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ABSTRACT

In contrast to offline working fashions, two research paradigms
are devised for online learning: (1) Online Meta Learning (OML)
[6, 20, 26] learns good priors over model parameters (or learning
to learn) in a sequential setting where tasks are revealed one after
another. Although it provides a sub-linear regret bound, such tech-
niques completely ignore the importance of learning with fairness
which is a significant hallmark of human intelligence. (2) Online
Fairness-Aware Learning [1, 8, 21]. This setting captures many clas-
sification problems for which fairness is a concern. But it aims to
attain zero-shot generalization without any task-specific adaptation.
This therefore limits the capability of a model to adapt onto newly
arrived data. To overcome such issues and bridge the gap, in this
paper for the first time we proposed a novel online meta-learning
algorithm, namely FFML, which is under the setting of unfairness
prevention. The key part of FFML is to learn good priors of an
online fair classification model’s primal and dual parameters that
are associated with the model’s accuracy and fairness, respectively.
The problem is formulated in the form of a bi-level convex-concave
optimization. Theoretic analysis provides sub-linear upper bounds
O(log T) for loss regret and O(+/T log T) for violation of cumulative
fairness constraints. Our experiments demonstrate the versatility
of FFML by applying it to classification on three real-world datasets
and show substantial improvements over the best prior work on
the tradeoff between fairness and classification accuracy.
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1 INTRODUCTION

It’s no secret that bias is present everywhere in our society, such as
recruitment, loan qualification, recidivism, etc. The manifestation
of bias can be often as fraught as race or gender. Because of this,
machine learning algorithms have several examples of training
models, many of which have received strong criticism for exhibiting
unfair bias. Critics have voiced that human bias potentially has an
influence on nowadays technology, which leads to outcomes with
unfairness.

With biased input, the main goal of training an unbiased model
in machine learning is to make the output fair. Group-fairness, also
known as statistic parity, ensures the equality of a predictive utility
across different sub-populations. In other words, the predictions
are statistically independent on protected variables, e.g., race or
gender. In the real world, data with bias are likely available only
sequentially and also from a non-stationary task distribution. For
example, a recent news [18] by New York Times reports that sys-
tematic algorithms become increasingly discriminative to African
Americans in bank loan during COVID-19 pandemic. These algo-
rithms are built up from a sequence of data batches collected one
after another over time, where in each batch, decision-makings are
biased on the protected attribute (e.g. race). To learn a fair model
over time and make it efficiently and quickly adapt to unseen data,
online learning [9] are devised to learn models incrementally from
data in a sequential manner and models can be updated instantly
and efficiently when new training data arrives [11].

Two distinct research paradigms in online learning have at-
tracted attentions in recent years. Online meta-learning [6] learns
priors over model parameters in a sequential setting not only to
master the batch of data at hand but also the learner becomes pro-
ficient with quick adaptation at learning new arrived tasks in the
future. Although such techniques achieve sub-linear loss regret, it
completely ignores the significance of learning with fairness, which
is a crucial hallmark of human intelligence.

On the other hand, fairness-aware online learning captures su-
pervised learning problems for which fairness is a concern. It either
compels the algorithms satisfy common fairness constraints at each
round [1] or defines a fairness-aware loss regret where learning and
fairness interplay with each other [21]. However, neither of these
settings is ideal for studying continual lifelong learning where past
experience is used to learn priors over model parameters, and hence
existing methods lack adaptability to new tasks.

With the aim of connecting the fields of online fairness-aware
learning and online meta-learning, we introduce a new problem
statement, that is fairness-aware online meta-learning with long-
term constraints, where the definition of long-term constraints [17]
indicates the sum of cumulative fairness constraints. From a global
perspective, we allow the learner to make decisions at some rounds
which may not belong to the fairness domain due to non-stationary
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aspects of the problem, but the overall sequence of chosen deci-
sions must obey the fairness constraints at the end by a vanishing
convergence rate.

To this end, technically we propose a novel online learning algo-
rithm, namely follow-the-fair-meta-leader (FFML). At each round,
we determine model parameters by formulating a problem com-
posed by two main levels: online fair task-level learning and meta-
level learning. Each level of the bi-level problem is embedded within
each other with two parts of parameters: primal parameters 0 re-
garding model accuracy and dual parameters A adjusting fairness
notions. Therefore, in stead of learning primary parameters only
at round ¢ € [T], an agent learns a meta-solution pair (041, Ar+1)
across all existing tasks by optimizing a convex-concave problem
and extending the gradient based approach for variational inequal-
ity. Furthermore, when a new task arrives at t+1, the primal variable
0141 and the dual variable A;4; are able to quickly adapted to it and
the overall model regret grows sub-linearly in T. We then analyze
FFML with theoretic proofs demonstrating it enjoys a O(logT)
regret guarantee and O(4/T log T) bound for violation of long-term
fairness constraints when competing with the best meta-learner in
hindsight. The main contributions are summarized:

o To the best of our knowledge, for the first time a fairness-aware
online meta-learning problem is proposed. To solve the problem
efficiently, we propose a novel algorithm follow-the-fair-meta-
leader (FFML). Specifically, at each time, the problem is formu-
lated as a constrained bi-level convex-concave optimization with
respect to a primal-dual parameter pair for each level, where
the parameter pair responds for adjusting accuracy and fairness
notion adaptively.

Theoretically grounded analysis justifies the efficiency and effec-

tiveness of the proposed method by demonstrating a O(log T)

bound for loss regret and O(+/T log T) for violation of fairness

constraints, respectively.

o We validate the performance of our approach with state-of-the-
art techniques on real-world datasets. Our results demonstrate
the proposed approach is not only capable of mitigating biases
but also achieves higher efficiency compared with the state-of-
the-art algorithms.

