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Abstract

Envelope method was recently proposed as a method to reduce the dimension of
responses in multivariate regressions. However, when there exists missing data, the
envelope method using the complete case observations may lead to biased and ineffi-
cient results. In this paper, we generalize the envelope estimation when the predictors
and/or the responses are missing at random. Specifically, we incorporate the envelope
structure in the expectation-maximization (EM) algorithm. As the parameters under
the envelope method are not pointwise identifiable, the EM algorithm for the envelope
method was not straightforward and requires a special decomposition. Our method
is guaranteed to be more efficient, or at least as efficient as, the standard EM algo-
rithm. Moreover, our method has the potential to outperform the full data MLE. We
give asymptotic properties of our method under both normal and non-normal cases.
The efficiency gain over the standard EM is confirmed in simulation studies and in an
application to the Chronic Renal Insufficiency Cohort (CRIC) study.
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1 Introduction

Recently, a new dimension reduction method called the envelope method has been proposed
in the multivariate regressions (Cook et al., 2010). Unlike the standard dimension reduc-
tion methods, the envelope method assumes the redundancy among responses rather than
among predictors. Specifically, it is assumed that there exist some linear combinations of
the response variables that do not contribute to the regression. Under such a condition, the
envelope method is shown to have efficiency gain over the ordinary least squares which re-
gresses one response at a time ignoring other responses. Similar redundancy structures have
also been extended to hold among the predictors or among both predictors and responses.
It is known that the estimation of the central space may suffer from bias when the corre-
lations between variables are high (Cook, 2018)). The envelope conditions circumvent the
challenge of identifying the central space in the standard dimension reduction problem when
the correlation between variables is high, at the cost of obtaining a bigger space containing

the parameters of interest, and thus makes the envelope estimates more reliable.

Various envelope methods have been proposed in different settings, including response
envelope (Cook et al.| 2010)), inner envelope (Su and Cook, 2012), scaled envelope (Cook and
Su,, 2013), reduced rank envelope (Cook et al., 2015), predictor envelope (Cook et al., [2013)),
simultaneous envelope ((Cook and Zhang), 2015b), sparse envelope (Su et al. [2016)), tensor
envelope (Li and Zhang, 2017), model-free envelope (Cook and Zhang, 2015a), and mixed
effects envelope (Shi et al., [2020). Algorithms such as 1-D algorithm (Cook and Zhangj,
2016) and envelope coordinate descent (Cook and Zhang, 2018) have also been proposed to

effectively and efficiently estimate the envelope models.

A prominent problem when a large number of responses and predictors are collected is
the missingness of responses or predictors. Missing data may arise when a subject refuses to
respond to certain questions or when the data is not collected. The missing data mechanism
is said to be missing at random (MAR) or ignorable if it only depends on the observed

data and it is said to be missing not at random (MNAR) or nonignorable if otherwise. As



Little and Rubin| (2014)) suggested, in most MAR scenarios, a complete case analysis would
lead to inefficient or possibly biased results. We assume the missingness mechanism is MAR

throughout this paper.

In this paper, we generalize the envelope method for data with missing predictors and
responses. As the parameters under the envelope method are not pointwise identifiable, such
a generalization requires a special decomposition. The importance of the research lies in sev-
eral aspects. First, with rapidly advancing technology, it is common that high-dimensional
responses are collected to characterize multiple aspects of individuals. Biased and ineffi-
cient results will be obtained if the analysis deletes all the observations with missing values.
Second, while the standard missing data methods typically suffer from an efficiency loss, as
compared to the full data analysis, the method that incorporates dimension reduction can
potentially recover substantial efficiency. Third, our proposed method to recover the missing
information can also be generalized to the predictor envelope model where the redundancy
is assumed among the predictors rather than the responses, as well as to the case where the
redundancy is present among both the responses and the predictors. And lastly, to the best
of our knowledge, our paper is among the first few in the dimension reduction literature to

discuss the case where both responses and predictors are subject to missingness.

We organize the paper as follows. In Section [2| we introduce the notations and review
the envelope models. In Section |3, we present the observed data likelihood and clarify the
difficulty of applying the envelope method directly. In Section 4], we propose an EM envelope
algorithm. Simulations are given in Section [5] where we compare the EM envelope method
with the existing methods. In Section [6] we apply the EM envelope to the Chronic Renal
Insufficiency Cohort (CRIC) data. In Section [7} we present a brief discussion. Section

contains the link to our R package.



2 Preliminary

Let Y; = (Yir,...,Y:)" and X; = (Xi1,...,X;p)" denote the multivariate responses and
predictors for individual ¢, where T denotes the transpose of a matrix and ¢+ = 1,...,n.
Also,let Y = (Yy,...,Y,) e R and X = (Xy,...,X,,) € RP*" where Y € RP*" denotes
that Y is an element in the set of all real matrices with dimension r x n. Consider the

multivariate linear regression model
Y; =BX; + € (1)

where €; are identically and independently (i.i.d) distributed with mean 0 and variance 3,
and B € R"™P. We firstly assume the normality of the error when deriving the EM envelope
estimator. We extend later (Propositions 2 and 3) the robustness property of our estimator
when the normality is possibly violated. Let Ry, = 1 if Xj; is observed and Ry, = 0
if otherwise, for j = 1,...,p. Similarly, let Ry, denote the missing indicator for Y, for

k=1,...,r. Let R; = (Rx,,,...,Rx,,,Ry,,,..., Ry, )T denote the vector of missingness

i ip)
indicators of all variables for individual 7. Let Y, ;s and X ;s denote the vectors of the
missing responses and the predictors for individuals 7. Let Y; s and X; s denote the vectors
of the observed responses and predictors for individual 7. Under such notations, different
individuals may have different missing responses and predictors, i.e., the lengths and the
components of Y; s and X; 4 differ from one to another. Let D; ops = (X s, Yions)! and
D;mis = (Xi,miS,Yi,mis)T denote the observed data and the missing data for individual i,
respectively. Let y;. and 2;; denote the possible value of Yi; and X;;. Theny; = (yi, ..., Yir)"
and x; = (71, . .. ,mip)T are the possible value of Y; and X;. Let x; o5 and X; ,,;s denote the

value of the observed and missing predictors. Define y; o5 and y; ms similarly. We assume

the missingness is ignorable:

Assumption 1 (ignorability). R; AL D; s | D obs-

Assumption (1| implies that given the observed data, the failure to observe a variable does

not depend on the unobserved data. This particular type of missingness is called missing



at random (MAR) or ignorable missingness. A complete case analysis is inefficient and can
be seriously biased (Little, |1992). Throughout the paper, we assume both covariates and
responses are missing at random, which has also been assumed in Chen et al. (2008) and

Hristache and Patileaj (2017).

In multivariate regression with fully observed data, the envelope method (Cook et al.|
2010)) is motivated by the observation that some characteristics of the responses are unaf-
fected by the changes of the predictors. For example, in a randomized trial, the difference
between the repeated measures of the blood pressure of a patient in the treatment group (or
the control group) may only reflect the aging over time rather than the treatment effect. A
matrix O € R™" is orthonormal if and only if it satisfies O7O = I,, where I, denotes the

identity matrix with dimension r. Consider an orthonormal matrix (I',T'y) € R"*" such that
Condition 1. span(3) C span(T'),

Condition 2. ¥ =TQI'7 + I‘OQOFOT,

where I' € R™*, Ty € R™*( % and 0 < u < r. The subspace span(T") satisfying Conditions
and [2|is not unique, but |Cook et al. (2010) defined the envelope to be the smallest subspace
satisfying these conditions. The dimension u is known as the envelope dimension. Notice the
decomposition of ¥ is equivalent to cor(TY,TTY | X) = 0. From span(3) C span(T), the
regression parameter can be written as 8 = I'np, where n € R**P. Therefore, the envelope

model can also be written as follows:
Y, =TnX;+¢e, X=TQI7 +T,QI}. (2)

The null correlation only guarantees the information of I'J'Y is immaterial in the first two
moments. Under the normality assumption of the error, Conditions are equivalent to

the following two conditions:
Condition 3. T7Y 1 X.

Condition 4. T7Y I TTY | X.



Conditions are equivalent to 7Y 1L (TTY, X).

Although the original envelope was developed using Conditions [IH2, we directly define
envelope using Conditions The envelope under Conditions is in general no smaller
than that defined by Conditions [IH2] We prefer Conditions because the interpretation

of the envelope is more straightforward especially when the normality is violated.

We give a simple example for the envelope model. Assume Y = (Y7,Y3). Suppose
Y = BX + ¢, and Yo = —BX + &9, where £; and &, follow two normal distributions,
and they are independent of each other. The predictors X do not affect the summation of
responses Y7 + Y5. Additionally, it can be verified that Y; — Y5 is independent of Y7 + Y5;
thus, Y7 + Y5 can be completely discarded in the regression. That is, the regression of Y on
X can be replaced with the regression of ¥; — Y3 on X. In this example, T' = (1, —1)7/v/2,
and Ty = (1,1)7/v/2. The combinations of responses that are involved in the regression,
'Y, is called the material part of Y, and the part that is uninvolved, TY, is called the
immaterial part of Y. Hence, the main focus of the envelope method is to find the column

space of ', i.e., span(T"), that fully contains the information of 3, i.e., find an envelope of 3.

Once an estimate of the basis T, f‘, is obtained, Bem, is obtained by projecting the
maximum likelihood estimator B onto the estimated envelope space, Be,w = Pf,é, where P 5

stands for the projection matrix for the matrix A.

Figure 1| demonstrates the intuition of efficiency gain of the envelope method when there
is no missing data, or equivalently, with the full data. Consider two groups of individuals
(the group with X = 1 is denoted by triangles and the other with X = 0 is by circle dots),
where each point (triangle or circle dot) denotes one individual. Two responses Y; and Y,
are collected for each individual. Suppose that we are interested in estimating the group
difference on Y7, the standard maximum likelihood estimation (MLE) projects all the data
onto the Y] axis, ignoring information on Y5 completely. The density curves of the two
group distributions of Y; are given at the bottom in Figure . The two curves are hard

to distinguish as they almost overlapped. The full data MLE for the group difference is 0.11



with the bootstrap standard error being 0.12 and the p-value being 0.37. Thus, it is hard
to distinguish between the two groups. While the true difference between the two group
mean of Y7, 0.32, is contained in the 95% confidence interval of the full data MLE, the large

variability of the estimator makes the point estimate deviate from the true parameter value.

The idea of the envelope method is to reduce the noise in the original data by projecting
each observation onto the direction that contains all the information related to the regression.
The two groups are best distinguished along the direction of the black solid line. In contrast,
the two groups have almost identical distribution along the direction that is orthogonal
to the black solid line. That is, the information orthogonal to the black solid line does
not contribute to the distinction between the two groups. Thus, eliminating that part of
variation does not sacrifice any relevant information for the regression, but instead makes the
regression more efficient. An estimate of the black solid line is shown as the purple dashed
line in Figure . All the points are thus first projected onto the estimated direction
f‘TY, then projected onto the Y] axis. For example, a data point A was first projected onto
the estimated envelope direction with an intersection B, and then projected onto the Y;
axis. |Cook et al.| (2010) showed that the envelope method can achieve substantial efficiency
gain when the envelope direction is aligned with the eigenspaces of 3 that correspond to
relatively small eigenvalues. In that way, linear combinations of Y with larger variances can
be eliminated by the projection. In Figure , the direction that can better distinguish the
two groups is aligned with the direction that the data has less variability, so the envelope
method is expected to provide substantial efficiency gain. The density curves of the two
groups under the envelope estimation are shown at the bottom of Figure and they
have much smaller spreads. The envelope estimator for the group difference is 0.32 with the
standard error being 0.03 and the p-value < 0.001. Thus, it is much easier to distinguish

between the two groups.

