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Abstract

This paper investigates the asymptotic behaviors of gradient descent algorithms (particu-
larly accelerated gradient descent and stochastic gradient descent) in the context of stochas-
tic optimization arising in statistics and machine learning, where objective functions are
estimated from available data. We show that these algorithms can be computationally mod-
eled by continuous-time ordinary or stochastic differential equations. We establish gradient
flow central limit theorems to describe the limiting dynamic behaviors of these computa-
tional algorithms and the large-sample performances of the related statistical procedures,
as the number of algorithm iterations and data size both go to infinity, where the gradient
flow central limit theorems are governed by some linear ordinary or stochastic differential
equations, like time-dependent Ornstein-Uhlenbeck processes. We illustrate that our study
can provide a novel unified framework for a joint computational and statistical asymptotic
analysis, where the computational asymptotic analysis studies the dynamic behaviors of
these algorithms with time (or the number of iterations in the algorithms), the statistical
asymptotic analysis investigates the large-sample behaviors of the statistical procedures
(like estimators and classifiers) that are computed by applying the algorithms; in fact, the
statistical procedures are equal to the limits of the random sequences generated from these
iterative algorithms, as the number of iterations goes to infinity. The joint analysis results
based on the obtained gradient flow central limit theorems lead to the identification of four
factors—learning rate, batch size, gradient covariance, and Hessian—to derive new theo-
ries regarding the local minima found by stochastic gradient descent for solving non-convex
optimization problems.
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WANG AND WU

1. Introduction

Optimization plays an important role in scientific fields, ranging from machine learning to
physical sciences and engineering and from statistics to social sciences and business. It lies
at the core of data science as it provides a mathematical language for handling both com-
putational algorithms and statistical inferences in data analysis. Numerous algorithms and
methods have been proposed to solve optimization problems. Examples include Newton’s
method, gradient and subgradient descent, conjugate gradient methods, trust region meth-
ods, and interior point methods (Polyak, 1987; Boyd and Vandenberghe, 2004; Nemirovskii
and Yudin, 1983; Nocedal and Wright, 2006; Ruszczynski, 2006; Boyd et al., 2011; Shor,
2012; Goodfellow et al., 2016). Practical problems arising in fields such as statistics and
machine learning usually involve optimization settings where the objective functions are
empirically estimated from available data in the form of a sum of differentiable functions.
We refer to such optimization problems with random objective functions as stochastic op-
timization. As data sets grow rapidly in terms of scale and complexity, methods such as
stochastic gradient descent can scale to the enormous size of big data and have been rather
popular thus far. There has been recent surging interest in and great research work on the
theory and practice of gradient descent and its extensions and variants. Further, there is
extensive literature on stochastic approximation and recursive algorithms in machine learn-
ing, particularly stochastic gradient descent in deep learning (Ali et al., 2019; Chen et al.,
2020; Dalalyan, 2017a, 2017b; Fan et al., 2018; Foster et al., 2019; Ge et al., 2015; Ghadimi
and Lan, 2015; Jastrzebski et al., 2018; Jin et al., 2017; Kawaguchi, 2016; Keskar et al.,
2017; Kushner and Yin, 2003; Lee et al., 2016; Li et al., 2016; Li et al., 2017a; Li et al.,
2017b; Ma et al., 2019; Mandt et al., 2016, 2017; Nemirovski et al., 2009; Rakhlin et al.,
2012; Ruppert, 1988; Shallue et al., 2019; Sirignano and Spiliopoulos, 2017; Su et al., 2016;
Toulis et a., 2014; Toulis and Airoldi, 2015, 2016, 2017; Wibisono et al., 2016; Zhu, 2019).
In spite of compelling theoretical and numerical evidence on the value of the concept of
stochastic approximation and the acceleration phenomenon, there remains some conceptual
and theoretical mystery in acceleration and stochastic approximation schemes.

1.1 Contributions

Both continuous-time and discrete-time means are adopted by computational and statisti-
cal (as well as machine learning) communities to study learning algorithms like stochastic
gradient descent for solving optimization problems. The research on the computational
aspect focuses more on the convergence and convergent dynamics of learning algorithms—
in contrast the statistics research emphasizes statistical inferences of learning rules, where
the learning rules are solutions of the optimization problems and the learning algorithms
are designed to find the solutions. This paper adopts a new approach to combine both
computational and statistical frameworks and develop a joint computational and statistical
paradigm for analyzing gradient descent algorithms. Our joint study can handle com-
putational convergence behaviors of the gradient descent algorithms as well as statistical
large-sample performances of learning rules that are computed by the gradient descent al-
gorithms. To be specific, in this paper, we derive continuous-time ordinary or stochastic
differential equations to model the dynamic behaviors of these gradient descent algorithms
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and investigate their limiting algorithmic dynamics and large-sample performances, as the
number of algorithm iterations and data size both go to infinity.

For an optimization problem whose objective function is convex and deterministic, we
consider a matched stochastic optimization problem whose random objective function is an
empirical estimator of the deterministic objective function based on available data. The
solution of the stochastic optimization specifies a decision rule like an estimator or a clas-
sifier based on the sampled data in statistics and machine learning, while its corresponding
deterministic optimization problem characterizes—through its solution—the true value of
the parameter in the population model. In other words, the two connected optimization
problems associate with the data sample and its corresponding population model where the
data are sampled from, and the stochastic optimization is considered to be a sample version
of the deterministic optimization corresponding to the population. These two types of opti-
mization problems refer to the deterministic population and stochastic sample optimization
problems.

Consider random sequences that are generated from the gradient descent algorithms
and their corresponding continuous-time ordinary or stochastic differential equations for
the stochastic sample optimization setting. We show that the random sequences converge
to solutions of the ordinary differential equations for the corresponding deterministic pop-
ulation optimization setup, and we derive their asymptotic distributions by some linear
ordinary or stochastic differential equations like time-dependent Ornstein-Uhlenbeck pro-
cesses. The asymptotic distributions are used to understand and quantify the limiting dis-
crepancy between the random iterative sequences generated from each algorithm for solving
the corresponding sample and population optimization problems. In particular, since the
obtained asymptotic distributions characterize the limiting behavior of the normalized dif-
ference between the sample and population gradient (or Lagrangian) flows, the limiting
distributions may be viewed as central limit theorems (CLT) for gradient (or Lagrangian)
flows and are then called gradient (or Lagrangian) flow central limit theorems (GF-CLT or
LF-CLT). Moreover, our analysis may offer a novel unified framework to conduct a joint
asymptotic analysis for computational algorithms and statistical decision rules that are
computed by applying the algorithms. As iterated computational methods, these gradient
descent algorithms generate iterated sequences that converge to the exact decision rule or
the true parameter value for the corresponding optimization problems, when the number
of the iterations goes to infinity. Thus, as time (corresponding to the number of iterations)
goes to infinity, the continuous-time differential equations may have distributional limits
corresponding to the large-sample distributions of statistical decision rules as the sample
size goes to infinity. In other words, the asymptotic analysis can be performed with both
time and data size, where the time direction corresponds to the computational asymp-
totics on dynamic behaviors of the algorithms, and the data size direction associates with
the statistical large-sample asymptotics on the statistical behaviors of decision rules—such
as estimators and classifiers. The continuous-time modeling and the GF-CLT based joint
asymptotic analysis may reveal new facts and shed some light on the phenomenon that
stochastic gradient descent algorithms can escape from saddle points and converge to good
local minimizers for solving non-convex optimization problems in deep learning.

