


world. Robust adversarial training addresses the S2R gap

and environment perturbations by formulating a two-player

zero-sum game between the agent and the disturbance [8].

These methods involve tedious modifications to the training

environment, which can mostly happen in a simulator. More

importantly, the resulting policies trained in this way could

overfit to the worst-case scenarios, and thus lead to conser-

vative or degraded performance in other cases [10].

Active compensation for dynamic variations. Kim et

al. [11] proposed to use an disturbance-observer (DOB)

to improve the robustness of an RL policy, in which the

mismatch between the simulated training environment and

the testing environment is estimated as disturbance and

compensated for. A similar idea was pursued in [12], which

used a model reference adaptive control (MRAC) scheme

to estimate and compensate for parameteric uncertainties.

Our objectives are similar to the ones in [11] and [12], but

our approach and end result are different, as we address a

broader class of dynamic uncertainties (e.g., unknown input

gain that cannot be handled by [11], and time-dependent

disturbances that cannot be handled by [12]), and we leverage

the L1AC architecture that has guaranteed and predictable

transient (and not just asymptotic) performance [9]. We note

that L1AC has been combined with model predictive control

(MPC) with application to quadrotors [13], and it has been

used for safe learning and motion planning applicable to a

broad class of nonlinear systems in robotic applications [14]–

[16]. To put things into perspective, this paper is focused on

applying the L1AC architecture to robustify an RL policy. In

terms of technical details, this paper considers more general

scenarios, e.g., unmatched disturbances and unknown input

gain, which were not considered in [15], [16]. While we only

provide empirical verification with numerical experiments in

this paper, it is possible to establish a theoretical guarantee

by following the approach in [15] or [17] with additional

assumptions, which we would like to pursue in future work.

Learning to adapt. Meta-RL has recently been proposed

to achieve fast adaptation of a pre-trained policy in the

presence of dynamic variations [18]–[23]. Despite impressive

performance mainly in terms of fast adaptation demonstrated

by these methods, the intermediate policies learned during

the adaptation phase will most likely still fail. This is

because a certain amount of information-rich data needs to

be collected in order to learn a good model and/or policy. On

the other hand, rooted in the theory of adaptive control and

disturbance estimation, [9], [24]–[26], our proposed method

can quickly estimate the discrepancy between a nominal

model and the actual dynamics, and actively compensate for

it in a timely manner. We envision that our proposed method

can be combined with these methods to achieve robust and

fast adaptation.

II. PROBLEM SETTING

We assume that we have access to the system dynamics

in the nominal environment, either simulated or in the real

world, and it is described by a nonlinear control-affine model:

ẋ(t) = f(x(t)) + g(x(t))u(t) , Fnom(x(t), u(t)), (1)

where x(t) ∈ R
n and u(t) ∈ R

m are the state and input

vectors, respectively, f : Rn → R
n and g : Rn → R

m are

known functions; moreover, g(x) has full column rank.

Remark 1. Control-affine models are commonly used for

control design and can represent a broad class of mechanical

and robotic systems. In addition, a control non-affine model

can be converted into a control-affine model by introducing

extra state variables (see e.g., [27]). Therefore, the control-

affine assumption is not very restrictive.

Remark 2. The nominal model (1) can be from physics-based

modeling, data-driven modeling or a combination of both.

Methods exist for maintaining the control affine structure in

data-driven modeling (see e.g., [28]).

We further assume that the dynamics of the agent in the

perturbed environment can be represented by

ẋ = f(x) + g(x)Λ(x)u+ d(t, x), (2)

where Λ(x) is an unknown input gain matrix, which is

non-singular for any x, d(t, x) is an unknown function that

can capture parameter perturbations, unmodeled dynamics

and external disturbances. It is obvious that the perturbed

dynamics (2) can be equivalently written as

ẋ(t) = Fnom(x(t), u(t)) + (Λ(x)− I)u+ d(t, x). (3)

Remark 3. Uncertain input gain is very common in real-

world systems. For instance, actuator failures, and variations

in mass or inertia for force- or torque-controlled robotic

systems, normally induce such input gain uncertainty. Our

representation of such uncertainty in (2) is broad enough to

capture a large class of scenarios, while still allowing for

effective compensation of such input gain uncertainty using

L1AC (detailed in Section III).

