
Sketchy With a Chance of Adoption: Can
Sketch-Based Telemetry Be Ready for Prime Time?

Zaoxing Liu?, Hun Namkung, Anup Agarwal, Antonis Manousis,
Peter Steenkiste, Srinivasan Seshan, Vyas Sekar
?
Boston University, Carnegie Mellon University

Abstract—Sketching algorithms or sketches have emerged as
a promising alternative to the traditional packet sampling-
based network telemetry solutions. At a high level, they are
attractive because of their high resource efficiency and provable
accuracy guarantees. While there have been significant recent
advances in various aspects of sketching for networking tasks,
many fundamental challenges remain unsolved that are likely
stumbling blocks for adoption. Our contribution in this paper
is in identifying and formulating these research challenges
across the ecosystem encompassing network operators, platform
vendors/developers, and algorithm designers. We hope that these
serve as a necessary fillip for the community to enable the broader
adoption of sketch-based telemetry.

I. INTRODUCTION

At the core of managing networks, network telemetry plays
a crucial role in understanding what is happening in the
network and informing management decisions. For example,
to improve cloud security, telemetry enables operators to
detect network anomalies and attacks in a timely fashion.
Similarly, in order to optimize traffic engineering and ensure
that service-level agreements (SLAs) for applications are met,
operators commonly rely on telemetry to monitor network
flow distributions. Traditionally, flow-based telemetry is done
via offline analysis or some form of packet or flow sam-
pling (e.g., NetFlow [1] and sFlow [2]). However, given the
need for timely results using constrained compute/memory
resources, offline analysis is not a practical option. Moreover,
sampling only provides coarse-grained flow size distributions,
and cannot provide accurate results for more fine-grained key
telemetry tasks such as entropy estimation, distinct count, and
change detection [3]–[5].

To address the drawbacks of packet sampling approaches,
sketching algorithms (or sketches for short) have been ex-
tensively studied in recent years (e.g., [5]–[21]). In light
of increasing network traffic and ever-evolving application
dynamics, sketches have emerged as a promising solution for
real-time network telemetry.

This paper is a reflection on the current state of sketch-
based telemetry to examine not just what sketch-based sys-
tems can do but what should be done to enable broader
adoption. To this end, we look at the state of the sketch-
based telemetry ecosystem from the perspective of three key
stakeholders in Figure 1: (1) Network Operators (NO) who are
the users/consumers of telemetry capabilities; (2) Algorithm

Designers (AD) who design and analyze sketching algorithms;

Fig. 1: Overview of the problems from the stakeholders in
sketch-based telemetry.

and (3) Platform Vendors and Developers (PVD) who provide
hardware/software primitives and APIs in various platforms
(e.g., Intel DPDK [22], Barefoot Tofino [23], Broadcom Tri-
dent [24], Mellanox [25], among others) and use these APIs
to develop and implement sketch-based functions. Developers
are supposed to be familiar with the software and hardware
primitives from vendors.

By taking this ecosystem-level view, we identify four areas
of gaps between stakeholder and interaction requirements and
existing research (blue boxes in Figure 1):
• NO-Centric: While NOs are the users of the telemetry

systems, most existing efforts make unrealistic assumptions
that they have extensive knowledge about the algorithms and
the underlying data structures. There are few, if any, efforts
to help operators translate high-level intents into sketches.
This requires both high-level interfaces as well as precise
resource management. While NO’s intents may involve
different sketches and devices, current solutions (e.g., [11],
[14], [15], [26]) do not consider the composition of multiple
types of sketches and the heterogeneity of network devices.

• Between NO/AD: Prior theoretical work in sketching al-
gorithms covers many common telemetry tasks, and more
recent work on general sketches can cover a broad portfo-
lio of tasks [14]. Despite these advances, many common
NO intents fall outside the scope of the literature. For
instance, for attack detection, operators are interested in
obtaining statistics from not only one dimension of data
(e.g., SrcIP) but multiple dimensions (e.g., any subset of
the combinations in 5-tuple). Conversely, we find that the978-1-6654-0522-5/21/$31.00 ©2021 IEEE

9

20
21

 IE
EE

 7
th

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 N

et
w

or
k

So
ftw

ar
iz

at
io

n
(N

et
So

ft)
 |

97
8-

1-
66

54
-0

52
2-

5/
21

/$
31

.0
0

©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
N

et
So

ft5
15

09
.2

02
1.

94
92

58
2

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 17,2021 at 22:18:36 UTC from IEEE Xplore. Restrictions apply.

theory community has many rich capabilities and streaming
models (e.g., turnstile [27], [28], sliding-window [29]–[31],
and distributed functional monitoring [32], [33]) that are yet
to find practical adoption in networking.

• Between AD/PVD: While sketching algorithms are theoret-
ically resource-efficient, existing algorithms may not be effi-
ciently realizable across diverse platforms as highlighted by
recent efforts [10], [15]–[17], [34]. Similarly, while existing
languages and APIs [35]–[37] are sufficiently expressive to
specify different sketch algorithms, naı̈ve implementations
are often resource intensive, thus nullifying any potential
benefits [10], [17]. This suggests the need for new sketch-
centric APIs, language support, and best practices.

• Between NO/PVD: Given that the success of the operator’s
policies depends crucially on how accurately telemetry
reflects current network conditions, verifying the practical
accuracy and correctness of sketches at post-deployment is
a major priority for the NO. In addition, while platform
vendors have designed and delivered trusted hardware ca-
pabilities (e.g., Intel SGX [38], AMD SEV [39], and ARM
TrustZone [40]) to ensure the integrity of the program run-
ning on the device, the integrity of sketch-based telemetry
logic has yet to be protected.
Our contribution in this paper is to identify and formulate

challenges that need to be addressed to enable sketch-based
telemetry to be more widely adopted. While this list of
challenges is by no means exhaustive, our goal is to start
the conversation regarding the ecosystem’s missing pieces.
We hope that our work will inspire the community to tackle
these as-yet-unsolved issues, eventually enabling the practical
adoption of sketch-based telemetry.

