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Abstract
Nowadays, Node.js has been widely used in the development

of server-side and desktop programs (e.g., Skype), with its

cross-platform and high-performance execution environment

of JavaScript. In past years, it has been reported other dynamic

programming languages (e.g., PHP and Ruby) are unsafe on

sharing objects. However, this security risk is not well studied

and understood in JavaScript and Node.js programs.

In this paper, we fill the gap by conducting the first system-

atic study on the communication process between client- and

server-side code in Node.js programs. We extensively identify

several new vulnerabilities in popular Node.js programs. To

demonstrate their security implications, we design and de-

velop a novel feasible attack, named hidden property abusing

(HPA). Our further analysis shows HPA attacks are subtly

different from existing findings regarding exploitation and

attack effects. Through HPA attacks, a remote web attacker

may obtain dangerous abilities, such as stealing confidential

data, bypassing security checks, and launching DoS (Denial

of Service) attacks.

To help Node.js developers vet their programs against HPA,

we design a novel vulnerability detection and verification

tool, named LYNX, that utilizes hybrid program analysis to

automatically reveal HPA vulnerabilities and even synthesize

exploits. We apply LYNX on a set of widely-used Node.js

programs and identify 15 previously unknown vulnerabilities.

We have reported all of our findings to the Node.js community.

10 of them have been assigned with CVE, and 8 of them are

rated as “Critical” or “High” severity. This indicates HPA

attacks can cause serious security threats.

1 Introduction

Node.js is a cross-platform and high-performance execution

environment for JavaScript programs. It has been widely used

to develop server-side and desktop applications such as Skype,

Slack, and WhatsApp [7,16]. According to a recent study [17],

Node.js is the most widely-used technology among all kinds

of developments for three years (2017-2019).

The prominence of Node.js makes its security critical.

Specifically, once a widely-used module is found to be vul-

nerable, a huge number of Node.js applications may be im-

pacted due to the heavy reuse phenomenon [49]. By exploiting

these vulnerabilities, remote attackers may abuse powerful

and privileged APIs inside vulnerable server-side applications

to launch severe attacks, like stealing confidential data or

executing arbitrary malicious code [23, 29, 37, 38, 43, 44, 49].

Node.js programs are built in the dynamic programming

language – JavaScript. In the past few years, several dynamic

languages, like PHP [28] and Ruby [14], suffer from a com-

mon security risk CWE-915 [9], where an internal object

attribute is improperly modified by untrusted user input. De-

spite the severe security consequence, this issue is not well

studied and understood in JavaScript and Node.js programs.

In this paper, we conduct the first systematic study on the

object sharing and communication process between client-

and server-side code in Node.js programs. We confirm that the

above security risk also exists in JavaScript and Node.js pro-

grams. To demonstrate the security implications, we design

a novel attack, named hidden property abusing (HPA), that

enables remote web attackers to obtain dangerous abilities,

such as stealing confidential data, bypassing security checks,

and launching denial-of-service attacks. Our further analysis

shows HPA differs from existing findings on PHP [28] and

Ruby [14] in many aspects such as exploitation and attack

effects (see more details in §3.4).

An HPA attack example is shown in Figure 1. As the figure

shows, a remote web attacker sends well-crafted JSON data

with an extra and unexpected property “I2” (called hidden

property) to the target Node.js server program. Then, the vic-

tim program deals with the malicious input payload as normal.

Finally, I2 propagates to an internal object. As indicated by

the red line, I2 of input overwrites and replaces a key property

of the victim internal object with the conflicting name. Thus,

the attacker may abuse the propagation process (i.e., property

propagation) of a hidden property to powerfully manipulate

critical program logic associated with the compromised prop-

erty, such as directly calling privileged APIs by assigning I2
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Table 1: Comparing HPA and Ruby mass assignment.

Aspect Hidden Property Abusing Ruby Mass Assignment

Abused logics Object sharing Assignment

Payload Type Literal value/nested object Literal value

Capabilities Overwrite Overwrite/Create

Table 1 summarizes the difference between HPA and Ruby

mass assignment, a typical vulnerability resulting from CWE-

915. First of all, they abuse different logics to pass payloads:

HPA leverages the object sharing to pass malicious objects

into the victim programs, while Ruby mass assignment abuses

a framework-specific assignment feature to modify certain

existing properties on the left side of an assignment. Second,

HPA can introduce hidden properties with either literal value

or nested objects while mass assignment payload is merely

literal value. Third, since Ruby is a strong-typed language,

mass assignment vulnerability cannot create new properties

to the victim object. However, JavaScript is more flexible and

thus HPA can inject arbitrary properties to the victim object

and even allows hidden properties to propagate over several

variables before they reach the target object. Our running

example is such a case: the hidden property constructor

propagates from the input object to the internal schema object

to attack the input validation logic.

It is worth noting that vulnerabilities of CWE-915 are not

deserialization bugs (CWE-502 [5]). Specifically, CWE-915

is more narrowly scoped to object modification and does not

necessarily exploit the deserialization procedure. For instance,

HPA does not attack the logics of object deserialization. In-

stead, it aims at modifying the properties of internal objects.

4 LYNX Design and Implementation

4.1 Definitions

In this section, we first define several important terms used in

the paper and then describe the problem we aim to address.

Hidden Property: Given a module, it contains an input object

Oinput and an internal object Ointernal . A hidden property

Phidden exists in Oinput only if all of the following three

requirements are satisfied:

• Phidden belongs to Ointernal and it is referenced in the

module.

• Phidden of Ointernal can be modified if a conflicting

property with the same name (i.e., Phidden) is added into

Oinput .

• Phidden is not a default parameter of Oinput . This means

Phidden of Oinput is not initialized when the module is

invoked with default parameters2.

To help describe the problem, we use “property carrier”

to denote all the variables that carry hidden properties (includ-

ing Ointernal and Oinput ).

2Here “default parameters” means documented usage of the module

Harmful hidden property: A hidden property is considered

harmful if an attacker can abuse this property to introduce un-

expected behaviors to the module. In this paper, we consider

the potential attack effects from the following three aspects:

• Confidentiality: The hidden property might lead to sen-

sitive information leakage while being abused.

• Integrity: The attacker could violate the consistency or

trustworthiness of a critical property in the module.

• Availability: The attacker could violate the application’s

expectations for the property, leading to a denial-of-

service attack due to an unexpected error condition.

4.2 Challenges and Solutions

We aim to design and develop an end-to-end system that can

automatically and effectively detect the HPA security issues

on the target Node.js programs. However, this is not a trivial

task due to the following two challenges.

C1. How to discover hidden properties for Node.js pro-

grams?

Existing techniques cannot perfectly solve this problem. In

particular, static analysis can easily get the whole picture of

the target program, but usually introduces high false positives,

especially when dealing with points-to and callback issues.

We find such cases are very commonly faced in Node.js pro-

grams. Dynamic analysis, like data flow tracking, is suitable

for 1) tracking input objects and their all propagation, and

further 2) discovering and flagging related property carriers,

and treating their corresponding properties as potential hidden

properties. However, in practice, we find the dynamic track-

ing often misses many critical execution paths and hidden

properties, and thus causes false negatives.