2 RELATED WORK

Fairness-aware online learning problems assume individuals
arrive one at a time and the goal of such algorithms is to train
predictive models free from biases. To require fairness guarantees
at each round, [1] has partial and bandit feedback and makes dis-
tributional assumptions. Due to the the trade-off between the loss
regret and fairness in terms of an unfairness tolerance parameter,
a fairness-aware regret [21] is devised and it provides a fairness
guarantee held uniformly over time. Besides, in contrast to group
fairness, online individual bias is governed by an unknown similar-
ity metric [8]. However, these methods are not ideal for continual
lifelong learning with non-stationary task distributions, as they
aim to obtain zero-shot generalization but fail to learn priors from
past experience to support any task-specific adaptation.
Meta-learning [23] addresses the issue of learning with fast
adaptation, where a meta-learner learns knowledge transfer from
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history tasks onto unseen ones. Approaches could be broadly classi-
fied into offline and online paradigms. In the offline fashion, existing
meta-learning methods generally assume that the tasks come from
some fixed distribution [7, 22, 25, 31-34], whereas it is more realistic
that methods are expected to work for non-stationary task distribu-
tions. To this end, FTML [6] can be considered as an application of
MAML [5] in the setting of online learning. OSML [26] disentangles
the whole meta-learner as a meta-hierarchical graph with multiple
structured knowledge blocks. As for reinforcement learning, MOLe
[20] used expectation maximization to learn mixtures of neural
network models. A major drawback of aforementioned methods
is that it immerses in minimizing objective functions but ignores
the fairness of prediction. In our work, we deal with online meta
learning subject to group fairness constraints and formulate the
problem as a constrained bi-level optimization problem, in which
the proposed algorithm enjoys both regret guarantee and an upper
bound on violation of fairness constraints.

Online convex optimization with long term constra- ints.
For online convex optimization with long-term constraints, a pro-
jection operator is typically applied to update parameters to make
them feasible at each round. However, when the constraints are
complex, the computational burden of the projection may be too
high. To circumvent this dilemma, [17] relaxes the output through
a simpler close-form projection. Thereafter, several close works aim
to improve the theoretic guarantees by modifying stepsizes to a
adaptive version [12], adjusting to stochastic constraints [27], and
clipping constraints into a non-negative orthant [28]. Although
such techniques achieve state-of-the-art theoretic guarantees, they
are not directly applicable to bi-level online convex optimization
with long-term constraints.

In this paper, we study the problem of online fairness-aware
meta learning to deal with non-stationary task distributions. Our
proposed approach is designed based on the bridging of the above
three areas. In particular, we connect the first two areas to formu-
late the problem as a bi-level online convex optimization problem
with long-term fairness constraints, and develop a novel learning
algorithm based on generalization of the primal-dual optimization
techniques designed in the third area.

3 PRELIMINARIES

3.1 Notations

An index set of a sequence of tasks is defined as [T] = {1,..., T}.
Vectors are denoted by lower case bold face letters, e.g. the primal
variables @ € © and the dual variables A € RY* where their i-th
entries are 0;, A;. Vectors with subscripts of task indices, such as
0;,A; where t € [T], indicate model parameters for the task at
round ¢t. The Euclidean #;-norm of 0 is denoted as ||6]||. Given a
differentiable function £(0, A1) : ©xXR}* — R, the gradient at 6 and
Ais denoted as Vg £(0, A1) and V4 L(0, A), respectively. Scalars are
denoted by lower case italic letters, e.g. n > 0. Matrices are denoted
by capital italic letters. [] g is the projection operation to the set
B. [u]+ denotes the projection of the vector u on the nonnegative
orthant in R7?, namely [u]+ = (max{0,u1}), ..., max{0,up}). An
example of a function f(-) taking two variables 0, ¢ separated with
a semicolon (i.e. f(6;¢)) indicates that 0 is initially assigned with
¢. Some important notations are listed in Table 1.
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Table 1: Important notations and corresponding descrip-
tions.

Notations Descriptions

T Total number of learning tasks

t Indices of tasks

Z)S, Z)V, [51% Support set, validation set, and query set of data
D

6,1 Meta primal and dual parameters

s, At Model primal and dual parameters of task ¢

() Loss function of at round ¢

g() Fairness function

m Total number of fairness notions

i Indices of fairness notions

Alg(+) Base learner

Uu Task buffer

k Indices of past tasks in U

B Relaxed primal domain

Mg Projection operation to domain B

N1, M2 Learning rates

1 Augmented constant

3.2 Fairness-Aware Constraints

Intuitively, an attribute affects the target variable if one depends on
the other. Strong dependency indicates strong effects. In general,
group fairness criteria used for evaluating and designing machine
learning models focus on the relationships between the protected
attribute and the system output. The problem of group unfairness
prevention can be seen as a constrained optimization problem. For
simplicity, we consider one binary protected attribute (e.g. white
and black) in this work. However, our ideas can be easily extended
to many protected attributes with multiple levels.

Let Z = X X Y be the data space, where X = EUS.Here & C R4
is an input space, S = {0, 1} is a protected space, and Y = {0,1}
is an output space for binary classification. Given a task (batch)
of samples {e;, y;,si}7; € (& XY xS) where n is the number
of datapoints, a fine-grained measurement to ensure fairness in
class label prediction is to design fair classifiers by controlling the
decision boundary covariance (DBC) [29].

DEFINITION 1 (DECISION BOUNDARY COVARIANCE [16, 29]). The
Decision Boundary Covariance (i.e. DBC) is defined as the covariance
between the protected variables s = {s;}_; and the signed distance

from the feature vectors to the decision b;undary. A linear approxi-
mated form of DBC takes

s+1

. 1)

DBC=B(eys)ez| 51) (e, 0)]

1
pr(1=p1) (
where p1 is an empirical estimate of p1 and p1 =P (e y 5 ez (s = 1)
is the proportion of samples in group s = 1, and h : RIx©® > Risa
real valued function taking @ as parameters.

Therefore, parameters 0 in the domain of a task is feasible if it
satisfies the fairness constraint g(0) < 0. More concretely, g(0) is
defined by DBC in Eq.(1), ie.

9(0) = (DBC( . @)
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where || is the absolute function and € > 0 is the fairness relaxation
determined by empirical analysis.