Now, consider the case where the predictors X are fully observed but some values of
the responses are missing (see Figure . The missingness mechanism is as follows. For

an individual ¢ for ¢ = 1,...,150, if X; = 1 and if ¥}; is among the largest 30 Y, for



.

¢t = 1,...,150, then Y}, is missing. If X; = 0 and if Y}, is among the largest 45 Y, for
i =1,...,150, then Yj; is missing. Such missingness mechanism is MAR, and the missing
rate is 30% for Yi, and 20% for Y5. The hollow triangle represents Y7 missing, and the
hollow circle dot represents Y, missing. The standard EM method is shown in Figure .
Although being an asymptotically unbiased method, the standard EM estimates of the group
difference is 0.11. Similar as the full data MLE, the point estimate of the standard EM also
deviates from the true parameter value due to the large variability. The bootstrap standard
error is 0.12 with the p-value being 0.37. The spreads of the two group densities are again

relatively large, resulting in a relatively inefficient estimate.

The existing envelope methods for solving I' all require the data to be fully observed
(Cook et al. [2010; |(Cook and Zhang) [2016)). Figure shows the complete case envelope
where all the observations with missing data are deleted from the analysis. The estimated
complete case envelope direction is shown as the blue dashed line in Figure , which is
far from the true envelope direction (black solid line). This leads to a severe bias: even the
sign of the estimated parameter is incorrect. The complete case envelope estimate is —1.63

with the bootstrap standard error being 0.15 and the p-value < 0.001.

Our method is shown in Figure . Different from the complete case analysis, we
use both the complete cases and the partially missing information. Our proposed method is
asymptotically unbiased when the missing pattern is MAR. The estimated envelope direction
is shown as the red dashed line. Our method recovers the envelope direction and achieves
significant efficiency gain over the standard EM as the density curves have much smaller
spreads. The EM envelope estimator is 0.31 with the bootstrap standard error 0.04 and the
p-value < 0.001. It is interesting to see that our method may even outperform the full data
MLE as the efficiency gain by the envelope method outweighs the information loss due to

missing data in this illustrative example.



Figure 1: Intuitive illustration of the envelope method without missing data. Two groups are
shown using circle dots (X = 0) and triangles (X = 1). The solid line is the true envelope
direction, the dashed lines are the estimated envelope. The density curves of the two groups

using the envelope method are shown at the bottom of each subfigure.
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Figure 2: Intuitive illustration of the envelope method in the presence of missing data. Two
groups are shown using circle dots (X = 0) and triangles (X = 1). Hollow circle dots or
triangles indicate one of the components of Y is missing: the hollow triangle has Y; missing,
and the hollow circle dot has Y5 missing. The solid line is the true envelope direction, the
dashed lines are the estimated envelope using different methods. The density curves of the

two groups using different methods are shown at the bottom of each subfigure.
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3 The Observed Data Likelihood

The envelope method proposed by |Cook et al.|(2010) utilizes the full data likelihood function
L =110, f(yi | xi;m. T, Q0, Q) to obtain the MLE of the parameters. In the presence of

missing data, we replace the full data likelihood with the observed data likelihood

Lobs - H f(Yi,obs | Xi,obss T, F7 907 Q)

=1
X H / / f(yi,obs; yi,mis ‘ Xisn, F7 907 Q)f(xi,obsa Xi,mis; p)dxi,misdyi,misa
i=1

where p is the parameter for the predictors’ distribution and o denotes proportional to,
i.e., a multiplicative constant is omitted. Let x;..is denote the set of predictors X; that
is missing for individual . For example, if X, ;s = Xi1, then ximis = {Xin}. Write
Xi,mis = @ when all the p predictors are observed for this individual. Since [ f(¥i.obs, Yi,mis |
;1,1 Q0, Q)dYimis = [(Viobs | Xi3m, T, Qo, ), we can simplify the observed data likeli-

hood as

Lops o< H f<Yi,obs | x;;m, I, Q, Q)

i€{Xi,mis=0}
H /f(yi,obs ’ x; 1, T, £, Q)f(xi,obs> Xi,miss p)dxi,mis-
i€{Xs,mis#0}
The first part of the observed data likelihood corresponds to the likelihood of individuals
with fully observed predictors. The second part corresponds to the likelihood of individuals
with missing predictors. Hence, the observed data likelihood utilizes more information than

the complete data likelihood.

The observed data likelihood is in general hard to calculate as it involves the multivariate
integral. Closed form observed data likelihood exists under certain distributions. Example
in the Appendix derives the closed form of the observed data likelihood when predictors
and responses follow a joint normal distribution. However, in general, the integral in the

observed data likelihood may result in a complicated form. |Cook and Zhang| (2015al) pointed
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out that the envelope method performs poorly when the first order derivative of the objective
function do not have a closed form. Even when the observed data likelihood is available in a
closed form, the parameter is typically complicatedly intertwined in the likelihood. Together
with the fact that the parameter is not pointwise identifiable, it is challenging to calculate
the maximum likelihood estimates under an envelope structure. Such a challenge was also
identified in Cook and Zhang (2015a) in the context of generalized linear models. In this
paper, we propose an EM envelope algorithm that can identify and estimate the envelope

space with missing data.

4 The EM Envelope

4.1 The EM updates

Let lpuu(¢p | L) = log Lpuu(¢p | L) denote the log of full data likelihood, where ¢ =
(n,T,Q0,Q, p). Then, the logarithm of full data likelihood of (X,Y) is

lra(@ | X,y) =log{ fy(y | X, ®)} +log{fu(x | &)}

= S lg log Sl = S — Bx) TSy — Bx) + log{ x| )} +C

n 1 «
:—Elogyz\—§ZAi+c,

=1

where A; = (y; — 8x)TE Hy; — Bx;) + 2log{f.(x; | p)} and C = —(nrlog2r)/2. In the
E-step,

Qo | 1) = E{lyur(d | L) | Dobs; Pi} = /Hull(d’ | L) f(Diis | Dobs: @1)dD s

Recall that 3, = TQT'T and ¥y = T\QeT'}, we can also use ¢ = (n,T, 2,3, p) as the

new parameters for the reparameterization. Hence, we have

Q(¢ | ¢t) = E{lfull(d) | XaY) | Dobs; ¢t} = _g IOg |Z| - %ZE(Az | Di,obs; ¢t) + C.
i=1
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Since E(Y]XY;) = E{tr(XY,Y])} = tr{ZE(Y,Y/)}, we have
E(A; | Diobs; 1) = tr{Z"E(Y, Y, | D;ops; Pt) + BT 7' BE(XiX] | D ovs; Pr)
— 28" ST'E(Y X | Diobs; @)} — E[21og{ f2(Xi|p)} | Diobs; ).
Let Aiiy = E(Y:Y7 | Diobs; @1), Aizg = E(YiXT | Diobs; 1), Aigy = E(X;XT | Dijonsi 1),
A =>" Ay, jg=1,...,3 Thus,
Q6| 6) =~ 108[S] + 3 E(A | Dygih) + €
=1

1 " . -
= —g log || — §tr{271 ( Z A —2 Z Ai2,tBT +08 Z AiS,tBT)}
i=1 i=1 i=1

+ Eflog{ fo(xi | p)} | Diobs; ] + C
o« —nlog |E| — tr{= 7" (A1, — 2A,,8" + BA;,87)}

+ E[21log{f:(xi | p)} | Diobs; pi] +2C.

After the E-step, we do the M-step. However, the parameters under the envelope method
are not pointwise identifiable (Cook et al.; 2010)), the EM algorithm for the envelope method
is not straightforward and requires a special decomposition in the M-step. We imitate that
of the full data likelihood in |Cook et al.| (2010) to isolate the parameter to be optimized from
the other parameters. We decompose Q(¢ | ¢;) as Q(¢ | ¢¢) = Q1(p | d¢) + Q2(B, % | &y),
where Q1(p | @) = B210g{/,(X; | p)} | Do ] + 20, and Qx(B, 5 | ¢,) = —nlog [S]
{1 (A1 — 245,87 + BA;3,87)}. As Qi(p | ¢) only involves p, the maximizer of Q;(p |
@) is pry1 = argmax,em E[2log{ fo(x; | p)} | Dobs; @], where II is the parameter space of
p.

To find the maximizer of Q2(3,% | ¢;), note under the envelope conditions [3-{4] we
have ¥ = ¥, 4+ X5, where ¥; = Pr3Pr, 3y = QrXQr with 3,3, = 0, and Span(3) C
Span(X;). This implies X3 = 0. Additionally, as X! = EI + z:;, where  indicates the
Moore-Penrose inverse, we can write (o as:

Q2(B,2 | ¢1) = —nlogdetyX; — tr{S1(A,, — 2A,,8" + BA;,87)}
— nlogdetyXy — tr(EgALt),
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where detg(A) denotes the product of its non-zero eigenvalues. Further, we have Q3(3, X |
B0) = Qo1 (B, X1 | d1)+Q22(Xs | ), where Qo1(B, 51 | @) = —nlogdetoX; —tr{E] (A, —
25,87 + BA3,87)}, and Qua(Xs | ¢1) = —nlogdetoXy — tr(E5A;,). Suppose for the

moment, 3 is fixed. Then, from

tr{=1 (A, — 245,87 + BA5,B87)}
= {S](Ar— As,AZIAT)} +ir{(A587 — AjAT)EI(A],87 - A FAT)T)
the maximizer of Q21(3,%; | ¢:) subjects to Span(3) C Span(X;) with ¥, fixed is By11 =
le/éstdﬂf = leAQ,tA;%, where ,sttdyt = A.27tA.3_’%. Since leEi =0, we have Q21(Bi+1, X1 |
¢:) = —nlogdetyX; — tr{E](A;, — Ay A51AT)}.

In order to maximize Q21(Bii1, X1 | P1), Q2.2(X2 | ¢¢) over 3y and Xy, we use the Lemma
4.3 in (Cook et al.| (2010), which is reviewed as Lemma |5 in the Appendix. Suppose matrix
I" is given, then by Lemma , we have 3,11, = Pr(A;; — AgytAg’%Ag’t)Pp/n and X, =
QrA1.:Qr/n. Hence, Q21(Bi11, X141 | ¢) = C1 — nlogdeto{Pr(A;; — A27tA3it1A£t>P[‘},
Q22(X244+1 | @) = Cy — nlogdety (Q[‘ALtQI‘), where C7 = nulogn — nu and Cy = n(r —
u)(logn — 1). Finally, we find the matrix I' to minimize the function logdet{Pr(A;; —
Ay Ay 7}AQTJQPF + QrA;:Qr}. The elements in I' are not pointwise identifiable; however,
as the objective function above is a function of Span(I'), we only need to estimate the span
of the column space of I', which is identifiable. The MLE of Span(I") can be obtained using
full Grassmannian optimization (Cook et al., 2010, [2016)).

