with better p’s is one less than
those with weaker p-values.

4.3 Spatial autocorrelation

To further explore spatial autocorrelation of independent variables and model residuals, we
calculated Moran’s I and p-value of residuals (Tables 3 and 5) and of independent variables
(Table 6) for both the spatial and non-spatial models with the corresponding contiguity matrix.

Table 5 Results of Moran’s test for deviance residuals in the models of Table 4

Model (Neighborhood) Contiguity matrix Moran'sI  Expected ] ~ Variance z-score p-value
Model 2 (0.02 km NB) Neighbors within 0.02 km  —0.502 —0.003 0.040 —2.485 0.013
Model 4 (0.02 km NB) Neighbors within 0.02 km 0.118 0.206 0.035 —0.471 0.637
Model 2 (0.1 km NB)  Neighbors within 0.1 km 0.134 —0.004 0.001 3.790 0.000
Model 5 (0.1 km NB)  Neighbors within 0.1 km 0.099 —-0.023 0.001 3.545 0.000
Model 6 (0.1 km NB)  Neighbors within 0.1 km —-0.026 —-0.025 0.001 -0.019 0.985
Model 2 (0.5 km NB)  Neighbors within 0.5 km 0.093 —-0.003 0.000 4.378 0.000
Model 7 (0.5 km NB)  Neighbors within 0.5 km -0.077 —0.032 0.000 —2.542 0.011
Model 2 (5 km NB) Neighbors within 5 km 0.014 —0.003 0.000 2.441 0.015
Model 8 (5§ km NB) Neighbors within 5 km —0.003 —0.007 0.000 0.705 0.481
Model 2 (6 km NB) Neighbors within 6 km 0.013 -0.003 0.000 2.639 0.008
Model 9 (6 km NB) Neighbors within 6 km -0.014 -0.007 0.000 -1.467 0.142

Bold numbers indicate Moran’s I significant at 5% level.
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Table 6 Results of Moran’s test for independent variables

Neighbors within 0.02 km Neighbors within 0.1 km Neighbors within 0.5 km

Variable
Moran’s I z-score p-value Moran’s I z-score p-value Moran’s I z-score p-value
GTGP payment -0.004 —0.009  0.993 0.005 0.169  0.866 0.003 0.186  0.853
GTGP duration 0.134 1.005 0315 -0.030 -0.648 0.517 -0.014 -0.442 0.658
Economic trees 0.003 0.040  0.968 0.025 0.631 0.528 0.005 0.278 0.781
Ecological plants —0.095 —0.684  0.494 0.078 1.883  0.060 0.011 0.484  0.628
Neighbors participating -0.141 -1.023 0306 —0.026 —0.558 0.577 —0.023 —-0.782 0.434
FEBC land area -0.487 -3.585  0.000 0.182 4337 0.000 0.190 7.163  0.000
Age 0.487 3.617  0.000 0.054 1.315  0.188 —0.003 —0.023 0.982
Gender -0.028 -0.192  0.848 —0.056 -1.267 0.205 -0.096 -3.513 0.000
Education -0.010 -0.055  0.956 0.026  0.678 0.498 0.094 3.589  0.000
Annual agricultural expenses  0.049 0.384 0.701 0.058 1.446  0.148 0.221 8.430  0.000
Local off-farm income 0.138 1.046  0.296 0.028 0712 0477 -0.083 -3.023  0.003
Household size 0.329 2454  0.014 0.097 2353 0.019 0.137 5.172 0.000
Non-GTGP land 0.277 2.067  0.039 0.159  3.798  0.000 0.242 9.089  0.000
Neighbors within 5 km Neighbors within 6 km
Variable
Moran’s I z-score p-value Moran’s I z-score p-value

GTGP payment 0.001 0.321 0.748 0.001 0362 0.717

GTGP duration -0.014 -1.339 0.181 -0.013 -1.331 0.183

Economic trees 0.008 1.117 0.264 0.003 0.603  0.547

Ecological plants 0.009 1.285 0.199 0.005 0.934  0.350

Neighbors participating 0.001 0.370  0.712 0.000 0.314  0.754

FEBC land area 0.112  12.653  0.000 0.063 8.185  0.000

Age -0.021 -2.022 0.043 -0.017 -1.804 0.071

Gender 0.058 6.660  0.000 0.062 7.981  0.000

Education 0.007 1.009  0.313 0.000 0.248  0.804

Annual agricultural expenses  0.118  13.472  0.000 0.114 14577  0.000

Local off-farm income -0.021 -2.111 0.035 -0.016 -1.681 0.093

Household size 0.047 5492  0.000 0.073 9332 0.000

Non-GTGP land 0.118  13.311  0.000 0.138  17.419  0.000

Bold numbers indicate Moran’s I significant at 5% level.

There are positive spatial autocorrelations in the residuals of the non-spatial model when the
contiguity matrix are neighbors within 0.1 km (Moran’s I = 0.134, p < 0.001), 0.5 km (Mo-
ran’s [ = 0.093, p < 0.001), 5 km (Moran’s I = 0.014, p = 0.015), and 6 km (Moran’s I =
0.013, p = 0.008), and negative spatial autocorrelations when the neighborhood size is 0.02
km (Moran’s I = -0.502, p = 0.013) (Table 3). After incorporating the ESF method, no sig-
nificant spatial autocorrelations are detected in the residuals of spatial models with respect to
the neighborhood sizes of 0.02 km (Model 4, Moran’s [ = 0.118, p =0.637), 0.1 km (Model 6,
Moran’s 1 = —0.026, p =0.985), 5 km (Model 8, Moran’s I = —0.003, p =0.481), and 6 km
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(Model 9, Moran’s I =—0.014, p =0.142) (Table 5). The results indicate that the selected ei-
genvectors in these four models control spatial autocorrelation well.