For group fairness constraints, two wildly used fair notion fami-
lies are demographic parity [2] and equality of opportunity (a.k.a
equal opportunity) [10]. Notice that demographic parity and equal-
ity of opportunity are quite similar from a mathematical point of
view [16], and hence results and analysis on one notion can often
be readily extended to the other one. According to [16], the DBC
fairness notion introduced in Definition 1 is an empirical version of
demographic parity. In this paper, we consider DBC as the fairness-
aware constraint, but our proposed approach supports equality of
opportunity and other fairness notions that are smooth functions.

3.3 Settings and Problem Formulation

The goal of online learning is to generate a sequence of model pa-
rameters {Gf}thl that perform well on the loss sequence {f; : © —
R}thl, e.g. cross-entropy for classification problems. Here, we as-
sume © C R? is a compact and convex subset of the d-dimensional
Euclidean space with non-empty interior. In a general setting of
online learning, there is no constraint on how the sequence of loss
functions is generated. In particular, the standard objective is to
minimize the regret of Eq.(3) defined as the difference between
the cumulative losses that have incurred over time and the best
performance achievable in hindsight. The solution to it is called
Hannan consistent [3] if the upper bound on the worst case regret
of an algorithm is sublinear in T.

T T
Regretr = +(0;) —min (0 3
gretr = ) i(00) ~pin ) fi(®) )

To control bias and especially ensure group fairness across differ-
ent sensitive sub-populations, fairness notions are considered
as constraints added on optimization problems. A projection
operator is hence typically applied to the updated variables in order
to make them feasible at each round [12, 17, 28].

In this paper, we consider a general sequential setting where
an agent is faced with tasks {Dt}thl one after another. Each of
these tasks corresponds to a batch of samples from a fixed but
unknown non-stationary distribution. The goal for the agent is
to minimize the regret under the summation of fair constraints,
namely long-term constraints:

T
min  Regretr = Y fi(Alg:(6;, D), DY) (4)
04,....07€B =
T
— mi Alg: (6, DY), DY
min ;ft( 9:(0,D7),D,)
T
subject to Z 9i(Alg: (01, DY), DY) < O(TY),Vi € [m]
t=1

where y € (0,1); Dts C Dy is the support set and DLY C Dyis
a subset of task Dy that is used for evaluation; Alg(-) is the base
learner which corresponds to one or multiple gradient steps [5]
of a Lagrangian function, which will be introduced in the follow-
ing sections. For the sake of simplicity, we will use one gradient
step gradient throughout this work, but more steps are applicable.
Different from traditional online learning settings, the long-term
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constraint violation Zthl gi(:) : B > R,Vi € [m] is required to
be bounded sublinear in T. In order to facilitate our analysis, at
each round, 0; is originally chosen from its domain ©, where it
can be written as an intersection of a finite number of convex con-
straints that © = {6 € RY : gi(0) < 0,i = 1,..,m}. In order to
lower the computational complexity and accelerate the online pro-
cessing speed, inspired by [17], we relax the domain to 8B, where
© C 8B = RK with K being the unit ¢, ball centered at the origin,
and R 2 max{r > 0 :r = ||x—y||, Vx,y € ©}. With such relaxation,
we allow the learner to make decisions at some rounds which do
not belong to the domain ©, but the overall sequence of chosen
decisions must obey the constraints at the end by vanishing con-
vergence rate. Following [28] and [6], we assume the number of
rounds T is known in advance.

Remarks: The new regret defined in Eq.(4) differs from the set-
tings of online learning with long-term constraints. Minimizing
Eq.(4) is embeded with a bi-level optimization problem. In contrast
to the regret considered in FTML [6], both loss regret and viola-
tion of long-term fairness constraints in Eq.(4) are required to be
bounded sublinearly in T.

4 METHODOLOGY

In order to minimize the regret constrained with fairness notions
in Eq.(4), the overall protocol for the setting is:

Step 1: At round ¢, task t and model parameters defined by Dy, 0
are chosen.

Step 2: The learning agent incurs loss f; (Alg;(0;)) and fairness
gi(Alg:(0:)),Vi € [m].

Step 3: The update procedure is learned from prior experience,
and it is used to determine model parameters 6;,1 fairly through
an optimization algorithm.

Step 4: The next predictors are updated and advance to the next
round t + 1.

4.1 Follow the Fair Meta Leader (FFML)

In the protocol, the key step is to find a good meta parameters 0
at each round (Step 3). At round t, when the task D; comes, the
main goal incurred is to determine the meta parameters 041 for
the next round. Specifically, the most intuitive way to find a good
0141 is to optimize it over past seen tasks from 1 to t. We hence
consider a setting where the agent can perform some local task-
specific updates to the model before it is deployed and evaluated
onto each task at each round.

The problem of learning meta parameters 6 at each round, there-
fore, is embedded with another optimization problem of finding
model-parameters in a task-specific level. Here, the base learner
Algy(-) determines model-parameters such that the task loss f; :
© — R is minimized subject to all constraints g;(0;) < 0,i =
1,2,...,m, where k € [¢] is the index of previous tasks.

The optimization problem is formulated with two nested levels,
i.e. an outer and an inner level, and one supports another. The outer
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Inne
0 : Primal variable
A : Dual variable

Push the new task
in the buffer

Ors1,4041)

relaxed fairness
domain

Figure 1: An overview of update procedure stated in Step 3.
At round t, new task is added in the the buffer. The param-
eter pair (0,,A;) are iteratively updated with fairness con-
straints through a bi-level optimization in which the inner
and the outer interplay each other.

problem takes the form:

t
Or =argmin > (6, D73 Algi (6, D)) )
k=1

t
subject to Zgi(a, Z)]?;ﬂlgk(e, Z)]‘j)) <0,Vie [m]
k=1

where the inner problem is defined as:

Alg(0, D) =arg min  fi(6;, Dy 0) (6)
QkEB

subject to gi(Ok,Z)]f;G) <0,Vi € [m]

where D]f, DkQ C Dy are support and query mini-batches,
which are independently sampled without replacements, i.e. Df N

Z)kQ = (. In the following section, we introduce our proposed algo-
rithm. In stead of optimizing primal parameters only, it efficiently
deals with the bi-level optimization problem of Eq.(5)(6) by approx-
imating a sequence of a pair of primal-dual meta parameters (6, A)
where the pair respectively responds for adjusting accuracy and
fairness level.