Our Solution. We design a hybrid approach that leverages

the advantages of both of dynamic and static analysis to dis-

cover hidden properties. First, we utilize a lightweight label

system to dynamically track input objects and related prop-

erties carriers, and dump all properties of properties carriers

as a part of hidden property candidates. To discover as many

execution paths as possible, especially critical paths, we recur-

sively and extensively label input objects and test the target

program. Second, the above dynamic test inevitably causes

false negatives. We find in many cases, critical hidden proper-

ties are still ignored even when the corresponding property

carriers have been successfully flagged (see more detail in

§4.4). To mitigate the problem, we introduce static analysis by

greedily searching potentially ignored properties. Finally, we

collect results and obtain a list of hidden property candidates.

C2. Among a large number of hidden properties, how to

determine which one is valuable and exploitable for at-

tackers?
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Driving Dynamic Analysis. LYNX runs the instrumented

target Node.js program based on their types. More specifi-

cally, if the application is a web-based program (e.g., web

apps), LYNX directly runs it. If the target Node.js code is in a

Node.js module, LYNX needs to embed it in a simple Node.js

test application. Then, LYNX calls the exposed APIs of the

target Node.js module. However, in this case, LYNX needs to

feed the APIs with some proper input, which is often hard to

generate automatically. We mitigate this problem based on

the following observation: we find most of Node.js modules

are released with use cases (45 out of 50 most depended-upon

packages on npm [11] have directly usable test cases). Hence,

LYNX can directly use them to drive the analysis.

For triggering APIs, LYNX currently supports two types

of object sharing schemes. The first is JSON serialization,

which is also the most commonly used method. The second

method is query-string serialization. In the Node.js ecosystem,

many request parsing modules also support transferring the

URL query string to objects. For example, a request parsing

module called qs (100M monthly downloads on npm) con-

verts the query string into a single object (e.g., from ?a=1&b=2

to {a:1,b:2}). LYNX detects hidden properties in the query

string by recording and replaying web requests.

Running Example. To illustrate how LYNX identifies prop-

erty carriers, we revisit our running example. As indicated in

Figure 4, the injected label property propagates in a path fol-

lows the black dotted line. By tracking this flow, LYNX iden-

tifies three property carriers (value, param, and object) and

records carrier entities for each of them. To give an example

of the entity, we show how the entity of object is synthesized:

First, to get O, LYNX checks where the label property is identi-

fied. In this case, the label property is identified from the base

of object. As a result, LYNX directly sets O to “object”. Sec-

ond, to get L, LYNX obtains the file path of the current script.

Third, to get S, LYNX extracts the visibility scope of the carrier.

In this case, the carrier is found from an anonymous function

locating from line 10 to line 22. Hence, LYNX encodes the

visibility as anon.10_1.26_1_fun. Overall, the recorded entity

will be 〈object,script_path,anon.10_1.22_1._fun〉.

4.4.2 Pinpointing Hidden Property Candidates

Our dynamic analysis can effectively detect property carriers.

However, it inevitably has false negatives on detecting hidden

properties. We find in some cases important hidden properties

are ignored even though the hidden property carriers have

been uncovered. We mitigate the problem by applying static

analysis as a complement. In this section, we first discuss

the reason why dynamic analysis has false negatives. Then,

we present the design details of our static analysis. Last, we

discuss how to prune the analysis results.

Necessity of Static Analysis. To explain the weakness of

dynamic analysis, we use a dummy vulnerable code example

Listing 1 (abstracted from real code). In this example, the

function foo() builds an internal variable conf based on a

user-controlled variable input (line 2), which makes conf

become a property carrier. The dynamic approach can capture

propertyA, but it will miss propertyB if condition is not met.

To address the issue, LYNX implements an intraprocedural

static syntactic analysis that recognizes the indexing syntax,

no matter if the actual code is executed or not.

Listing 1 A example code vulnerable to HPA.

1 function foo (input){

2 var conf = new Config(input);

3 setA(conf.propertyA);

4 // other code

5 if (condition){

6 conf.propertyB = getB();

7 }

8 return conf;

9 }

Extracting Hidden Property Candidates. Given a hidden

property carrier “< O,L,S >”, LYNX first identifies it in the

corresponding AST (pointed by L). LYNX searches all the

object references within the visibility scope recorded in S.

Finally, LYNX pinpoints all the references that are child prop-

erties of O and marks them as hidden property candidates.

Child properties are potential hidden properties due to the

following reason: A property carrier 〈O,L,S〉 is reported be-

cause the label property can propagate to variable O. As a

result, it is possible that other properties under O can also be

forged/overwritten from the input. Note that not all the can-

didates found here can always be manipulated using inputs

due to the greedy strategy. Hence, LYNX will use the next

component to verify each candidate to ensure accuracy.

Due to the dynamic feature of JavaScript, child properties

may be indexed in different ways. To improve the detection

coverage of this module,LYNX concludes and recognizes the

following three indexing methods: (1) Static indexing: proper-

ties indexed with a literal-type key (e.g., obj.k or obj[’k’]);

(2) Function indexing: properties indexed with a built-in

function (e.g., obj.hasOwnProperty(’k’)). (3) Dynamic in-

dexing: properties indexed with a variable (e.g., obj[kvar]).

LYNX recognizes the first two methods statically: it traverses

the AST to recover the indexing semantics. To recognize prop-

erties in the third method, LYNX extracts the actual value of

the kvar from previous execution traces. It is worth noting

that, since LYNX relies on previous dynamic execution traces

to support dynamic indexing, it cannot guarantee 100% cover-

age. That is to say, LYNX only recognizes dynamic indexing

properties that are concretely indexed in the last step.

Running Example. Here we still use the example in Figure 4

to illustrate how it works. Taking the carrier object at line

11 as an example, LYNX first searches all its child property

references within its visibility scope (the anonymous function
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Table 2: Sensitive sinks monitored by LYNX.

Category ID Sink Example

Confidentiality
C1

sensitive database query The attacker leaks sensitive data from database by
methods manipulating the SQL.

C2

sensitive file system operation The attacker accesses confidential files by abusing the
methods filesystem APIs.

Integrity
I1

Critical built-in properties and The attacker modifies the built-in property constructor
code execution APIs to abuse property-based type checks.

I2

Final results of the module The attacker manipulate sanitization results to bypass
invocation security checks.

Availability
A1

Global methods/variables The attacker overwrites login function to crash the
authentication service.

A2

Looping conditions The attacker introduce an infinite loop to block the Node.js
event loop [29].