4.2 Selection of the envelope dimension

The selection of the envelope dimension can be viewed as a diagnostic or model selection
under the envelope framework. Model selection criteria for missing data problem such as
the likelihood ratio test and the information criteria including AIC, BIC, typically involve
the observed data likelihood. As mentioned, the observed data likelihood may be compli-
cated and not in a closed form. Hence, it is ideal if the calculation of the model selection

criteria could be obtained directly from the EM output. Ibrahim et al.| (2008) proposed the
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information criteria for missing data problems. They used the fact that E{log f(Dus | ¢) |
Dobs;¢t} - Q(d) | d)t) - H(¢ | ¢t)7 where H(d) | d)t) = E{log f(szs ‘ Dobs;d)) | Dobs; d)t}
and Q(¢ | ¢;) was defined in Section The @ function can be computed from the EM
output and the H function can be analytically approximated as part of the EM output.

Eck and Cook (2017) recommended using the BIC to select the envelope dimension,
because the AIC tends to over select the true dimension and the likelihood ratio testing is
inconsistent. Thus, we generalize the BIC for the missing data problem following |[brahim
et al| (2008) as BICy.o = —2Q(¢ | ¢) + 2H(¢ | @) + pulogn. The penalty term is pulogn
because under the envelope model, there are pu + r(r + 1)/2 unknown parameters in total,
and only pu varies with dimension w. The asymptotic properties of BICy g are given in

[brahim et al.| (2008).

The computation of the H function is not straightforward since it may not have a closed
form. Ibrahim et al.| (2008) proposed a method for approximating the H function through
the truncated Hermite expansion with MCMC sampling. Alternatively, an approximation
of BICq could be obtained by omitting H(¢ | @), where BICq = —2Q(¢ | ¢) + pulogn.

When the proportion of missing information is small, the use of BICy is adequate.

The information criterion relies on the correct specification of the distribution. Alterna-
tively, we can generalize a bootstrap method for choosing the envelope dimension u, which is
more robust to misspecification of distributions. A similar bootstrap method was proposed
by [Ye and Weiss (2003)); Dong and Li (2010) and has been widely used for selecting the
dimension of the central space in the dimension reduction literature (Li and Wang, 2007}
Yin et al.l 2008; Zhu and Zeng), 2006). We propose to first fix the dimension u for the basis

matrix I' and then bootstrap data b times to get a sequence of envelope space f‘l, e ,f‘b.

If the proposed dimension is u* > u, then span(f‘) can be any space of dimension u* that
contains span(I'), and thus, the estimate should suffer from large variability as compared
to the estimate of the original data I'. Therefore, we choose the largest dimension u* such

that the bootstrap estimated space is the most similar to I'. To evaluate the variability of
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f‘l, e ,f‘b, we use the vector correlation coefficient ¢> proposed by [Hotelling] (1936)). Suppose

A and B € R™" are semi-orthonormal matrices, then
¢*(A,B) = | BTAATB|.

We see that ¢*(A,B) € [0,1] and higher value of ¢* indicates higher correlation between
the two subspaces. When ¢*(A,B) = 1, span(A) = span(B). Hence, we choose the largest

dimension u* such that

b
> F(T,1V) > 0.95,
j=1

S| =

Additionally, [Eck and Cook! (2017)) suggested dimension selection can be entirely avoided
by using a weighted average of envelope estimators, one for each possible dimension. They
also showed that the weighted envelope estimator is \/n-consistent, where the standard error

can be well approximated by the residual bootstrap.

4.3 Asymptotics

The following propositions guarantee the efficiency gain and asymptotic normality of the EM
envelope estimator. Specifically, Proposition [1| establishes the asymptotic property when the
densities of both € and X are correctly specified and that of € is normal. Proposition
extends the result to the case where the distribution of X is correctly specified but e has
a misspecified normal working density. Proposition |3| extends the result further to the case
where € and X both have a misspecified normal working density. Let [* denote the log-
likelihood under working model. Let s,(¢) = VI*(¢p) and M,,(¢) = —E{V?I*(¢)}, where V
denote the gradient with respect to a general parameter ¢p. We state our regularity conditions

first.

(A1) (Observed likelihood) L. is unimodal, i.e, the probability distribution has a sin-

gle maximum, in the parameter space ® with only one point ¢, such that 0Q(¢ |

@1) /0P| p=p, = 0, and that 0Q(¢ | ¢+)/0¢ is continuous in ¢ and ¢;.
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(A2) (Finite moments) The error term e; and covariates X; have finite (4 + ¢)-th moment

for some § > 0.

(A3) (Eigenvalues) lim, A {n"'Var(s,(¢))} > 0 and lim, A {n"'M,(¢)} > 0, where lim

and A_(-) stands for the lower limit and the smallest eigenvalue.

(B1) (Equicontinuous) Vs, (¢) is equicontinuous on any compact subset of ®.

(B2) (Uniqueness) lim, o, E{n"'s,(¢)} = 0 has a unique solution at the true parameter

value.

Conditions |(A1)H(A3)l [((B1)H(B2)| are mild regularity conditions. We proved the follow-
ing examples in the Appendix that hold when X; follows normal or Binomial

distribution and the working model for €; is normal.

Example 1. Under Model , suppose Assumption 1 holds, if the distribution of X, is
normal, then regularity conditions hold.

Example 2. Under Model , suppose Assumption 1 holds, if X; follows Binomial distri-
bution, then regularity conditions (B2)[ hold.

The parameter of the envelope model is ¢ = (n,I',Q2,Qy, p). We are interested in
the property of the parameters 3, 3 and p, which are functions of ¢. From , we have
h(¢) = (8,5, p) = (T, DRIT+ToQTE, p) = [y (), ha(6), hy(@)}. Let 6 = h(gh) denote
our parameter of interest, éem.em and éem.std denote the EM envelope and the standard EM
estimators as the EM sequence converges. The following propositions can be proved using

the results in [Shapiro| (1986)).

Proposition 1. Under Model (), suppose Assumption [I] Conditions and hold,
assume the distributions of g; and X; are both correctly specified and e; follows a normal

distribution, then v/ (@um.sa — 0) > N(0,Vyg) and Vi(Oemens — 0) > N(0, V) as
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n — 0o, where V., = G(GTV_.G)!GT and G is given by

std

I,oT n’ ®1, 0 0 0
0 2C,(T2RL —TeTIY) C.(T®ME, C.(Ty®Ty)E,_, 0
0 0 0 0 I

Matrices C, and E, are defined in the Appendix. Hence, V.,, — V4 > 0, which indicates

the efficiency gain of the EM envelope estimator.

When the envelope dimension u = r, the envelope reduces to the standard maximum
likelihood estimate. That is, even when the envelope assumptions do not hold, the EM
envelope estimator performs as well as the standard EM estimator. Also, following a similar
argument as in |Cook et al.| (2010)), if the variability of the immaterial part is relatively large,

then the efficiency gain would be substantial.

Propositions [2[ and 3] below extend Proposition [1] and provide the asymptotics of miss-
ing data envelope estimator when the normality of g; is violated. Lemmas 1-4 provide

asymptotics for the standard estimator.

Lemma 1. Under Model , suppose Assumption holds, when g; is misspecified to follow
a normal distribution, if|(A1)H(A2)| and [(B1)H(B2)| hold, then O,pm.sa 2> 0 as n — co.

Lemma 2. Under Model , suppose Assumption holds, when g; is misspecified to follow
a normal distribution, if [(A1)H(A3){and |(B1)H(B2)| hold, then \/n(@em.s1q — 0) 4 N(0, V)
as n — 0o, where Vg = M,,(8)'Var{s,(8)}M, ().

Proposition 2. Under Model (1)), suppose Assumption [1 Conditions [3-4] (A3), and
(B1)H(B2)| hold, if the distribution of X, is correctly specified and e; is misspecified to

follow a normal distribution, we have \/ﬁ(éem.em —0) 4N (O,Vem}) as n — oo, where
Vo = Pg(J)Vsthg(J), Pgu) = G(G'JG)'G"J, G is defined in Proposition 1 and the

definition of the symmetric matrix J is given in the Appendix.

Lemma 3. Under Model , suppose Assumption (1| holds, when g; and X; are misspecified
to follow a normal distribution, if hold, G.m.sa = 0 as n — oo,
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Lemma 4. Under Model , suppose Assumption (1| holds, when g; and X; are misspecified
to follow a normal distribution, if|(A1)H(A3)|hold, \/ﬁ(éem.std —0) LN N(0, Vstd) as n — 0o,
where Vg = M, (8)'Var{s,(8)}M, ().

Proposition 3. Under Model (I]), suppose Assumption [1} Conditions [3-4] (A3)|hold,

if €; and X; are both misspecified to follow a normal distribution, we have \/ﬁ(éem.em -0) N

N(0, V) as n — 00, where Ven, = Pa)VaaPe ), and Pagy = G(GTIG)'G'J.

5 Simulations

5.1 Normal errors

Jia et al. (2010) compared the envelope method with some competitor estimators such as
ridge regression and Curds and Whey introduced by Breiman and Friedman| (1997). They
concluded that the envelope model has the best performance when u < p < r < n in the
classical domain. Therefore, to avoid duplication, we do not consider those competitor es-
timators here. In this subsection, we compare six different estimators: the EM envelope
estimator Bem‘e,w, the complete case (CC) envelope estimator ,écc.e,w, the full data envelope
Bfu”.em, the standard EM estimator Bem.std, the standard complete case (CC) estimator
Bcc.std, and the full data MLE B full-sta- The complete case estimators only utilize the obser-
vations that do not have any predictors or responses missing, whereas the full data estimators
use the full data without any missingness. In practice, the full data estimators cannot be
calculated with the missing data. The full data envelope sets a theoretical maximal efficiency
possibly gained from incorporating the envelope structures. We carry out the simulations in

the following steps.

Step 1. Set the population size n = 500. Generate parameters I' € R™**, 3 € R™? where 1 =
20, p =5 and u = 3, and the elements are independently generated from U(0,1) and
U(—10,10). By QR decomposition, we get T from I, where I satisfies T7T' = I,,,. Set



Step 2.

Step 3.

Step 4.

Step 5.
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the true regression coefficients as 3 = PFB. Generate a matrix N € RP*P where each
element is independently from U(—10, 10), and set 3, = NN7, 3. = TQI'"+T\Q, '],
where 2 = 0.11,, 2o = 1000L,.

Generate the full data (X;,Y;) for each individual i, where X; A (pz, X;) and

i.4.d

Y; | X; ~ N(BX,X.) and each element of u, is generated from U(—10,10).

Generate the missingness as follows. Set three missingness mechanisms for the pre-
dictors as logitP(Rx,, = 1 | &1, %2, 7i3) = 1 — 21 — 27,2 — 3,3, logitP(Rx,, =
L | w1,24) = 1 — 21 — 2m54, and logitP(Rx,; = 1 | 21) = 1 — 251, Also,
set five missingness mechanisms for the responses as logitP(Ry,, = 1,Ry,, = 1 |
T, Yis, Yin) = 2 — Tin — Yis — Wie, 10gItP(Ry,, = 1 | Zi2,¥iaYis) = 1 — 252 —
3Yia — Vi, logitP(Rym =1, RY»;@ =1, RYi,g =1 ’ Yi1, yi,27yi,3) =2—=2y;1 — Yi2 — i3,
logitP(Ry,, = 1, Ry, ,, = 1 | @31, %2) = 1 — 231 — 252 and logitP(Ry,; = 1, Ry, =
1] %1, %i2,Yi1,Yino) = 1 — i1 — T2 — i1 — Yin0- For each individual, we randomly
choose one missingness mechanism for the predictors and one missingness mechanism

for the responses. Then, we generate the missingness indicators (Rx, ,, ..., Rx,,, Ry, ,,

i,p?