4.2 An Efficient Algorithm

The proposed Algorithm 1 is composed of two levels where each
responds for the inner and outer problems stated in Eq.(6) and
Eq.(5), respectively. The output of the outer problem are used to
define the inner objective function and vice versa. A parameter pair
is therefore iteratively updated between the two levels.

To solve the inner level problem stated in Eq.(6), we first consider
the following Lagrangian function and omit O for the sake of
brevity:

m
LBk A 0.0) = fi(B1:0) + ) Aeigi(6:6) ()
i=1
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Algorithm 1 The FFML Algorithm

Require: Learning rates 71, 772, some constant J.
1: Randomly initialize primal and dual meta-parameters,
(61.A1) € (O X R])
2: Initialize the task buffer U « []
3: fort=1,2,..,T do
4 Sample D) C D, from task ¢
5 Evaluate performance of task ¢ using Z)y and 6;
6: Append Dy to task buffer U «— U + [ D]
7: if t # 1 then
8 Initialize ONiter=0 @, and ANiter=0 3,
9 while Njser = 1,2, ... do

10: for each task Dy in U where k € [t] do

11: O — @Niter—1, A — ANizer—1

12: Sample datapoints le C Dy

13: Compute adapted task-level primal and dual pair
(61, A;) using Eq.(8) and (9).

14: Sample datapoints Z)kQ C D

15: Computefk(e’,i)g) and g; (6, Z)kQ),Vi € [m]
using Z)kQ.

16: end for

17: Update meta-level primal-dual parameter pair

(@Niter, ANiter) ysing Eq.(11) and (12).

18: end while

19: Set meta-parameters (6;, A;) «— (@Niter ANiter)

20: end if

21: (0141, Ar41) < (01, A1)

22: end for

where 0 € B is the task-level primal variable initialized with
the meta-level primal variable 0, and A € R is the correspond-
ing dual variable initialized with A, which is used to penalize the
violation of constraints. Here, for the purpose of optimization with
simplicity, constraints of Eq.(6) are approximated with the cumu-
lative one shown in Eq.(7). To optimize, we update the task-level
variables through a base learner Algy(+) : O € B — Gl’c e R
One example for the learner is updating with one gradient step us-
ing the pre-determined stepsize 11 > 0 [6]. Notice that for multiple
gradient steps, Ol’c and )l]/c interplay each other for updating.

0;. = Algi(0r;0) = 0 — 11 Vg L (0, Ay; 0, 4)
A= |+ mVALe(8) As 0.2

®)
©

Next, to solve the outer level problem, the intuition behind our
approach stems from the observation that the constrained opti-
mization problem is equivalent to a convex-concave optimization
problem with respect to the outer-level primal variable 6 and dual
variable A. We hence consider the following augmented Lagrangian
function:

t
L=y

k=1

{fkw; o)+ > (110i(0:0}) - 5%&?)} (10)
i=1

where § > 0 and 72 > 0 are some constant and stepsize whose
values will be decided by the analysis. Besides, the augmented term
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on the dual variable is devised to prevent A from being too large
[17]. To optimize the meta-parameter pair in the outer problem, the
update rule follows

Ors1 = | [(6r = n2Vo L1 (61, A1)
B

= arg min |ly — (8; — 12Vg L (01, A1) (11)
yesB

Arsr = [lt +12VLe (01, Ar) . (12)

where [] g is the projection operation to the relaxed domain 8
that is introduced in Sec.3.3. This approximates the true desired
projection with a simpler closed-form.

We detail the iterative update procedure in Algorithm 1. At round
t € [T], we first evaluate the performance on the new arrived task
Dy using 0; (line 5) and Dy is added to the task buffer U (line 6).
As for the bi-level update, each task-level parameters 0, A from
the buffer are initialized with the meta-level ones (line 8). In line
13, task-level parameters are updated using support data. Query
loss and fairness for each task are further computed in line 15 and
they are used to optimize meta parameters in line 17. An overview
of the update procedure is described in Figure 1.

Different from techniques devised to solve online learning prob-
lems with long-term constraints, at each round FFML finds a good
primal-dual parameter pair by learning from prior experience
through dealing with a bi-level optimization problem. In order
to ensure bias-free predictions, objective functions in both inner
and outer levels subject to fairness constraints. Besides, since we
generalize the traditional primal-dual update scheme onto a bi-level
optimization problem, conventional theoretic guarantees cannot be
applied. We hence demonstrate analysis of FFML in the following
section.

5 ANALYSIS

To analysis, in this paper, we first make following assumptions as
in [6] and [17]. These assumptions are commonly used in meta
learning and online learning settings. Examples where these as-
sumptions hold include logistic regression and L2 regression over
a bounded domain. As for constraints, a family of fairness notions,
such as linear relaxation based DDP (Difference of Demographic
Parity) including Eq.(2), are applicable as discussed in [16].

AssuMPTION 1 (CONVEX DOMAIN). The convex set © is non-empty,
closed, bounded, and can be described by m convex functions as © =
{6 :4i(0) <0,Vie [m]}

AsSSUMPTION 2. Both the loss functions f;(-),Vt and constraint
functions g;(-),Vi € [m] satisfy the following assumptions

(1) (Lipschitz continuous) f;(0),Vt and g;(0),Yi are Lipschitz
continuous in B, that is, V0,¢ € B, ||f;(0) — fi(¢p)|] <

Lell0 =l 119i(8) — gi(®)ll < Lgll6 —ll, and G
max{Ly, Ly}, and

F= 0) — f:(¢) < 2L¢R
tr?[a% er’r(;,aex f:(0) - fi(¢) f
D= i(0) < LyR
i?[axlreneaxgl( ) g



Research Track Paper

(2) (Lipschitz gradient) f; (0),Vt are fr-smooth and g;(0), Vi are fg-
smooth, that is, Y0, ¢ € B, ||Vf;(0) — Vfi($)|| < Brll0 — ¢,
[1V9:(6) = Vgi(d)I| < fgll0 — ¢ll. and H = max{fy, fy}.