II. BACKGROUND

In this section, we first provide some background on
sketches and their use in network telemetry. We then introduce
the key stakeholders in sketch-based telemetry to set the
context for the research challenges.

A. Sketching Algorithms

Sketching algorithms (sketches) can process data streams
accurately and efficiently in an online fashion. Sketches are
attractive for network monitoring precisely because they typi-
cally require small memory footprints to estimate traffic statis-
tics with provable accuracy guarantees. In addition to network
telemetry [7]–[11], [14]–[19], [41], sketch-based approaches
have also been applied in databases [42], [43], streaming
analytics [44], security [45], and machine learning [46]–[48].

Sketches draw on rich theoretical foundations starting from
the foundational “AMS” paper [49]. At a high level, the prob-
lem they address is as follows: Given an input stream of <key,

value> pairs (e.g., <5-tuple, packet size> pairs in network
traffic), a sketching algorithm is allowed to make a single pass
over the data stream to compute statistics while using sub-
linear (usually poly-logarithmic) memory space compared to
the total size of the dataset and the number of distinct keys.

When processing each item in the stream, a sketch typically
maintains a table of counters in the memory and computes
multiple independent hashes to update a small random set of
counters in the table. These algorithms are backed by rigorous
theoretical analysis on bounded accuracy-memory tradeoffs for
arbitrary workload patterns.
Sketch-based network telemetry. Sketches are useful ap-
proaches for key network telemetry tasks, such as (1) Heavy-
Hitter detection to discover large flows [8], [9], [14]–[16],
[41]; (2) Entropy Estimation to analyze traffic distributions
for anomaly detection [14], [19], [50]; (3) Change Detection
to identify significant traffic shifts over time [5], [14], [18];
(4) Cardinality Estimates to detect the number of distinct
items/flows in the network traffic [6], [10], [14], [51]; (5)
Performance Monitoring to identify flows with high packet
loss, large latency, and high out-of-order or retransmitted
packets [20]; (6) Superspreader Detection to identify sources
that contact many different destinations [18], among others.

Sketches are promising in a network-wide measurement
setting due to their mergeability. Independent sketch instances
deployed at different parts of the network can be merged to
obtain network-wide or partial network aggregated results with
the same bounded errors.

B. Stakeholders for Telemetry Deployment

We identify three key players in the ecosystem that drive and
influence the adoption of the above sketch-based telemetry.
Network operator: Network operators rely on real time
telemetry to make timely management decisions that ensure
network reliability, performance, and security. To this end,
they may want network-wide information such as global
heavy hitter flows, distinct flows, and entropy changes on
various traffic distributions. Ideally, network operators want
to express high-level telemetry objectives without having to
worry about low-level algorithmic and implementation details
about sketches.

Q1: Return 5-tuple 0.005-heavy hitters from an OD path
FlowKey = (SrcIP,SrcPort,DstIP,DstPort,Proto)

Windows = 10

C= "Select HeavyHitter(p.FlowKey,0.05) From OD-1

Where Not p.DstIP = 1.2.3.4"

return C

Q2: Return distinct DstIP count that a host connects to
C="Select Distinct(p.DstIP) From *

Where p.SrcIP=1.2.3.4"

return C

Fig. 2: Examples of “envisioned” telemetry queries.

For example, operators may specify queries like Q1 and
Q2 depicted in Figure 2. A telemetry system should provide
an interface to write queries, identify if the queries can be
supported by existing primitives, and distribute the monitoring
responsibilities efficiently across a network. If better or new
sketches are needed in the telemetry system, operators should
pass these information to algorithm designers described below.

10Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 17,2021 at 22:18:36 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Open problems between stakeholders.

Algorithm designers: We envision an active community
of algorithm designers developing new sketching algorithms
to estimate different telemetry metrics. They would like to
understand the requirements of network operators to design
improved or new sketching algorithms for needed metrics.
In practice, however, it requires significant systems efforts
to translate theoretical algorithms into optimized implemen-
tations on diverse platforms. As richer primitives need to be
designed and new platforms emerge (e.g., Barefoot Tofino [23]
and Micro-engine SmartNIC [37]), algorithm designers in-
creasingly find themselves in need of a mature sketch-based
framework allowing them to develop and evaluate algorithmic
tools along with platform vendors/developers described below.
Platform vendors and developers: Platform vendors offer
specialized capabilities that implement and optimize sketches
on various hardware and software platforms. For instance,
we have already seen programmable switches, SmartNICs,
FPGAs, DPUs, and software switches established in today’s
networks, and we envision future deployments with richer and
more diverse platform capabilities. Ideally, platform vendors
should provide primitives for these developers to optimally
support sketch-based telemetry. However, recent efforts sug-
gest it is non-trivial to efficiently implement sketches [16],
[17]. In this respect, we envision the need for these two
stakeholders to jointly contribute their domain expertise to
achieve optimized sketch implementations.

III. RESEARCH CHALLENGES

Next, we formulate a broad (but non-exhaustive) list of open
research problems P1 to P6 and some of their extensions for
a sketch-based telemetry ecosystem. As depicted in Figure 3,
we conceptually cluster these challenges according to each
stakeholder’s needs and considerations.

Preliminaries: We introduce some terms and notations to
formulate the problems (summarized in Table I).
• The constants represent the inputs to the telemetry system.