In a nutshell, we highlight our main contributions in the following manner:
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e We establish a new asymptotic theory for the discrepancy between the sample and
population gradient (or Lagrangian) flows. In particular, the new limiting distri-
butions for the normalized discrepancy are called the gradient (or Lagrangian) flow
central limit theorems (GF-CLT or LF-CLT). See Sections 3.3 and 4.1-4.2.

e The obtained asymptotic theory provides a novel unified framework for a joint compu-
tational and statistical asymptotic analysis. Statistically, the joint analysis can facil-
itate inferential analysis of a learning rule computed by gradient descent algorithms.
Computationally, the joint analysis enables us to understand and quantify a random
fluctuation in and the related impact on the dynamic and convergence behavior of a
gradient descent algorithm when it is applied to solve a stochastic optimization prob-
lem. In particular, the joint analysis can be employed to investigate the joint dynamic
effect of data size and algorithm iterations on the computational and statistical errors
for iterates generated by the algorithms, such as estimating the bias and variance of
iterates and building tests and confidence sets for model parameters under the setting
of a finite data sample and various algorithm iterations. See Sections 3.4 and 4.3.

e Computationally, we discover a novel theory that four factors—learning rate, batch
size, gradient covariance, and Hessian—along with the associated identities are shown
to influence the local minima found by stochastic gradient descent for solving a non-
convex optimization problem. It may also shed light on a certain intrinsic relationship
among stochastic optimization, deterministic optimization, and statistical learning.
See Section 4.4.

e Statistically, we illustrate implications of our results for statistical analysis of stochas-
tic gradient descent and inference of outputs from stochastic gradient descent. See
Section 4.5.

e The continuous-time approach is employed to demonstrate that it can provide a handy
means and a beautiful framework for deriving elegant and deep results for stochastic
dynamics of learning algorithms and statistical inference of learning rules.

1.2 Organization

The rest of the paper proceeds as follows. Section 2 introduces deterministic optimization
and describes gradient descent, accelerated gradient descent, and their corresponding or-
dinary differential equations. Section 3 presents stochastic optimization and investigates
asymptotic behaviors of the plain and accelerated gradient descent algorithms and their as-
sociated ordinary differential equations (with random coefficients) when the sample size goes
to infinity. We illustrate the unified framework to conduct a joint analysis on computational
and statistical asymptotics, where computational asymptotics deals with dynamic behav-
iors of the gradient descent algorithms with time (or iteration), and statistical asymptotics
studies large-sample behaviors of statistical decision rules that are computed through the
application of the algorithms. Section 4 considers stochastic gradient descent algorithms for
large scale data and derives stochastic differential equations to model these algorithms. We
establish asymptotic theory for these algorithms and their associated stochastic differential
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equations and describe a joint analysis on computational and statistical asymptotics. All
technical proofs are relegated in Section 5.

We adopt the following notations and conventions. For the stochastic sample opti-
mization problem considered in Sections 3 and 4, we add a superscript n to notations for
the associated processes and sequences in Section 3 and indices m and/or * to notations
for the corresponding processes and sequences affiliated with mini-batches in Section 4,
while notations without such subscripts or superscripts are used for sequences and solutions
(functions) corresponding to the deterministic population optimization problem given in
Section 2. Our basic proof ideas can be described as follows. Each algorithm generates
an iterated sequence for computing a learning rule, a step-wise empirical process is formed
by the generated sequence, and a continuous process is obtained from the corresponding
continuous-time differential equation. We derive asymptotic distributions by analyzing the
differential equations, and we bound the differences between the empirical processes and
their corresponding continuous processes by studying the optimization problems and utiliz-
ing the empirical process theory along with the related differential equations.

2. Ordinary Differential Equations for Gradient Descent Algorithms

This section establishes an optimization framework at the population-level that facilitates
the corresponding finite-sample analysis in subsequent sections. Consider the following
minimization problem,

min g(@), 2.1

min g(0) (21)
where the objective function g(6) is defined on a parameter space © C IRP and assumed to
have L-Lipshitz continuous gradients. Iterative algorithms like gradient descent methods are
often employed to numerically compute the solution of the minimization problem. Starting
with some initial value g, the plain gradient descent algorithm is iteratively defined by

T = Tp—1 — OVg(xk—_1), (2.2)

where V denotes gradient operator, and ¢ is a positive constant that is often called a step
size or learning rate.

It is easy to model {zy, k = 0,1,---} by a smooth curve X (¢) with the Ansatz zj ~
X (ko) as follows. Define a step function x5(t) = xy for k6 <t < (k+ 1)0, and as 6 — 0,
x5(t) approaches X (t) satisfying

X(t)+ Vg(X (1) =0, (2.3)

where X (t) denotes the derivative of X (t), and initial value X (0) = zo. In fact, X (t) is a
gradient flow associated with the objective function g(-) in the optimization problem (2.1).

Nesterov’s accelerated gradient descent scheme is a well-known algorithm that is much
faster than the plain gradient descent algorithm. Starting with initial values zg and yg = xo,
Nesterov’s accelerated gradient descent algorithm is iteratively defined by

k—1
k+2

Tk = Yp—1 — OV (Yr—1), Yp = Tk + (g — z—1), (2.4)
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where § is a positive constant. Using (2.4), we derive a recursive relationship between
consecutive increments

Tht1 — Tk :k‘—lxk—aj
N E+2 /¢

We model {zx, £ = 0,1,---} by a smooth curve in a sense that xj are its samples at
discrete points—that is, we define a step function z5(t) = xy, for kv/6 <t < (k+1)v6—and
introduce the Ansatz z5(kv0) = z, ~ X (kv/d) for some smooth function X (¢) defined for
t > 0. Let /¢ be the step size. Taking t = kv/d and letting 6 — 0 in equation (2.5), we
obtain

ML VoV (). (2.5)

(1) + 2X(0) + V(X (1) =0, (2.6)

with the initial conditions X (0) = 29 and X (0) = 0. As the coefficient 3/t in the ordinary
differential equation (2.6) is singular at ¢ = 0, the classical ordinary differential equation
theory is not applicable to establish the existence or uniqueness of the solution to equation
(2.6). The heuristic derivation of (2.6) is from Su et al. (2016), who established that
equation (2.6) has a unique solution satisfying the initial conditions, and xs(t) converges to
X (t) uniformly on [0, T for any fixed T' > 0. Note the step size difference between the plain
and accelerated cases, where the step size is §1/2 for Nesterov’s accelerated gradient descent
algorithm and 0 for the plain gradient descent algorithm. Su et al. (2016) showed that,
because of the difference, the accelerated gradient descent algorithm moves much faster than
the plain gradient descent algorithm along the curve X (¢). Wibisono et al. (2016) provided
a more elaborate explanation on the acceleration phenomenon and developed a systematic
continuous-time variational scheme to generate a large class of continuous-time differential
equations and produce a family of accelerated gradient algorithms. The variational scheme
utilizes a first-order rescaled gradient flow and a second-order Lagrangian flow, which are
generalizations of gradient flow. We refer the solution X (¢) of the differential equation (2.3)
to the gradient flow for the gradient descent algorithm (2.2), and the solution X (t) to the
differential equation (2.6) is called the Lagrangian flow for the accelerated gradient descent
algorithm (2.4).