(3) (Lipschitz Hessian) Twice-differentiable functions f; (0),Vt and
gi(6), Vi have py and pg- Lipschitz Hessian, respectively. That is,
VO, ¢ € B, [IV2£:(0) = V2 [ ()l < prll6 = oI,
11V29:(6) — V2gi ()1l < pgll6 — ¢l.

ASSUMPTION 3 (STRONGLY CONVEXITY). Suppose f;(0),Vt and
gi(0),Vi have strong convexity, that is, V0,¢ € B, ||Vf:(0) —

Vi@ = prll0 = $l1.11Vgi(0) = Vgi(P)ll = pgll0 = ¢lI.

We then analyze the proposed FFML algorithm and use one-step
gradient update as an example. Under above assumptions, we first
target Eq.(10) and state:

THEOREM 1. Suppose f and g : © X R7' — R satisfy Assumptions
1, 2 and 3. The inner level update and the augmented Lagrangian
function L;(0,A) are defined in Eq.(8)(7) and Eq.(10). Then, the
function L;(60, A) is convex-concave with respect to the arguments
0 and A, respectively. Furthermore, as for L;(-, A), if stepsize n;

Hp+Amyy 1

S (Lr+dmLy) (pp+Ampg)” 2(Br+Ampy) b, then
L (-, A) enjoys %(ﬁf + Amfy)-smooth and %(,uf + Amjig) -strongly
convex, where 1 > 0 is the mean value of A.

is selected as n1 < min{

We next present the key Theorem 2. We state that FFML en-
joys sub-linear guarantee for both regret and long-term fairness
constraints in the long run for Algorithm 1.

THEOREM 2. Set nz = pg/(t + 1) and choose § such that § >
max{4m(G4tﬁm2 +5217§), 4G217fH2(m+1)2}. If we follow the update
rulein Eq.(11)(10) and 0* being the optimal solution formingcg Zthl
f:(Alg:(0)), we have upper bounds for both the regret on the loss
and the cumulative constraint violation

T

> {fi(Alge(00)) - fi(Alg (67| < O(1ogT)

t=1
T
> 4i(Alge(6,)) < O(YTlogT), Vi € [m]
t=1

Regret Discussion: Under aforementioned assumptions and prov-
able convexity of Eq.(10) in 6 (see Theorem 1), Algorithm 1 achieves
sublinear bounds for both loss regret and violation of fairness con-
straints (see Theorem 2) where lim7_,o, O(-)/T = 0. Although such
bounds are comparable with cutting-edge techniques of online
learning with long-term constraints [12, 28] in the case of strongly
convexity, in terms of online meta-learning paradigms, for the first
time we bound loss regret and cumulative fairness constraints simul-
taneously. For space purposes, proofs for all theorems are contained
in the Appendix A and B.

6 EXPERIMENTS

To corroborate our algorithm, we conduct extensive experiments

comparing FFML with some popular baseline methods. We aim to

answer the following questions:

(1) Question 1: Can FFML achieve better performance on both
fairness and classification accuracy compared with baseline
methods?
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(2) Question 2: Can FFML be successfully applied to non-
stationary learning problems and achieve a bounded fairness
as t increases?

(3) Question 3: How efficient is FFML in task evaluation over
time and how is the contribution for each component?

6.1 Datasets

We use the following three publicly available datasets. Each dataset
contains a sequence of tasks where the ordering of tasks is selected
at random. (1) Bank Marketing [19] contains a total 41,188 sub-
jects, each with 16 attributes and a binary label, which indicates
whether the client has subscribed or not to a term deposit. We
consider the marital status as the binary protected attribute. The
dataset contains 50 tasks and each corresponds to a date when the
data are collected from April to December in 2013. (2) Adult [13] is
broken down into a sequence of 41 income classification tasks, each
of which relates to a specific native country. The dataset totally
48,842 instances with 14 features and a binary label, which indi-
cates whether a subject’s incomes is above or below 50K dollars. We
consider gender, i.e. male and female, as the protected attribute. (3)
Communities and Crime [15] is split into 43 crime classification
tasks where each corresponds to a state in the U.S. Following the
same setting in [24], we convert the violent crime rate into binary
labels based on whether the community is in the top 50% crime rate
within a state. Additionally, we add a binary protected attribute that
receives a protected label if African-Americans are the highest or
second highest population in a community in terms of percentage
racial makeup.

6.2 Evaluation Metrics

Three popular evaluation metrics are introduced that each allows
quantifying the extent of bias taking into account the protected
attribute.

Demographic Parity (DP) [4] and Equalized Odds (EO) [10]
can be formalized as

_P(Y=1S=0)
P =1S=1

_P(Y=1|S=0,Y=0y)
P(Y=1S=1Y=y)

where y € {0,1}. Equalized odds requires that ¥ have equal true
positive rates and false positive rates between sub-groups. For both
metrics, a value closer to 1 indicate fairness.

Discrimination [30] measures the bias with respect to the pro-
tected attribute S in the classification:

| 2isi=10i Xisi=0Ti
Zi:s,:] 1 Zi:s;zo 1
This is a form of statistical parity that is applied to the binary classifi-

cation decisions. We re-scale values across all baseline methods into
arange of [0, 1] and Disc = 0 indicates there is no discrimination.

Disc

6.3 Competing Methods

(1) Train with penalty (TWP): is an intuitive approach for online
fair learning where loss functions at each round is penalized by the
violation of fairness constraints. We then run the standard online
gradient descent (OGD) algorithm to minimize the modified loss
function. (2) m-FTML [6]: the original FTML finds a sequence of
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Table 2: End task performance on real datasets over all baseline methods. Evaluation metrics with "1" indicates the bigger the
better and "|" indicates the smaller the better. Best performance are labeled in bold.