There is significant spatial autocorrelation in spatial Model 5 (Moran’s I = 0.099, p <
0.001), but this becomes insignificant in Model 6 when a fifth eigenvector (EV17) is added
stepwise. We also tried incorporating various eigenvectors for the spatial ESF model of 0.1
km neighborhood size (Supplementary Tables S1 and S2), and found that Models 10, 11 and
12, which had fewer than the top 17 eigenvectors (Supplementary Table S1), had significant_
positive spatial autocorrelations in the residuals (indicated by high positive z-scores in Sup-
plementary Table S3), while Models 13, 14, 15 and 16 (Supplementary Table S2), which
incorporated the top 17 or more eigenvectors, had significant pegative spatial autocorrela-
tions (indicated by negative z-scores with p<0.05 in Supplementary Table S3). The results
suggest that EV17 is the turning point for the significant positive and negative spatial auto-
correlations in the residuals, and accounts for most of the spatial autocorrelation in Model 6.

4.4 Best-practice model

AIC is defined to account for changes in degrees of freedom (Burnham and Anderson, 2002),
therefore lower AIC scores stand for better fit. So we chose Model 6 as our best model (Ta-
ble 4), to use for, e.g., policy recommendations. Nevertheless, we recognize that different
independent variables may be spatially autocorrelated at different neighborhood sizes, so in
this study, we are not able to identify a single neighborhood size, and therefore a “best”
model that solves all neighborhood impact issues (see discussion below) is presented.

5 Discussion
5.1 ESF accounting for neighborhood impacts at different ranges of distance

Spatial autocorrelation is detected in our study on population in China in some shorter (0.02
km, 0.1 km), moderate (0.5 km), and longer distance (5 km, 6 km) neighborhood sizes. The
short neighborhood sizes (from 0.02 km to 0.1 km) reflect considerable interactions with
(immediate) neighbors, within a walking time of just a few minutes, a nearby cluster of
dwellings. Within such a short distance, villagers can communicate with each other conven-
iently and frequently, and are more likely to be affected by them. For the moderate neigh-
borhood sizes from 0.1 km to 1 km, people will not interact with some people as much, yet
may still be subject to similar environmental and geographical features such as topography
and distances to (the same) schools, roads and markets. For longer distances of 5 km to 6 km
as the crow flies, in the mountains, they may use different roads and off-farm work access,
have children who go to different schools, be located on different hill/mountain sides, or
differ in some attitudes and social norms. Thus, different substantive aspects of neighbor-
hood impacts are likely to operate across different distances (see also Hawley, 1950; Bils-
borrow et al., 1984). It is important to point out that these neighborhood impacts are likely
to be even greater in most real world sites (Sullivan et al., 2017), especially larger ones, as
the data used in this paper come from a subset of fairly similar low-income rural households
in a single Chinese nature reserve in China.

The ESF method is useful since it can eliminate spatial autocorrelation that is inherent in
human populations living close to each other at some neighborhood sizes (0.02 km, 0.1 km,
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1 km, 5 km, and 6 km). Although spatial autocorrelation is significant at the neighborhood
size of 0.5 km (in both the non-spatial and spatial models; Table 5), the p-value of Moran’s |
for the ESF model increases compared to the non-spatial model, suggesting that we are less
likely to reject the null hypothesis that the spatial distribution of feature values is the result
of a random spatial process. We can learn from the Moran’s test of Models 5 and 6 that
EV17 can explain most of the positive spatial autocorrelation when the neighborhood size is
0.1 km (Tables S1 and S2). The reason why there is a big difference in Moran’s I in models
with and without this one eigenvector (EV17) may be the physical structure of the neigh-
borhoods used here, which vary a lot from clusters of households horizontally close but ver-
tically not close. For situations when all the polygons have at least one-point in common
(Chun and Griffith, 2014; Xiao et al., 2017), eigenvalues change gradually from the largest
to the smallest. For the FNNR dataset with different definitions of neighborhood, the neigh-
bor structure is not fully connected, which means that a group of observations are not con-
nected with other groups of observations based on a specific distance. As a result, the weight
matrix has a block structure, and the eigenvector has nonzero values for one group and zeros
for other groups, indicating that an eigenvector based on one neighborhood size specifica-
tion may account for a high level of spatial autocorrelation among observations for some
populations but not others, for which a different neighborhood specification may work better.
Determining a priori an optimal general “neighborhood size” is risky as it may vary with
topography, soil quality, population density, level of development, and cultural factors (how
much space people feel they need varies).

5.2 Impacts of independent variables in non-spatial and spatial models

The results here for aspects of PES policy differ little in this study between the non-spatial
model and the spatial models incorporating spatial filtering. This suggests that there are no
particular neighborhood differences in these policy choice variables, which is not surprising
given the similarities in the characteristics of the populations of the various clusters
(low-income rural households, minority populations, mountainous terrain, much
out-migration, etc.). Of course, it is not surprising to find that once controlling for other
variables, the social norm (represented as the percentage of neighbors expected to participate
in GTGP) is a significant, positive predictor of a household’s willingness to participate in
GTGP regardless of neighborhood size. One previous study similarly found that when
neighbors anticipated reconverting land enrolled in GTGP back to agriculture from forest
once the PES program ends, so did the household under study (Chen et al., 2009). Thus,
households who live in the same community have many opportunities to interact, which
fosters and maintains social norms, including motivations to sign up for GTGP, or abandon
it.