3. Gradient Descent for Stochastic Optimization

Let 6 = (04, ..., Qp)/ be the parameter that we are interested in, and U be a relevant random
element on a probability space with a distribution (). Consider an objective function ¢(6; )
and its corresponding expectation E[¢(6;U)] = g(#). For example, in a statistical decision
problem, we may take U to be a decision rule, ¢(0;u) a loss function, and ¢(0) = E[¢(6;U)]
its corresponding risk; in the M-estimation, we treat U as a sample observation and ¢(6; u)
as a p-function; in nonparametric function estimation and machine learning, we choose
U as an observation and £(6;u) equal to a loss function plus some penalty. For these
problems, we consider the corresponding deterministic population minimization problem
(2.1) for characterizing the true parameter value or its function as an estimand; however,
practically, because g(#) is usually unavailable, we have to employ its empirical version and
consider a stochastic optimization problem, described as follows:

min £°(6; Un), (3.7)
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where £"(0;U,,) = %Z?zl 00;U;), U, = (Uy,---,Uy) is a sample, and we assume that
Ui, ,U, are i.i.d. and follow the distribution Q).

The minimization problem (2.1) characterizes the true value of the target estimand
such as an estimation parameter in a statistical model and a classification parameter in a
machine learning task. As the true objective function g(6) is usually unknown in practice,
we often solve the stochastic minimization problem (3.7) with observed data to obtain
practically useful decision rules such as an M-estimator, a smoothing function estimator,
and a machine learning classifier. The approach to obtaining practical procedures is based
on the heuristic reasoning that as n — oo, the law of large number implies that £"(6; U,,)
eventually converges to g(f) in probability, and thus the solution of the stochastic sample
minimization problem (3.7) approaches that of the deterministic population minimization
problem (2.1).

3.1 Plain Gradient Descent Algorithm

Applying the plain gradient descent scheme to the stochastic sample minimization problem
(3.7) with initial value xf}, we obtain the following iterative algorithm to compute the
solution of the sample minimization problem (3.7),

rp = wp_y — OVL (z_1; Un), (3.8)

where & > 0 is a step size or learning rate, and L" is the objective function in the sample
minimization problem (3.7).

Following the continuous curve approximation described in Section 2 we define a step
function x}(t) = a7} for kd <t < (k+ 1)d; for each n, as § — 0, x§ (t) approaches a smooth
curve X"(t), t > 0, given by

X"(t) + VLY (X"(t); U,) = 0, (3.9)
where VL"(X"(t);U,) = XY, VI(X"(t);U;), gradient operator V here is applied to
L"(6;Uy,) and £(0; U;) with respect to 6, and initial value X™(0) = zj. X"(t) is a gradient
flow associated with £™ in the stochastic sample optimization problem (3.7).

As U,, and X"(t) are random, and our main interest is to study the distributional
behaviors of the solution and algorithm, we may define a solution of equation (3.9) in
the weak sense that there exist a process Xf(t) and a random vector Uj, = (UIT, . ,U;[)’

defined on some probability space, such that U}, is identically distributed as Uy, (U;r% X?(t))
satisfies equation (3.9), and X{'(t) is called a (weak) solution of equation (3.9). Note that
Xy (t) is not required to be defined on a fixed probability space with given random variables;

instead, we define X T"(t) on some probability space with some associated random vector U},
whose distribution is given by (). The weak solution definition, which shares the same spirit
as that for stochastic differential equations (Ikeda and Watanabe, 1981 and more in Section
4), will be rather handy in facilitating our asymptotic analysis in this paper. For simplicity,
we exclude index 1 and “weak” when there is no confusion.

3.2 Accelerated Gradient Descent Algorithm

Nesterov’s accelerated gradient descent scheme can be used to solve the sample minimization
problem (3.7). Starting with initial values =} and yj = z{;, we obtain the following iterative
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algorithm to compute the solution of the sample minimization problem (3.7),

kE—1
ok =Yk —OVE (ks Un), vk =k + o5 (ak — 25 ). (3.10)
Using the continuous curve approach described in Section 2, we can define a step function
a(t) =z, for kv/6 <t < (k+ 1)V/4, and for every n, as § — 0, we approximate z%(t) by a
smooth curve X"(t), t > 0, governed by

X"(t) + %X"(t) + VLY (X" (t); U,) = 0, (3.11)

where initial values X"(0) = 2} and X"(0) = 0, VL*(X"(t); U,) = LS VUX™(t); Uy),
and gradient operator V here is applied to £"(6; U,,) and ¢(0; U;) with respect to 6. X"(t)
is a Lagrangian flow associated with £™ in the sample optimization problem (3.7).

Again, we define a solution X" (¢) of equation (3.11) in the weak sense—that is, that
there exist a process X™(t) and a random vector U,, on some probability space so that the
distribution of U, is specified by @, and X™(¢) is a solution of equation (3.11).

3.3 Asymptotic Theory via Ordinary Differential Equations

In order to ensure that equations (2.3), (2.6), (3.9) and (3.11) and their solutions are well
defined and study their asymptotics, we need to impose the following assumptions.

A0. Assume that initial values satisty 2§ — zo = op(n=1/?).

Al. £(0;u) is continuously twice differentiable in §; V v € RP, 3 hy(u), such that V 6%,6% €
O, ||VL(0Y;u) — VE(6%;u) || < hi(u)]|0* — 02|, where hy(U) and V£(6y; U) for some fixed
0y have finite fourth moments.

A2. E[(6;U0)] = g(8), E[VL(O;U)] = Vg(0), E[IH((0;U)] = IHg(f), on the parameter
space ©, g(-) is continuously twice differentiable and strongly convex, and Vg(-) and
HHy(-) are L-Lipschitz for some L > 0, where V is the gradient operator (the first-
order partial derivatives), and IH is the Hessian operator (the second-order partial
derivatives).

A3. Define cross auto-covariance (6, 7) = (;;(6,7))1<i j<p, 0,0 € ©, where
Cov[a%lﬁ(@; U), %5(19; U)] = <i;(6,9) are assumed to be continuously differentiable,
and L-Lipschitz. Let o;;(0) = Cov[a%f(e;U),a%jﬂ(a;U)] = ;(0,0), and o2(0) =
Var[VL(0; U)] = (04j(0))1<i,j<p = s(0,0) be positive definite.

Ad. /n[VL™(0;U,) — Vg(0)] = #ZLI[VE(@;Ui) — Vg(0)] weakly converges to Z(6)
uniformly over 0 € ©x, where Z(0) is a Gaussian process with mean zero and auto-
covariance ¢(6,9) defined in A3, ©x is a bounded subset of ©, and the interior of
©x contains the solutions X () of the ordinary differential equations (2.3) and (2.6)
connecting the initial value z¢ and the minimizer of g(0).

Assumption A0 may relax the usual assumption of taking common initial values zfj = xg.
Assumptions Al and A2 are often used to make optimization problems and differential
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equations well defined and match the stochastic sample optimization problem (3.7) to the
deterministic population optimization problem (2.1). Assumptions A3 and A4 guarantee
that the solution of (3.7) and its associated differential equations provide large-sample ap-
proximations of those for (2.1). Assumption A4 can be easily justified by empirical processes
with common conditions—Ilike that V/(0;U), 6 € O, form a Donsker class (van der Vaart
and Wellner, 2000)—since the solution curves X (¢) of the ordinary differential equations
(2.3) and (2.6) are deterministic and bounded, and it is easy to select O x. Examples that
meet the assumptions include common statistical models and well-known loss and likelihood
functions, such as usual exponential families and generalized linear models with squared-
error and deviance loss functions (more specific cases will be provided later in the paper).

We remind readers of the notion convention specified at the end of Section 1 that adds a
superscript n to sample-level notations for the processes and sequences associated with the
stochastic sample optimization problem (3.7) in Section 3, while notations without such a
superscript are for solutions and sequences corresponding to the deterministic population
optimization problem (2.1) in Section 2. For a given T > 0, denote by C([0,7T]) the space
of all continuous functions on [0, 7] with the uniform metric max{|b;(¢t) —b2(t)| : t € [0, T]}
between functions by (t) and ba(t). For solutions X (t) and X™(¢) of the ordinary differential
equations (2.3) and (3.9) [or (2.6) and (3.11)], respectively, we define V™ (t) = \/n[X™(t) —
X(t)]. Then X(t), X™(t), and V"(¢) live on C([0,T]). Treating them as random elements
in C([0,77), in the following theorem, we establish a weak convergence limit of V" (¢).