Dataset DP 1 EO T Disc | Acc(%) 1
TWP / m-FTML[6] / OGDLC[17] / AdpOLC[12] / GenOLC[28] / FFML(Ours)
Bank | 0.09/0.68/0.36/0.76/0.81/0.97 | 0.11/0.65/0.35/0.72/0.78/0.96 | 0.19/0.72/0.23/0.22/0.11/0.07 | 52.14/53.69/52.36/54.89/56.78/52.55
Adult | 0.05/0.54/0.41/0.60/0.78/0.91 | 0.04/0.43/0.30/0.62/0.69/0.87 | 0.32/0.69/0.21/0.19/0.12/0.10 | 51.21/67.91/52.31/48.36/47.87/61.35
Crime | 0.40/0.38/0.48/0.68/0.70/0.74 | 0.38/0.29/0.39/0.43/0.64/0.69 | 0.23/0.78/0.25/0.31/0.15/0.17 | 51.23/48.69/49.10/58.89/49.43/59.57
1 Bank Marketing - 0.9 Validation N Bank Marketing - 0.3 Validation N Bank Marketing - 0.9 Validation N Bank Marketing - 0.3 Validation
e
gua gu 5 3
a 0.2 nUZ 0.2 0.2
sol A A B NSIOETT | . 0
gw goa 3 3
a 0.2 nUZ 0.2 0.2
gas :Eos mus —— TOV\G/I:LC mog

Task Index Task Index

Figure 2: Evaluation using fair metric DP at each round.

meta parameters by simply applying MAML [5] at each round. To
focus on fairness learning, this approach is applied to modified
datasets by removing protected attributes. Notice that techniques
(3)-(5) are proposed for online learning with long-term constraints
and achieve state-of-the-art performance in theoretic guarantees. In
order to fit bias-prevention and compare them to FFML, we specify
such constraints as DBC stated in Eq.(2). (3) OGDLC [17]: updates
parameters solely based on the on-going task. (4) AdpOLC [12]:
improves OGDLC by modifying stepsizes to an adapted version. (5)
GenOLC [28]: rectifies AdpOLC by square-clipping the constraints
in place of g;(+), Vi. Although OGDLC, AdpOLC and GenOLC are
devised for online learning with long-term constraints, none of
these state-of-the-arts considers inner-level adaptation. We note
that, among the above baseline methods, m-FTML is a state-of-
the-art one in the the area of online meta learning. The last three
baselines, including OGDLC, AdpOLC, GenOLC are representative
ones in the area of online optimization with long term constraints.
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30

Task Index Task Index

Figure 3: Evaluation using fair metric EO at each round.

6.4 Settings

As discussed in Sec.5, the performance of our proposed method has
been well justified theoretically for machine learning models, such
as logistic regression and L2 regression, whose objectives that are
strongly convex and smooth. However, in machine learning and
fairness studies, due to the non-linearity of neural networks, many
problems have a non-convex landscape where theoretical analysis
is challenging. Nevertheless, algorithms originally developed for
convex optimization problems like gradient descent have shown
promising results in practical non-convex settings [6]. Taking in-
spiration from these successes, we describe practical instantiations
for the proposed online algorithm, and empirically evaluate the
performance in Sec.7.

For each task we set the number of fairness constraints to one, i.e.
m = 1. For the rest, we following the same settings as used in online
meta learning [6]. In particular, we meta-train with support size of
100 for each class, whereas 30% or 90% (hundreds of datapoints) of
task samples for evaluation. All methods are completely online, i.e.,
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Figure 4: Amount of data needed to learn each new task.

all learning algorithms receive one task per-iteration. All the base-
line models that are used to compare with our proposed approach
share the same neural network architecture and parameter settings.
All the experiments are repeated 10 times with the same settings
and the mean and standard deviation results are reported. Details
on the settings are given in Appendix C.

7 RESULTS

The following experimental results on each dataset are to answer
all Questions given in Sec.6.

7.1 End Task Performance

In contrast to traditional machine learning paradigms where they
often run a batch learning fashion, online learning aims to learn
and update the best predictor for future data at each round. In our
experiments, we consider a sequential setting where a task comes
one after another. To validate the effectiveness of the proposed
algorithm, we first compare the end task performance. All methods
stop at t = T after seeing all tasks. The learned parameter pair
(01, Ar) is further fine-tuned using the support set Z)% which
is sampled from the task T. The end task performance is hence
evaluated on the validation set D¥ using the adapted parameter
07

Consolidated and detailed performance of the different tech-
niques over real-world data are listed in Table 2. We evaluate perfor-
mance across all competing methods on a scale of 90% datapoints of
the end task T for each dataset. Best performance in each experimen-
tal unit are labeled in bold. We observe that as for bias-controlling,
FFML out-performs than other baseline methods. Specifically, FFML
has the highest scores in terms of the fairness metrics DP and EO,
and the smallest value of Disc close to zero signifies a fair prediction.
Note that although FFML returns a bit smaller predictive accuracy,
this is due to the trade-off between losses and fairness.

7.2 Performance Through Each Round

In order to take a closer look at the performance regarding bias-
control in a non-stationary environment, at round ¢ € [T], the
parameter pair (6, A;) inherited from the previous task t — 1 are
employed to evaluate the new task t. Inspired by [6], we separately
record the performance based on different amount (i.e. 90% and
30%) of validation samples.

Figure 2 and 3 detail evaluation results across three real-world
datasets at each round with respect to two wildly used fairness
metrics DP and EO, respectively. Specifically, higher is better for all
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plots, while shaded regions show standard error computed using
various random seeds. The learning curves show that with each
new task added FFML efficiently controls bias and substantially out-
performs the alternative approaches in achieving the best fairness
aware results represented by the highest DP and EO in final perfor-
mance. GenOLC returns better results than AdpOLC and OGDLC
since it applies both adaptive learning rates and squared clipped
constraint term. However, two of the reasons giving rise to the per-
formance of GenOLC inferior to FFML is that our method (1) takes
task-specific adaptation with respect to primal-dual parameter pair
at inner loops, which further helps the task progress better as for
fairness learning, (2) FFML explicitly meta-trains and hence fully
learns the structure across previous seen tasks. Although m-FTML
shows an improvement in fairness, there is still substantial unfair-
ness hidden in the data in the form of correlated attributes, which
is consistent with [30] and [14]. As the most intuitive approach,
theoretic analysis in [17] shown the failure of using TWP is that
the weight constant is fixed and independent from the sequences
of solutions obtained so far.