Significance levels of involvement in a concurrent PES program and some socioeconomic
and demographic variables may change when neighborhood impacts are taken into account
through filtering out spatial autocorrelation using the ESF method. While a few earlier stud-
ies used the ESF method to eliminate spatial autocorrelation in regression residuals, they did
not detect changes in the significance levels of independent variables (Chun and Griffith,
2011; Xiao et al., 2017). Similarly, in this study only a few variables’ significance levels
changed when different neighborhood sizes were used. The area of forest enrolled in a con-
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current FEBC program has a significantly negative effect in the non-spatial model, likely
due to the FEBC program increasing farmer’s incomes and making them less dependent on
the incentives of the GTGP program (Zhang et al,2018b). In addition, in FNNR participants
reported needing to spend time safeguarding their FEBC land to avoid forest fires and theft,
which may have weakened motivations to enroll in the GTGP program and have to plant and
care for economic or ecological trees (Yost et al., 2020). We found there is spatial autocor-
relation in the variable FEBC land area at all detected neighborhood sizes (Table 6) but its
significance level changes from significant to insignificant only at the largest neighborhood
size of 6 km in the ESF model (Table 4). This may suggest that a large neighborhood may
involve some households with very different characteristics and sizes of forestland. As a
result, the spatial dimension of the FEBC variable might lose its effects on local people’s
intensions to enroll or not in GTGP. However, even here, as the p-value (0.067) just barely
crosses the 0.05 threshold, there is no basis for totally rejecting the result that FEBC area
(and the resulting household income it generates) is negatively linked to the probability of
enrolling in GTGP, even after controlling for spatial autocorrelation.

The influence of gender on household participation in PES program has been observed to
vary across studies (Stevens et al., 1999; Zbinden and Lee, 2005; Chen et al., 2009; Chen et
al.,2012; Kaczan et al., 2013; Chen et al., 2017). In our study site, the coefficient for gender
of respondent has been found invariably negative, that is, female-headed households are less
likely to enroll in GTGP. This can be thought of as arising from women heads’ thinking that
they have fewer opportunities to get involved in local off-farm work so need to keep their
land to farm for food security. The coefficient of gender varies as does its significance level
by neighborhood size (Table 4), but the effect is generally quite strong for all neighborhood
sizes used in ESF filtering, In the non-spatial model, its significance level is p=0.045, which
falls only slightly to 0.053 in Model 6 at the neighborhood size of 0.1 km but has better
p-values (lower) than 0.045 at all other neighborhood sizes (and lowest in Model 7 at 0.5 km
at p = 0.009). The size of its coefficient is fairly stable, from —0.7 to —1.0, indicating a strong
effect.

Similarly, there is evidence on how neighborhood size affects the roles of socioeconomic
variables. At the larger neighborhood sizes (0.1 km, 0.5 km, 5 km and 6 km), households of
larger size (more members) are found to be more reluctant to participate in GTGP. This ef-
fect is insignificant at the smallest neighborhood size (0.02 km), with the p value switching
from 0.019 (non-spatial model) to 0.083 and less significance in the spatial model. What
might cause this? Perhaps at such a small neighborhood size, it is very common for individ-
uals to communicate with neighbors on issues related to participating in the GTGP, making
household size not relevant.

Finally, are there differences in the effects of neighborhood size on the effects of the var-
iable non-GTGP land (or land not yet enrolled in GTGP) on the enrolment of (additional)
farmland in GTGP? As hypothesized, this variable is positively linked to the GTGP enroll-
ment decision in the non-spatial and all spatial ESF models, regardless of neighborhood size.
Having more available non-GTGP land provides a wider variety of options for land use,
such as continuing to grow crops even with participation in GTGP (Chen et al., 2009; Chen
et al., 2012). This is also consistent with common sense as more available non-GTGP land
should alleviate concerns about household food security (Wandersee ef al., 2012; Liu et al.,
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2014; Wang et al., 2019), at the same time as some land may already be enrolled in GTGP,
modestly contributing to income (Liu et al., 2008; Yin et al., 2014; Wang et al., 2017). The
z-scores of Moran’s | for both household size and non-GTGP land are greater than 1.96 at all
distances, with Moran’s I larger than zero and increasing dramatically with size of neigh-
borhood (as for household size), which suggests that there is positive spatial autocorrelation
at all neighborhood sizes for these two variables. One reason for this spatial autocorrelation
might be that household size and non-GTGP land are fairly homogeneous even over large
areas in rural China. This is likely for several reasons. First, the one-child policy, terminated
in 2015 only after the survey data were collected (Deng et al., 2016), has led to very similar
and small family sizes, making household size vary little across space. Similarly, the total
area of land allocated via long-term lease to rural households (including nearby and within
FNNR) in the opening-up period in the 1980s varied very little as land in government col-
lective (communal) farms was simply divided up among the local commune member
households (Lin, 1987).