Assumption 1. We have access to a nominal policy, πo(x),
which functions well for the nominal dynamics (1).

The policy πo(x) can be trained either in a simulator or

in the real world in the standard (i.e., non-robust) way. The

nominal policy π0 could fail in the perturbed environment

due to the dynamic variations. In this paper, we propose

a method to robustify this nominal policy so that it could

function in the presence of such dynamic variations, by

leveraging L1AC [9].

III. L1-RL FRAMEWORK FOR POLICY ROBUSTIFICATION

A. Overview of the L1-RL framework

The idea of our proposed L1-RL framework is depicted

in Fig. 1. Within L1-RL, the training phase is standard:

the nominal policy can be trained using standard methods

in a nominal environment, which does not need domain

randomization or adversarial training. During policy execu-

tion, an L1 controller uses the nominal dynamics (1) as an

internal nominal model, estimates the discrepancy between

the nominal model and the actual dynamics and compensates

2



for this discrepancy so that the actual dynamics with the L1

controller (illustrated by the shaded area of Fig. 1) behaves

like the nominal dynamics. Since the RL policy works well

under the nominal dynamics, it is expected to work well in

the presence of dynamic variations and the L1 augmentation.

B. RL training for the nominal policy

As mentioned before, the policy can be trained in the stan-

dard way, using a large amount of RL methods including both

model-free and model-based ones. The only requirement is

that one has nominal dynamics of the training environment

in the form of (1).

As an illustration of the idea, in the numerical experiments

(Section IV), we choose PILCO [29], a model-based policy

search method, and a trajectory optimization method based

on differential dynamic programming (DDP) [30], [31] to

obtain the nominal policy.

C. L1 augmentation for policy robustification

In this section, we explain how an L1AC law can be

designed to augment and robustify a nominal RL policy.

An L1 controller mainly consists of three components: a

state predictor, an adaptive law, and a control law. The state

predictor is used to predict the system’s state evolution, and

the prediction error is subsequently used in the adaptive law

to update the disturbance estimates. The control law aims to

compensate for the estimated disturbance. For the perturbed

system (2) with the nominal dynamics (1), these components

are detailed as follows. The state predictor is defined as:

˙̂x = Fnom(x, u) + g(x)σ̂m(t)) + g⊥(x)σ̂um(t)− ax̃, (4)

where x̃ , x̂ − x is the prediction error, a is a positive

scalar, σ̂m(t) and σ̂um(t) are the matched and unmatched

disturbance estimates1, respectively, g⊥(x) ∈ R
n−m satisfies

g(x)>g⊥(x) = 0, and rank[G(x)] = n for any x with

G(x) ,
[

g(x) g⊥(x)
]

. From (3) and (4), we see that the total

disturbance, (Λ(x) − I)u + d(t, x), is estimated by σ̂(t) ,
g(x)σ̂m(t)) + g⊥(x)σ̂um(t). Note that unmatched distur-

bances (or mismatched disturbances used in the disturbance-

observer based control literature [26]) cannot be directly

canceled by control signals and are generally challenging to

deal with. Following the piecewise-constant (PWC) adaptive

law (which connects with the CPU sampling time) [9,

Section 3.3], the disturbance estimates are updated as
[

σ̂m(t)
σ̂um(t)

]

=

[

σ̂m(iT )
σ̂um(iT )

]

, t ∈ [iT, (i+ 1)T ),

[

σ̂m(iT )
σ̂um(iT )

]

= −G−1(x(iT ))
a

eaT − 1
x̃(iT ),

(5)

where T is the sampling time. The control law (applied to

the actual system) is defined as

u(s) = −
1

s
Kη̂(s), (6)

1In an L1AC scheme with a piecewise constant adaptive law [9, sec-
tion 3.3], all the dynamic uncertainties (such as parametric uncertainties,
unmodeled dynamics and external disturbances) are lumped together and
estimated as disturbances.

where K ∈ R
m×m is a feedback gain matrix, η̂(s) is the

Laplace transform of η̂(t) = u(t) + σ̂m(t) − uRL(t) with

uRL(t) = π0(x(t)) being the control command from the

nominal RL policy π0(t). Details on deriving the estimation

and control laws can be found in [32], [33]. It is worth

emphasizing that the control law only compensates for the

matched estimated disturbance (σ̂m) by directly canceling it,

and a feedback structure is introduced in (6) to compensate

for the effect of unknown input gain Λ(x), which computes

the ultimate control command using σ̂m and uRL.