Another observation is when evaluation data are reduced to 30%.
Although the fairness performance becomes more fluctuant, FFML
remains the out-performance than other baseline methods through
each round. This results from that in a limited amount of evaluated
data our method stabilizes the results by learning parameters from
all prior tasks so far at each round, and suggests that even better
transfer can be accomplished through meta-learning.

7.3 Task Learning Efficiency

To validate the learning efficiency of the proposed FFML, we set a
proficiency threshold y for all methods at each round, where y =
(y1, y2) corresponds to the amount of data needed in D; to achieve
both aloss value f; (6, DY) < y1 and a DBC value g; (0, D;/) <y
at the same time. We set y; = 0.0005 and y2 = 0.0001 for all datasets.
If less data is sufficient to reach the threshold, then priors learned
from previous tasks are being useful and we have achieved positive
transfer [6]. Through the results demonstrated in Figure 4, we
observe while the baseline methods improve in efficiency over the
course of learning as they see more tasks, they struggle to prevent
negative transfer on each new task.

7.4 Ablation Studies

We conducted additional experiments to demonstrate the contribu-
tions of the three key technical components in FFML: the inner(task)-
level fairness constraints (inner FC) in Eq.(6), the outer (meta)-level
fairness constraints (outer FC) in Eq.(7), and the augmented term
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(aug) in Eq.(10). Particularly, Inner FC and outer FC are used to
regularize the task-level and metal-level loss functions, respectively,
and aug is used to prevent the dual parameters being to large and
hence stabilizes the learning with fairness in the outer problem.
The key findings in Figure 5 are (1) inner fairness constraints and
the augmented term can enhance bias control, and (2) outer update
procedure plays more important role in FFML. This is due to the
close-form projection onto the relaxed domain 8 with respect to
primal variable and clipped non-negative dual variable.

Bank Marketing Bank Marketing

—e— full ours

—— w/o inner FC

—— wioaug

w/o aug + outer FC

—e— full ours
—— wio inner FC

—— wlo aug

w/o aug + outer FC

&

=

2

Equalized Odds
2

Demographic Parity

40 a0

20 30 20 30
Task Index Task Index

Figure 5: Ablation study of our proposed models. (1) w/o in-
ner FC: FFML without inner fairness constraints; (2) w/o aug:
FFML without the augmented term in Eq.(10); (3) w/o aug +
outer FC: FFML without the augmented term and outer fair-
ness constraints.

8 CONCLUSION AND FUTURE WORK

In this paper, we formulate the problem of online fairness-aware
meta learning and present a novel algorithm, namely FFML. We
claim that for the first time a fairness-aware online meta-learning
framework is proposed. The goal of this model is to minimize both
the loss regret and violation of long-term fairness constraints as ¢
increases, and to achieve sub-linear bound for them. Specifically, in
stead of learning primal parameters only at each round, FFML trains
a meta-parameter pair including primal and dual variables, where
the primal variable determines the predictive accuracy and the dual
variable controls the level of satisfaction of model fairness. To deter-
mine the parameter pair at each round, we formulate the problem
to a bi-level convex-concave optimization problem. Detailed theo-
retic analysis and corresponding proofs justify the efficiency and
effectiveness of the proposed algorithm by demonstrating upper
bounds for regret and violation of fairness constraints. Experimen-
tal evaluation based on three real-world datasets shows that our
method out-performs than state-of-the-art online learning tech-
niques with long-term fairness constraints in bias-controlling. It
remains interesting if one can prove that fairness constraints are
satisfied at each round without approximated projections onto the
relaxed domain, and if one can explore learning when environment
is changing over time.
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A SKETCH OF PROOF OF THEOREM 1

Proo¥. Before giving the proof of Theorem 1, let us define a
function £(0, A) : (8 xR*) — R with respect to the primal and
dual variable 6 and A. Therefore, £(6, A) is considered as a single

task function k € [t] from prior experience and it is stripped from
Eq.(10).

£(0,2) = L'(ﬂlg(@), /1)

= (g0 + 3" (hgi(Alg(0)) ~ “2?)

where Alg(0) is defined in Eq.(8). We hence first prove L) is
convex with respect to 6. Similar results can be easily achieved
with respect to A. We consider two arbitrary point 8, ¢ € B with
respect to the primal variable:

IVo.L(0) - V¢ L(9)]]
<|IVe L' (Alg(8))(VoAlg(0) — VpAlg(¢))]| +
First Term (FT)
IV Alg(9) (Vo L' (Alg(0)) — Vg L' (Alg($)))]]
Second Term (ST)

We then bound the first and second terms that:
FT <1 ||[Vg L' (Alg(O)IIII(V5F(0) - V4 f(9))+
(V9 Dy 149i(0) = V5 3" A (@)l
<n1(Ly + ImLg) (pg + Impy)|16 - gl
ST=I(I =1 (V4F(9)+ V4 D" Xigi(9))
(Vo L' (Alg(0)) =V L' (Alg()))]
<(1 =1 (g + Impg) 2 (By + AmPy) 110 - g

The inequality to bound ST is due to the Lemma 2 to 4 in [6].

Together the upper bounds for the first and the second terms and
choose step size

{ pf + Amyig 1 }
8(Ly +AmLy)(py + Ampg)” 2(Bf + Ampy)

11 < min

Then we have
. . 9 _

IVeL(0) = Vo L)l < £ (Br +Ampy)l16 - ¢l
Therefore £(-, 1) is %( B '+ )_.mﬂg)-smooth. Next to achieve lower
bound for .f(-,l)

IVeL(6) - VyL(9)]]
> ||V Alg(9) (Vo L' (Alg(0)) =V L' (Alg(¢)))]| -
Third Term (TT)
IVer L' (Alg(6))(VoAlg(0) = Vs Alg(p))l

The second term in the above inequality is the same as the FT. We
hence bound the TT that:

TT 2 (1 - n1(Bp +AmpBy))* (uy + Amug) |16 — ||
. Hf + Ampg
4

116 - ¢ll
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Together TT and FT, we derive the lower bound

N - Hf+ /Tmyg

V0 £(6) - VoL (@)l > T——"110 - gl

Thus, £(-,A) is %(yf + im,ug)—strongly convex. Since £(-,A) is
convex, summation of convex functions with non-negative weights
preserves convexity and summation of strongly convex functions is
strongly convex. Therefore, we complete the proof for £L(:,A). O

B SKETCH OF PROOF OF THEOREM 2

In order to better understand Theorem 2, we first introduce Lemma
3 and its analysis is modified and analogous to that developed in
[17].