In sum, when we incorporate the ESF method at different neighborhood sizes, signifi-
cance levels of household size, gender, and FEBC land area change from significant to in-
significant at neighborhood sizes of 0.02 km, 0.5 km, and 6 km, respectively. Overall, we
posit that the selected ESFs capture more heterogeneity and (relatively) more local spatial
differentiation at these neighborhood sizes compared to the other sizes. Further research
might help determine reasons for these spatial differences. Also worthy of mention is that
our results are not much dependent on the way we define neighborhood. For instance, we
selected neighborhoods based on the Queen’s or Rook’s definitions at the first, second, ... up
to the fifth orders. The corresponding results (Supplementary Tables S4, S5, S6 and S7) are
largely consistent with the ones above.

6 Conclusions

In this article, we have modeled the determinants of household participation in PES pro-
grams in a case study in Guizhou province of China, with a focus on how to control neigh-
borhood or contextual effects. Alternative neighborhood sizes were used to control neigh-
borhood impacts on coefficients in a standard fixed effects logistic regression model
(FELRM). We found that once spatial autocorrelation (owing to neighborhood effects) is
suitably accounted for, several more reasonable coefficients and significance levels are ob-
tained but tend to differ according to neighborhood size. Therefore, not accounting for
neighborhood impacts may often lead to biased parameter estimates and even improper con-
clusions. This issue has been largely overlooked so far in this literature, particularly with
reference to studies on the impacts of PES policies. In this study, the eigenvector spatial fil-
tering (ESF) method is shown to be effective in controlling spatial autocorrelation in the
analysis of spatial data. Therefore, we recommend the ESF method be considered an effec-
tive way to control neighborhood impacts and thereby reduce bias in estimates of parameters
and improve inferences about causation and policy effects.

The study here also makes substantive contributions to the PES and conservation litera-
tures in several respects. First, there has been little previous work investigating neighbor-
hood impacts on household decisions to participate in PES programs. Our analysis shows
that examining such impacts may uncover mechanisms underlying PES participation (and
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more broadly, any decisions involving spatially referenced data) that are otherwise unde-
tectable. This can help planners, policymakers, and researchers take into account community
interests and/or spatial features in the PES programs prior to seeking to enroll households.
Second, we observe that different kinds of neighborhood impacts may exist at different
neighborhood sizes, so a one-scale-fits-all approach may not work well. Indeed, researchers
should seek to identify differences in neighborhood size impacts based on theory in the field
of study pertaining to the variables being studied and/or data-mining (experimenting with
different neighborhood sizes). In our study, we mainly used the latter but sought to offer
theory-based interpretations for different neighborhood size effects detected. Last but not
least, our data-mining approach can be used to explore the effects of different sizes of
neighborhoods, a theoretically and empirically important topic in many fields of social sci-
ence, for example, in sociology, demography, and public health (Medina et al., 2013; Zvoleff
et al., 2013; Liu and Shen, 2017), as well as in environmental studies such as the present one.

Our approach here may be viewed by some as only a more complex alternative to the
more standard fixed effects model. Such a model incorporates a set of dummy variables with
one for each spatial unit (neighborhood or community) to control contextual differences to
obtain more unbiased estimates of parameters at lower (e.g., household and individual) lev-
els. But the fixed effects approach is statistically inefficient in costing degrees of freedom in
the estimation (if k= number of communities, then k-1 degrees of freedom are lost). As our
approach does not need any prior knowledge about neighborhood size, it can complement
the usual multilevel model (or a random effects) approach, which needs to know the group-
ing of higher level units beforehand (e.g., administrative units, spatial regions). It can be
used to explore at what size a particular neighborhood is most relevant for a certain top-
ic—viz., smaller areas within which local people influence each another in decisions related
to purchasing foods or children walking to a primary school, larger ones for health care,
older children attending secondary schools, and even larger ones for employment involving
commuting to work (Hawley, 1950; Bilsborrow et al., 1984). Neighborhood size is also a
key factor to consider in environmental conservation and natural resources management.
Spatial effects are likely for many variables at some neighborhood size, and a
one-size-fits-all management policy and implementation measure is likely to be inefficient.
It is important for policymakers to develop (for example) infrastructure loca-
tion/management plans that vary with the type of infrastructure and service. We hope that
this research will not only lead to a greater recognition of the importance of neighborhood
effects in PES and other conservation decisions, but also provide a practical, data-mining
based approach that helps other researchers and planners address these effects.
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Table S1 Results of non-spatial and spatial models with neighbors within 0.1 km for probability of enrolling in
GTGP (with fewer than the top 17 eigenvectors)

Model 2 Model 10 Model 11 Model 12

Neighborhood size Non-spatial Neigl(;l.);)rlfn\ivithin Neigl(l)l?;)rlfn\ivithin Neigl(l)l?;)rlfn\ivithin
Number of eigenvectors 0 14 15 16
Eigenvectors NA EVI-EV14 EVI-EV15 EV1-EV16