Theorem 1 Under Assumptions A0-A4, asn — oo, V"(t) weakly converges to a Gaussian
process V (t), where V(t) is the unique solution of the following linear differential equations,

V(t)+ [Hg(X(t)V(t)+Z(X(t)) =0, V(0)=0 (3.12)
for the plain gradient descent case, and

V(t) + %V(t) + [Hg(X )]V (t) + Z(X(t)) =0, V(0)=V(0)=0 (3.13)

for the accelerated gradient descent case, where the deterministic functions X (t) in (3.12)
and (8.13) are the solutions of the ordinary differential equations (2.3) and (2.6), respec-
tively, H is the Hessian operator, random coefficient Z(-) is the Gaussian process given by
Assumption A4.

In particular, if Gaussian process Z(0) = o(0)Z, where random variable Z ~ N,(0,1,),
and o(0) is defined in Assumption A3, then V(t) = II(t)Z on C([0,T]), and the deter-
ministic matriz II(t) is the unique solution of the following linear differential equations,

I1(t) + [Hg(X (O))]IL() + o(X(£)) = 0, TI(0) = 0 (3.14)

for the plain gradient descent case, and

fi(t) + %ﬂ(t) + [Hy(X(E)I(1) + o(X(8) =0, I(0)=11(0)=0  (3.15)

for the accelerated gradient descent case, where X (t) in (3.14) and (3.15) are the solutions of
the ordinary differential equations (2.3) and (2.6), respectively, IH is the Hessian operator,
and o (-) is defined in Assumption AS3.
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Remark 1 As discussed in Sections 2 and 3.1, for the gradient descent case X(t) and
X"™(t) are gradient flows associated with the population optimization (2.1) and the sample
optimization (3.7), respectively, and thus refer to the corresponding population and sam-
ple gradient flows. Consequently, the Gaussian limiting distribution of V"(t) describes the
asymptotic distribution of the difference between the sample and population gradient flows,
with a normalization factor \/n. Hence, it is natural to view the Gaussian limiting distribu-
tion as the central limit theorem for the gradient flows, and we call it the gradient flow central
limit theorem (GF-CLT). Similarly, for the accelerated case X (t) and X" (t) are Lagrangian
flows associated with the population optimization (2.1) and the sample optimization (3.7),
respectively, and thus refer to the corresponding population and sample Lagrangian flows.
The Gaussian limiting distribution for the normalized discrepancy between the sample and
population Lagrangian flows can be naturally viewed as the central limit theorem for the
Lagrangian flows, and we call it the Lagrangian flow central limit theorem (LF-CLT).

Remark 2 As we discussed earlier in Section 3, as n — oo, L™(0;U,) = 231 4(6;U;)
converges to g(0) in probability, and the solutions of the population minimization (2.1)
and the sample optimization (3.7) must be very close to each other. We may heuristically
illustrate the derivation of Theorem 1 as follows. The central limit theorem may lead us
to that as n — oo, VL™(0;U,) is asymptotically distributed as Vg(0) +n~Y2Z(6). Then,
asymptotically, differential equations (3.9) and (3.11) are, respectively, equivalent to

X™(t) + Vg(X"(t)) + n~Y2Z(X™(t)) = 0, (3.16)
() + %X"(t) +Vg(X™(#) +nY2Z(X (1)) = 0. (3.17)

Applying the perturbation method for solving ordinary differential equations, we write ap-
prozimation solutions of equations (3.16) and (3.17) as X™(t) ~ X (t) + n~ 2V (t) and
substitute it into (3.16) and (3.17). With X (t) satisfying the ordinary differential equations
(2.3) or (2.6), using the Taylor expansion and ignoring higher order terms, we can easily
obtain equations (3.12) and (3.13) for the weak convergence limit V (t) of V™ (t) in the two
cases, respectively.

The step process x5 (t) is used to model iterates z} generated from the gradient descent
algorithms (3.8) and (3.10). To study their weak convergence, we need to introduce the
Skorokhod space, denoted by D([0,T]), of all cadldg functions on [0, T], equipped with the
Skorokhod metric (Billingsely, 1999). Then, x}(t) lives on D([0,77), and treating it as a
random element in D([0,77]), we derive its weak convergence limit in the following theorem.

Theorem 2 Under Assumptions A0-A4, as § — 0 and n — oo, we have

sup |z3(t) — X"(1)] = Op(8"/%|log d]),
te[0,T

where x§(t) are the continuous-time step processes for discrete xj generated from algorithms
(3.8) and (3.10), with continuous curves X™(t) defined by the ordinary differential equa-
tions (3.9) and (3.11), for the cases of plain and accelerated gradient descent algorithms,
respectively. In particular, we may select (n,d), such that ndé|logd|> — 0 as § — 0 and
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n — oo, and then for the selected (n,d), n'/2[z2(t) — X (t)] weakly converges to V(t) on
D([0,T), where X (t) is the solution of the ordinary differential equations (2.3) or (2.6),
and V (t) is given by Theorem 1. That is, \/n[z}(t) — X (t)] and \/n[X™(t) — X (t)] share the

same weak convergence limit.

Remark 3 There are two types of asymptotic analyses in the set up. One type is to em-
ploy continuous differential equations to model discrete iterate sequences generated from
the gradient descent algorithms, which is associated with 0 treated as the step size between
consecutive sequence points. Another type involves the use of random objective functions
in stochastic optimization, which are estimated from the sample data of size n. We refer
the first and second types as computational and statistical asymptotics, respectively. The
computational asymptotic analysis is that for each n, the ordinary differential equations
(3.9) and (3.11)[or (3.16) and (3.17)] provide continuous solutions as the limits of discrete
iterate sequences generated from algorithms (3.8) and (3.10), respectively, when § is allowed
to go to zero. Theorem 1 provides the statistical asymptotic analysis to describe the behavior
difference between the sample gradient flow X™(t) and the population gradient flow X (t),
as the sample size n goes to infinity. Theorem 2 involves both types of asymptotics and
indicates that as § — 0 and n — oo, x}(t) — X"(t) is of order §'/%|logd|. It is easy to
select (n,8) so that xg (t) — X" (t) is of order smaller than n~Y2. Then, zy (t) has the
same asymptotic distribution V (t) as X" (t).

3.4 Unified Framework for Joint Computational and Statistical Analysis

The two types of asymptotics associated with § and n appear to be rather different, with
one for computational algorithms and one for statistical procedures. This section further
elaborates regarding these analyses and provides a joint framework to unify both viewpoints.
Denote the solutions of the deterministic population optimization problem (2.1) and the
stochastic sample optimization problem (3.7) by 0 and én, respectively. In the statistical
setup, 6 and én represent the true estimand and its associated estimator, respectively. Using
the definitions of 6 and 6, and the Taylor expansion, we have Vg(é) =0,

0=VL0,;U,) = VLY6;U,) + HL"(0;U,,) (0, — 0) + remainder,

the law of large number implies that IHL™(6;U,) converges in probability to IHg(f) as
n — 0o, and Assumption A4 indicates that

VL (0;U,) = Vg(0) + n~/2Z() + remainder = n~/?¢(6)Z + remainder,

where Z stands for a standard normal random vector. Thus, n'/2(6,, — 6) is asymptotically
distributed as [IHg(0)]~'o(§)Z. On the other hand, the gradient descent algorithms gen-
erate iterate sequences corresponding to X (¢) and X™(t), which are expected to approach
the solutions of the population optimization (2.1) and the sample optimization (3.7), re-
spectively. Hence, X(t) and X™(t) must move toward 6 and 6,, respectively, and Vj,(¢)
and V(t) must reach their corresponding targets n'/2(d, — 6) and [IHg(6)] 'o(0)Z. Be-
low, we provide a framework to connect (X" (t), X (t)) with (6,,0) and (V™(¢), V(t)) with
(n¥/2(8, — 0). [Hy(0)] " 0(0)Z).