..., Ry, ), for i =1,...n. We obtain the observed data for predictors and responses.

Calculate /Bememn /Bccem); /Bfull-enva /Bem~std7 /Bcostd ) and ﬁfulbstd; where /Bem-em; is calcu-

lated from the EM envelope algorithm using BICg to select the envelope dimension.

Repeat Steps 2—4 for 1000 times.

Under the missingness mechanisms above, each predictor suffers from about 10%—15% miss-

ingness and each response about 5%-10%. In our simulations, to simplify the calculation and

reduce the computation burden, we apply the 1-D algorithm proposed by |Cook and Zhang

(2016)) to solve I'. The 1-D algorithm only provide a \/n-consistent estimate of I" rather than

the most efficient estimate. However, we still find good performance of EM envelope method

with 1-D algorithm. Details about the algorithm are in the Appendix. The median MSEs are
4.44 x 107°,2.00 x 1074, 1.02 x 1075, 5.34 x 1072, 0.69 and 5.23 x 1072 for the EM envelope,
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the complete case envelope, the full data envelope, the standard EM, the standard complete
case analysis and the full data MLE, respectively. Detailed comparisons of the six estimators
are given in Figure[3|below and Table[I]in the Appendix. For the EM envelope estimator, by
using BICq to choose the envelope dimension, out of 1000 times of simulations, we correctly
estimated the envelope dimension u = 3 at an accuracy of 98.6%. The envelope dimension
u = 2 is selected 12 times and u = 4 is selected 2 time. The overselection u = 4 still
provides a correct model, although the point estimate may not be as efficient as compared
with that using the correct u. The underestimation of u = 2 could introduce some bias.
As expected, the standard complete case analysis suffers from both large variance and large
bias. In contrast, the EM envelope is asymptotically unbiased and the most efficient among
the four estimators using the observed data, despite the occasional underestimation of w.
In this simulation setting, the variance of the immaterial part of the responses is relatively
large. Thus, by eliminating the variability of the immaterial part, the EM envelope estimate
outperforms the standard EM. This confirms the efficiency gain in Proposition |1 Similar to
the illustrative example in Section [2 the EM envelope also outperforms the full data MLE in
this simulation, emphasizing the advantage of incorporating a dimension reduction method
to recover the efficiency loss due to missing data. The performance of the EM envelope is

close to the full data envelope in this case.

In this specific setting, the complete case envelope outperforms the standard EM. This is
an interesting case as the complete case envelope is biased but the standard EM is not. How-
ever, the ordering of the two is not certain in general. The complete case data may not have
an envelope structure, although in finite sample cases we can usually find one. Intuitively, if
the proportion of missingness is low, the complete case envelope estimate resembles the EM
envelope estimate, and thus outperforms the standard EM. If the proportion of missingness
is high, the complete case envelope is both biased and inefficient while the standard EM is
still unbiased although inefficient. When the bias of the complete case envelope dominates
the MSE, the standard EM outperforms the complete case envelope. When the proportion

of missingness is not at extremes (too high or too low), the complete case envelope is not
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necessarily better or worse than the standard EM. The standard EM estimate may have a
smaller bias but a relatively larger variance while the complete case envelope may have a

larger bias and a smaller variance.

We carried out another simulation study, where the steps were the same as above, except
we replaced €2 = 10001, with €y = 101, in Step 2. This is a case where the variance of the
immaterial part is not as large. The median MSEs of the EM envelope, the complete case
envelope, the full data envelope, the standard EM, the standard complete case analysis and
the full data MLE are: 1.06 x 1074, 6.16 x 1074, 8.58 x 107°, 5.42 x 107%, 6.81 x 1072 and
5.24x107*. Detailed comparisons of the six methods are given in Figure [§ and Table[2]in the
Appendix. Out of 1000 simulations, the envelope dimension is correctly estimated as u = 3
with an accuracy of 89.8%, while the rest 10.2% yields an estimated envelope dimension
u > 3. As mentioned, overselection can still provide us with the correct model but may
lead to inefficient estimation. The EM envelope and the standard complete case analysis
remain the best and the worst estimators using the observed data in terms of the MSEs,
the standard EM now outperforms the complete case envelope. Again, the EM envelope

outperforms the full data MLE.

5.2 Non-normal errors

In order to investigate the performance of our estimator under the scenario of Propositions
and , we carried out four additional sets of simulations to compare Bem.em and Bem.std
as well as other estimators when the error term €; is not normally distributed. Specifically,
we consider two scenarios: (i) Correctly specified the distribution of X; and (ii) Misspecified
the distribution of X;. The simulations under scenario (i) are carried out in the following

steps.

Step 1*. Set n = 500, » = 10, p = 5, and u = 2. Generate parameters ' € R™* 3 €
R™P where the elements are drawed independently from U(0, 1) and U(—10,10). By
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Figure 3: Histograms of the MSEs of the EM envelope estimator, the complete case (CC) en-

velope estimator, the full data envelope estimator, the standard EM estimator, the standard

complete case (CC) estimator, and the full data MLE when €, = 1000L,,.
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QR decomposition, we get I' from I', where I' satisfies T7T = I,.,. Set the true
regression coefficients as 3 = Pp,é. Generate a matrix N € RP*P where each element

is independently from U(—10, 10), and set ¥, = NN7.

Generate the full data (X;,Y;) for each individual i. We generate X;; o 25Ber(0.5)
where j = 1,...5. In order to satisfy the independence conditions T'}Y; I X; and
7Y, IL TYY; | X, we firstly draw €;; € R* and €;3 € R"™ independently from
two distributions ¢5(0,1,) and t5(0,1000L,._,). Then we set &; = T'e;; + Tpesn and
Y; = BX,; + ¢;.

Generate missingness same as Step 3.

Calculate /Bem-enva ;Bcoenv’ /Bfull-en’ua /Bemstda ﬁcostda and ﬁfullvstd- We calculate ﬂemvstd

and ,éem.em, using normal working model for €; and Bernoulli model for X; using the

parameter updates derived in Example The dimension of the envelope of Bem.em,
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B Full-env and Bcc.em are obtained through the bootstrap method with 20 iterations.

Step 5*. Repeat Steps 2*-4* for 1000 times.

Using the above missingness mechanism, the predictors and responses suffers from about 13%
missingness. Although the normality of g; is violated, the data was still generated under a

nontrivial envelope structure defined by Conditions with the envelope dimension u = 2.

We use boostrap to choose the envelope dimensions for ,éem.env, B Full-eny and ,écc.em- All
the envelope dimensions are correctly specified for Bem.em, and B full-eny- Following Theorem 2
in [Su and Cook| (2012) and Proposition [2| once the envelope dimension is correctly specified,
the full data envelope with a misspecified working normal density is still consistent although
it no longer provides the MLE. As for Bcc.em,, the correct envelope dimension u = 2 is selected
903 out of 1000 times, u = 3 is selected 94 times, and it chose u = 4 for the rest of 3 times.
We observe the bootstrap method requires more computational time than the likelihood
method, but is more robust in selecting the envelope dimension. It is worth noticing that for
the complete case, even if the envelope dimension is correctly specified for most of the time,
the resulting estimator usually suffers from bias. Under current missingness mechanism,
the bias for the complete case estimator is relatively small. Therefore, all three envelope
estimators have better performances than the standard estimators with full, complete and
all data, because the variance of the immaterial part is much larger than that of the material
part. The median MSEs are 4.84 x 107%, 1.52 x 1072, 1.07 x 1073, 0.11, 1.28 x 10~*, and
1.41 x 1072 for Bem-enva 3em.std, Bcc-em;; Bcc.std, /éfull-emn Bfu”.std. Detailed comparisons of the
simulation results are given in Figure [4] below and Table [3] in the Appendix. We see that
when the error term follows multivariate ¢ distribution, as long as the envelope independence
conditions hold, our EM envelope estimator empirically outperforms the standard estimator.
Also, the EM envelope outperforms the full data MLE, suggesting that in practice, our

method has the potential to recover the efficiency loss from missing data.

The simulation under scenario (ii) is similar to that under scenario (i). In Step 2%,

we generate X; t5(0,X,), where ¢,(u, ) represent the multivariate ¢ distribution with
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Figure 4: Histograms of the MSEs of the EM envelope estimator, the complete case (CC)
envelope estimator, the full data envelope estimator, the standard EM estimator, the stan-
dard complete case (CC) estimator, and the full data MLE when the error term ¢; follows

t-distribution and X; follows Bernoulli distribution.
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location parameter p, scale parameter ¥ and degrees of freedom v, ¥, = NN’. and each
element of N is independently from U(—10, 10). In Step 4*, Bem.std and Bem.em are obtained

using normal working model for both €; and X.

All the envelope dimensions for ,éem.em and B full-eny are correctly estimated through the
bootstrap method. The dimension for Bcc-env is selected correctly for 90.5% of the time,
while the rest 9.5% yields an estimated dimension u > 3. All three envelope estimators have
better performances than the standard estimators with full, complete and all data because
the variation of the immaterial part is much larger than the material part. The median
MSEs are 7.96 x 1074, 7.61 x 1072, 1.38 x 1073, 0.50, 1.52 x 107, and 6.96 x 1072 for Be.cno,

Bem-std, Becenvs Beestds Bfull-env, Bruii-sta- Detailed comparison of the simulation results are

given in Figure [5] below and Table 4] in the Appendix.
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Figure 5: Histograms of the MSEs of the EM envelope estimator, the complete case (CC)
envelope estimator, the full data envelope estimator, the standard EM estimator, the stan-

dard complete case (CC) estimator, and the full data MLE when the error term €; and X;

follows t-distribution.
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We carried out another two sets of simulations where the data generating steps were the
same as above, but we changed the distribution of €;; € R* and €, € R"™™. Firstly, we
generate each element of €;1, €;5 independently from U(—1,1) and U(—10,10). Under this
setting, the median MSEs are 2.82 x 1074, 1.59 x 1073, 1.37 x 1073, 1.00 x 1072, 2.14 x 1074,
1.45 x 1073 for Bemenvs Bem-stds Becenvs Beestds Bfulbemn /éfull-std- When each element of €;,
;2 are generated independently from Laplace(0,1) and Laplace(0,20), the median MSEs
are 1.45 x 1073, 3.75 x 1072, 2.92 x 1073, 0.246, 3.38 x 10~* and 3.41 x 10~2 for Bem.em,
Bem.std, ,écc.em,, Bcc.std, ,éfull.em, Bfu”.std. Detailed results are provided in Table [5| and |§| in

the Apendix. Under both settings, we see substantial empirical efficiency gains by using our

method.
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6 Data Analysis

In this section, we apply our proposed method to the Chronic Renal Insufficiency Cohort
(CRIC) study. The CRIC study recruited 3939 participants from April 8, 2003 through
September 3, 2008 and continued through March 31, 2013 (Feldman et all) [2003). The
study cohort was a racially and ethnically diverse group aged from 21 to 74 years with mild
to moderate chronic kidney disease (CKD). Each study subject was given extensive clinical
evaluation, and the information collected included quality of life, dietary assessment, physical

activity, health behaviors, depression, cognitive function, and blood and urine specimens.