Coef. p—value VIF Coef. p-value VIF Coef. p-value VIF Coef. p—value VIF
(Intercept) -1.544  0.089 -1.352  0.168 -1.079 0.278 -1.628 0.138
GTGP payment 4.878 <0.001 1.035 5.035 <0.001 1.046 5.217 <0.001 1.055 5.859 <0.001 1.053
GTGP duration 0.008 0.816 1.048 —0.015 0.686 1.091 —0.018 0.616 1.097 —0.019 0.629 1.098
Economic trees 0.638  0.015 1.430 0.719 0.009 1.455 0.726 0.009 1.465 0.850 0.004 1.464
Ecological plants 0.100 0.713 1.415 0.085 0.766 1.441 0.152 0.599 1.477 0.181 0.557 1.473
Neighbors participating 1.626  0.006 1.035 1.680 0.006 1.048 1.708 0.006 1.052 2.037 0.002 1.053
FEBC land area -0.159  0.033 1.199 -0.190 0.017 1.311 -0.191 0.017 1.314 -0.224 0.008 1.315
Age 0.025 0.009 1.129 0.027 0.013 1.366 0.025 0.026 1.380 0.030 0.013 1.408
Gender -0.668 0.045 1.179 -0.509 0.164 1.296 —0.608 0.103 1.339 —0.605 0.138 1.436
Education -0.109  0.001 1.210 —0.143 <0.001 1.335 —0.158 <0.001 1.428 —0.162 <0.001 1.444
gii‘izzzgric‘”mml ~0.556 <0.001 1.196 —0.494 0.001 1.254 —0.486 0.002 1.257 -0.431 0.009 1.266
Local off-farm income  0.037  0.002 1.259 0.044 <0.001 1.394 0.046 <0.001 1.418 0.045 0.001 1.427
Household size -0.204 0.019 1.282 -0.224 0.020 1.492 -0.258 0.009 1.569 -0.267 0.010 1.595
Non-GTGP land 0.086 0.011 1.225 0.087 0.018 1.325 0.091 0.013 1.331 0.099 0.011 1.332
AIC 543.18 541.01 539.74 539.48

Number of observations: 435. Bold indicates change of significance level from significant at 5% level to not significant
at 5% level

Table S2 Results of non-spatial and spatial models with neighbors within 0.1 km for probability of enrolling in
GTGP (with the top 17 or more eigenvectors)

Model 2 Model 13 Model 14

Neighborhood size Non-spatial Neighbors within 0.1 km  Neighbors within 0.1 km
Number of eigenvectors 0 17 18
Eigenvectors NA EVI-EV17 EVI-EV18

Coef.  p-value VIF Coef.  p-value VIF Coef. p-value VIF
(Intercept) —1.544 0.089 —0.806 0.428 -1.684  0.126
GTGP payment 4.878 <0.001 1.035 5.126 <0.001 1.082  5.888 <0.001 1.083
GTGP duration 0.008 0.816 1.048  —0.021 0.568 1.121 -0.013  0.738 1.129
Economic trees 0.638 0.015 1.430 0.713 0.010 1.520 0.842 0.005 1.517
Ecological plants 0.100 0.713 1.415 0.142 0.624 1481 0204 0.508 1.486
Neighbors participating 1.626 0.006 1.035 1.727 0.006 1.088 2.118  0.002 1.097
FEBC land area —0.159 0.033 1.199  -0.190 0.018 1.363 —-0.250  0.004 1.429
Age 0.025 0.009 1.129 0.022 0.046 1.477 0.032  0.009 1.482
Gender —0.668 0.045 1.179  -0.752 0.054 1423 —0.628  0.123 1.432
Education —-0.109 0.001 1.210  -0.165 <0.001 1.451 -0.166 <0.001 1.470

(To be continued on the next page)



924 Journal of Geographical Sciences
(Continued)
Model 2 Model 13 Model 14
Neighborhood size Non-spatial Neighbors within 0.1 km  Neighbors within 0.1 km
Number of eigenvectors 0 17 18
Eigenvectors NA EVI-EV17 EVI-EV18
Coef. p-value VIF Coef. p-value  VIF Coef. p-value VIF
Annual agricultural expenses -0.556 <0.001 1.196 —-0.502  0.001 1.270 -0.446  0.007 1.273
Local off-farm income 0.037 0.002 1.259 0.046 <0.001  1.428 0.046 <0.001 1.434
Household size -0.204 0.019 1282 -0.274 0.006 1558 -0.265 0.010 1.549
Non—GTGP land 0.086 0.011 1.225 0.090 0.014 1365 0.092  0.019 1.373
AIC 543.18 497.92 497.27
Model 15 Model 16

Neighborhood size Neighbors within 0.1 km Neighbors within 0.1 km
Number of eigenvectors 19 20
Eigenvectors EVI-EVI19 EVI1-EV20

Coef. p—value VIF Coef. p—value VIF
(Intercept) -1.661 0.133 —-1.411 0.211
GTGP payment 5.930 <0.001 1.085 6.059 <0.001 1.090
GTGP duration —-0.013 0.745 1.134 —0.005 0.896 1.139
Economic trees 0.865 0.004 1.520 0.843 0.005 1.511
Ecological plants 0.238 0.444 1.490 0.213 0.498 1.463
Neighbors participating 2.150 0.001 1.101 2.016 0.003 1.097
FEBC land area -0.252 0.004 1414 —-0.293 0.001 1.457
Age 0.030 0.013 1.496 0.028 0.027 1.526
Gender —0.685 0.096 1.462 —0.648 0.117 1.450
Education —0.163 <0.001 1.475 —0.157 <0.001 1.468
Annual agricultural expenses -0.479 0.004 1.318 —0.459 0.009 1.356
Local off-farm income 0.046 <0.001 1.444 0.048 <0.001 1.476
Household size —0.261 0.012 1.558 —0.247 0.020 1.566
Non—-GTGP land 0.097 0.014 1.373 0.082 0.042 1.373