LEmMA 3. Let L;(-,-) be the function defined in Eq.(10), which is
convex in its first argument and concave in its second argument. Let
6; and As, t € [T] be the sequence of solution obtained by Algorithm
1. Then for any (0, A) € B X R™, we have

R + |7

- Li(6,2) s

CLi(0.A) < e

(13)
T n2
+ E 1 { (4G2r]2H2(m +1)2 +4m(D% + tny4))

+ 20am(G n2m? + 6n) el + 272G H2 (m + 11|}

Proor. Following the Assumption 3 and analysis of the Lemma
2 in [17], we derive

1
L0000 2) = £00.30) = 7 (110 - 0,1 + 14 - Al
=116 = 0raall? = 1A = Aesa ) + 2 (1190 Lo (01, 20) 1

U
+V2LA00AE) - L ll0 - 0,11

We bound ||V L (6:, A t)||2 < 4G2r72H2(m+ 1D2(1 + [|A]|*) and
VaLel0n Atll* < 4m(D? + 2||)»t||2 + & n3lIAdI* + 01G4)
using the inequality (aj +az+- - - + an)2 < n(a% +a§ +---+a2). By
adding the inequalities of FT and ST, and using the fact [|0|| < R
and t > 1 we complete the proof. O

By applying Lemma 3, we now prove Theorem 2.

ProoF. By expanding Eq.(13) using Eq.(10), and in short we use
RHS to substitute the right-hand side of the inequality of Eq.(13)
and set @ = 6*. Following the Theorem 3.1 in [3], we have

S Al 00) - g (0%

T T *
s AN Y g Al 00) = Y 24igi(Algi(0")]
_ OnoT ) T
Lo+ =2, IAIE < RHS

Since § > max{4m(G4lﬁm2 + 52775),4G2;7fH2(m +1)?}, we can

drop terms containing ||A;||? and ||A;||*. By taking maximization



Research Track Paper

for A over (0, +00), we get
S (Al 00) - fi(Algu0%))]
w (| 2L giAlg00)]
DN 2(8n,T + 2)
< R—Z — ﬂ_ng

T 2m2 2
+ (4G27ﬁH2(m +1)2+20% + 4m(D? + rﬁG“)) Z

2
o Aeigi(Alg (67)

T n
t=1 2
Since ¢;(Alg(0%)) < 0and A;; > 0,Vi € [m]. For f;(0) to be
strongly convex, in order to have lower upper bounds for both
objective regret and the long-term constraint, we need to use time-
varying stepsize as the one used in [28], that is nz = pi¢ /(¢ +1). Due

2
. gimlg,(ef))]

- 1 +
to non-negative of 2T ) , we have

> | (g 00) - fi(Alge (0"} < OClogT)

According to the assumption, we have Zthl {ft(ﬂlgt(et)) -
ft(.?llgt(e*))} > —FT. Therefore,

ST gi(Alge(6,) < O(TIogT), Vi€ [m]

C ADDITIONAL EXPERIMENT DETAILS
C.1 Data Pre-processing

In order to adapt online environment, all datasets are split into a
sequence of tasks. However, numbers of data samples in each task
may be small. Data augmentation is therefore used on the samples
in the form of rotations of random degree. Specifically, for each data
sample in a task, unprotected attributes are rotated for n degrees,
where n is randomly selected from a range of [1, 360]. Note that, for
the new rotated data sample, its label and protected feature remain
the same as before. Each task is enriched for a size of at least 2500.
For all datasets, all the unprotected attributes are standardized to
zero mean and unit variance and prepared for experiments.

C.2 Implementation Details and Parameter
Tuning

Our neural network trained follows the same architecture used by
[5], which contains 2 hidden layers of size of 40 with ReLU acti-
vation functions. In the training stage, each gradient is computed
using a batch size of 200 examples where each binary class contains
100 examples. For each dataset, we tune the folowing hyperparam-
eters: (1) learning rates 11, 2 for updating inner and outer parame-
ters in Eq.(8)(9) and (11)(12), (2) task buffer size |U]|, (3) some posi-
tive constant ¢ used in the augmented term in Eq.(10), (4) inner gra-
dient steps Ni¢ep, and (5) the number of outer iterations Njzer. Hy-
perparameter configurations for all datasets are summarized in Ta-
ble 3. Initial primal meta parameters 01 of all baseline methods and
proposed algorithms are randomly chosen, which means we train all
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Table 3: Hyperparameter configurations of FFML.

1 2 Ul 6 Nstep  Niter
Bank | 0.01 001 32 50 5 3000
Adult | 0.001 0.1 32 60 3 3000
Crime | 0.001 0.05 32 50 5 3500

methods starting from a random point. The initial dual meta parame-
ters A1 is chosen from {0.0001, 0.001, 0.01, 0.1, 1.0, 10.0, 100.0, 1000.0,
10000.0}. Parameters 1 and 52 control the inner and outer learning
rates are chosen from {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5,
1.0, 5.0, 10.0, 50.0, 100.0, 500.0, 1000.0}.

C.3 Additional Results

In order to reduce computational time in Algorithm 1, in stead of
using all tasks, we approximate the results in practice with a fixed
size of task buffer U. In other words, at each round, we add the
new task to U if t < |U|. However, when t > |U|, we stochasti-
cally sample a batch of tasks from seen tasks. Figure 6 represents
results based on the Bank dataset with various batch sizes. Our
empirical results indicate that although better performance is able
to achieved with higher batch size, on the contrary more expensive
the experiments will be.

Bank Marketing - batch sizes Bank Marketing - batch sizes

—— =32
—— U =16
—— u=8
=t

—— =32
—— U =16
—— U =8

=t
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Figure 6: FFML performance across various batch sizes.

More ablation study results on Adult and Crime datasets are
given in Figure 7.
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Figure 7: Ablation study of FFML on Adult and Crime
datasets.
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