§4.1, we conclude six sensitive sinks from three perspectives:

confidentiality, integrity, and availability. As shown in Table 2,

different sinks are used for detecting different kinds of attack

consequences. In summary, sinks are implemented in two

ways. The first type is keyword-based sink. Based on our

observations, certain parameters of sensitive APIs can be a

common sink for hidden properties. Hence, we collected a

list of keywords by analyzing existing vulnerabilities reported

on known vulnerability database such as snyk vulnerability

DB and npmjs security advisories. We made our best effort to

collect as many sensitive APIs as possible. Currently, the list

contains 24 sinks: 11 filesystem operation APIs, 9 database

query methods and 4 code execution methods (The API list

will be released along with the source code of LYNX). While

the list may be not complete, it can be easily expanded over

time. Another type of sink is behavior-based sink. Many vul-

nerabilities are highly dependent on the code context. To

identify such vulnerabilities, we focus on the behaviors that

may abuse the application logic. Currently, LYNX has covered

the following three malicious behaviors. (1) Return value ma-

nipulation. For vulnerabilities aiming at manipulating critical

states, LYNX checks return values of the tested modules. If

its return value is controllable to attackers, LYNX flags it as

vulnerable. (2) Global variable tampering. If LYNX detects

that a hidden property can tamper certain global variable, it

will report it as a potential vulnerability. (3) Loop variable ma-

nipulation. For vulnerabilities aiming at corrupting the service

by causing an infinite loop, LYNX checks looping conditions

to pinpoint whether they can be manipulated through hidden

properties.

After a sensitive sink is identified, LYNX prepares proof-

of-concept exploits which aim at verifying whether a sink is

reachable for attack-controlled value. To collect exploit, we

use the input generated in the last step to re-executed the pro-

gram. If the sink can be reached, the input is reported along

with an attack indicator. The attack indicator is designed for

helping security analysts understand how the exploit affects

the sink. For different sinks, LYNX employs different rules to

generate indicators. For keyword-based sinks, LYNX records

what type of contents that can reach the sensitive function-

s/properties. For behavior-based sinks, LYNX compares exe-

Algorithm 1 Attack Exploration Algorithm

Require:

T = a set of exploit templates for the vulnerable module

m = the vulnerable module

Ensure:

PoC = (exp, ind) where expi is the exploit and indi is the corresponding

attack indicator.

1: U ← {}
2: for all ti ∈ T do

3: paths ← explore(m, ti )
4: P ← P∪ {paths}
5: end for

6: for all pi ∈ P do

7: if has_sink(pi ) then

8: exp = get_input(pi )
9: ind = execute(m, exp)

10: if reach_sink(ind) then

11: PoC ← PoC ∪ {(exp, ind)}
12: end if

13: end if

14: end for

cution traces of attack input and benign input to pinpoint the

exploitation impact. For example, LYNX monitors the change

of global objects to observe the exploitability of A1 .

The whole attack exploration method is summarized in

Algorithm 1. The input to the search method is the tested

program m and the set of exploit templates T generated in

the previous step. The output of the method is the attack

proof of concept denoted by (E, I) where E is the sets of

the final exploits and I is the corresponding attack effect

indicators. In the first phase of the algorithm, it collects the

new paths discovered during symbolic execution and extracts

the concrete input and the path into U. In the second phase,

the algorithm examines each path Pi . After a sensitive sink is

detected, it will generate the corresponding exploit to reach

the sink. If LYNX detects that the sink is reachable, LYNX

will report both the exploit exp and the attack consequence

indicator ind.

To demonstrate the entire process, we apply the al-

gorithm to our running example. As shown Figure 4,

LYNX symbolizes the hidden property constructor in

line 14. During the execution, two other variables are also

symbolized due to the symbolic value propagation indicated

by the blue dotted line. By resolving the constraints for

the three symbolic values, LYNX finds two possible paths
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(i.e., line 19 and line 21). Since the new path leads to the

change of final module return (i.e., object or null), the

exploitation hits I2 . As a result, LYNX constructs an exploit

{"email":SQLI, "passwd":"11", "constructor":false}

(SQLI stands for a SQL Injection payload). After inputting

the exploit to the program, LYNX collects the corresponding

indicator: It detects that the return value can be changed by

setting the constructor to false.

4.6 Implementation

We build LYNX as a Node.js application, and implement it by

employing several existing tools. In the first analysis phase of

LYNX (i.e., identifying hidden properties §4.4), we employ

Jalangi [42] to instrument target Node.js code for implement-

ing our label system. The instrumented Node.js code with

labels is dynamically executed to discover hidden property

carriers (§4.4.1). We apply Esprima [6] to generate AST (Ab-

stract Syntax Tree) for doing static analysis on identified prop-

erty carriers and extracting hidden properties (§4.4.2). In the

second analysis phase of LYNX (§4.5), we use ExpoSE [36] to

perform symbolic execution for determining the harmfulness

of discovered hidden properties and generating exploits.

To analyze web-based applications, we implement a

profiling-based pipeline that captures HTTP requests and gen-

erates corresponding test cases.

5 Evaluation

To assess the security impacts of HPA, we apply LYNX on a

set of real Node.js applications and modules widely used in

practice. In the following sections, we discuss our evaluation

results with three research questions:

• RQ1: Are the hidden properties prevalent in widely-used

Node.js programs? (§5.2.2)

• RQ2: Can LYNX effectively detect harmful hidden prop-

erties and generate corresponding exploits? (§5.2.3)

• RQ3: How do the discovered vulnerabilities and exploits

enlarge the attack surface of the Node.js ecosystem?

(§5.3, §5.5)

5.1 Data Set

Node.js has made great progress and there are already many

Node.js programs available. However, we find a large number

of them are rarely used or do not match our threat model.

Therefore, to reduce the workload of our analysis, we re-

strict our data set collection process. In particular, we collect

Node.js programs based on the following two criteria: (1) The

tested programs should be used to interacting with external

input, and their APIs should accept objects (via either JSON

or query-string serialization). (2) The tested programs should

be widely-used or continuously maintained.

Table 3: Overall detection results. The numbers within the

parentheses indicate the number of programs that contain

hidden properties. #PC, #HP, and #DA respectively denote

the number of property carriers, hidden property candidates,

and detected documented arguments.

Category Tested Programs
Detection Results

#PC #HP #DA

Database 9 (8) 323 78 0

Input Validation 48 (30) 999 122 0

User Functionalities 34 (26) 584 156 24

Web 11 (7) 1269 95 0

To satisfy the first criteria, we collect programs from cat-

egories that are most likely to be exposed to input. These

categories include database, input validation, user functionali-

ties, and web-based application/middileware. To satisfy the

second criteria, we collect programs from known vendors

(e.g., MongoDB), and projects that have at least 1000+ star on

Github or 500 monthly downloads on npm (To guarantee the

volume of our samples, we might slightly lower this criteria

when all the popular programs have been selected).

In total, we collected 102 Node.js programs as our analy-

sis dataset. There are 91 Node.js modules and 11 web-based

programs. Among the 11 web-based programs, 4 are mini-

mal web frameworks/middlewares and 7 are complete web

applications.

5.2 Analysis Results

5.2.1 Overview

We run LYNX on a Ubuntu 18.04 machine equipped with Intel

Core i5-9600K (3.70GHz) and 32 GB memory. In total, we

detected 451 hidden property candidates and confirmed 15

previously unknown HPA vulnerabilities. By the timing of

writing, 10 CVEs have been assigned for our findings. More

than half of them are rated as “Critical” and “High” severity3

by NVD (national vulnerability database).