AIC 497.5 487.28

Number of observations: 435. Bold numbers with asterisk indicate change of significance level from significant at 5%
level to not significant at 5% level

Table S3 Results of Moran’s test for deviance residuals in the models of Tables S1 and S2

Model (Neighborhood) Contiguity matrix Eigenvectors Moran’s I Expected I Variance z—score p—value
Model 2 (non-spatial model) Neighbors within 0.1 km NA 0.134  -0.004 0.001 3.790 0.000
Model 10 (0.1 km NB) Neighbors within 0.1 km EVI-EV14 0.042 -0.072  0.001  4.382 0.000
Model 11 (0.1 km NB) Neighbors within 0.1 km EVI-EV15 0.031  -0.074 0.001  4.106 0.000
Model 12 (0.1 km NB) Neighbors within 0.1 km EVI-EV16 0.021  -0.077  0.001  3.829 0.000
Model 13 (0.1 km NB) Neighbors within 0.1 km EVI-EV17 -0.143  -0.079  0.001 -2.507 0.012
Model 14 (0.1 km NB) Neighbors within 0.1 km EVI-EV18 -0.148  -0.082  0.001 -2.629 0.009
Model 15 (0.1 km NB) Neighbors within 0.1 km EVI-EV19  -0.155 -0.084  0.001 -2.801 0.005
Model 16 (0.1 km NB) Neighbors within 0.1 km EVI-EV20 -0.194  -0.087  0.001 —4.303 0.000
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Table S4 Comparison for the non-spatial model, best-practice model, and Rook 3rd order ESF model: dependent
variable, probability of enrolling in GTGP

Model 2 Model 6 Model 24
Contiguity Non-spatial Neighbors within 0.1 km Rook 3rd order
e e e B o
Number of eigenvectors 0 5 4
Eigenvectors NA E\];(i;ll?)\,/é’VEl\;& EV16, EV2, EV10, EV5
Coef. p-value VIF Coef. p-value VIF Coef. p-value VIF
(Intercept) -1.544  0.089 —2.239  0.027 -1.028  0.288
GTGP payment 4.878 <0.001 1.035 5571 <0.001 1.057 4.422 0.001 1.036
GTGP duration 0.008 0.816 1.048 -0.002 0959 1.084 -0.006 0.877 1.065
Economic trees 0.638 0.015 1.430 0.748 0.008 1.490 0.590 0.028 1.424
Ecological plants 0.1 0.713 1415 0.087 0.766 1.455 -0.070  0.805 1.425
Neighbors participating 1.626  0.006 1.035 1.791  0.004 1.053 1.597 0.009 1.038
FEBC land area -0.159  0.033 1.199 -0.180  0.021 1.231 -0.169  0.031 1.248
Age 0.025  0.009 1.129  0.034  0.001 1.240 0.022  0.032 1.185
Gender -0.668  0.045 1.179 -0.713  0.053 1.259 -0.577  0.093 1.200
Education -0.109  0.001 1.210 -0.100  0.008 1.278 -0.100  0.006 1.290
Annual agricultural expenses -0.556 <0.001 1.196 -0.504 0.002 1221 -0.598 <0.001 1.267
Local off-farm income 0.037  0.002 1259 0.039 0.002 1.309 0.041 0.001 1.233
Household size -0.204  0.019 1.282 -0.201  0.032 1346 -0.248  0.008 1.355
Non—-GTGP land 0.086 0.011 1.225 0.091 0.011 1267 0.117 0.002 1.365
AIC 543.18 506.44 527.84

Number of observations: 435. Bold indicates change of significance level from significant at 5% level to not significant
at 5% level.

We first generated eigenvectors for Queen and Rook 1st to 5th order contiguity and cooperated with the FELRM using
stepwise procedure respectively (Tables S5 and S6). We calculated Moran’s I and p-value for each model (Table S7).
There are spatial autocorrelations detected in the non-spatial models with 1st order queen contiguity, 2nd order queen
contiguity, 3rd order queen contiguity, 1st order rook contiguity, 2nd order rook contiguity, 3rd order rook contiguity, 4th
order rook contiguity, and Sth order rook contiguity. ESF method can account the spatial autocorrelations properly for
these models (Table S7). Model 24 has the highest p-value for Moran’s I compared to other Queen and Rook ESF models.
The best-practice model (Model 6) has the lowest AIC score and highest Moran’s I p-value compared to other distance
based ESF models.

Table S5 Results of non-spatial and spatial (Queen 1st—5th order) models for probability of enrolling in GTGP
Model 2 Model 17 Model 18

Contiguity Non-spatial Queen 1st order Queen 2nd order

Number of candidate
eigenvectors for NA 29 18
stepwise procedure

Number of eigenvectors 0 19 4

EV16, EV31, EV40, EV34,
EV28, EV38, EV2, EV5,
Eigenvectors NA EV39, EV22, EV35, EV1S, EV16, EV2, EV10, EV5
EV19, EV10, EV24, EV6,
EV25, EV13, EV4

Coef. p-value VIF Coef.  p-value  VIF Coef. p-value VIF

(Intercept) —-1.544 0.089 —-0.65 0.551 -1.028  0.288
GTGP payment 4.878 <0.001 1.035 6.005 <0.001 1.102 4422  0.001 1.036
GTGP duration 0.008 0.816  1.048 0.015 0.709 1.156  -0.006  0.877 1.065

(To be continued on the next page)
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(Continued)
Model 18

Queen 2nd order

Model 2
Non-spatial

Model 17

Queen 1st order

Contiguity

Number of candidate
eigenvectors for NA 29 18
stepwise procedure

Number of eigenvectors 0 19 4

EV1e6, EV31, EV40, EV34,
EV28, EV38, EV2, EVS,
EV39, EV22, EV35, EV1S,
EV19, EV10, EV24, EV6,
EV25, EV13, EV4

Coef. p-value VIF Coef.  p-value  VIF Coef.