Remark 4. Variations of the proposed L1AC law (4)–(6)

have been used to augment other baseline controllers (e.g.,

PID, linear quadratic regulator, MPC), as demonstrated in

numerous applications and flight tests, [13], [34], [35].

IV. NUMERICAL EXPERIMENTS

We now present the numerical experiments on a sim-

ple cart-pole benchmark problem, and a complex 12-state

quadrotor control example.

A. Cart-pole

The dynamics of the cart-pole system is taken from [36].

The system states include cart position (xc) and velocity (ẋc),

and pole angle (θ) and angular velocity (θ̇). The input is

the force applied to the cart. The nominal value of the key

parameters in the dynamics are M = 0.5 kg (cart mass),

m = 0.5 kg (pole mass), lpole = 0.6 m (pole length). The

pole is roughly hanging straight down (θ = 0) with small

random perturbations at the beginning. The goal is to search

for a policy that can swing up the pole and balance it at the

straight up position (corresponding to xc = 0 and θ = 180◦).

We used PILCO [29] to search for a policy for the nominal

environment defined by the nominal values mentioned above.

PILCO uses Gaussian processes (GPs) [37] to learn the

systems dynamics, uses the learned dynamics together with

uncertainty propagation (e.g., based on moment matching or

linearization) to predict the cost, and then applies gradient

descent to search for the optimal policy. PILCO achieved

unprecedented records in terms of data-efficiency in RL.

For L1AC law design, the parameters in (4)–(6) were

chosen to be a = 10, T = 0.002 second, w0 = 1 and

K = 200.

We next perturbed the environment to test the robustness

of the nominal policy with and without L1AC augmentation.

For design of the L1AC law we used the physics-based

model with the nominal parameter values as the nominal

model, instead of the GP model learned during policy

training, for simplicity. Figure 2 shows the results in the

presence of perturbations in the cart mass and pole length.

One can see that the L1 augmentation significantly improves

the robustness of the PILCO policy. For instance, PILCO plus

L1 augmentation was able to consistently achieve the goal

even when the cart pass was perturbed to 3 kg (six times of

its nominal value) or when the pole length was reduced to

0.2 m (one third of its nominal value).

We further performed testing under ten scenarios from

random joint perturbations in the cart mass, pole mass and
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Fig. 2: Results in the presence of perturbations in cart mass

and pole length. Ten trials were performed and average

results with variances are shown for each perturbation case.

Reward is normalized.

length parameters, in the range of M ∈ [0.1, 5], m ∈

[0.1, 5], lpole ∈ [0.6, 1]. The sampled parameters and the

success/failure results for each scenario are shown in Fig. 3.

Once again, the L1 augmentation significantly improved the

policy robustness, as validated by the much higher mission

success rate.
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Fig. 3: Results (bottom) under ten scenarios from random

perturbations in the cart mass, pole mass and length (sampled

value shown at the top)

B. 3-D Quadrotor

We next do experiments on a 12-state 3-D quadrotor

example. The equations of dynamics are taken from [12]

which use Euler angles. The states include quadrotor position

(x, y, z) in an inertia frame and the roll, pitch, and yaw angles

of the quadrotor body frame with respect to the inertial

frame, as well as their derivatives. Motor mixing is also

included in the dynamics. The inputs are the four thrusts

output of the four propellers.