To prevent the development of severe clinical events, it is important to identify CKD
patients with a high risk of end-stage renal diseases (ESRD) in their early stages. A variety
of risk factors for ESRD have been identified in the literature (Budoff et al., [2011; [He
et al., 2012; Madjid and Fatemil 2013} |Bansal et al., 2013; [Ferguson et al., 2013; /Anderson
et al., 2015)). It is of interest to investigate the difference in the distributions of baseline
biomarkers among the patients who develop ESRD versus who do not. Correlation among
risk factors have often been observed in the literature (Capuano et al., 2003)); however, it has
not been fully utilized in the statistical analyses for predicting ESRD and CVD. Our method
leveraged the correlation among the risk factors and biomarkers to improve the efficiency
of the analysis. Additionally, it is of interest to explore modifiable biomarkers, which are
the biomarkers that are significantly differently distributed for patients who develop ESRD

adjusting for the established biomarkers.

The study participants were distinguished by the ESRD status (binary, 1 for ESRD and
0 for no ESRD) within five years of enrollment. We assumed death before the progres-
sion of ESRD and withdraw from the study were independent of the ESRD disease status.
Thus, we focused our analysis on the remaining 3205 patients. In our analysis, we also
adjusted for gender, age, race, systolic, and diastolic blood pressures, and hemoglobin. The

biomarkers and risk factors are urine albumin, urine creatinine, high sensitivity C-reactive

protein (HS_CRP), brain natriuretic peptide (BNP), chemokine ligand 12 (CXCL12), fetuin
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A, fractalkine, myeloperoxidase (MPO), neutrophil gelatinase associated lipocalin (NGAL),
fibrinogen, troponin, urine calcium, urine sodium, urine potassium, urine phosphate, high
sensitive troponin T (TNTHS), aldosterone, C-peptide, insulin value, total parathyroid hor-
mone (Total PTH), CO,, 24-hour urine protein, and estimated glomerular filtration rate
(EGFR). We performed a log transformation on the highly skewed biomarkers and risk fac-
tors. In addition, we divided fetuin A by 10* as its scale was quite different from other

biomarkers.

We first assessed the difference in the distributions of baseline biomarkers versus the
ESRD status, unadjusted for the established biomarkers. All the biomarkers except the
EGFR had some missingness ranging from <1% to 6%. Also, as for the predictors, hemoglobin
and BMI had a relatively low missing rate (there are 15 observations with hemoglobin missing
and 5 observations with BMI missing). As the proportion of missingness was relatively low,
we used the BICq given in Section to select the envelope dimension. The EM envelope
method reduced the dimension of the biomarkers from r = 23 to u = 15. The point esti-
mates, bootstrap standard errors, confidence intervals and p—values for the mean difference
of biomarkers among ESRD patients versus no ESRD patients are given in the Appendix.
The magnitude of the point estimates of our method is in general slightly smaller than those
of the standard EM. For example, the coefficient for urine albumin is 0.56 using our method
and 2.54 using the standard EM. This is because in each EM iteration, the envelope estimate
is the projection of the standard estimates onto the envelope direction. The reduction in
the magnitude is interpreted as the noise subtracted from the original estimates. As Louis
(1982)) suggested, the closed form of the asymptotic variance for the standard EM estimator
is in general hard to obtain. Hence, we carried out the nonparametric bootstrap for 1000
times, that is, we resample individuals with replacement. The standard errors of our method
is also generally smaller than those of the standard method. For example, Figure [6] further
shows the empirical cumulative density distributions of the estimated standard errors of the
standard EM versus our method. Again, the estimated standard errors are in general smaller

(on the right hand side of 1 in Figure @ using our method than using the standard EM in-
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dicating the efficiency gain using our method, which aligns with our theory. The mean of
the ratio is 1.24 for coefficients corresponding to ESRD and 1.62 for all coefficients. That
is, on average, our method is about 24% more efficient than the standard method for the
coefficients corresponding to ESRD and 62% more efficient for all coefficients. The same
set of biomarkers (all the aforementioned biomarkers except HS CRP, fetuin A and insulin
value) were found by our method and the standard EM, to be significantly different among
patients with and without ESRD. Table [7] and Table [8| in the Appendix present details of

the results.

It is found in the literature that although many novel biomarkers are found to be
marginally significantly associated with the ESRD status, such an association often dis-
appears after adjusting for the established biomarkers (Foster et al., 2015; [Park et al., 2017}
Inker et al., 2017)). That is, they are not as useful as modifiable biomarkers. We next assess
the mean difference of baseline biomarkers among patients with and without the ESRD sta-
tus, adjusted for the established biomarkers. The EGFR and the amount of urine protein
excreted are two established biomarkers for predicting the ESRD. Thus, in the subsequent
analysis, we use the two variables as predictors rather than responses. The estimated en-
velope dimension is u = 17. The point estimates, bootstrap standard errors, confidence
intervals and p—values for the mean difference of biomarkers for different ESRD status ad-
justing for the EGFR and the urine protein are given in Table [7] The point estimates and
the standard errors are again in general smaller using our method as compared with using
the standard EM. Figure [7] shows the empirical distribution of the ratio between the esti-
mated standard errors of the two methods. The mean of the ratio is 1.92 for coefficients
corresponding to the ESRD and 1.86 for all coefficients. Comparing Figure [6] and Figure
[7, we see that the EM envelope method achieves even higher efficiency gain when we ad-
just for the established biomarkers versus not. As found in the literature, after adjusting
for the established biomarkers, the majority of biomarkers that have been investigated are
no longer significant. We observe the same phenomenon using both our method and the

standard EM. However, among the few biomarkers that remain significant, there is some
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discrepancy between the standard EM and our method: our method found HS CRP, aldos-
terone, and C-peptide significant which were not shown in standard EM; whereas standard
EM found NGAL, which was not found in our method. As our method is more efficient for

finite sample, the results of which are more precise than those of the standard EM.

Figure 6: The empirical cumulative distribution of the ratio between the standard errors of

the standard EM and our method without adjusting for the established biomarkers.
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Figure 7: The empirical cumulative distribution of the ratio between the standard errors of

the standard EM and our method adjusted for the established biomarkers.
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7 Discussion

In this paper, we proposed the EM envelope method to achieve more efficient estimation
for coefficients in the multivariate regression with missing data. Specifically, we assumed
the redundancy exists in the response variables and thus could be omitted in the regression
to reduce noise. A similar redundancy structure may also occur among the predictors or
among both predictors and responses. Our method can be similarly derived under those
scenarios. For example, if we assume there exists a linear combination of predictors that do
not contribute to the regression and assume the missingness mechanism of predictors and
responses are MAR, then our method could be adapted to gain efficiency by discarding the
immaterial part of the variance among the predictors. A similar derivation can be made by

changing the covariance matrix 3 in this paper to 3., the covariance matrix of predictors.

As pointed out by one reviewer, the original envelope formulation uses a decomposition
of the variance of the error term. The independence between the material and immaterial
part is only guaranteed under normality. The null covariance only guarantees that the
information of I'}'Y is immaterial in the first two moments, rather than all moments which is
implied by independency. Motivated by such an observation, we explored alternative ways to
guarantee independence in a separate paper (Wang et al.,2020). Specifically, we modified the
envelope method by imposing the independence conditions directly and used semiparametric
methods to derive the semiparametric efficiency bound. The missing data under this newly
defined envelope model can be handled using semiparametric estimating equations (Robins
and Rotnitzky, |1995; Robins et al., [1994; [Sun et al., 2018; Sun and Liu, 2018). We leave
extensions of our missing data estimation methods to semiparametric inference to future

research.

An alternative approach to calculate an envelope estimate with missing data is to use the
model free approach proposed by |Cook and Zhang| (2015al). Specifically, we can calculate the
standard EM estimator together with its asymptotic variance using the Louis formula. How-

ever, the calculation of the asymptotic variance of the EM estimator requires calculating the
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conditional expectation of the outer product of the complete data score vector, an inherently
problem-specific task that usually requires much computational effort as discussed in Meng
and Rubin| (1991). Also, this method requires estimating an envelope in RP? space instead
of R?, which makes the problem more challenging. A detailed comparison of the empirical
performances of such model free envelope based on the standard EM estimator versus the

EM envelope method is left for future work.

Envelope method has been generalized to GLM (Cook and Zhang;, |2015a) with the uni-
variate response. How to adapt GLM envelope method with multiple responses even without
missing data is still an open problem. Hence, our paper only focused on the linear model

envelope method, which is the most widely used case.

Throughout this paper, our method is proposed assuming the missing data mechanism
is ignorable. When the data is nonignorably missing, a selection model is needed to be

specified. We also leave it as a future research topic.

8 Software

The corresponding R package is available at https://github.com/mlgmlg/missing_env.

A The derivations of examples

In the following example, we show that if (X7, Y!)? follows a normal distribution, then

(YL, XT

T e XT )T also follows a normal distribution.

Example 3. Suppose the predictors and responses are normally distributed as Y;|X; il

N(BX;,®) and X; %' N(pe, X,). Then, (YL, X7, )7 follows a normal distribution

i,0bs87 “™i,0bs

N (e, 3¥), where the explicit form of the parameter p* = S;B; and X = S;B,XB”S7

(2

where B;, S;, ft and > are given below.
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Derivation of Example

Note that Y;|X; G N(BX;,X) and X, e N (e, 2,); hence, (XF, YT e N, %),

. hI hI
where 1 = (p2, pZBT)T, and ¥ = P . Also, there exists a unique

'Y, X+p5"%.0

permutation matrix B;, i.e., a square matrix that has exactly one entry of 1 in each row and

each column and 0s elsewhere, such that (X7, Y7 .. X7, . Y] 07 = Bi(XT,Y])T; thus,

i,0bs?

(XT e YL XT o YT )T follows N (By i, B;SBT). Therefore, by the property of normal
distribution, (X7, YT )T ~ N(S;Byji, S;B;SBTST), where S; = (Iki o,ﬁx(l_ki)), O

is a matrix of size a x b with all elements being 0, k; is the total length of (X7, Y] )"

and [ is the total length of (X7, Y")T. Hence, u} = S;B;fi, and X = S,B,;XB7ST.

I

The update of the parameters 3 and X have been discussed above. Here, we present two

examples focusing on the calculation of A;; and p;.