Eigenvectors NA EV16, EV2, EV10, EV5

p-value VIF

Economic trees 0.638 0.015  1.430 0.657 0.024 1.478 0.59 0.028 1.424
Ecological plants 0.1 0.713 1415 0.095 0.759 1.511  -0.07 0.805 1425
Neighbors participating 1.626 0.006  1.035 1.362 0.039 1.083 1.597  0.009 1.038
FEBC land area —-0.159 0.033 1.199 -0.326 <0.001 1.490 -0.169  0.031 1.248
Age 0.025 0.009  1.129 0.022 0.058 1.331 0.022  0.032 1.185
Gender —0.668 0.045 1.179 -0.653 0.103 1.425 -0.577  0.093  1.200
Education -0.109 0.001  1.210 -0.154 <0.001 1.454 0.1 0.006  1.290
Annual agricultural expenses —0.556  <0.001  1.196 —0.449 0.009 1.460 —0.598 <0.001 1.267
Local off-farm income 0.037 0.002  1.259 0.056  <0.001 1.423 0.041  0.001 1.233
Household size -0.204 0.019 1282 -0.364  0.001 1.616 -0.248  0.008 1.355
Non—-GTGP land 0.086 0.011  1.225 0.127 0.002 1.454 0.117  0.002  1.365
AIC 543.18 509.58 527.84
Model 19 Model 20 Model 21

Contiguity

Queen 3rd order

Queen 4th order

Queen 5th order

Number of candidate eigen-
vectors for stepwise procedure

10

9

8

Number of eigenvectors

4

4

4

Eigenvectors EVS, EV4,EV2, EV6 EVS5, EV4, EV2, EV6 EVS, EV4,EV2, EV6
Coef. p-value  VIF Coef.  p-value  VIF Coef. p-value VIF
(Intercept) -1.363  0.148 -1.368 0.146 -1.371 0.145
GTGP payment 5.049 <0.001 1.047  5.049 <0.001 1.047 5.048 <0.001 1.047
GTGP duration 0.005  0.887 1.057  0.005 0.897  1.058 0.004  0.901 1.058
Economic trees 0.59 0.027 1.434  0.591 0.026  1.434 0.591 0.026  1.433
Ecological plants 0.093  0.739 1.427  0.095 0.733  1.426 0.096  0.73 1.426
Neighbors participating 1.58 0.009 1.047 1.589 0.008  1.047 1.595 0.008 1.048
FEBC land area -0.167  0.029 1.216 -0.165 0.03 1.215 -0.164  0.031 1.214
Age 0.026  0.01 1.158  0.026 0.009  1.158 0.026  0.009 1.157

Gender

Education

-0.74 0.03 1.224
-0.119 0.001 1.251
—0.477 0.001 1.217

—0.738 0.031 1.223
-0.119 0.001 1.250
—0.475 0.001 1.220

—0.736 0.031 1.222
-0.119 0.001  1.250

Annual agricultural expenses -0.475 0.001 1.222

Local off-farm income 0.041 0.001 1.302 0.041 0.001 1.304 0.041 0.001  1.305

Household size —0.296 0.001 1424  -0.299 0.001 1428 0.3 0.001  1.431

Non—-GTGP land 0.111 0.002 1.340 0.11 0.003 1.336 0.109 0.003  1.334
AIC 538.44 538.44 538.08

Number of observations: 435.
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Table S6 Results of non-spatial and spatial (Rook 1st—5th order) models for probability of enrolling in GTGP