Specifically, network operators can define their telemetry
needs by a list of input constants: (1) Queries Q con-
sisting of a set of k (potentially infinite) query defini-
tions {q1, . . . , qk}; (2) Requirements RA = {ra1, . . . , rak}
defining a set of accuracy requirements (e.g., accuracy target
95% with 0.99 confidence) for queries {q1, . . . , qk} and sim-
ilarly RP = {rp1, . . . , rpk} as the packet rate requirements;
(3) Network characteristics including topology information
T , device information with resource capabilities D, and
traffic workload characteristics Wr.

Constants Definition

Q Set of telemetry queries
RA Set of accuracy requirements,

e.g., accuracy target and confidence level
RP Set of performance requirements, e.g., packet rate
T Topology information, e.g., links and devices
D Set of device instances with resource constraints,

e.g., SmartNIC w/ 4 engines and 10MB SRAM
Wr Traffic workload characteristics, e.g., distribution

Variables Definition

S Set of sketch definitions with configurations
rs,d Resource config. for sketch s on device d
ls,d Processing latency for sketch s on device d
cs,d Implementation of sketch s on device d
cd Implementation of all sketches on device d
rd Actual resource usage of device d from cd
ld Actual processing latency of device d from cd

TABLE I: Summary of notations in problem definitions.

• The variables are the notations for the intermediate or final
outputs of the telemetry system: (1) S is a set of sketch
definitions with appropriate memory and flow-key/OD-pair
configurations (e.g., a Count-Min sketch tracking 5-tuple
flows with 5⇥2048 32-bit counters); (2) rs,d is the resource
configuration of sketch instance s on device d (e.g., as-
signing 200KB and 2 cores for s on CPU) and ls,d is the
processing latency of s on d (e.g., 1µs on CPU); (3) cs,d
is the implementation (binary code) of sketch instance s
on device d. When there are multiple sketch instances in d,
cd represents the implementation of all instances combined;
(4) rd is the actual resource usage of cd and ld is the actual
processing latency of cd.

A. Network Operator-Centric

Problem 1: [Query Language] Is there a high-level

declarative language that can precisely define sketch-

based telemetry queries Q?

Sketch-based telemetry is traditionally designed under a
narrow scope in the queries it supports. Specifically, exist-
ing frameworks are either designed to support one type of
queries [43] or assume that the operators determine at query
time the appropriate (available) sketch for each query. For
example, to detect Superspreaders (i.e., SrcIPs that connect to
many distinct DstIPs), the operators need to make a choice
between Count-Min + HLL and CountSketch + UnivMon
whereas to conduct change detection they need to choose
between K-ary and Count-Min. As a result, developing a
unified front-end for such sketch-based telemetry systems was,
to the best of our knowledge, never seen as a key design prior-
ity. Specifically, the operators should be able to conceptually
describe the characteristics of a query to execute (e.g., type of
metrics, appropriate aggregation of data, accuracy constraints)
without explicitly specifying the execution mechanism.

Existing efforts have proposed several query languages for
network telemetry [52]–[54], streaming database [55], [56],
and traffic analysis [57]. These efforts are self-contained for
their systems but may not be an ideal fit for sketch-based

11Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 17,2021 at 22:18:36 UTC from IEEE Xplore. Restrictions apply.

telemetry. Specifically, they did not consider sketches as their
primitives and may overly complicate the query definitions
for sketches. For instance, Sonata [52] provides a target-
agnostic query interface for network operators by specify-
ing the detailed packet-level queries with dataflow operators
(e.g., map, filter, reduce) but it is unclear how to describe
sketches. For example, NetQRE [53] extends from quantitative
regular expressions [58] to define flow-level and application-
level statistics and polices. In addition, the telemetry tool
Marple [54] is designed to support a particular set of per-
formance metrics only. Similarly, streaming databases such as
Gigascope [56] support continuous queries over packet headers
or counts via a SQL-alike language but do not support other
metrics such as network performance and traffic patterns.

Problem 2: [Network-wide Optimization] Given a set of

queries Q with accuracy requirements RA and performance

requirements RP , traffic workload characteristics Wr,

topology T , and device instances D, generate resource

configuration rs,d 8s, d within a time budget such thatP
s

P
d rs,d is minimized and 8s 2 S meets RA and RP

We consider an example network-wide scenario that op-
erators want to optimize the resource usage of the sketch-
based telemetry while meeting their accuracy and performance
requirements. Since the telemetry capabilities share the same
infrastructure with other network services [59]–[61], it is
beneficial to save resources for these concurrent services.
Further, operators can also choose to optimize towards other
objectives; e.g., minimizing the computation overhead of the
deployed telemetry algorithms as discussed in the Extension
of Problem 2, or maximize the accuracy guarantees over
allowable resources and performance requirements.

Specifically, given a set of queries Q, each with associated
accuracy and performance requirements, traffic workload char-
acteristics and a network topology, the operator’s high-level
goal is to deploy appropriate sketches across the deployment
such that SLAs are met while minimizing overall resource
usage. As a non-sketch example, recent efforts [62] focus
on reusing data collected for one query for other queries.
The operator ideally wants to view their deployment under as
“one-big-switch” without worrying about manually distribut-
ing sketches across the various devices in the deployment to
ensure appropriate correctness and coverage.

Realizing this conceptual goal in an end-to-end workflow
is challenging as it requires addressing a number of sub-
challenges. We briefly mention these sub-challenges now and
discuss in more detail in the following subsections:
• Problem 3: Translate each q 2 Q to appropriate sketch defi-

nitions with conservative (traffic-oblivious) memory config-
urations S to meet accuracy requirements RA. We need to
solve this problem to construct the appropriate input for the
optimization in Problem 2.