11
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Since the time interval considered thus far is [0,7] for any arbitrary 7' > 0, we may
extend the finite time interval to IRy = [0,+00) and consider C'(IR.), the space of all
continuous functions on IR, , to be equipped with a metric d for the topology of uniform
convergence on compacta, where

o) = 32 min {1, g ()~ )]}

r=1

The solutions X (), X"(t), V(¢t) and V" (¢) of the ordinary differential equations (2.3), (2.6),
(3.9), (3.11)—(3.17) all live on C(IR4) and we can study their weak convergence on C'(IR).
Similarly, we adopt the Skorokhod space D(IRy) equipped with the Skorokhod metric for
the weak convergence study of x}(t) (Billingsely, 1999). The following theorem establishes
the weak convergence of these processes on D (IR, ) and indicates their asymptotic behaviors
as t — oo.

Theorem 3 Suppose that Assumptions A0-A4 are met, IHg(0) is positive definite, all
eigenvalues of fg Hg(X (s))ds diverge as t — oo, Hg(61) and IHg(02) commute for any
01 # 02, and né|log§|?> — 0 as § — 0 and n — oo. Then, on D(IRy), as § — 0 and n — oo,
V™ (t) = n[X"(t) — X (t)] and /nlz}(t) — X (t)] weakly converge to V(t), t € [0, +00).
Furthermore, for the plain gradient descent case, as t — oo and k — oo, we have

(1) xy, x5(t), and X (t) converge to 6, where xy,, x5(t), and X (t) are defined in Section 2
(see the gradient descent algorithms and ordinary differential equations 2.2-2.6).

(2) x}, z3(t), and X"(t) converge to 0, in probability and, thus, V™(t) converges to
V(B — 0) in probability, where xy, x3(t), and X" (t) are defined in algorithms and
equations (3.8)-(3.11).

(3) The limiting distributions of V (t) ast — oo and \/n(6,—0) asn — oo are identical and
given by a normal distribution with mean zero and variance [IHg(0)] o2 (0)[IHg(#)] !,
where V (t), defined in the ordinary differential equations (3.12) and (3.13), is the weak
convergence limit of V™ (t) as n — oo.

Remark 4 Denote the limits of the processes in Theorem 3 as t,k — oo by the corre-
sponding processes with t and k replaced by oo. Then, Theorem 3 shows that for the
plain gradient descent case, Too = x5(00) = X(00) = 0, 2% = 2}(c0) = X"(c0) =
o, V7(00) = VAIX"(00) — X(o0)] = yilaf(o0) = X(00)] = vl — ), V(o) =
[IHg(X (00))] to (X (c0))Z = [IHg(0)] ‘o (0)Z; V(t) weakly converges to V(o0) as t — oo,
and V"™ (o0) weakly converges to V(co) as n — oo. In particular, as the process V''(t) is
indexed by n and t, its limits are the same regardless the order of n — oo and t — oo.
Moreover, as 0 = X (o00) is the minimizer of the convex function g(-), the positive definite
assumption Hg() = Hg(X (00)) > 0 is rather reasonable; since the limit Hg(X (c0)) of
IHg(X (t)) ast — oo has all positive eigenvalues, it is natural to expect that [ Hg(X (s))ds
has diverging eigenvalues. We conjecture that for the accelerated gradient descent case, sim-
tlar asymptotic results might hold, as k,t — oo.
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With the augmentation of ¢ = oo, we extend [0, +00) further to [0, +o0], consider X (¢),
x5(t), X™(t), 23(t), V(t), and V"(t) on t € [0,00] and derive the limits of V"(¢) and
Vn[z}(t)—X (t)] on [0, 00] by Theorem 3. As § — 0 and n — oo, the limiting distributions of
V™ (t) = /n[X"(t) — X (t)] and \/n[z}(t) — X (t)] are V(¢) for ¢ € [0, 00|, where (V" (t),V (t))
describe the dynamic evolution of the gradient descent algorithms for ¢ € [0,00) and the
statistical distribution of \/n(f, — 6) for t = co.

In a unified framework, the joint asymptotic analysis describes distribution limits of
X"(t) and z§(t) from both computation and statistical viewpoints in the following man-
ner. For ¢t € [0,00), X(t) and V() represent the limiting behaviors of X" (t) and x}(t)
corresponding to the computational algorithms, and X (co) and V' (oo) illustrate the limit-
ing behaviors of the corresponding statistical decision rule 0,,. We use the following simple
example to explicitly illustrate the joint asymptotic analysis.

Example 1. Suppose that U; = (Uy;,Us;)’, @ = 1,---,n, are iid random vectors,
where Uy; and Usy; are independent and follow a normal distribution N (6, 7'2) with mean
6, and known variance 72 and an exponential distribution with mean 65, respectively, and
0 = (61,02). Define £(0;U;) = (U; — 0)(U; — 0)/2, and denote by 6 the true value of the
parameter € in the model. Then, £(0;U,,) = %Z?’:l(Ui—G)’(Ui—H)/Z g(0) = E[L(6;U;)] =
(60— 0)(6 —0)+7%+03]/2, Vg(0) = 0 — 0, VLO;U;) = 0 — Ui, VL(O;U,) = 0 — Uy,
and 0%(0) = Var(U, — ) = diag(2,602), where U, = (Uyn,Usy,)" is the sample mean.
It is evident that the corresponding population minimization problem (2.1) and sample
minimization problem (3.7) have explicit solutions: g(6) has the minimizer , and £(;U,,)
has the minimizer §,, = U,. For this example, algorithms (2.2), (3.8), (2.4), and (3.10)
yield recursive formulas z, = zp_1 + 6(§ — Tp—1), and 2} =z} | + §(U, — xy_,) for the
plain gradient descent case; moreover, z; = zp_1 + 0(0 — yp_1), yp = Tp + %(wk —Tp_1),
2 = 4+ 06U —yl ), yp =2l + %(wg — xp_,) for the accelerated gradient descent
case. While it may not be so obvious to explicitly describe the dynamic behaviors of
these algorithms for the accelerated case, below we clearly illustrate the behaviors of their
corresponding ordinary differential equations through closed-form expressions. First, we
consider the plain gradient descent case where closed form expressions are very simple. The
ordinary differential equations (2.3) and (3.9) admit the following simple solutions,

X(t) = (X1(t), X2(t))' = 0 + (w0 — O)e™', X"(t) = (X7 (t), X3 (1)) = Un + (2 — Un)e™,

VRt = (V'(1), V31 (1) = V(Un — 0)(1 — e7") + V(g — wo)e ™.
Note that Z; = /n(Ur, — 01)/7 ~ N(0,1), /n(Uan/02 — 1) converges in distribution to a
standard normal random variable Zs, and Z; and Z, are independent. As in Theorem 1,
let Z = (Z1,25), V(t) = (t)Z, where TI(t) = —(1 — e *)diag(r, §2) is the matrix solution
of the linear differential equation (3.14) in this case. Then, for t € [0, 00), we have