Model 2 Model 22 Model 23
Contiguity Non-spatial Rook 1st order Rook 2nd order
Vectors for stepuise procedure NA - 18
Number of Eigenvectors 0 19 4
EV16, EV31, EV40, EV34,
EV28, EV38, EV2, EV5,
Eigenvectors NA EV39, EV22, EV35, EV1S, EV16, EV2, EV10, EV5
EV19, EV10, EV24, EV6,
EV25, EV13, EV4
Coef. p-value VIF Coef.  p-value  VIF Coef. p-value VIF
(Intercept) -1.544  0.089 —0.65 0.551 —1.068 0.269
GTGP payment 4.878 <0.001 1.035 6.005 <0.001 1.102 4.392 0.001 1.036
GTGP duration 0.008 0.816 1.048 0.015 0.709 1.156  —0.006 0.876  1.066
Economic trees 0.638 0.015 1.430 0.657 0.024 1.478 0.593 0.027 1.423
Ecological plants 0.1 0.713 1.415 0.095 0.759 1.511  -0.06 0.831 1.423
Neighbors participating 1.626 0.006 1.035 1.362 0.039 1.083 1.601 0.009 1.039
FEBC land area -0.159 0.033 1.199 -0.326 <0.001 1.490 -0.168 0.032  1.249
Age 0.025 0.009 1.129 0.022 0.058 1.331 0.022 0.028 1.180
Gender —0.668 0.045 1.179  —0.653 0.103 1425  -0.595 0.083 1.198
Education —-0.109 0.001 1.210 -0.154 <0.001 1454 -0.1 0.006 1.288
Annual agricultural expenses —0.556  <0.001 1.196  -0.449 0.009 1.460 -0.597 <0.001 1.268
Local off-farm income 0.037 0.002 1.259 0.056  <0.001 1.423 0.04 0.001  1.237
Household size -0.204  0.019 1.282 -0.364 0.001 1.616 -0.242 0.009  1.355
Non—GTGP land 0.086 0.011 1.225 0.127 0.002 1.454 0.116 0.002 1.361
AIC 543.18 509.58 528.8
Model 24 Model 25 Model 26
Contiguity Rook 3rd order Rook 4th order Rook 5th order
Number of can_didate eigen- 16 15 15
vectors for stepwise procedure
Number of Eigenvectors 4 5 4
Eigenvectors EV1e6, EV2, EV10, EVS EV2, EVS,EV10,EV14,EV6 EV2, EVS5 EVI10,EV14
Coef. p-value VIF Coef. p-value VIF  p-value p-value VIF
(Intercept) -1.028 0.288 -1.324 0.158 -1.433  0.123
GTGP payment 4.422 0.001 1.036  4.822  <0.001 1.041 4727  0.001 1.037
GTGP duration —0.006 0.877  1.065  0.003 0.934 1.058 0.003 0942 1.057
Economic trees 0.59 0.028 1424 0.574 0.031 1.429 0.598  0.024 1.425
Ecological plants —-0.07 0.805 1425 0.039 0.889 1.416 0.029 0916 1.416
Neighbors participating 1.597 0.009  1.038 1.518 0.011 1.042 1.572 0.009 1.039
FEBC land area —-0.169 0.031 1.248 —0.152 0.049 1.215  -0.147  0.055 1.209
Age 0.022 0.032  1.185  0.025 0.011 1.147 0.026  0.008 1.140
Gender -0.577 0.093 1.200 -0.642 0.059 1.201  -0.609  0.072 1.184
Education 0.1 0.006 1.290 -0.119 0.001 1290 -0.116  0.001 1.281
Annual agricultural expenses —0.598  <0.001 1.267 —0.497 0.001 1.234  -0.519  0.001 1.227
Local off-farm income 0.041 0.001 1.233  0.038 0.001 1.254 0.038  0.002 1.254
Household size —0.248 0.008  1.355 -0.255 0.006 1.391 -0.243  0.008 1372
Non—GTGP land 0.117 0.002 1365 0.103 0.005 1.348 0.102  0.005 1.353
AIC 527.84 538.92 538.9

Number of observations: 435. Bold indicates change of significance level from significant at 5% level to not significant

at 5% level.
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Table S7 Results of Moran’s test for deviance residuals in the models of Tables S5 and S6
Model (Neighborhood) Contiguity matrix =~ Moran’s I Expected I ~ Variance Z—-score p—value
Model 2 (Queen 1st order) Queen 1st order 0.034 —0.005 0.000 2.611 0.009
Model 17 (Queen 1st order) Queen 1st order —0.055 -0.032 0.000 —1.906 0.057
Model 2 (Queen 2nd order) Queen 2nd order 0.022 —-0.004 0.000 3.147 0.002
Model 18 (Queen 2nd order) Queen 2nd order -0.004 —-0.009 0.000 0.658 0.511
Model 2 (Queen 3rd order) Queen 3rd order 0.007 —-0.003 0.000 2.117 0.034
Model 19 (Queen 3rd order) Queen 3rd order —0.007 —-0.003 0.000 —0.752 0.452
Model 2 (Queen 4th order) Queen 4th order 0.004 —-0.003 0.000 1.377 0.169
Model 20 (Queen 4th order) Queen 4th order -0.010 —-0.003 0.000 -1.357 0.175
Model 2 (Queen 5th order) Queen 5th order 0.002 —0.003 0.000 1.036 0.300
Model 21 (Queen 5th order) Queen 5th order —-0.011 —0.003 0.000 -1.625 0.104
Model 2 (Rook 1st order) Rook 1st order 0.034 —-0.005 0.000 2.611 0.009
Model 22 (Rook 1st order) Rook 1st order —-0.055 —0.032 0.000 —1.906 0.057
Model 2 (Rook 2nd order) Rook 2nd order 0.022 —0.004 0.000 3.147 0.002
Model 23 (Rook 2nd order) Rook 2nd order —0.004 —-0.009 0.000 0.637 0.524
Model 2 (Rook 3rd order) Rook 3rd order 0.019 —-0.004 0.000 2.867 0.004
Model 24 (Rook 3rd order) Rook 3rd order —-0.005 —-0.009 0.000 0.524 0.601
Model 2 (Rook 4th order) Rook 4th order 0.018 —-0.004 0.000 2.750 0.006
Model 25 (Rook 4th order) Rook 4th order —0.001 -0.010 0.000 1.399 0.162
Model 2 (Rook 5th order) Rook 5th order 0.018 —0.004 0.000 2.686 0.007
Model 26 (Rook 5Sth order) Rook 5th order 0.001 —-0.009 0.000 1.446 0.148

Bold numbers indicate Moran’s I significant at 5% level.
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