• Problem 4: Given a heterogeneous network deployment,
develop optimal device-specific sketch implementations,
given sketch definitions and configurations s 2 S. As the

(A)

(B) (C)

x86-based end host
or software switch

Programmable
Switch

CM2
CM3

CM1
20 Mpps

10 Mpps

Strategy
Device Total

ResourcesA B C

Network-wide
UnivMon

Placement CM1 CM2 CM3
Resources

required
4 cores,
100 KB

2 cores,
100 KB 100 KB 6 cores,

300 KB

Better
Strategy

Placement - CM2,
CM3 CM1

Resources
required

2 cores,
0 KB

2 cores,
200 KB 100 KB 4 cores,

300 KB

Fig. 4: Example of network-wide UnivMon not optimally
placing the sketches.

next step, we need to deploy sketch implementations to
heterogeneous devices for telemetry in the network based
on the output of Problem 2.

• Problem 5: Given traffic workload characteristics Wr, op-
timize the memory configuration of each sketch to provide
a better memory-accuracy tradeoff and further reduce re-
source usage. This problem is useful in achieving optimized
network-wide resource usage in Problem 2.

• Problem 6: Once sketches are deployed on device d,
verify their correctness to ensure the expected accuracy
requirements RA are met. After sketches are deployed, it is
important for operators to verify that their telemetry tools
can provide accurate results.

Limitations of existing network-wide solutions: While prior
work presented an early version of a network-wide solu-
tion [14] for resource optimization, it does not take traffic
workload characteristics, different types of sketches, and the
heterogeneity of the devices into account, and can converge to
a sub-optimal or even infeasible sketch placement and resource
allocation. Figure 4 shows a simple scenario where network-
wide UnivMon [14] does not optimally place three Count-
Min sketch instances in a topology of three programmable
devices. Specifically, in this example, the operator wants to
know the 5-tuple heavy hitters over traffic between devices A
and C (CM1) and the heavy hitters over traffic between devices
B and C separately for (SrcIP, SrcPort) and (DstIP, DstPort)
flow keys (CM2 and CM3). Resource optimization approaches
will decide which sketch will be placed on which device
while being aware of the resources required for these sketches
given different performance requirements for different devices:
(1) UnivMon, which is unaware of the interaction between
performance requirements and resource usage, tries to balance
memory usage by placing a sketch on each device. This results
in placing a sketch on device A which sees 20Mpps traffic.

12Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 17,2021 at 22:18:36 UTC from IEEE Xplore. Restrictions apply.

In order to accommodate a sketch and support this forwarding
rate, device A requires 4 cores. (2) A better strategy shifts
telemetry load towards device B1 which sees less traffic
and can accommodate 2 sketches while meeting the 10Mpps
requirement. Device A in this strategy does not maintain a
sketch and only needs 2 cores to maintain 20 Mpps traffic
forwarding. Note: Device C’s compute resources are the same
in both strategies and hence are not shown.

Extension of Problem 2: [Maximum Performance] Given a

set of queries Q with requirements RA, topology T , and

devices D, output resource configuration rs,d for all s, d such

that
P

s

P
d ls,d is minimized and 8s 2 S meets RA

This extension aims at providing optimized network-wide
sketch placement and resource allocation that meets the device
resource constraints and minimizes total packet processing
overhead. In this optimization, we aim at deploying a telemetry
solution to handle the largest possible volume of traffic for
given queries, which potentially offers us the ability to monitor
bursty traffic. Meanwhile, this type of optimization is useful
for operators to control the maximum volume of traffic that
goes into the telemetry infrastructure.

B. Network Operator & Algorithm Designer

Problem 3: [Queries to Sketch Definitions] Design a

compiler that translates queries Q into sketch definitions and

configurations S that meet accuracy requirements RA

Our focus is on translating telemetry queries into a set
of practical sketch definitions with memory configurations
satisfying the accuracy requirements from the queries, ir-
respective of traffic workload characteristics and hardware
platforms. This is possible because the accuracy guarantees
of sketches are hardware agnostic and only depend on the
memory configuration. Thus, one can potentially leverage
the theoretical analysis from algorithm designers to provide
traffic-oblivious sketch resource configurations. For example,
if a query specifies a heavy hitter task with 98% accuracy
and 0.99 confidence level, we envision a compiler to gener-
ate a platform-agnostic sketch configuration (e.g., Count-Min
Sketch with r ⇥ d counters) that maintains errors  2% with
0.99 probability under any workload distribution.

This is the first step towards network-wide device-aware
resource management, which requires target-agnostic memory
configurations treating the network-wide topology as a “one-
big-switch” and corresponding performance characteristics on
each hardware target as input.

Extension of Problem 3: [Expressiveness] If the network

operator’s telemetry queries Q cannot be compiled to S,

can algorithm designers develop new sketching algorithms to

address the failures?

1Device B runs in a CPU polling mode.

While there have been significant advances in developing
sketches for various telemetry tasks, the intents of network
operators may still fall outside those of existing sketching
algorithms, or the theoretical design of a sketch is infeasible in
hardware targets. For instance, existing sketches do not support
to measure the packet loss inside a switch. Sliding window-
based sketches [13], [31], [63] are infeasible in current RMT
programmable switches [64]. We need algorithm designers
to step in and come up with improved or new sketches.
Meanwhile, the theory community has already developed a
rich pool of sketching tools that may be relevant to the
operator’s needs. The challenge lies in how to effectively
collect and formulate these requirements to motivate algorithm
designers to develop new algorithms or disprove the feasibility.
We expect telemetry systems to be a great channel to collect
these telemetry query failures and report back to operators and
relevant algorithm designers.