Example 4. Under Model and assume X; Sy Ny(pz, 35). Then, the update of pa-
rameters are g1 = E(X;|Djops; 0:)/n and X100 = {As: — 2E(X;|Dj obs; 1) oot 41 }/1 +

T
Hzt+1My 111-

Derivation of Example

The likelihood of X can be written as

n

) n 1 _
lplx) = €' = 2 log 35| = 5 > xi — ) B, (s — )

=1

where C" = —(nplog2m)/2. Thus,
g

E{l(p‘X) ’Di,obs; ot}

1 n
=C" — glog 13, — 5 Z[tr{E;lE(X?Xi|Di,obs; 0.} + 26X 'E(x] D obs; 0:)
i=1 (1)
—pE ]
n 1
=C' — log | 8] = S {tr(5; " Agy) + 208, Ay — npS '
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where Ay = E(X;|0;, D, os) denote the conditional expectation of X; given D, 5. Let
Pit+1 = (Mt+1;2z,t+1)- By Lemma 7 we have py1 = A4T,t/”a and ¥, = (A3,t -
2A 44 pe1) /1 + B e

Then, we calculate Ay, Ass, Asy. Since X; and Y;|X; are normally distributed, fol-
lowing a similar derivation as in the Example [3| given 6,, (X7, Y7)7 also follows a normal

distribution with mean (uZ,, u,B87)7 and covariance matrix

2 Zz,t Eac,tﬂt
IBtTZx,t X+ ﬁtTEz,tﬁt

For simplicity, for the derivation of the parameter updates below, we only focus on the t™*

step, and thus omit all the subscript ¢ for the parameter updates. For different individuals,

missing value occurs at different locations, so we rearrange X;, Y; to separate missing vari-

ables from the observed variables. Write (DY, ;,, D} )" = Bi(X7,Y])", where B; is a per-
: . : DIV IT
mutation matrix. Thus, (D],,;,, D7 )" independently follows N'{(u], ]5)7, 1,
3L X
Yo X .
where (u;ﬂ,u%) = B;(pl, pl 1T, ; 2 = B,XB]. Hence, D; is|D; ops in-
Sy Xy

dependently follows N {1 + X235 (Diohs — Mi2), Bit — ZieX5' S5}, Therefore,
E(D; mis|Diobs; @) = i1 + 21‘22;31([)1,0&;5 — Wi2),

E(Dz mstZ ,obs ‘Di,obs; 9) = {“i,l + 2122%1 (Di,obs M, 2)}DZ ,obs?

and
E (D misD] 1is| Disovs; 0)

= E(Di,mis|Di,obs; O)E(Di,mis|Di,obs; 9)T + Var(Di,mis|Di,obs; 9)
= Wi+ 21’2{2;31(]31',01)5 — pi2) Hia + 21;221-31 (D obs — ,um)}T + 3

DS Jpnd 31
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Then, we can obtain A;;, A;s and A;3 through
]E(XiXiT‘Dz’,obs; 9) E(XiYiT|Di,ob5; 9)

E{(X?a YzT)T<X;F> Y1T)|Dz,obs; 9} -
E(YiXﬂDi,obs; 9) E(YiY,;T|Di,obs; 9)

. Ai3 A;g . BT ]E(Di,mzs i mw'Dz obs» ) ]E(Dz mstZ Oblei,obs; 0) B.
Ai2 Ail ]E(Di,obs i,mis |Dz obs; ) ]E(Dz obsDZ ,0bs |Di,obs; 0)

The last equation holds because for a permutation matrix B;, we have B;' = BY. After

getting A;1, A and A;3, we can obtain A;, Ay and Az by summation over 7.

Example 5. Under model , assume p = 1 and X; ol Ber(m). The update of parameter

is M1 = » o Wig/n. The form of 7;, and the formula of A;, are given below.

Proof of Example

Let B, ops denote the submatrix of 3 where the rows corresponds to the observed responses
Y obs- Let X 405 denote the submatrix of 3 with the elements corresponds to the covariance
of Y, ops. Let €; s denote the random error corresponds to Y, 5. Hence, we have Y, 55 =

Biobs Xi + Eiobs Where €; ops independently follows N (0, X; s )-

First, we derive the distribution of X;|Y; s given 6 = ;.

f(xz |Yi,obs; et)

O(f(l’z, yi,obs; 0t>

1 1 -~ o .
= .1 eXp{_ﬁ(Yi,obs - xiﬁi,obs,t)Ei,olbs,t(yLObS - iviﬁi,obs,t)T}W ’(1 - 7T)1 ¢
(271-)5 |220bs,t‘
1 SN
X exXp _sz/Bz obstzz obs tlgl obs tx + yz obs zobs tle obs tx (1 . 7'(') ’

o |:7T eXp{/Bi,ObS,tZ';olb&tyg:obs - IBi,obs,t2@3[;571:/8501)5715/2}:| Zi

N 1—nm ’
The last equation holds because for a Bernoulli variable, we have x? = z;. Then, X;|(Y; s =
Ttqt

, where
— Tt + TGy

Viobs) follows a Bernoulli distribution with parameter

_ -1 T
4y = eXp{ﬁi»ObsztEi,obs,tyi,obs ﬁl obs tzz ,obs, t %, obs t/2}
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The likelihood function of X can be written as
l(p|x) = sz logm+ (n — sz) log(1 — 7).
i=1 i=1

Hence,
E{l(p’X) |Di,obs; gt}

= E(Xi|Diobsi ) logm + {n — > E(X;|Dj g3 6:)} log(1 — 7).

i=1 =1

For an individual 7, if X; is observed, E(X;|Djs) = Xi, and E(X;|Djps) = —tdt
1— Tt -+ T+qt
T qy R g
if otherwise. Denote 7; = (t—) X, we have E{l(p|X)|D;os;0:} =
1-— Tt + Q¢

Yo Tirlogm 4+ (n— "0 Tit)log(l —m).
By taking derivative with regard to 7, we get the update for parameter my = > | T;/n.

For simplicity, we again omit the subscript ¢ in the following derivation. Next, we calcu-
late the conditional covariance matrices A, Ay, A3. For an individual 4, if x; is not missing,

A1, A and A;3 can be computed trivially. Hence, we only need to demonstrate the case

when z; is missing. There exists a permutation matrix B, such that (Y7, ., Y7, )" =
Y i
B,Y,. Then, Var(y? ... y.,)" = B,XBT = T “ |, where iy = Var(Yims),

Yo = COV(Yi,mi57 Yi,mis>7 and X3 = Val"(Yi,obs)~

E<ngisYi,mis|yi,obs; 0) E(Yijjmis|yi,obs; O)Yi,obs

Because A;; = BT

; B;, we only need

yz;obsE(Yi,mis |yi,obs; 0) yg:obSYi,obs
to compute E(ngisYi,mis |yi,obs; 0) and E(ngis|yi,ob8; 9) Since E(Yzjjmzs |yz',ob5; 0) = {60,mis+

7iBimis T (Yiobs —B0.0bs = TilBi.ons) X Do}, and B(YT . Y mis|Vions; 0) = Bin =T B35 BE +
E(Y] is|Yisobss O)E(Yimis|Yiobs; ), Aqr can be obtained.
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To calculate A;5, by the law of total expectation, we have
A :E(YiXi’Di,obs; 9)
:E{E(YiXi|Xia Yi,obs; 0)|Yi,obs; 9}
—BTE[E{( i,mis’ zobs) | X, Yiobs: 03 Xil Yiobs; 6]
:B?E[{/gi,miin + (ViobsXi — 22‘225151,0115)(2‘), Yi,obst'}T|Yi,obs§ 0]
:Bz‘T{/Bi,misﬁ'z’ + (Vi obsTi — 2i22£1ﬁi,obsﬁ'i)a Yi,obsﬁ'i}T-
Since X;|yiops follows Bernoulli distribution with parameter 7;, we have A;3 = 7;. After

obtaining A;;, A;s and A;3, we can obtain A, A, and A3 through a summation over .

Proof of Example 1

Firstly we prove the case where X, follows normal distribution. Since the working model
for g; is also normal, the estimator éobs.std is obtained by maximizing the following observed

data likelihood under the working model:

— H//(Zﬁ)_ﬁp|2|_;|2$|_é exp{—%(yi _ Xz‘,@)TE_l(yi —x:8)} )

1 _
' exp{_i(xi - “’x)TEx I(Xi - Ma:)}dxi,midei,mis‘
From Example 1 and notations therein, we have
n ~ 1 ~
6) o [ [IS:B:EB!'S!| 2 exp{— Dy — SiBit) (B, ZB]S]) !
i=1

(Di,obs - SzBlﬂ')}

By denoting S;B;fi = ;s and S;B;XBTST = %, ., we have
L(0> X |Ei,obs|7% exp{(Di,obs - Hi,obs)TE;(}bs(Di,obs - ﬂ'i,obs)}'

The estimator éobs‘std is the solution to the following generalized estimating equation (GEE):

) &
W aeT Zw zobs; 07
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where [; is the log-likelihood of each observation under the working model, and (D o, @) =

0l;/00. During the proof, we are calculating the expectation given the observed data pattern.

_on ~op B dvec(X) B dvec(X) B
Denote M; = Ut M, = 957" M; = Bvech(S)T” M, = 98T and M5 =
dvec(X)
— h
Ovech(X,)T We have
al;

a_IJIT - (Di,obs - ,u’i,ObS)TEz obsS B; Ml’

ol; _ 1 ToT TaT 1
W = _§Vec(zz ws) (BYS] @ BI'ST)M; + 5

(Di,obs - l-l'i,obs) (Ez olbs ® E'L obs)(BzTSzT ® BZTS;T)M57

(9lz B 1 - e 1
W(E)T 2vec(220bs) (B S ®B S )M3—|—2

(Di,obs - l-l'i,obs) (Ez olbs & 22 obs)(BzTSzT ® BZTS;T)M&

(Di,obs - /J/i,obs)T®

(Di,obs - “i,obs)T®

811 . all (9vec(21»,0bs) 811 (9,ul-70b8
0BT Ovec(Zims)T 0BT (‘3;1,201)5 0BT
1 1
= —§VGC(2Z obs) (BTST BszzT)Mﬁl + Q(Di,obs - l'l'i,obs)T & (Di,obs - Hi,obs)T
(21 olbs ® 21 obs)(BzTSzT ® BZTSZT)M4 + (Di,ObS 221 ObS)TEz obsS Bi M27

and

ol o oL \"
opl’ dvech(32,)T’ dvech(X)T’ 98T

We need to show m hold for any compact subset of the parameter space. That is, for any

w(Di,obsa 0) (

¢ > 0 and sequence {D; ;5 }72; satisfying ||D; qs]| < ¢, the sequence of functions 1(D; s, 0)

is equicontinuous on any compact set of the parameter space.

0
By taking the derivative of ¢(D; ., @) with respect to 6, we will see that —d) is continuous

00

0
in @ and D, ,s. Hence, when the parameter space © is compact and ||D; || < ¢, _1/1 is

00

uniformly bounded. Therefore, /(D s, @) is equicontinuous. That is, regularity condition

(B1)| holds.
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Next, we prove condition holds. That is, the solution of

lim n~ ZE{w iobs; @)} =0 (3)

n—oo

is unique at @ = 6. Since we assumed a fixed missing mechanism and (X;,Y;) is of length
p + r, there are at most 2™ — 1 observed data patterns. Let m denote the total number of
observed data patterns, Dj ;. denote the i-th observed data pattern with probability p; for
i=1,...,m satisfying > ", pi = 1. For example, if for the i-th observed data pattern only

X is missing, then D!, = (Xs,...,X,,Y). Hence,

i,0bs

lim n~ ZE{¢ iobs, 0)} = ZP:E{¢ Tobs: €)1 (4)

n—oo

Let 6y = (o, Xos, X0, Bo) denote the true parameter value, 1y = (ui,, pl BL)" and