Among these vulnerabilities, two of them are identified

from complete web applications. The other 13 vulnerabilities

are identified from modules, which in total impact 20,402

dependent applications/modules. The Node.js community

pays great attention to our findings. An authoritative pub-

lic vulnerability database creates a new notion to track related

vulnerabilities.

5.2.2 Phase#1: Identifying Hidden Properties

To answer RQ1 (Are hidden properties prevalent in popular

Node.js programs?), we analyze how many (and what kind

of) hidden properties are detected from widely-used Node.js

programs.

Table 3 summarizes our detection results (Table 7 lists the

complete detection results). In Table 3, from the second col-

3The well-known heartbleed vulnerability was also rated as “High” sever-

ity.
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Table 4: Exploit results of LYNX.
Category Reported Exploitable Missed

Database 2 2 1

Input Validation 7 4 2

User Functionalities 5 4 0

Web 1 1 1

umn “Tested Programs”, we can observe that hidden proper-

ties widely exist in all categories that are likely to be exposed

to external input. Overall, 69% (70/102) tested programs are

found to contain hidden properties.

The first two columns under “Detection Results” indicate

the number of property carriers hidden property candidates.

In total, LYNX identifies 451 hidden property candidates by

analyzing 3175 property carriers. We can observe that hid-

den property candidates widely exist in all categories of our

dataset. The last column under “Detection Results” shows

how many candidates are identified as documented arguments

by LYNX. To figure out the correctness of our documented

argument inferring rules, we compare the documented argu-

ments from their official documentations with our results. we

found our context-based rules correctly recognize all docu-

mented arguments from identified hidden properties.

Note that we drive our analysis based on the types of

Node.js programs being tested. For the 91 npm modules,

we directly reuse the use cases provided on their npm home-

pages as the test input. For the remaining 11 web-based pro-

grams, we manually interact with applications and generate

test cases with our profiling-based pipeline. LYNX analyzes

both JSON and query-string serialization channels for web-

base programs. 7 out of these 11 web-based programs support

both query-string and JSON serializations (in different APIs).

5.2.3 Phase#2: Exploring Attack Consequences

We assess the effectiveness (RQ2) of LYNX from the follow-

ing two aspects: (1) Does LYNX effectively pinpoint poten-

tial vulnerabilities from programs of different categories? (2)

Does LYNX successfully generate exploits that can directly

or be easily ported to introduce real-world attack effects?

Table 4 shows the summarized exploit result during the sec-

ond phase. In this table, the columns “Reported” record how

many sensitive sinks are reported to be vulnerable by LYNX.

The column “Exploitable” indicates how many of reported

sinks that LYNX automatically exploit and are manually con-

firmed to be real vulnerabilities. From the two columns, we

can observe that LYNX is capable of pinpointing potentially

vulnerable sinks from different types of programs. Moreover,

the “quality” of reported issues are good. Overall, we found

11 out of 15 reported vulnerabilities are confirmed to be vul-

nerable, and the other 4 cases are considered to be harmless.

Among the 4 cases, although some hidden properties do lead

to certain sensitive sinks, they are still constrained by the

program semantics and thus no significant attack effects can

be introduced. For instance, when LYNX exploiting a hidden

property from a validation library, it causes an execution ex-

ception and thus triggers sink I2 (final result manipulation).

However, since the exception is later handled by the program,

it does not enable any attack effects such as validation bypass.

The last column (“Missed”) of Table 4 records the hidden

properties that LYNX successfully detects (phase#1) but fails

to generate usable exploits (phase#2). To find out such hidden

properties, we manually examine all hidden property candi-

dates reported by LYNX. There are three types of failures.

First, some hidden properties have a particular constraint that

is not presented in the code semantics. For example, taffyDB

(a popular JavaScript database) has a hidden property that

can leak arbitrary data by forging as the internal index. How-

ever, the constraint associated with the index is in the memory

rather than in the code. Thus, LYNX cannot construct a valid

index even though the index is in an easily-guessable format

(e.g., T000002R000001). This kind of failure results from

the limitation of symbolic execution. To cover such failures,

fuzzing techniques may be a good complement to cover the

part that symbolic execution fails to analyze. We leave im-

proving our symbolic execution as our future work.

Another type of failures result from multi-constraint issues:

To exploit some hidden properties, some parameters of the

input must be set to certain values. Such failures can be ad-

dressed by extending LYNX to explore multiple variables (not

only hidden properties but also documented parameters) si-

multaneously. The last type of failure comes from the syntax

incompatibility problem. The incompatibility results from the

fact that our underlying instrumentation framework (Jalangi)

is not compatible with certain grammars after ECMAScript 6.

We mitigated this problem by down-compiling incompatible

programs with Babel [3] or avoiding instrumenting incompati-

ble code. To ease the process of addressing the incompatibility,

we built an automatic down-compiling tool, which will be

released together with LYNX.

5.3 Impact Analysis of Identified HPA Vulner-

abilities

In this section, we seek to answer RQ3 by understanding

how HPA vulnerabilities introduce serious attack effects into

the Node.js ecosystem. As shown in Table 5, we detected

15 HPA vulnerabilities. To fix these vulnerabilities, we have

made responsible disclosure and notified the vendors. They

reacted immediately. So far 10 vendors have confirmed the

vulnerabilities, and 7 of them have released corresponding

patches. Next, we will explain the security impacts of HPA

from the following three perspectives.

Confidentiality. We found that 4 of the identified vulnerabil-

ities (i.e., HP-1, HP-2, HP-3, and HP-14) impact confidential-

ity of the program (e.g., leaking sensitive information from

the database). The vulnerabilities HP-1 and HP-2 are found

from two widely-used mongoDB drivers. By exploiting HP-1

and HP-2, the attacker can force database to always return
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Table 5: Vulnerabilities detected by LYNX (C: Confidentiality; I: Integrity; A: Availability).

#ID Product Name Affected API Description
Impact Attack Effects Disclosure

Downloads Dependents C I A status severity

1 mongoose findOne() SQL Injection 2,740,341 9,211 ✔ Fixed (CVE1) Critical

2 mongoDB driver find() SQL Injection 6,165,075 8,435 ✔ Fixed (CvE2) -

3 taffyDB query APIs SQL Injection 1,628,860 108 ✔ Confirmed (CVE3) High

4 class-validator validate() Bypass input validation 1,077,954 1,639 ✔ Confirmed (CVE4) Critical

5 jpv validate() Bypass input validation 481 1 ✔ Fixed (CVE5) Medium

6 jpv validate() Bypass input validation 481 1 ✔ Reported Medium

7 valib hasValue() Bypass input validation 479 8 ✔ Reported -

8 schema-inspector validate() Bypass input validation 35,783 104 ✔ Fixed (CVE6) High

9 schema-inspector sanitize() Bypass input validation 35,783 104 ✔ Fixed(CVE6) High

10 bson-objectid ObjectID() ID forging 142,562 298 ✔ Fixed (CVE7) High

11 component-type type() Type manipulation 943,555 140 ✔ Reported -

12 component-type type() Type manipulation 943,555 140 ✔ Reported -

13 kind-of kindOf() Type manipulation 196,448,574 458 ✔ Fixed (CVE8) High

14 cezerin getValidDocumentForUpdate() Order state manipulation 1871 – ✔ Confirmed (CVE9) High

15 mongo-express addDocument() Denial of service 6,965 – ✔ Fixed(CVE10) Medium

data/true regardless of the correctness of query condition.