C. Algorithm Designer & Platform Vendor/Developer

Problem 4: [Sketch Implementation] Given a sketch

configuration s 2 S with device d, generate a sketch

implementation cs,d to minimize the actual resource usages

rs,d and ls,d

Ideally, we want to generate optimized platform-specific
sketch implementations for any sketch configuration and de-
vice type. Today, this requires significant effort from both
platform vendors/developers and algorithm designers to deliver
optimized sketch implementation per hardware target [10],
[14], [16], [34]. What is missing today are tools (e.g., optimiz-
ing compilers) to take as input an algorithm definition and con-
figuration defined in a high-level language, and automatically
output an implementation that is optimized for a particular
hardware target. With such a tool, algorithm designers will
not need to worry about how to implement a current or
future sketching algorithm into the hardware architecture and
platform developers will not worry about understanding the
algorithmic details in order to implement the sketches. Existing
efforts on P4 language and its target-specific compilers are
expected to contributing in this direction. Unfortunately, our
benchmark demonstrates that existing sketch implementations
on programmable switches using P4 are far from resource-
efficient (Table II)2. Compared to a fully functional switch
implementation (switch.p4), existing sketches use exces-
sive switch hardware resources (e.g., up to 15⇥ more hash
function calls and 17⇥ more stateful ALUs).

Recent efforts have focused on performance bottlenecks of
sketching algorithms run inside virtual software switches [10],
[15], [17]. While they address the compute/memory bottle-
necks in various software sketch implementations, their ideas
do not directly transfer to other hardware platforms. For
instance, NitroSketch [17] increases the memory footprint to

2Sketch configurations in the table, R:rows, C:columns, and L:levels.
CountSketch(R=5, C=2048), UnivMon(L=16, R=5, C=2048), R-HHH(L=25,
R=5, C=2048), SketchLearn(L=112, R=1, C=2048).

13Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 17,2021 at 22:18:36 UTC from IEEE Xplore. Restrictions apply.

Resource CountSketch UnivMon R-HHH SketchLearn
Match Crossbar 10.0% 177.2% 476.9% 347.7%
SRAM 3.5% 56.3% 88.4% 78.9%
Hash Bits 3.7% 59.6% 91.6% 82.1%
Hash Calls 62.5% 1100.0% 1562.5% 700.0%
Stateful ALUs 71.4% 1142.9% 1785.7% 1600.0%

TABLE II: Additional H/W resource usage in Barefoot
Tofino by existing sketch implementations. The numbers
are normalized by the usage of baseline switch.p4

reduce CPU consumption, but the key resource constraints in
hardware context are different (e.g., processing stages, ALU,
and hash function calls) [23]. SketchVisor [10] and ElasticS-
ketch [15] split a sketch into a fast path and a slow path, and
use the fast path to accelerate the packet processing. This type
of idea is not particularly useful in hardware switches where all
packet operations should stay in the fast path [64]. In addition,
other efforts such as PRECISION [65] and HashPipe [16]
propose heavy hitter algorithms for programmable switches
but they are either trading off packet processing performance
or measurement accuracy for data plane compatibility.

Extension of Problem 4: [Multi-Sketch–Implementation]

Given all sketch configurations s 2 S and device instance

d, generate a consolidated sketch implementation cd for

device d such that the actual device resource usage rd and

performance latency ld are minimized?

This extension is about optimizing the sketch implementa-
tion on a device when multiple sketch instances are present.
Our observation is that many sketches share common primitive
operations (hash computation, counter updates, etc.), and we
expect that the actual resource usage and packet processing
performance on a device d⇤ can be further optimized to less
than

P
s rs,d⇤ and

P
s ls,d⇤ .

A recent proposal [66] shows the promises of using program
synthesis to auto-generate fast processing hardware imple-
mentations on programmable switches using fewer hardware
resources. While this direction is promising in general for
Problem 4 and its extension, this work demonstrates benefits
in one particular hardware architecture and we would like to
see if a similar approach can be designed for other platforms
and how many more resources it can save.

D. Network Operator & Platform Vendor/Developer

Problem 5: [Sketch Configuration] Given a set of traffic

workload characteristics Wr and traffic-oblivious sketch

configurations S that meet accuracy requirements RA,

output a minimal platform-agnostic memory configuration for

8s 2 S that meets the accuracy requirement

This problem entails finding a minimal memory configura-
tion that meets a certain accuracy requirement for a sketch
and a given type of traffic workload characteristics (e.g.,
skewness, number of flows). Problem 3 attempts to provide
a traffic-oblivious memory configuration for the sketch to
meet the accuracy requirement under any workloads. For
platform vendors, it is of importance to fully understand the

resource-accuracy usage of the user functions running atop
their platforms and to continue improving cost-efficiency of
their architecture. In practice, network operators shall have
basic understanding and expectation about the workloads such
as skewness and distribution, and the traffic-oblivious config-
uration may not be tight anymore. For example, Count Sketch
can achieve better memory-accuracy tradeoff if the workload
is skewed following some Zipfian distribution [8].

SketchLearn [11] leverages automated statistical inference
to actively “learn” the traffic workload characteristics to
configure its sketch on the fly, relieving the user burdens
in the sketch memory configuration. While a learning-based
approach is promising in resolving this problem, SketchLearn
did not tackle the configurations of other types of sketches
and it is difficult to fit its data structure inside a programmable
switch target. We are unsure whether the model inference used
in SketchLearn is an optimal choice.

Problem 6: [Verification] Given sketch implementation cd
on device d, ensure that cd will correctly meet the accuracy

requirements when running on d?

Once sketch implementations have been deployed to var-
ious devices, one question is that whether the on-device
sketch instances will work as expected. Specifically, when
an adversary is present, network operators want to verify
the integrity of the sketch instances such that the output is
correctly reflecting the network traffic conditions. We can think
of this verification in two aspects: (1) Operators can naturally
verify the accuracy of sketches if the integrity of the on-
device sketch instance is guaranteed. (2) If such integrity is not
guaranteed, operators need to identify the occurrences when
sketches failed to meet the accuracy requirements. Current
platform vendors have been on an active race to offer secure
enclave primitives such as Intel SGX [38], AMD SEV [39],
and ARM TrustZone [40] for mapping arbitrary functions
to trusted memory. It remains an open challenge on how
to leverage secure hardware capabilities as the “root-of-the-
trust” for sketch-based telemetry. However, if secure hardware
primitives are not present, the problem becomes how to add
redundancy in the sketch deployment to maintain sufficient
measurement accuracy even when some devices are offline.