Vi) = (57, ) (1= e+ or() = V) + on(),

which confirms that V" (¢) converges to V(t), as shown in Theorem 1. Further, as ¢t — oo,
X(t) = 0 = X(00), X(t) = 0, = U, = X"(00), and V"'(t) = V"(oc0) = ViU, — 0);
as n — 00, V"(o0) = V(o00) = II(c0)Z = —(7Z1,027Z2)’, which provides the asymptotic
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distribution of the estimator 6, = X"(c0). In summary, the behaviors of X (t), X™(t),
V™ (t), and V(t) over [0,00] provide a complete description on the dynamic evolution of
the gradient descent algorithms when applied to solve the stochastic sample optimization
problem. For example, as functions of ¢, X (¢) and X™(¢) can be used to describe how the
sequences generated from the algorithms evolve along iterations; we may use the convergence
of V™(t) to V™(oo) and V' (t) to V(00), as t — oo, to illustrate how the generated sequences
converge to the target optimization solutions (estimators); the convergence of V" (o0) to
V(00) as n — oo may be employed to characterize the asymptotic distributions of the target
optimization solutions; moreover, their relationship with n and ¢ can be used to investigate
the joint dynamic effect of data size and algorithm iterations on the computational and
statistical errors in the sequences generated by the algorithms. The key signature in this case
is the exponential decay factor e~ that appears in all relationships. The joint asymptotic
analysis with both n and ¢ provides a unified picture for the statistical asymptotic analysis
with n — oo and the computational asymptotic analysis with ¢ — oo.

For the accelerated case, solution X (¢) of the ordinary differential equation (2.6) admits
an expression via the Bessel function (Watson, 1995),

—=J1(t),

where zg = (20,1, 20,2)" is an initial value of X (¢) = (X (t), X2(t))’, and Ji(u) is the Bessel
function of the first kind of order one,

u) — = G Ve
i) ng(Zj)!!(jJrQ)!! 5

with the following symptotic behaviors as © — 0 and u — oo,

U 2 3T
Ji(u) ~ 5 U= 0, and Jy(u) ~ \/@cos <u— 4) as u — 00.

The ordinary differential equation (3.11) has the following solution,

_ 2(zr — U,
X"(t):Un_i_(thU)

_ , 2 2
RO VO = Vi - 0|1 = 200 + Vileh - )50
As in Theorem 1, let V(¢) = I1(¢)Z, where it is relatively simple to use the properties of the
Bessel function J;(u) to verify that II(t) = —[1 — 2.J;(t)/t|diag(7, #2) is the matrix solution
of the linear differential equation (3.15) in this case. Then, for ¢ € [0, 00), we have

O ( 522212 ) [1 - ?Jl(t)] Fop(1) = V(E) + op(1).

The result matches the weak convergence of V" (t) to V(¢) shown in Theorem 1, and as t —
00, X(t) = 0 = X(c0), X"(t) = 0, = U, = X"(c0), and V"(t) = V"(c0) = /n(U,, — 6);
as n — 00, V*(00) — V(o) = II(00)Z = —(7Z1,0225)', which indicates the asymptotic
distribution of the estimator #, = X"(cc). Again, the behaviors of X (t), X™(t), V"(t),
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and V(t) over [0,00] describe the dynamic evolution of the accelerated gradient descent
algorithm, such as how the sequences generated from the algorithm evolve along iterations
(via X (t) and X" (t) as functions of ¢) and converge to the target optimization solutions
(via the convergence of V" () to V"(o0) and V(t) to V(c0) as t — 00), as well as connect
to the asymptotic distributions of the target optimization solutions (via the convergence of
V"(00) to V(o0) as n — 00). We find that the polynomial decay factor 2.J;(¢) appears in all
relationships for the accelerated case, and the major difference in the two cases is exponential
decay 1 — e~ ! for the plain case vs polynomial decay 1 — %Jl (t) for the accelerated case.

Remark 5 Solving problems with large-scale data often requires some tradeoffs between
statistical efficiency and computational efficiency; thus, we must account for both statistical
errors and computational errors. We illustrate the potential of the joint asymptotic analysis
framework for the study of the two types of errors. Note that

a?(t) — 0 = 22(t) — 0, + 0, — 0,

where x§(t) (or x}) are the values computed by the gradient descent algorithms for solving
the stochastic sample optimization problem (3.7) based on sampled data, and 0 is the ezact
solution of the deterministic population optimization problem (2.1) corresponding to the true
value of 0, with 0,, the exact solution of the sample optimization problem (3.7) corresponding
to the estimator of 0. The total error z2(t)— 0 consists of computational error z7(t) —0,, (of
order t=! ort=2) and statistical error 6, —0 (of order usually n=/2). Since X(t) approaches
the solution § = X (c0) of the population optimization problem (2.1), and \/n[z%(t) — X (t)]
weakly converges to V (t), we may utilize X (t) — X (00) and Var(V (t))/n to approzimate the
bias and variance of x§(t) (or x}. ), respectively. Moreover, the theory of Gaussian processes
allows us to find an interval, such that with high probability V(t) falls into the interval
for all t € [0,T], and rescaling the interval by n~Y2 yields an approzimate simultaneous
interval for x§(t) — X(t), t € [0,T]. The simultaneous interval enables us to derive tests
and confidence sets based on x§(t) (or x}) for model parameters, and assess the closeness
between iterates x} and X (t) and, thus, the convergence of x}! toward the target value X (00).

4. Stochastic Gradient Descent via Stochastic Differential Equations for
Stochastic Optimization

Solving the stochastic sample optimization problem (3.7) by the associated algorithms (3.8)
and (3.10) requires evaluating the sum-gradient for all data—that is, it demands expensive
evaluations of the gradients V/(0;U;) from summand functions ¢(0;U;) with all data U;,
i=1,---,n. For big data problems, there is an enormous amount of data available and such
evaluation of the sums of gradients for all data becomes prohibitively expensive. In order to
overcome the computational burden, stochastic gradient descent uses a so-called mini-batch
of data to evaluate the corresponding subset of summand functions at each iteration. Each
mini-batch is a relatively small data set that is sampled from (i) the large training data set
U, or (ii) the underlying population distribution @. For the case of subsampling from the
original data set U, it turns out that mini-batch subsampling in the stochastic gradient
descent scheme is similar to the m out of n (with or without replacement) bootstraps for
gradients (Bickel et al., 1997). While bootstrap resampling is widely used to draw inferences
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in statistics, resampling used here and in the learning community is motivated purely from
the computational purpose. Specifically, assume integer m is much smaller than n, and
denote by U¥, = (Uy,---,U}) a mini-batch. For the case (ii), U}, = (Ut,---,U}) is

an i.i.d. sample taken from the distribution Q. For case (i), U}, = (Uf,---,Uy) is a
subsample taken from U = (Uy,---,U,)’, where Uy, --- U}, are randomly drawn with or
without replacement from Uy, - - -, Uy,. For the case with replacement, U7, - - -, U};, represent
an i.i.d. sample taken from Qn, where Qn is the empirical distribution of Uy,---,U,. In

this paper, we consider the case in which mini-batches are sampled from the underlying
distribution ). Since mini-batch size m is negligible in comparison with data size n, the
bootstrap sampling case (ii) can be handled via strong approximation (Csorgé and Mason,
1989; Csorgd et al., 1999; Massart, 1989; Rio, 1993a, 1993b) by converting case (ii) into the
essentially proven scenario of case (i), where mini-bataches are sampled from the underlying
distribution Q.