This can be abused to leak sensitive information or bypass

access control. For example, an attacker might log into other

user’s accounts by forcing the authentication result to be true

(we will demonstrate a real-world case of this vulnerability

in §5.5). The vulnerability HP-3 is found from taffyDB. This

is a serious universal SQL Injection that can be abused to

access arbitrary data items in the database: It is found that a

hidden property can forge as taffyDB’s internal index ID. If

an index ID is found in the query, taffyDB will ignore other

query conditions and directly return the indexed data item.

Moreover, the index ID is in an easily-guessable format (e.g.,

T000002R000001), so that attackers can use this vulnerabil-

ity to access any data items in the DB. Vulnerability HP-12

is found from cezerin, an eCommerce web application. It

is found that a hidden property can modify the critical data

stored in database (i.e., payment status ispaid).

Integrity. We found that 10 of the identified vulnerabilities

(i.e., HP-4, HP-5, HP-6, HP-7, HP-8, HP-9, HP-10, HP-11, HP-

12, and HP-13) compromise the integrity of Node.js applica-

tions. 4 widely-used input validation modules are impacted

by HPA. Our running example, class-validator (HP-4), allows

attackers to overwrite the format schema object, which leads

to the arbitrary input validation bypass. Jpv (HP-5 and HP-6)

checks the type of unsafe objects on the their prototype. How-

ever, since HPA can modify properties in the prototype, the

validation result of jpv can be manipulated. The other three

validation bypass vulnerabilities are found from one API (HP-

6) from valib and two APIs (HP-7 and HP-8) from schema-

inspector: By modifying hasOwnProperty function under the

unsafe object’s prototype, security checks can be skipped.

Note that these three cases have limited exploit scenario: At-

tackers needs to pass valid function definitions, which is not

a widely supported feature [8].

The other 4 vulnerabilities (HP-10, HP-11, HP-12, and HP-

13) that impact program integrity are from user functionalities

modules. These 4 vulnerabilities are exploited in a similar

way: By manipulating some critical properties under the input

object, attackers can manipulate the final result of the module

invocation. Such manipulation might introduce serious risk to

the application. For example, clone-deep, an object cloning

module used in 1,822,028 projects according to Github, uses

vulnerable kind-of (HP-13) to perform type checking before

cloning. If the variable var to be cloned is detected as array,

clone-deep recursively calls itself var.length times to clone

all elements under var. With HP-13, a malicious object can

forge as an array with a very large length. When cloning

such an object, clone-deep will go into a super big loop, and

thus freeze the whole application (Time-consuming tasks can

block Node.js applications due to its single-thread model).

Availability. We found that the availability of 1 web frame-

work (i.e., HP-15) can be affected by HPA. This vulnerability

is detected from mongo-express, a web-based application. It

is found that a hidden property can introduce an infinite loop

to the application, which blocks the whole application. We

will include more details of the case in §5.5.

Community Impact. Our findings have been corroborated by

the Node.js community. To help developers be aware of this

new risk, we proposed a new notion should be used to describe

and track related issues. An authoritative public vulnerability

database maintained by snyk has accepted the proposal and

starts using the notion in related security issues [10].

Remark. Based on the impact analysis, we posit that the

HPA attack indeed enlarges the attack surface of the Node.js
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ecosystem. The claim is supported by the following two in-

sights. (1) By establishing unexpected data dependencies to

internal objects in the application, the HPA attack effectively

compromises previously unreachable program states and in-

troduces different kinds of attack effects. (2) Classic defense

techniques (e.g., input validation) can not mitigate the HPA.

As shown in Table 5, some widely-used validation modules

are vulnerable to the HPA attack.

5.4 Analysis Coverage and Performance

We measure the code coverage of LYNX for each Node.js

program based on ExpoSE [36]’s coverage monitoring, which

computes ‘LoC being executed’ / ‘total LoC in executed files’

(dependencies not counted). We discuss our coverage mea-

surement results below, based on the different types of tested

Node.js programs: modules and web-based programs.

For Node.js modules, the code coverage varies (i.e., 10%

- 80%). While a large portion of modules achieve decent

coverage (more than 40%), we argue the code coverage does

not necessarily indicate the effectiveness of LYNX: To find

practical vulnerabilities, we selectively test APIs that match

our threat model (likely to be exposed to external user and

accepting objects). As a result, even though test cases are

available for most APIs, we are not blindly testing all of them.

For instance, if an API does not accept parameters at all,

we will not include it into our test, and the code coverage

contribute by such API testing does not help us vetting HPA

from tested programs.

For web-based programs, LYNX achieves 21% code cov-

erage on average. We find this is because web applications

usually have a large number of functionalities/APIs, and our

profiling-based testing may not cover all of them. To help

LYNX discover more web APIs, incorporating active web

scanners [2] could be a promising future work.

Besides code coverage, we also measure the running time

of each phase. As an offline tool, LYNX achieves reasonable

analysis speed: For detecting hidden properties, it typically

takes no more than 10 seconds to analyzing one API (90%

cases). For very large programs such as web applications,

the analysis may take more than 200 seconds per API (no

more than 10 cases). For exploiting hidden properties, it takes

longer time because LYNX needs to explore multiple paths

for each candidate. Typically, it takes around 50 seconds per

hidden property. Detailed results can be found at §A.3.

5.5 Case Studies

Accessing Confidential User Data. LYNX reports a harmful

hidden property (_bsontype) from mongoDB Node.JS driver.

This property is used to decide the query type and should not

be provided by input. However, it is found that mongoDB

allows input to modify this property via HPA. Since mon-

goDB handles query objects according to pre-defined types.

Listing 2 The online game is vulnerable to HPA because it

calls vulnerable mongoDB APIs to handle input.

1 GameServer.loadPlayer = function(socket,id){

2 GameServer.server.db.collection('players').findOne({

3 _id: new ObjectId(id)},

4 function(err,doc){...}

5 });

6 };

The attacker can specify an unknown _bsontype (e.g., aaa) to

force mongoDB not serializing certain objects. For example,

this can be abused to force the query result to be always true

(i.e., by not serializing the query filer). By exploiting this

vulnerability, an attacker can launch unauthorized access to

confidential data in the mongoDB.

To demonstrate one of the attack vectors, we use Phaser

Quest, an online game that uses the vulnerable mongoDB

driver module. As shown in Listing 2, the program load-

s/deletes user profile by a user-provided secret identifier (id).

By abusing the discussed vulnerability, the attacker can force

the database to return a valid user regardless of the correctness

of the identifer. By doing this, the attacker can log in/delete

arbitrary player’s accounts.

We have made responsible disclosure to MongoDB team.

They has patched the vulnerability and acknowledged us at

their security advisories.