Existing efforts [67]–[69] demonstrate the promises of pro-
tecting network functions with hardware enclaves (e.g., Intel
SGX). However, those efforts are not capable of sketch-based
telemetry because (1) sketches require high throughput guar-
antees while existing frameworks such as SafeBricks [68] and
SGX-Box [67] incur high processing overhead, and (2) these
efforts are designed for general-purpose network functions
where redundant modules and complexities are included.

E. A Campus Network Telemetry Example

We demonstrate a sketch-based telemetry system workflow
using university campus network as an example and then
generalize it to a future roadmap in the next section.

(1) Campus IT department is the network operator, who
specifies a range of application-specific queries (e.g., heavy

14Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 17,2021 at 22:18:36 UTC from IEEE Xplore. Restrictions apply.

network users, DDoS detection, and anomalies) with accu-
racy/resource requirements using a high-level language. The
corresponding telemetry capabilities are deployed across the
campus and continuously report trustworthy results to the IT
even when some switch software has been hacked. The IT can
tell both researcher A (algorithm designer) in the university
and hardware vendors about missing supported queries.

(2) Researcher A receives the requirements and finds the
new queries interesting to pursuit. Then, Researcher A and
collaborators design a new sketch and add it to the telemetry
library. They deploy their algorithm in the campus testbed
to get feedback about the accuracy and performance, and
discover the missing of a hardware feature. They inform the
IT and the vendor about this missing feature.

(3) Vendor B receives some feedback and may agree to add
new software or hardware primitives to support new telemetry
algorithm implementations.

IV. A FUTURE ROADMAP

We envision a sketch-based telemetry framework as de-
picted in Figure 5, assuming that research challenges P1-P6
and others have been properly addressed by the community. In
this framework, we expect a management interface that has an
expressive front-end/API to interact with network operators,
algorithm designers, and platform vendors/developers. Some
key components in the interface are 1) query compiler to trans-
late operator intents into sketch configurations, and 2) sketch
library to maintain state-of-the-art sketching definitions/imple-
mentations. In the control plane, there will be a network-
wide resource manager taking input from the management
interface and computing an optimized sketch placement and
resource allocation based on the requirements. In the data

plane, the optimized and verified sketch instances will be
initialized across a network of heterogeneous devices based
on the resource management decisions from the control plane.

We expect network operators, algorithm designers, and
platform vendors/developers will have a way interacting with
each other and the telemetry framework as follows:
• Network operators: Operators can specify telemetry needs

via the management interface and receive the intended
telemetry metrics via API or return “infeasible” for further
negotiation. In the back-end, operator queries are translated
to sketch configurations and their related device-level imple-
mentations to be deployed. In addition, operators can also
describe their intents to algorithm designers and platform
vendors/developers to cover unsupported telemetry tasks.

• Algorithm designers: Algorithm designers can obtain new
telemetry capability requests from operators and design new
algorithms based on the requests. They can then add their
new algorithms to the sketch ecosystem and get feedback
about their implemented and evaluated algorithms in real-
world scenarios.

• Platform vendors and developers: Platform vendors can
receive new hardware capabilities requests, deliver new
hardware capabilities, and update the device specifications

Management Interface

Query
Compiler

Control Plane

Data Plane

Sketch
Library

P3

P6

P1

P2

Network
Operator

Platform
Vendor/Dev.

New
Sketches

Feedback

Algorithm
Designer

Queries /
Negotiation

Reports /
Feedback

Network-wide
Resource Manager

Intents

Feedback

New
Primitives

P4

Intents

P5

Fig. 5: Sketch-based telemetry framework and stakeholder
interactions.

accordingly. Platform developers can explore the sketch al-
gorithm definitions and hardware capabilities in the sketch-
ing ecosystem, and deliver improved or new implementa-
tions to the sketch library.
Prior efforts have laid the groundwork for designing

sketches and making them transition from a theoretical cu-
riosity to a promising start for network telemetry. We hope
that our vision, research challenges, and collaborative efforts
from the stakeholders taken together can help transition sketch-
based telemetry into “prime time” deployment in the era of
programmable networks.
Acknowledgements: This work was supported in part by the
CONIX Research Center, one of six centers in JUMP, a Semi-
conductor Research Corporation (SRC) program sponsored by
DARPA, the NSF/VMware Partnership on Software Defined
Infrastructure as a Foundation for Clean-Slate Computing Se-
curity (SDI-CSCS) program under Award No. CNS-1700521,
and NSF award CNS-1565343.

REFERENCES

[1] Cisco, “Introduction to cisco ios netflow,” 2012.
[2] M. Wang, B. Li, and Z. Li, “sflow: Towards resource-efficient and agile

service federation in service overlay networks,” in Proc. of IEEE ICDCS,
2004.

[3] N. Duffield, C. Lund, and M. Thorup, “Estimating flow distributions
from sampled flow statistics,” in Proc. of ACM SIGCOMM, 2003.

[4] C. Estan and G. Varghese, “New directions in traffic measurement and
accounting,” in Proc. of ACM SIGCOMM, 2002.

[5] B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen, “Sketch-based change
detection: Methods, evaluation, and applications,” in Proc. of ACM IMC,
2003.

[6] Z. Bar-Yossef, T. Jayram, R. Kumar, D. Sivakumar, and L. Trevisan,
“Counting distinct elements in a data stream,” in RANDOM/APPROX.
Springer, 2002.