. Yow DITWG
Yo = ‘ 0z . Let S7, B} denote the corresponding matrices in Example

B Xoe o+ B ZozB0
1 for the observed data D7 . Let [ denote the log-likelihood of the i-th observed data

pattern under the working model, then

ol

S = (DL, ~ SBI) (SIBISB'S!T) S,
By E(D; ;) = S;B; 1o and (), we have
al* * R * * *TQxT\—1Q*xp*
sz ) = (fo— 2 sz (S!B!)T(S;B;SB;”S;") 'S!B;
IJ'O - Zpl B*TS*T 1= O,

where Pg(s;) = B(B"EB) 'B”X represents the projection onto span(B) relative to 3. In
order to show the above estimating equation has a unique solution at gt = 19, we only need
to show Y " pr Pg.rg.r (s is full rank. Let ¢f denote the probability of X; is observed if
© < p, and the probability of Y;_, is observed if ¢ > p. Then
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m pt+r
> piPrrsrsy =) 0Pes),
i=1 i=1
where e; is the vector of length p 4+ r where the i-th index equals 1 and equals 0 otherwise.
Since there is no predictor or response with missing rate 100%, ¢f > 0 for all 1 <i <p+r,

the above matrix is full rank. That is, gt = fag is the unique solution.
Since 1t = (ui,, ud . BE)T, the solution for p, must be unique and p, = o,

Recall that
E<Dzobs) = S:B;k[?l,o = IJ’Si,obs?
and

Var(D;

i,0bs

) = S;B;%B;"S;" = 5}

0i,0bs?

we have

]E{(D;(,obs - l’l’ai,obs)T ® (D;k,obs - I‘I‘Si,obs>T(2:,;bls ® E;k,;bls>} = V€C<E%71 ESi,obsz%il )T'

i,0bs i,0bs

Therefore,

ol

8vech(§])T ‘g:,},OI i,0bs i,0bs 1,0bs

1

= S {vee(Z] 0 B o0 Zians) " — vee(Xi ) H(BIS] @ BIS])
1

= §V6C{ET’<_1 (ESi,obs - 2j,ol)s)2>'k_1 T(B?SzT ® B?S?)

i,0bs i,0bs

1
= _Vec<28i,obs - Z:;'k,obs)T(E%il ® 2%71 )(BzTSzT ® B;TSzT)

2 i,0bs i,0bs
1 ~ ~
= gvee(3 — 2)7(S]B] @ S7B))(X],,, © 2], (B/S] @ BIS])

2 i N
= Svec(Sy — 5" {8/B(SB;£B{"S;") B! @ SB!(S/BTB;’S;") 'BIST}
1 ~ ~

Hence, we have

Z’" ol
p;kE ( = T ‘ = )
Py Ovech(X)T '#=Ho

1 ad — . *
:§V60(20 - )" E p; (Pp.rg.r(s) @ Pgarger(s) = 0.
i=1
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Similarly, > ;" | p} (Pg.rg:r(s) ® Pgirg.r(s)) is full rank. Hence, the above equation implies
> = 3, is the unique solution. That is, ¥, = Zos, & = X, and 8 = B, are unique

solutions.

Therefore, the solution for (3 is unique, so that holds.

Proof of Example 2

When X; follows Binomial distribution with m trials and success probability p. Without
loss of generality, among the n samples, we let the first ng samples to be the case where the

covariate X; is not missing. Then, the observed data likelihood can be written as

16) =TT [ em #1= el = )= 3 = ) (7 )1 = )"y

m
X

L e imren-5m- w85 - 0B)

1=ng+1

m i m—x;
( )pxl(l—p) dxidy i mis

i

r —Z -1 1 — my o m—x;
= H(27T) 2 ‘2’ 2 eXp{_§<yi,obs - xiﬁi,obs)T2i7jbs(yi,obs - xi/gi,obs)} (x)p 1(1 - p) '
=1 %

_r _1 1 _
: H Z(Qﬂ_) 2 |E| 2 eXp{_§(Yi,obs - k:/gi,obs)TEi,olbs(yLobs - kﬁi,obs)}

i=ng+1 k=0

()= nrs

Hence, L(0) can also be expressed using normal densities:

L(e) == H {¢(xi,3i7obs, zipbs) (Z:L) p.ZL (1 _ p)m—xz}
i=1 ;
I { Sk Zi) ()41 - pw} ,
i=no+1 \ k=0

N
which is a Gaussian mixture model. It is easy to show that 9% is continuous in @ using the

00
same technique. Hence, following the same proof procedure, we know that holds

when X, follows Binomial distribution.
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B Proof of Propositions

Proof of Proposition

The parameter of the envelope model is ¢ = (n,I',€2,, p). A more rigorous notation
would be ¢ = {vec(n), vec(T'), vech(€2), vech(€y), vec(p)}, where the vectorization operator
vec : R™P — R'P stacks the columns of the matrix. Also, for symmetric matrices €2 and
Q, we use the “vech” operator: R™" — R"("+1)/2 which stacks the unique elements lies on
or below the diagonal by column. Following the notations in [Henderson and Searle| (1979)),
we let C, € RTr+1/2xr* and E, € R™*"+1)/2 denote the “contraction” and “expansion”
matrices such that vech(A) = C,vec(A) and vec(A) = E,vech(A) for any symmetric matrix

A of size r.

Recall we let ¢ = (n,T',€2,Q, p) and 8 = (3,3, p) denote the parameters under the
envelope model and the standard model. Since regularity condition holds, by Corollary
1 of [Wul (1983), we know éem.std and éem.em are the observed MLE.

We can find function h such that

vec(3) vec(nTTT)
h(0) = [ vech(2) | = [ vech(TQT'T + Ty, T'T)
vee(p) vec(p)
L _y . : oh(0) .
By matrix differentiation, the gradient matrix G = 207 have the following form
I,oT nT ®1, 0 0 0
0 2C,T2®IL -TeTI]) C(TeD)E, C,(Ti®I)E,_, 0
0 0 0 0 I

Because of the over-parameterization of @, the gradient matrix G is not of full rank. By

Proposition 3.1 in |Shapiro| (1986), we have

Ve = G(GTV_G)'GT.
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1
— =

1 _1 1
Vstd - Venv = Vjtd{:[ - Vst§ G(GTV;S;G)TGTVSM }Vs2td‘

_1 _1

Since I-V .7 G(GTVS_;[G)TGTV%; is the projection matrix onto the orthogonal complement
_1

of span(V 2 G), it is positive semi-definite. Hence, Vp, < V.

Proof of Lemma 1

Under Model , since condition |(A1)[ holds, éem.std is the the same as the observed data
MLE. Since regularity conditions |(A2)} |(B1)H(B2)| hold, by Proposition 5.5 in Shao| (2003),

A p
0.,.5ta — 0 as n — 0.

Proof of Lemma 2

In additional to the conditions in Lemma 1, we also have condition holds. Hence, by
Theorem 5.14, \/n(Bep.sa—0) LN N(0, V) asn — oo, where Vg = M, (8) ' Var{s, (0)}M,(0)".

Proof of Proposition

From Lemma 1 and 2, we know that éem.std is consistent and asymptotically normal. Then,

we can use Proposition 4.1 in (Shapiro, 1986)) to prove this proposition.

Shapiro’s € in our context is & = (3, X, p). Following the proof in [Su and Cook (2012)),
we give the minimum discrepancy function as fypr = lmee — [, Where [ is the logarithm
of the misspecified likelihood function , and [,,q; is obtained by substituting éem.std for 6
in There must be one-to-one functions f; from 0 to & and f, from éem.std to x so that

&= f1(0) and x = fg(éem.std). As fypr is constructed by the normal likelihood, it satisfies
132f MDF
2 00007

the four conditions required by [Shapiro| (1986)). Let J = Then, because éem.std is
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obtained by minimizing fi;pr, by Proposition 4.1 of Shapiro (1986), we have
ﬁ(éemenv - 00) i N(O, Venv)7

where Ve, = G(GTIG)IGTIV,,JG(GTIG)'GT.

Proof of Lemma 3

We use Proposition 5.5 in [Shao| (2003) to prove consistency. In the proof of Example 4,
we showed the regularity conditions hold when X; is modeled using a normal

distribution.

Moreover, since both e; and X; have finite (4 + §)-th moment from Condition |[(A2)]
we have E{supyce [|¥i(Diobs: 0)||}? < 00, and E||D; ops|| < co. Therefore, the conditions of
Lemma 5.3 in [Shao (2003) holds. Since the observed data MLE 0opssrd 1S always O(1), by

Proposition 5.5 in [Shao| (2003), Oopecta — Oy as n — oo.

Proof of Lemma 4

In order to prove the asymptotic normality of éem,std, we only need to show \/ﬁ(éobs.std—e) 4,

N (0, V.a) because of condition . We prove that using Theorem 5.14 in |Shao| (2003).

Since D; ops has finite (44 9)-th moment, sup;, ||1;(D; ops, 0) |2+ < co. Then, by condition
[(A3)] liminf, A_{n"'Var(s,(0))} > 0 and liminf, A\_{n"'M,,(0)} > 0 holds. Therefore,

ﬁ(éem-std — 00) i N<07 Vstd)-

Proof of Proposition

From Lemma 3-4, we know the standard estimator éem.std is consistent and asymptotical

normal under the normal working model. Hence, the proof of Proposition [3| is the same as
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the proof of Proposition 2] We omit the proof here.

C Lemma and algorithms

Review of Lemma 4.3 in |Cook et al.| (2010)

Lemma 5. Let Z denote the set of all positive semi-definite matrices in R™" having the
same column dimension k, 0 < k < r, and let P be the projection onto the common column
space. Let U be a matrix in R™*" and let {(B) = —ndeto(B) — tr(UB'U”). Then, the
optimizer of I(B) over £ is the matrix n 'PUTUP, and the maximum value of I(B) is

nklogn — nk — ndeto(PUTUP).

The 1-D algorithm

Cook and Zhang| (2016) proposed the 1-D algorithm to calculate the envelope estimates. We

review it as follows:

Algorithm 1: The 1-D algorithm

1. Initialization: gy = Go = 0;
2. For k=0,1,...,u—1,
(a) Let G, = (g1, ...,8k) if £ > 1 and let (Gy, Goi) be an orthogonal basis for R”.
(b) Define the stepwise objective function
Di(w) = log(w"Myw) + log {w (M + Uy) “'w},
where My = GI (A1, — Ay Ay AT)Gor, Uy = GT, Az A7 AT, Gy and w € R7F,
(c) Solve wyy1 = arg min,, Di(w) subject to a length constraint w’w = 1.

(d) Define gi11 = GorWygy1 to be the unit length (k4 1)th stepwise direction.
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The EM envelope algorithm

We summarize the EM envelope algorithm as follows, where § can be chosen depending on

the accuracy to achieve.

Algorithm 2: The EM envelope algorithm

for k=1, 2, ..., udo
Initialization: t = O, 20 = Iq, ,3() = 0, 90 = (21,0, 2270, To, Fo, po), Po = (pouw, pogw),

Pou, =0, pos, =1, Ay = o0.

while A; > 6 do
1. Calculate A17t = Z?:l Ail,t, A27t = Z?:l Ai27ta Agyt = Z?:l Aigﬂg based on Ot;

2. Using Algorithm [I] to calculate T';, then
Y101 = Pr, (A1 — Ay A5 AL)Pr, /n;

3. Update: pyy1 = arg max,er Eflog{ f.(x:|p) }Dobs; 04], Bir1 = PELHIAQJA;,
31 =1+ Qr, AL Qr, /1

4. Set Ay1 = [|1Bir1 — Belly, 01 = (Biq1, Big1, Prsa), 4+ 1;

end

BICHQ,k - _QQ(etwt) + 2H<0t|0t) + pulogn, Bk = ,3t+1

end

Select k£ which minimize BICg . Corresponding 3y is the EM envelope estimator.