Blocking the event handler. Since Node.js is based on a

single-thread model, the availability of its event handler is

very critical and has been discussed a lot [29, 37, 43]. In the

second case, we would like to demonstrate how HPA can

attack the event handler and thus freeze the entire program.

LYNX reports a harmful hidden property (toBSON) from

mongo-express, a web-based mongoDB admin interface. By

abusing this property, an authenticated user issues a time-

consuming task to block the event handler of Node.js. As

shown in the upper part of Listing 3, a hidden property toBSON

is identified in line 3. By tracking the data flow of this property,

we found that it reaches a sensitive sink [15] in line 12, which

is for executing code in a sandbox. Hence, the attacker can

pass a time-consuming function (e.g., an infinite loop) to

block the event handler.

After receiving our vulnerability report, the project team

confirmed it immediately and added this issue to their security

advisories. By the time of paper writing, we are working

together with them on the bug fixing.

6 Discussion

Countermeasures. We conclude three major countermea-

sures against HPA. For example, one of them is validating

input objects. Since the first step of HPA is injecting additional

properties, removing unwanted (malicious) properties could

be a feasible mitigation. Due to the page limit, more details
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Listing 3 HPA impacts the availability of this program by

attacking the unique single-thread model of Node.js.

1 // code from bson module

2 if (object.toBSON) {

3 object = object.toBSON();

4 }

5

6 // code from mongodb-query-parser module

7 const SANDBOX = new SaferEval(FILTER_SANDBOX);

8 SANDBOX.runInContext(input);

about the three approaches are discussed in Appendix§A.1.

Limitations. First of all, LYNX needs external input (i.e.,

module test cases or user interactions on the web) to trigger

analysis. Since APIs of different modules/applications have

different context dependencies and parameter formats, it is

hard to automatically infer and resolve these prerequisites. For

example, during our evaluation, we found that we need to log

into the tested web program to access certain APIs. To address

the issue, we have implemented a pipeline that automatically

replays and mutates API invocations. To test web-based pro-

grams, security analysts just need to act like normal users

to perform interactions. In the future, we are considering in-

troducing an automatic input format reasoning component

to LYNX to ease the input generation process. Second, like

many other dynamic analysis tools, LYNX may have false

negatives. For example, it is possible that the test input we use

does not explore all the branches of certain tested programs.

To improve coverage, we can combine LYNX with fuzzing

techniques. Third, Lynx does not cover all input channels ex-

isted in the Node.js ecosystem: In the ecosystem, different

programs may use distinct methods/code implementations

to share objects, so it is difficult to systematically cover all

channels and it is not the focus of this paper. While we ac-

knowledge that Lynx does not cover all input lines, it does

cover the two most popular methods and can support a large

number of programs. As future work, we are considering to

support more input channels.

7 Related Work

7.1 Vulnerabilities of Node.js Ecosystem

Recently, researchers have discovered many security issues in

the Node.js ecosystem. Existing offensive research in Node.js

can be divided into two categories: attacks launching from

external users and attacks launching from internal modules.

In the first category, Ojamaa et al. [37] studies the security

of Node.js and discussed potential risks such as command

injection attack. Synode [44] further studies command injec-

tion attack and presents an automatic mitigation approach.

Staicu et al. [43] show how ReDoS (regular expression denial

of service) affects real Node.js websites. Davis et al. [29]

identify and mitigate a new type of denial of service (DoS)

attack, Event Handler Poisoning (EHP), which targets the

event-driven architecture of Node.js. Arteau et al. identify

prototype pollution [12] (PP), a security risk that tampers

object prototypes in Node.js applications. PP and HPA dif-

fer from the following two aspects. (i) Attack behavior: PP

introduces attack effects by tampering one special kind of

JavaScript data type (prototype), while HPA does not mod-

ify prototype. (ii) Exploit condition: The exploitation of PP

requires the attacker to explicitly assign a value to the pro-

totype. For example, the code obj[__proto__] = input

is vulnerable to PP while Object.assign(obj, input) is

not. In addition, we can observe that data serialization is not

necessary for PP. However, HPA does not require prototype

assignment. In contrast, it passes the attack payload through

data serialization. Because of these differences, the above

counterexample of PP is vulnerable to HPA since input may

carry “hidden” properties and propagates them to obj.

In the second category [23, 38, 49], researchers study how

malicious/buggy third-party modules impact the Node.js ap-

plications. Brown et al. [23] detect and prevent binding-layer

bugs in both server-side and browser-side platforms. Patra

et al. [38] define and classify JavaScript module conflicts

and propose ConflictJS to detect such risks. Zimmermann et

al. [49] present a large-scale study on the Node.js ecosystem

and identify several weak spots in the ecosystem. In con-

trast to these vulnerabilities, HPA does not require planting

malicious code into the victim application.

7.2 Analysis of JavaScript Code

Researchers also developed tools to help detect JavaScript

bugs/vulnerabilities. Many existing analysis tools [25, 31, 34,

36, 38–40, 45, 47] are based on information flow analysis. For

example, Stock et al. [47] propose dynamic taint tracking to

prevent DOM-based XSS. Lekies et al. [34] propose a system

that leverages byte-level dynamic taint tracking to detect and

validate DOM-based XSS. Typedevil [39] performs variable-

level information flow analysis to report inconsistent types.

Although LYNX also performs data flow analysis, it subtly

differs from existing tools [39, 45] by using a new labeling

and tracking method to analyzes HPA related data structures

(e.g., property carriers). Arteau et al. proposes a fuzzing ap-

proach to detect prototype pollution [12], which injects a static

payload into the test input and flags vulnerabilities if any pro-

totypes are modified. However, the fuzzer cannot be used to

detect HPA because (1) HPA does not necessarily need to

modify the prototype so that the fuzzer will not report any

vulnerabilities; (2) Hidden properties are internal states with

various random name variable (e.g., _bsontype), so syntactic

analysis is essential when we want to extract these hidden

properties. However, the fuzzer does not have the capability

to extract these syntax information (The fuzzer only runs with

the fixed input __proto__).

There are also tools in other language platforms designed
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to detect security issues similar to HPA. Dahse et. al [28]

proposed a static object-sensitive approach to detect PHP

objection injection. However, this approach cannot be used

to detect HPA: (1) The analysis is designed for analyzing

object-oriented code, and it relies on the object-oriented pro-

gramming (OOP) semantics such as new() to guide its analy-

sis. However, many of our analysis targets are not OOP; (2)

The approach focuses on exploiting potentially vulnerable

magic methods, while HPA does not have a corresponding

sink. Cristalli et. al [26] proposed a sandbox-based approach

for preventing Java deserialization vulnerabilities. The pro-

posed approach traces benign deserialization executions and

detects suspicious Java method invocation based on the pre-

vious execution traces. Since HPA exploits logic bugs rather

than arbitrary command execution bugs, this approach is not

suitable for mitigating HPA.