[7] R. B. Basat, G. Einziger, R. Friedman, M. C. Luizelli, and E. Waisbard,
“Constant time updates in hierarchical heavy hitters,” in Proc. of ACM

SIGCOMM and CoRR/1707.06778, 2017.
[8] M. Charikar, K. Chen, and M. Farach-Colton, “Finding frequent items

in data streams,” in Proc. of ICALP, 2002.
[9] G. Cormode and S. Muthukrishnan, “An Improved Data Stream Sum-

mary: The Count-Min Sketch and Its Applications,” J. Algorithms, 2005.
[10] Q. Huang, X. Jin, P. P. C. Lee, R. Li, L. Tang, Y.-C. Chen, and

G. Zhang, “Sketchvisor: Robust network measurement for software
packet processing,” in Proc. of ACM SIGCOMM, 2017.

15Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 17,2021 at 22:18:36 UTC from IEEE Xplore. Restrictions apply.

[11] Q. Huang, P. P. Lee, and Y. Bao, “Sketchlearn: Relieving user burdens in
approximatemeasurement with automated statistical inference,” in Proc.

of ACM SIGCOMM, 2018.
[12] Y. Zhou, Y. Zhang, C. Ma, S. Chen, and O. O. Odegbile, “Generalized

sketch families for network traffic measurement,” POMACS (ACM

SIGMETRICS), 2019.
[13] N. Ivkin, R. B. Basat, Z. Liu, G. Einziger, R. Friedman, and V. Braver-

man, “I know what you did last summer: Network monitoring using
interval queries,” POMACS (ACM SIGMETRICS), 2019.

[14] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman, “One
sketch to rule them all: Rethinking network flow monitoring with
univmon,” in Proc. of ACM SIGCOMM, 2016.

[15] T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou, R. Miao,
X. Li, and S. Uhlig, “Elastic sketch: Adaptive and fast network-wide
measurements,” in Proc. of ACM SIGCOMM, 2018.

[16] V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, and
J. Rexford, “Heavy-hitter detection entirely in the data plane,” in Proc.

of ACM SOSR, 2017.
[17] Z. Liu, R. Ben-Basat, G. Einziger, Y. Kassner, V. Braverman, R. Fried-

man, and V. Sekar, “Nitrosketch: Robust and general sketch-based
monitoring in software switches,” in Proc. of ACM SIGCOMM, 2019.

[18] M. Yu, L. Jose, and R. Miao, “Software defined traffic measurement
with opensketch,” in Proc. of USENIX NSDI, 2013.

[19] G. Nychis, V. Sekar, D. G. Andersen, H. Kim, and H. Zhang, “An
empirical evaluation of entropy-based traffic anomaly detection,” in
Proc. of ACM IMC, 2008.

[20] Z. Liu, S. Zhou, O. Rottenstreich, V. Braverman, and J. Rexford,
“Memory-efficient performance monitoring on programmable switches
with lean algorithms,” Proc. of SIAM/ACM APoCS, 2019.

[21] R. Schweller, A. Gupta, E. Parsons, and Y. Chen, “Reversible sketches
for efficient and accurate change detection over network data streams,”
in Proc. of ACM IMC, 2004.

[22] “Data plane developer kit (dpdk),” https://software.intel.com/en-us/
networking/dpdk.

[23] “Barefoot Tofino,” https://barefootnetworks.com/products/brief-tofino/.
[24] “Broadcom Trident 3,” https://www.broadcom.com/products/

ethernet-connectivity/switching/strataxgs/bcm56870-series/.
[25] “Mellanox SmartNIC,” https://www.mellanox.com/products/smartnic.
[26] M. Moshref, M. Yu, R. Govindan, and A. Vahdat, “Dream: dynamic

resource allocation for software-defined measurement,” in Proc. of ACM

SIGCOMM, 2014.
[27] Y. Li, H. L. Nguyen, and D. P. Woodruff, “Turnstile streaming algorithms

might as well be linear sketches,” in Proc. of ACM STOC, 2014.
[28] J. A. Tropp, A. Yurtsever, M. Udell, and V. Cevher, “Practical sketching

algorithms for low-rank matrix approximation,” SIAM Journal on Matrix

Analysis and Applications, 2017.
[29] M. Datar, A. Gionis, P. Indyk, and R. Motwani, “Maintaining stream

statistics over sliding windows,” SIAM journal on computing, 2002.
[30] V. Braverman and R. Ostrovsky, “Smooth histograms for sliding win-

dows,” in Proc. of IEEE FOCS, 2007.
[31] V. Braverman, R. Ostrovsky, and A. Roytman, “Zero-one laws for sliding

windows and universal sketches,” in Proc. of APPROX/RANDOM, 2015.
[32] G. Cormode, “The continuous distributed monitoring model,” ACM

SIGMOD Record, 2013.
[33] D. P. Woodruff and Q. Zhang, “Tight bounds for distributed functional

monitoring,” in Proc. of ACM STOC, 2012.
[34] M. Yang, J. Zhang, A. Gadre, Z. Liu, S. Kumar, and V. Sekar, “Joltik:

enabling energy-efficient” future-proof” analytics on low-power wide-
area networks,” in Proc. of ACM MobiCom, 2020.

[35] “Barefoot P4 Studio,” https://www.barefootnetworks.com/products/
brief-p4-studio/.

[36] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese et al., “P4: Pro-
gramming protocol-independent packet processors,” ACM SIGCOMM

CCR, 2014.
[37] “Netronome: Agilio SmartNICs and Software,” https://fd.io/technology/.
[38] Intel SGX, https://software.intel.com/en-us/sgx.
[39] AMD, “Secure Encrypted Virtualization,” https://developer.amd.com/.
[40] ARM TrustZone, https://developer.arm.com/ip-products/security-ip/

trustzone.
[41] A. Metwally, D. Agrawal, and A. E. Abbadi, “Efficient computation of

frequent and top-k elements in data streams,” in Proc. of ICDT, 2005.
[42] P. K. Agarwal, G. Cormode, Z. Huang, J. Phillips, Z. Wei, and K. Yi,

“Mergeable summaries,” in Proc. of ACM SIGMOD, 2012.