D Additional tables and figures
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Table 1: Summary of MSE when ¢; and X; are correctly specified using a normal distribution

and y = 10001,

Min. 1st Quartile Median  Mean  3rd Quartile  Max.
Bemeny  1.646-05 3.58e-05 4.44e-05 1.03e-03 5.70e-05 8.66e-02

Becens  3.80e-05 1.04e-04 2.00e-04 0.21 0.32 1.96
Bfull.em, 3.90e-06 8.30e-06 1.02e-05  3.05e-02 1.23e-05 2.59
Bemsta  2.37e-02 4.41e-02 0.34e-02  5.47e-02 6.38e-02 0.12
Bec.sta 0.15 0.54 0.69 0.73 0.87 1.85
Bfu”.std 1.99e-02 4.32e-02 5.23e-02  5.40e-02 6.23e-02 0.13

Table 2: Summary of MSE when €y = 101,

Min. 1st Quartile Median Mean  3rd Quartile  Max.
Bemeny  4.54e-05 9.08e-05 1.06e-04 1.36e-04 1.25e-04 1.05e-03
Becons  2.16e-04 4.95e-04 6.16e-04 1.69e-03 9.42e-04 2.02e-02
Bfull.em, 3.28e-05 7.32e-05 8.58e-05 9.36e-05 9.97e-05 1.10e-03
Bemsta  2.17e-04  4.52¢-04 5.42e-04  5.62e-04 6.49e-04 1.34e-03
Becsta  1.49¢-03 5.40e-03 6.81e-03  7.32e-03 8.80e-03 2.35e-02
Bfu”.std 2.00e-04  4.33e-04 5.24e-04 5.40e-04 6.23e-04 1.28e-03

Bansal, N., Keane, M., Delafontaine, P., Dries, D., Foster, E., Gadegbeku, C., Go, A., Hamm,
L., Kusek, J., Ojo, A., et al. (2013). A longitudinal study of left ventricular function and
structure from CKD to ESRD: the CRIC study. Clinical Journal of the American Society
of Nephrology, 8:355-362.

Breiman, L. and Friedman, J. H. (1997). Predicting multivariate responses in multiple linear
regression. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
59:3-54.
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Table 3: Summary of MSE when g; follows ¢-distribution and X; follows Bernoulli distribu-

tion

Min. 1st Quartile Median  Mean  3rd Quartile  Max.
Bemens 1.396-04  3.64e-04  4.84e-04 5.32e-04 6.60e-04 1.90e-03

,écc.em, 1.66e-04 7.42e-04 1.07e-03 6.11e-03 1.54e-03 0.236
Bfull.env 2.89e-05 9.80e-05 1.28e-04 1.36e-04 1.64e-04 5.50e-04
Bem-sia  6.21e-03 1.27e-02 1.52e-02  1.56e-02 1.77e-02 3.61e-02

Becsta  4.80e-02 9.32e-02 0.115 0.123 0.143 0.518
Brursa 6.60e-03  1.17-02  1.41e-02 1.44e-02  1.66e-02  3.26e-02

Table 4: Summary of MSE when €; and X follows ¢-distribution

Min. 1st Quartile Median  Mean  3rd Quartile  Max.
Bemeno  2.14e-04  6.00e-04 7.96e-04 8.50e-04 1.04e-03 3.72e-03
Becons  3.48¢-04 9.93e-04 1.38e-03  1.53e-03 1.89e-03 5.67e-03
Bfuu.em, 3.41e-05 1.17e-04 1.52e-04 1.62e-04 1.96e-04 4.98e-04
Bem-sta  2-36e-02 5.79e-02 7.61e-02  8.29e-02 0.101 0.407
Beesta  9.37¢-02 0.363 0.500 0.567 0.683 3.70
Efuzz-std 2.11e-02 5.24e-02 6.96e-02  7.56e-02 9.10e-02 0.338
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Table 5: Summary of MSE when g; follows uniform distribution and X; follows ¢-distribution

Min. 1st Quartile Median  Mean  3rd Quartile  Max.

Bem.em 7.05e-05 2.14e-04 2.82e-04  3.00e-04 3.61e-03 1.00e-03
Bcc.env 1.70e-04 9.89e-04 1.37e-03  1.54e-03 1.93e-03 6.53e-03
Bfull.em, 5.34e-05 1.59e-04 2.13e-04  2.29e-04 2.83e-04 7.99e-04
Bemsta  4.22e-04 1.24e-03 1.59e-03  1.68e-03 2.06e-03 4.81e-03
Bcc.std 2.27e-03 7.64e-03 1.00e-02  1.11e-02 1.34e-02 4.45e-02
ﬁfu”.std 4.48e-04 1.14e-03 1.45e-03  1.53e-03 1.84e-03 4.12e-03

Table 6: Summary of MSE when e; follows Laplacian distribution and X; follows t¢-

distribution

Min. 1st Quartile Median  Mean  3rd Quartile  Max.

Bemenv  3.59e-04 1.10e-03 1.45e-03  1.57e-03 1.94e-03 2.85e-03
Becons  5.40e-04 2.16e-03 2.92e-03  3.20e-03 3.98e-03 1.09e-02
Bfull.em, 9.61e-05 2.57e-04 3.38e-04  3.56e-04 4.40e-04 9.81e-04
Bemsta  T-41e-03 2.92e-02 3.75e-02  4.07e-02 4.97e-02 0.101
Becsta  5-33e-03 0.179 0.246 0.274 0.340 0.908
Bfull-std 9.38e-03 2.74e-02 3.41e-02  3.71e-02 4.56e-02 9.87e-02
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Table 7: The point estimates, bootstrap standard errors, confidence intervals and p—values

for the difference among patients with and without ESRD on biomarkers adjusted for the

established biomarkers

Our Method Standard EM
B SE  25% 97.5% p—value | B SE  25% 97.5% p—value
log(Urine albumin) | -0.05 0.03 -0.12  3e-3 0.12 -0.09  0.05 -0.18  4e-3 0.06
Urine creatinine | -2.68 1.68 -5.97  0.55 0.11 -2.53  1.67 -579  0.70 0.13
log(HS-CRP) -0.04 0.02 -0.07 -2e-3 0.05 -0.12 0.07 -0.28  0.02 0.10
log(BNP) 0.14 0.03 009 020 <0.01 | 036 0.07 022 049 < 0.01
CXCL12 98.22 31.41 3897 160.83 < 0.01 |[99.34 31.35 3843 15859 <0.01
Scaled FETUIN_A | -0.85 0.64 -2.10 0.37 0.18 -0.85  0.63 -2.11 0.36 0.18
Fractalkine 0.06 83 0.04 0.06 <0.01 | 0.09 0.02 0.05 0.13 < 0.01
MPO 24.28 16.27 -7.13 59.23 0.14 22.32 16.81 -9.90 58.22 0.18
log(NGAL) -0.01  0.03 -0.07 0.04 0.69 0.18 0.07 0.06 0.31 < 0.01
Fibrinogen 0.05 0.02 002 009 <0.01 | 028 0.06 015 0.40 < 0.01
Troponini 4e-3  2e-3  3e4  8e3 0.06 5e-3  2e-3  le-4  9e-3 0.04
log(Urine calcium) | -3e-3  0.02 -0.04  0.03 0.88 -0.03 0.06 -0.15  0.09 0.60
Urine sodium -1.41  1.63 -458 1.89 0.39 -1.33 162 -449 1.86 0.41
Urine potassium | 0.25 0.61 -0.96 1.46 0.68 0.18 0.60 -1.03 1.39 0.76
Urine phosphate | -0.36 0.93 -2.14  1.49 0.70 -0.28 092 -2.05 1.1 0.76
TNTHS 10.07 1.64 6.89 1330 <0.01 | 993 159 6.83 13.12 <0.01
log(Aldosterone) | 0.06 0.02 0.02 009 <0.01 | 0.04 0.04 -0.04 0.13 0.31
C-peptide -0.10 0.04 -0.17 -0.03 <0.01 | 0.21 0.12 -0.02 0.44 0.08
Insulin -2.12 1.25 458 0.38 0.09 -2.08 125 -452 040 0.10
TOTAL PTH 2729 481 1843 3726 < 0.01 |27.16 478 1831 3696 <0.01
COq -0.04 0.0 -0.14 0.06 0.47 -0.24  0.18 -0.58  0.12 0.18
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Table 8: The point estimates, bootstrap standard errors, confidence intervals and p—values

for the difference among patients with and without ESRD on biomarkers unadjusted for the

established biomarkers

Our Method

Standard EM

3 SE 2.5% 97.5% p—value 3 SE 25% 97.5% p—value
log(Urine albumin) 0.56 0.06 0.44 0.68 < 0.01 254  0.08 238 2.69 < 0.01
Urine creatinine -11.98 133 -14.79 -9.30 <0.01 | -11.88 1.33 -14.69 -9.29 < 0.01
log(HS_CRP) 0.02 0.04 -0.04 0.11 0.54 -0.02 0.06 -0.12  0.10 0.76
log(BNP) 045 0.04 0.38 0.54 < 0.01 049 0.06 0.38 0.61 < 0.01
CXCL12 266.41 27.17 21250 318.62 < 0.01 |265.34 27.12 210.83 316.36 < 0.01
Scaled FETUIN_A -0.69 051  -1.75  0.26 0.17 -0.72 051  -1.77  0.23 0.16
Fractalkine 0.16 0.01 0.14 0.18 < 0.01 0.22 0.02 0.19 0.26 < 0.01
MPO 43.04 1699 11.20 78.69 0.01 43.07 16.95 11.28  78.69 0.01
log(NGAL) 0.30 0.06 0.14 0.38 < 0.01 0.83 0.06 0.73 0.95 < 0.01
Fibrinogen 029 0.04 0.23 0.39 < 0.01 076 0.06  0.65 0.88 < 0.01
Troponini 0.01 2e-3 3e-3 0.01 < 0.01 8e-3 3e-3 2e-3 0.01 < 0.01
log(Urine calcium) -041 0.03 -047 -036 <0.0l | -0.58 0.045 -0.67 -048 < 0.01
Urine sodium -751 133 -9.82 -482 <0.01 | -749 132 -978 -479 <0.01
Urine potassium -3.40 050 -4.40 -2.44 <0.01 | -3.33 0.4 -4.32 -237  <0.01
Urine phosphate -4.33 074 -5.77 -281 <001 | 434 073 -579 -287 <001
TNTHS 20.22 164 17.19 2358 <0.01 | 20.12 163 1712 2348 < 0.01
log(Aldosterone) 0.08 0.02 0.04 0.13 < 0.01 0.14 0.03 0.08 0.21 < 0.01
C-peptide 037 0.06 0.24 0.49 < 0.01 0.64 010 045 0.84 < 0.01
Insulin .31 1.05 -0.74  3.37 0.21 1.27 105 -0.79 3.34 0.23
TOTAL PTH 5448 4.68 46.19 64.22 < 0.01 | 5442 469 46.11 6422 < 0.01
COq -099 019 -1.17 -08 <0.01 | -141 015 -1.69 -1.11 <0.01
log(24-hour urine protein) | 0.44  0.04  0.36 0.53 < 0.01 2.06 0.06 194 2.19 < 0.01
EGFR -13.07 047 -13.98 -12.13 < 0.01 |-12.95 047 -13.88 -12.00 < 0.01
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Figure 8: Histograms of the MSEs of the EM envelope estimator, the complete case (CC) en-

velope estimator, the full data envelope estimator, the standard EM estimator, the standard

complete case (CC) estimator and the full data MLE when €, = 101,.
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