7.3 Security vulnerabilities of Browser-side

JavaScript

Security researchers also discovered many vulnerabilities the

browser-side scripts. One of the most important classes of

browser-side vulnerabilities is Cross-site scripting (XSS) [27,

30, 33–35, 41, 46, 48]. Recently, Lekies et al. [35] systemati-

cally investigate and mitigate a class of vulnerability, Cross-

Site Script Inclusion attack (XSSI). XSSI is a browser-side at-

tack that can leak sensitive user data by including a script from

an attacker-controlled domain. Fass et al. [30] propose Hi-

deNoSeek, a general camouflage attack that evades syntactic-

based malware detectors. Steffens et al. [46] propose Persis-

tent Client-Side XSS attack and investigate its severity on

the Web. Schewarz et al. [41] propose two new side-channel

attacks in JavaScript to automatically infer host information.

In contrast to related work, we focus on vulnerabilities in the

server-side Node.js programs.

8 Conclusion

In this paper, we conduct the first systematic study on the

object sharing of Node.js programs and design a new attack

named hidden property abusing. By exposing previously un-

reachable program states to adversaries, the new attack en-

larges the attack surface of Node.js. The new attack surface

leads to the discovery of 15 zero-day vulnerabilities, all of

which can be exploited to introduce serious attack effects. To

detect HPA, we build LYNX, a novel vulnerability finding and

verification tool that combines static and dynamic analysis

techniques to pinpoint and exploit vulnerable internal objects

in Node.js programs. Using LYNX against 102 widely-used

Node.js programs, we show that LYNX can effectively detect

HPA vulnerabilities.
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A Appendix

A.1 Countermeasures

Validating Input Objects. First of all, objects generated from input should

be validated. Since the first step of the HPA attack is to inject additional

properties into the input data, one straightforward mitigation is to remove
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Table 6: Examples of S and their meanings

Scope Refers to

* the carrier is globally visible to the whole script

login_fun the carrier is only visible to function login

login_fun.is_admin_fun
the carrier is only visible to a nested function is_admin

defined in function login

anon.12.1.12.5._fun
the carrier is visible to an anonymous function locating

at line 12 from column 1 to column 5

unwanted (malicious) properties by performing input validation. There are

two possible validation methods. The first method is using a blacklist to

prevent properties that have the same name as the critical internal properties

(e.g., constructor) from entering the application. The advantage of this method

is that it is flexible to deploy and requires no major changes to the whole

module. Several vulnerabilities we reported (e.g., CVE1 and CVE7) have

been patched by this method. The disadvantage of this method is that it

may be bypassed due to an incomplete blacklist. The second method is to

enforce a whitelist input format check for every API, which means it only

permits known properties entering into the program. The advantage is that it

ensures better input validation coverage, while the disadvantage is that it is

more difficult to deploy since developers have to manually declare the input

schema case by case.

However, we should be aware that input validation is not the cure for HPA,

because the validation module itself might also be vulnerable to HPA. As

shown in Table 5, 5 HPA vulnerabilities are identified from input validation

modules. Hence, we suggest that the input validation module should be

carefully designed (e.g., by following the other two suggestions below).

Avoiding packing multiple variables into one argument. Second, we ad-

vocate that developers should avoid putting different variables into one object

and uses it as an argument when invoking APIs. This is a very common

programming style in Node.js because it complies with the classic class

model in Object-oriented programming (OOP) which treats a variable as a

certain instance that consists of different members. For example, we found

that exposed APIs (e.g., findOne()) of mongoDB’s driver packs all query

data as a single object (i.e., query). However, this practice could be risky in

Node.js because: (1) Unlike other OOP languages that have member access

control (e.g., modifiers like private and public in C++ and Java), JavaScript

enforces no property access control for its objects. Hence, arbitrary internal

properties can be overwritten when a user-controlled object is copied/as-

signed to certain internal objects. (2) Developers adapting this style are likely

to define some properties (e.g., userRole) within the objects to store their

meta information. An attacker might forge these properties to introduce se-

curity risks. For example, mongoDB driver differentiates differentiate types

of query according a self-defined property _bsontype. It turns out that this

self-defined property can be forged to leak data from the database.

Isolating internal program state from input. It is important to put unsafe

external objects and internal state objects into different domains so that they

will not affect each other. For example, one potential solution is to label data

from the external interfaces (e.g., Network APIs) and perform validation

when overwriting properties in internal objects at the Node.js runtime engine

level. Though this solution fundamentally mitigates HPA, it also has two

disadvantages. First, it incurs overhead into the runtime engine because

additional data structures need to be attached to the object implementation.

Second, in some scenarios, developers do want external input to change

certain properties of an internal object. Hence, developers will have to add

additional code to declare a permission for such cross-domain behaviors if

this feature is implemented in the engine.

A.2 Scope Representation in LYNX

Table 6 shows several examples of the scope representations in LYNX and

the corresponding meanings.

A.3 Complete Result

Table 7 shows the complete detection results of the 102 tested Node.js

programs.

2966    30th USENIX Security Symposium USENIX Association



Table 7: Complete detection results. Downloads with (g) are counted from github, the major release channel of these projects.

Category Program Version LOC Downloads Coverage
Time Detection Results

Detection Exploitation #PC #HPC

Database json-records 1.0.5 169 52 0.34 12s 37.3s 15 1
keyv 4.0.0 93 12,781,403 0.64 2.1s 52.5s 10 3
levelup 4.3.2 353 1,162,162 0.31 6.1s 39.2s 28 2
LokiJS 1.5.8 6372 1,025,170 0.10 27.2s 49.4s 53 3
Lowdb 1.0.0 486 857,106 0.60 540.7s N/A 7 0
mongoDB 3.3.3 22256 6,165,075 0.28 329.8s 74.2s 63 8
mongoose 5.8.1 41750 2,941,692 0.19 359.2s 328.1s 92 41
mongoist 2.4.0 2041 10,646 0.39 60.3s 239.7s 40 14
Taffydb 2.7.3 1478 1,628,860 0.12 10.9s 49.6s 15 6