[43] E. Gan, J. Ding, K. S. Tai, V. Sharan, and P. Bailis, “Moment-based
quantile sketches for efficient high cardinality aggregation queries,”
arXiv preprint arXiv:1803.01969, 2018.

[44] Apache, “Apache druid,” https://druid.apache.org/.
[45] Z. Liu, H. Namkung, G. Nikolaidis, J. Lee, C. Kim, X. Jin, V. Braver-

man, M. Yu, and V. Sekar, “Jaqen: A high-performance switch-native
approach for detecting and mitigating volumetric ddos attacks with
programmable switches,” in Proc. of USENIX Security, 2021.

[46] B. Ghazi, R. Panigrahy, and J. R. Wang, “Recursive sketches for modular
deep learning,” in Proc. of ICML, 2019.

[47] N. Ivkin, D. Rothchild, E. Ullah, I. Stoica, R. Arora et al.,
“Communication-efficient distributed sgd with sketching,” in Proc. of

NeurIPS, 2019.
[48] J. Jiang, F. Fu, T. Yang, and B. Cui, “Sketchml: Accelerating distributed

machine learning with data sketches,” in Proc. of ACM SIGMOD, 2018.
[49] N. Alon, Y. Matias, and M. Szegedy, “The space complexity of approx-

imating the frequency moments,” in Proc. of ACM STOC, 1996.
[50] P. Clifford and I. Cosma, “A simple sketching algorithm for entropy

estimation over streaming data,” in Proc. of AISTATS, 2013.
[51] P. Flajolet, ric Fusy, O. Gandouet, and et al., “Hyperloglog: The analysis

of a near-optimal cardinality estimation algorithm,” in AOFA, 2007.
[52] A. Gupta, R. Harrison, M. Canini, N. Feamster, J. Rexford, and

W. Willinger, “Sonata: Query-driven streaming network telemetry,” in
Proc. of ACM SIGCOMM, 2018.

[53] Y. Yuan, D. Lin, A. Mishra, S. Marwaha, R. Alur, and B. T. Loo, “Quan-
titative network monitoring with netqre,” in Proc. of ACM SIGCOMM,
2017.

[54] S. Narayana, A. Sivaraman, V. Nathan, P. Goyal, V. Arun, M. Alizadeh,
V. Jeyakumar, and C. Kim, “Language-directed hardware design for
network performance monitoring,” in Proc. of ACM SIGCOMM, 2017.

[55] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M.
Hellerstein, W. Hong, S. Krishnamurthy, S. R. Madden, F. Reiss, and
M. A. Shah, “Telegraphcq: Continuous dataflow processing,” in Proc.

of ACM SIGMOD, 2003.
[56] C. Cranor, T. Johnson, O. Spataschek, and V. Shkapenyuk, “Gigascope:

a stream database for network applications,” in Proc. of ACM SIGMOD,
2003.

[57] K. Borders, J. Springer, and M. Burnside, “Chimera: A declarative
language for streaming network traffic analysis,” in Proc. of USENIX

Security, 2012.
[58] R. Alur, D. Fisman, and M. Raghothaman, “Regular programming for

quantitative properties of data streams,” in European Symposium on

Programming, 2016.
[59] Z. Liu, Z. Bai, Z. Liu, X. Li, C. Kim, V. Braverman, X. Jin, and I. Stoica,

“Distcache: Provable load balancing for large-scale storage systems with
distributed caching,” in Proc. of USENIX FAST, 2019.

[60] D. Kim, Z. Liu, Y. Zhu, C. Kim, J. Lee, V. Sekar, and S. Seshan, “Tea:
Enabling state-intensive network functions on programmable switches,”
in Proc. of ACM SIGCOMM, 2020.

[61] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu, “Silkroad: Making stateful
layer-4 load balancing fast and cheap using switching asics,” in Proc.

of ACM SIGCOMM, 2017.
[62] S. J. Saidi, A. Maghsoudlou, D. Foucard, G. Smaragdakis, I. Poese, and

A. Feldmann, “Exploring network-wide flow data with flowyager,” IEEE

Transactions on Network and Service Management, 2020.
[63] M. Gabel, D. Keren, and A. Schuster, “Anarchists, unite: Practical

entropy approximation for distributed streams,” in ACM KDD, 2017.
[64] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Iz-

zard, F. Mujica, and M. Horowitz, “Forwarding metamorphosis: Fast
programmable match-action processing in hardware for sdn,” in Proc.

of ACM SIGCOMM, 2013.
[65] R. Ben-Basat, X. Chen, G. Einziger, and O. Rottenstreich, “Efficient

measurement on programmable switches using probabilistic recircula-
tion,” in Proc. of IEEE ICNP, 2018.

[66] X. Gao, T. Kim, M. D. Wong, D. Raghunathan, A. K. Varma, P. G.
Kannan, A. Sivaraman, S. Narayana, and A. Gupta, “Switch code
generation using program synthesis,” in Proc. of ACM SIGCOMM, 2020.

[67] J. Han, S. Kim, J. Ha, and D. Han, “Sgx-box: Enabling visibility on
encrypted traffic using a secure middlebox module,” in APNet, 2017.

[68] R. Poddar, C. Lan, R. A. Popa, and S. Ratnasamy, “Safebricks: Shielding
network functions in the cloud,” in USENIX NSDI, 2018.

[69] B. Trach, A. Krohmer, F. Gregor, S. Arnautov, P. Bhatotia, and C. Fetzer,
“Shieldbox: Secure middleboxes using shielded execution,” in Proc. of

ACM SOSR, 2018.

16Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 17,2021 at 22:18:36 UTC from IEEE Xplore. Restrictions apply.