The main computational idea in the stochastic gradient descent algorithm is to replace
L"(0;U,,) in algorithms (3.8) and (3.10) for solving the sample optimization problem (3.7)
by a smaller sample version ﬁm(ﬁ; U?)) at each iteration, where

m

A 1
L7(0:U,) = — > U0:U;).
=1

We remind readers of the notion convention specified at the end of Section 1 that adds
indices m and/or * to notations for the corresponding processes and sequences affiliated
with mini-batches in Section 4, while notations with a superscript n and without such
subscripts or superscripts correspond to the stochastic sample optimization problem (3.7)
and the deterministic population optimization problem (2.1), respectively.

4.1 Stochastic Gradient Descent

The stochastic gradient descent scheme replaces VL"(x}_;;U,) in algorithm (3.8) by a
smaller sample version at each iteration to obtain the following recursive algorithm,

i =y — VL™ (2 Upy),s (4.18)

where U* = (U{,---,U.), k=1,2,---, are independent mini-batches.

We may naively follow the continuous curve approach described in Section 2 to approxi-
mate {z}',k =0,1,---} by a smooth curve similar to the case in Section 3. However, unlike
the scenario in Section 3, algorithms (4.18) [and (4.26) for the accelerated case in Section
4.2 later] are designed for the computational purpose, and they do not correspond to any
optimization problem with a well-defined objective function, such as g(f) in the population
optimization problem (2.1) or £"(0;U,,) in the sample optimization problem (3.7), since
samples U7 . used in Lm (i 1; Uz ) change with iteration k. The analysis for stochastic
gradient descent will be rather different from that studied in Section 3. Below, we define a
‘pseudo objective function’ for the stochastic gradient descent case.

Define a mini-batch process U}, (t) = (U (t),---, U} (t))" and a step process x§'(t),
t >0, for 2} in (4.18) as follows:

Uy (t) = U, and x§'(t) = " for ké <t < (k+ 1)d. (4.19)
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To facilitate the analysis, we adopt a convention z§*(t) = 2" for ¢ < 0. Then, ﬁm(xg”(t —
8); UL (1) = L™ ;;Upy) for k8 < t < (k4 1)5. L£L™(0;U%(t)) may be treated as a
counterpart of £(0;U,,). As m — oo, £L™(0; U (t)) approaches g(6) for each d, and the
stochastic gradient descent algorithm (4.18) can still solve the sample optimization problem
(3.7) numerically. However, as t evolves, £(0; U% (t)) changes from iteration to iteration,
and depends on § as well as m, since mini-batches change as the algorithm iterates, and
the number of the mini-batches involved is determined by the time ¢ and the step size
6. There is no single bona fide objective function here, and the ‘pseudo objective func-
tion” £™(6; U7, (t)) cannot serve the role of genuine objective functions such as g(6) and
L™(6;U,,). The approach in Sections 2 and 3 cannot be directly applied to obtain an ordi-
nary differential equation like equation (3.9). In fact, as evident below, for this case there
exists no such analog ordinary differential equation. Instead, we will derive asymptotic
stochastic differential equations for algorithm (4.18). The new asymptotic stochastic dif-
ferential equations may be considered as counterparts of the ordinary differential equation
(3.16), which is an asymptotic version of the ordinary differential equation (3.9), but the
key difference is that the asymptotic stochastic differential equations must depend on the
step size § as well as m to account for the mini-batch effect (see more details later after the
stochastic differential equations (4.21) and (4.22) regarding the associated random variabil-
ity). Our derivation and stochastic differential equations rely on the asymptotic behavior
of VL™(9; U%,(t)) — Vg(#) as § — 0 and m — co.

We need the following initial condition to guarantee the validity of our asymptotic
analysis.

A5. Assume that initial values satisfy zf' — 2o = op((§/m)'/?).

We describe the asymptotic behavior of V£™(6; U% (t)) in the following theorem.

Theorem 4 Define a partial sum process

HP (1) = (md) > 37 [V @ (t5-1): U (10)) — VaaP ()] - 20, (420)
tp <t
where ty, = kd, k=0,1,2,---. Under Assumptions A1-A5, as § — 0 and m — oo, we have

that on D([0,T]), H§*(t) weakly converges to H(t) = fga'((X(u))dB(u), t € [0,T], where
B is a p-dimensional standard Brownian motion, o (0) is defined in Assumption A3, and
X (t) is the solution of the ordinary differential equation (2.3).

Remark 6 As discussed earlier, due to mini-batches used in algorithm (4.18), there is no
corresponding optimization problem with a well-defined objective function. Consequently,
we do not have any 6-free differential equation analog to the ordinary differential equation
(8.16). In other words, here, there is no analog continuous modeling to derive differential
equations free of §, obtained by letting § — 0. This may be explained from Theorem 4
as follows. It is easy to see that H'(t) is a normalized partial sum process for [T/
random variables Vﬁm(azgn(tk_l); U (tr)) whose variances are of order m~!, and the weak
convergence theory for partial sum processes indicates that a normalized factor (md)l/ 2 in

the definition (4.20) is required to obtain a weak convergence limit for H§"(t). On the other
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hand, to obtain an analog to the Z term in equation (3.16), we need to find some kind of
continuous-time limit for VL™ (0; U%,(t)) — Vg(0). As U (t) is an empirical process for
independent subsamples U? ., VL™(0; Uy, (t)) — Vg(0) may behave like a sort of discrete-
time weighted white noise (in fact, a martingale difference sequence). Therefore, a possible
continuous-time limit for VL™(0; U} (t)) — Vg(0) is related to a continuous-time white
noise, which is defined as the derwative B(t) of Brownian motion B(t) in the sense of
the Dirac delta function (a generalized function). In the notation of Theorem 4, we may
informally write H(t) = fot o (X (u))B(u)du in terms of white noise B(t), and VL™ (27 (t —
8); Uk, (1) — Vg(X(t)) corresponds to the derivative H(t) = o (X (t))B(t) of H(t). While
the factor 6Y2 on the right-hand side of the definition (4.20) is required to normalize a
partial sum process with [T'/d] random variables for obtaining a weak convergence limit,
from the white noise perspctive, here, we require a normalized factor §'/% to move from a
discrete-time white noise to a continuous-time white noise. As a matter of fact, the weak
convergence is very natural from the viewpoint of weak convergence for stochastic processes
(Jacod and Shiryaev, 2003; He et al., 1992). Because of the white noise type stochastic
variation due to different mini-batches used from iteration to iteration in algorithm (4.18),
the continuous modeling for stochastic gradient descent will be §-dependent, which will be
given below.

Using the definitions of z§*(¢) in (4.19) and Hj"(t) in (4.20), we recast algorithm (4.18)
as
' (t+0) — @' (t) = =Vg(@§(t))d — (8/m)"/* [H" (¢ + 6) — H"(1))-

Theorem 4 suggests an approximation of the step process H§"(t) by the continuous process
H(t), and we approximate the step process xj§'(t) by a continuous process X§"(t). Taking
the step size ¢ as dt, Hj"(t+0) — H§*(t) as dH(t) = o(X (t))dB(t), and z§"(t +9) — 2§'(t) as
dXj*(t), we transform the above difference equation into the following stochastic differential
equation,

dX3(t) = —Vg(XJ'(t))dt — (6/m)" /o (X (1))dB(t), (4.21)

where X (t) is the solution of the ordinary differential equation (2.3), and B(¢) is a p-
dimensional standard Brownian motion. The solution Xj"(t) of the stochastic differential
equation (4.21) may be considered as a continuous approximation of z}* [or }*(¢)] generated
from the stochastic gradient descent algorithm (4.18) [or (4.19)]. Since X§"(t) is expected
to be close to X (t), and the Brownian term in (4.21) is of higher order, we may replace X ()
in (4.21) by X§*(t) to better mimic the recursive relationship in (4.18). In other words, we
also consider the following stochastic differential equation,

dXF (1) = —Vg(XF(t))dt — (5/m) "o (X§())dB(1). (4.22)

Since we are interested in distributional behaviors, we consider solutions of the stochastic
differential equations (4.21) and (4.22) in the weak sense—that is, for each fixed ¢ and m,
there exist versions of the continuous processes XM(t) and X7*(t) along with Brownian
motion B(t) on some probability space to satisfy equations (4.21) and (4.22) (Ikeda and
Watanabe, 1981).