Input Validation Ajv 6.10.2 10997 101,694,541 0.36 240s N/A 6 0
AnotherJsonSchema 3.8.2 10994 267 0.15 2.2s N/A 18 0
allow 2.1.0 658 132732 0.55 7.6s 17.1s 7 8
async-validator 3.4.0 1972 2,502,423 0.29 3.5s N/A 17 0
async-validate 1.0.1 4349 1,731 0.41 2.6s 14.6s 38 5
amanda 1.0.1 9281 30,392 0.22 2s N/A 28 0
assert-args 1.2.1 1792 146 0.35 13s 17.7s 21 2
class-validator 0.9.1 5668 1,077,954 0.45 1409.0s 91.4s 42 8
congruence 1.6.11 10268 146 0.14 446.5s N/A 48 0
Consono 1.0.6 564 1,107 0.43 8.8s 91.l7s 18 5
DataInspector 0.5.0 1349 29 0.41 33.3s 447s 11 4
enforce 0.1.7 1546 14,047 0.29 3s 15s 14 1
fastest-validator 1.7.0 2315 130,804 0.37 6.4s N/A 3 0
Forgjs 1.1.11 3562 167 (g) 0.61 16.1s 354.9s 31 4
fieldify 1.2.2 2189 73 0.49 2.2s 41.0s 14 2
fefe 2.0.2 729 146 0.52 1.2s 55.8s 7 1
hannibal 0.6.2 2847 2,668 0.31 3.1s 21.8s 46 4
have 0.4.0 579 1,591 0.55 1.2s 15.3s 3 3
indicative 7.3.0 311 31,235 0.30 2.8s N/A 4 0
isMyJsonValid 2.20.0 554 6,428,255 0.34 1.5s N/A 4 0
is-extendable 1.0.1 8 103,501,348 0.36 1.0s 13.9s 3 1
is2 2.0.6 1969 2,944,841 0.28 1.2s N/A 4 0
joi 16.1.7 7435 12,575,750 0.31 142s N/A 16 0
jpv 2.0.1 206 481 0.20 1.6s 55.4s 25 14
Jsonschema 1.2.4 335 53,884,848 0.18 3.5s 57.5s 39 8
json-gate 0.8.23 732 2,228 0.29 1.3s 28.4s 18 2
legalize 1.3.0 2297 1,745 0.43 54.2s 55.3s 23 1
Object-inspect 1.7.0 701 40,736,308 0.44 5.6s 104.6s 31 6
obj-schema 1.6.2 511 207 0.24 5.6s N/A 23 0
OW 0.15.0 311 624,684 0.37 36.9s 43.5s 16 1
Property-Validator 0.9.0 4130 1,242 0.35 4.5s N/A 15 0
schema-inspector 1.6.8 5161 35,783 0.24 51.0s 53.8s 48 8
satpam 4.4.1 57151 4,256 0.51 47.8s 201.9s 27 1
typeof-properties 3.1.3 1047 1,184 0.43 2.6s N/A 20 0
typical 6.0.1 192 2,629,970 0.13 1.2s N/A 6 0
treat-like 1.0.0 767 47,832 0.36 0.9s N/A 31 0
themis 1.1.6 5081 942 0.26 45.7s 62.7s 28 1
validate.io-object 1.0.4 6 15,176 0.31 0.9s N/A 6 0
ValidatorJS 3.18.1 68823 106,038 0.19 3.9s 48.7s 33 3
validate.js 0.13.1 933 662,549 0.19 5.2s N/A 21 0
validate-arguments 0.0.8 725 1,788 0.08 257.4s 319.4s 21 3
validated 2.0.1 1561 2101 0.49 4.3s 72.4s 18 5
valida 2.4.1 2704 731 0.42 2.2s 57.1s 16 8
validall 3.0.17 1202 341 0.33 2.3s 50.6s 31 6
Valib 2.0.0 327 479 0.27 2.3s 51.2s 15 1
value-schema 3.0.0 1909525 1,900 0.46 2.1s N/A 31 0
Yup 0.27.0 2088 4,455,577 0.46 8.0s 24.2s 42 5
Z-schema 4.2.2 33221 2,434,914 0.29 15.6s 38.8s 19 1

User functionalities Avsc 5.4.16 6508 108,450 0.18 19s N/A 9 0

Analytics 3.4.0 185 105,510 0 * 19.7s 51.3s 20 8
bson-objectid 1.3.0 259 142,562 0.21 1.1s 40.7s 5 4
Cookies 0.8.0 503 2,549,728 0.46 46.7s 97.4s 6 1
component-type 1.2.1 2893 943,555 0.55 4.3s 48.0s 8 5

* Our underlying instrumentation (Jalangi) does not detect any code execution in the module, which results in the 0 here. In fact, code in the module

does execute and we even detect hidden properties.
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Category Program Version LOC Downloads Coverage
Time Detection Results

Detection Exploitation #PC #HPC

check-types 11.1.2 573 9,983,393 0.36 26.5s 225.7s 88 2
DumperJS 1.3.1 284 6,797 0.57 2.9s 580.4s 28 18
deep-extend 0.6.0 83 39,395,270 0.35 5.5s 45.0s 3 6
deep-copy 1.4.2 60 402,884 0.44 1.2s 49.2s 22 3
deepmerge 4.2.2 325 39,856,800 0.58 4.9s 53.3s 12 3
fast-clone 1.5.13 87 23,424 0.43 1.3s 44.2s 11 4
fast-stringify 2.0.0 184 33,4536 0.34 1.3s N/A 4 0
immutability-helper 3.0.1 259 1,395,820 0.32 0.8s N/A 10 0
iap 1.1.1 1250 8,227 0.32 0.5s 17.5s 12 5
Js-yaml 3.13.1 5719 60,478,990 0.24 47.8s 172.4s 40 14
jsonfile 5.0.0 110 5,637 0.29 1.5s N/A 42 0
js2xmlparser 4.0.1 364 2,796,779 0.47 67.4s 94.1s 45 2
json-to-pretty-yaml 1.2.2 163 1,052,996 0.34 2.1s 5.1s 19 2
just-extend 4.1.0 41 7,891,960 0.44 1.2s 13.46s 10 3
kind-of 6.0.2 97 196,448,574 0.56 1.2s 49.1s 16 16
mailgun-js 0.22.0 6569 1,200,173 0.61 614.0s 485.9s 22 6
map-obj 4.1.0 76 51,062,828 0.78 1.0s 26.8s 14 6
merge-deep 3.0.2 162 12,158,104 0.58 2.5s 15.2s 6 5
mongo-parse 2.1.0 1435 1,291 0.13 1s N/A 15 0
mongodb-extjson 3.0.3 8845 42,141 0.20 6s 75.5s 23 9
node-cache 5.1.0 618 2,917,617 0.33 1.3s 1.11s 14 6
object-hash 2.0.2 4277 20,002,794 0.33 4.2s 40.7s 15 2
Object-is 1.0.1 56 25,466,395 0.53 1.6s N/A 6 0
papaparse 5.1.1 4710 1,290,026 0.08 8.9s 32.6s 11 11
set-value 3.0.2 83 60,184,464 0.57 1.0s 17.1s 4 6
table 5.4.6 2283 36,535,762 0.38 11.5s 39.3s 7 3
WriteJsonFile 4.2.1 160 6,792,576 0.54 6.8s N/A 12 0
vnopts 1.0.2 2571 166,521 0.22 13s N/A 3 0
xtend 4.0.2 106 64,552,908 0.71 1.9s 78.5s 15 6

Web cezerin 0.33.0 48808 1,871 (g) 0.37 63s 740s 9 49
connect 3.7.0 125 15,621,960 0.20 46s N/A 4 0
derby 0.10.27 5060 1,156 0.12 237s N/A 5 0
Datalize 0.3.4 628 231 0.27 71s 91.2s 69 12
express 4.17.1 1829 55,134,711 0.14 62.0s 14.0s 1 2
Express-form 0.12.6 1569 4,183 0.31 1.3s 2.2s 17 2
express-cart 1.1.16 6904 1,554 (g) 0.14 45s N/A 8 0
ghost 3.39.3 58776 32,719 0.32 71s 88.4s 468 5
mongo-express 0.54.0 2789 6,965 0.30 75s 29s 45 25
nodebb 1.4.0 70549 55 0.14 38s N/A 637 0
total.js 3.3.0 38214 14,267 0.14 340s N/A 6 0
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