The nominal value of the key parameters are set to

be [Ix, Iy, Iz] = [0.082, 0.0845, 0.1377] kgm2 (moment of

inertia), m = 4.34 kg (qaudrotor mass), and cpi = 1
(i = 1, 2, 3, 4) (propeller control coefficients). The mission in

this example is to control the quadrotor to fly from the origin

to the target point (4, 4, 2). To obtain a policy for achieving

the mission, we chose to use trajectory optimization, which

together with model learning is commonly used for model-

based RL [38], [39]. We further selected to use differential

dynamic programming (DDP) [31] a specific trajectory opti-

mization method. Since our focus is not on the training but

on robustifying a pre-trained policy, we once again use the

physics-based dynamic model with the nominal parameter

values as the model “learned” in the nominal environment.

This model is used for computing the DDP policy, and for

designing the L1AC law.
For L1AC law design, the parameters in (4)–(6) were

chosen to be a = 10, T = 0.001 second, ω0 = I4 and

K = 200.
We tested the performance of the DDP policy with and

without L1 augmentation under three types of dynamic

perturbations. The first one is loss of propeller efficiency,

to mimic the effect of propeller failures, which are simulated

by adjusting the control coefficients cpi (i = 1, 2, 3, 4). The

resulting trajectories under ten scenarios are shown in Fig. 4.

One can see that L1 augmentation significantly improved

the robustness of the DDP policy, leading to consistent

trajectories that are close to the ideal trajectory obtained by

applying the policy to the nominal dynamics. The second
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Fig. 4: Results under loss of propeller efficiency. In each of

ten scenarios, the control coefficients of two propellers were

randomly selected to be in [0.5, 1]. DDP (ideal) denotes the

trajectory obtained by applying the policy to the nominal

dynamics.

type of dynamic perturbations are the mass and inertia

change, e.g., to mimic the effect of carrying different pack-

ages for a delivery drone. Fig. 5 shows the results under ten

scenarios with randomly increased mass and inertia through

a scale of [2, 5]. Once again, L1 augmentation significantly

improved the policy robustness, leading to close-to-ideal

trajectories. The third type of dynamic variations is related

to wind disturbances in the horizontal plane, which causes

disturbance forces to the x and y directions. In each of the ten

scenarios, the forces were simulated by stochastic variables

with the mean values randomly sampled from [10, 25]. The

results are depicted in Fig. 6. L1 augmentation improved the

robustness, but was not able to yield close-to-ideal perfor-

mance. This is mainly because the wind disturbances will

cause unmatched disturbances (σum in (4) and (5)), which

are not compensated for in the control law (6). Finally, Fig. 7

illustrates the simulation results under joint perturbations

in quadrotor mass, inertia and propeller efficiency and

wind disturbances.
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Fig. 5: Results under perturbations in quadrotor mass and

inertia. In each of the ten scenarios, the mass and inertia

were scaled by a random number in [2, 5].
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Fig. 6: Results under wind disturbance. In each of the ten

scenarios, the mean value of the wind disturbance force

applied to the x and y directions were sampled from the

range of [10, 25].

V. CONCLUSION

This paper presents an approach to robustifying a pre-

trained reinforcement learning (RL) policy, leveraging L1

adaptive control (L1AC) to quickly and actively estimate and

compensate for the dynamic variations which could happen

during execution of this policy. Our framework allows for

the policy to be trained in a standard way (i.e., without use

of domain randomization or adversarial training), either in a

simulator or in the real world. Numerical experiments on a

simple benchmark and a 12-state quadrotor examples empir-

ically demonstrate the efficacy of the proposed framework.

This paper focused on empirical demonstration of the po-

tential of the L1AC architecture for robustifying RL policies

in some general scenarios. Under stronger assumptions (e.g.,

matched disturbances, known input gain) the results in [15],

[17] consider L1AC of nonlinear control-affine systems and

provide stability and performance guarantees of the closed-

loop system. In future work, we are interested in establishing

a theoretical guarantee for the setting considered in this paper

by extending the ideas of [15], [17].

Future work also includes demonstration of the proposed

framework in a model-free RL setting, comparison of the

framework with existing robust/adversarial training based

methods [5]–[8], as well as validations on real-world ex-

periments. We also plan to incorporate the extension of

L1AC for unmatched uncertainties from [33] to achieve

improved performance for a broader class of uncertainties.
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