The stochastic Brownian terms in (4.21) and (4.22) are employed to account for the
random fluctuations due to the use of mini-batches for gradient estimation from iteration
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to iteration in the stochastic gradient descent algorithm (4.18), where m~1/2 and 6/2 are
statistical normalization factors with m for mini-batch size and [T'/4] for the total number
of iterations considered in [0,7] (as d for the step size). At each iteration, we resort to a
mini-batch for gradient estimation; thus, the number of iterations in [0, 7] is equal to the
number of mini-batches used in [0,7], and the factor §'/2 accounts for the effect due to
the total number of mini-batches used in [0, 7], while m~/? accounts for the effect of m
observations in each mini-batch.

The theorem below derives the asymptotic distribution of XT(t) and XP(t). Let
Vr(t) = (m/6)Y2[XP(t) — X(t)] and V(t) = (m/8)Y/2[X](t) — X (t)]. Treating them
as random elements in C([0,7]), we derive their weak convergence limit in the following
theorem.

Theorem 5 Under Assumptions A1-A5, as § — 0 and m — oo, we have

sup [X7'(t) — X (8)] = Op(m™5), (4.23)
0<t<T

and both V{(t) and Vi™(t), t € [0,T), weakly converge to V (t) which is a time-dependent
Ornstein- Uhlenbeck process satisfying

dV (t) = —[Hg(X (t))|V (t)dt — o(X (£))dB(t), V(0) =0, (4.24)

where IH is the Hessian operator, B is a p-dimensional standard Brownian motion, o(6)
is defined in Assumption A3, and X (t) is the solution of the ordinary differential equation

(2.3).

Remark 7 As X(t) and X" (t) in the gradient descent case are viewed as the population
and sample gradient flows, respectively, in Remark 1, we may treat X3*(t) and Xg”(t) as
stochastic gradient flows in the stochastic gradient descent case, and regard the Gaussian
limiting distribution of Vi™(t) and V{™(t) as the central limit theorem for the stochastic
gradient flows, which simply refers to the gradient flow central limit theorem (GF-CLT).

Remark 8 Theorem 5 reveals that while X*(t) and X5(t) have the same weak convergence
limit, they are an order of magnitude closer to each other than to X (t). This may also be
evident from the fact that the difference between the stochastic differential equations (4.21)
and (4.22) is at the high order Brownian term with X3 (t) replaced by its limit X (t). The
linear stochastic differential equation (4.24) indicates that V(t) has the following explicit
expression for t € [0,T] under the condition that Hg(X (u)) and Hg(X (v)) commute for
all u # v,

V(t) = — /0 "exp [ /u t Hg(X(v))dv] o (X (u))dB(u). (4.25)

The step process 5 (t) defined in (4.19) is the empirical process for iterates x}* generated
from the stochastic gradient descent algorithm (4.18). Treating x}*(¢) as a random element
in D([0,T]), we consider its asymptotic distribution in the following theorem.
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Theorem 6 Under Assumptions A1-AS5, as § — 0 and m — oo, we have

sup ' () = X5 (1) = op(m~Y2542) 4 Op(6] log 6/2),
t<

where x3*(t) and X§*(t) are defined by algorithm (4.19) and the stochastic differential equa-
tion (4.21), respectively. In particular, if we choose (§,m), such that md|logd| — 0 as
5 — 0 and m — oo, then for the chosen (6, m), (m/8§)"/2[z(t) — X (t)] weakly converges to
V(t), where V (t) is governed by the stochastic differential equation (4.24).

Remark 9 Theorem 6 indicates that iterate sequences xj* generated from the stochastic gra-
dient descent algorithm (4.18) can be very close to the continuous curves X'(t) and X(t),
which are governed by the stochastic differential equations (4.21) and (4.22), respectively.
With the appropriate choices of (§,m), we can make the empirical process x§*(t) for x}* to
share the same weak convergence limit as the continuous curves X§'(t) and X3'(t). The
results enable us to study discrete algorithms by analyzing their corresponding continuous
stochastic differential equations and their relatively simple weak limit.

Remark 10 We may consider stochastic gradient descent with momentum and/or dimin-
ishing learning rate and obtain the corresponding stochastic differential equations. For ex-
ample, § in (4.18) can be replaced by diminishing learning rate o, = nk=% for some a € (0, 1)
and constantn > 0, and the same arguments lead us to stochastic differential equations such
as (4.21) and (4.22) with extra factor (t + 1)~“. For the momentum case, we need to add
an extra linear term in the drifts of XT'(t) (or Xi(t)). For exzample, we consider stochastic
gradient descent with momentum

= yaly = VLM (2 Upy)s S =nk™% v =1-pn,
and obtain the following stochastic differential equation,
dXJ(t) = = [Vg(XF(0)(t + 1)~ + BXF(D]dt — (n/m)" e (X ())(t + 1)~ *dB(?).

4.2 Accelerated Stochastic Gradient Descent

We apply Nesterov’s acceleration scheme to stochastic gradient descent by replacing VL™ (
yp_1; Uy) in algorithm (3.10) with a subsampled version at each iteration as follows:

k—1

zi = yrtr — OVL (Yr1; Unp)s Yi =g+ m(ka —xply), (4.26)
where we use initial values z{]' and yi* = zg’, and U* , = (U{,--- ,U%.), k=1,2,--, are

independent mini-batches.

The continuous modeling for algorithm (4.26) is conceptually in parallel with the case
for the stochastic gradient descent algorithm (4.18) in Section 4.1, but the tricky part is
that we face numerous mathematical difficulties in multiple steps related to singularity in
the second-order stochastic differential equations involved.

As we have illustrated the continuous modeling of x}* generated from algorithm (4.18)
in Section 4.1, it is evident that our derivation of stochastic differential equations relies on
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the asymptotic behavior of VL™(0; U* (t)) — Vg(#) as § — 0 and m — co. Similar to the
cases in Sections 2 and 3.2, we define step processes

() =2}, () = g U(t) = Uy, for WVE<t<(k+1V5,  (4.27)

and approximate x§*(t) by a smooth curve X§"(t), which is given by (4.35) below. Note the
difference between the step sizes ¢ and §'/2 for the plain and accelerated cases, respectively,
as indicated at the end of Section 2.

Theorem 7 Define a partial sum process

HP (1) = (m20) /4 37 [VE (4 (t5): Upa (1) — Vol ()] £2 0, (428)
tp <t
where t, = k62, k = 0,1,2,---. Under Assumptions A1-A5, as § — 0 and m — oo, we

have that on D([0,T]), H§"(t) weakly converges to H(t) = fotcr((X(u))dB(u), t € 0,77,
where B is a p-dimensional standard Brownian motion, o (0) is defined in Assumption A3,
and X (t) is the solution of the ordinary differential equation (2.6).

Now, we are ready to derive the second-order stochastic differential equation correspond-
ing to algorithm (4.26). First, note that in the population-level, the second-order ordinary
differential equation (2.6) can be equivalently written as

dX(t) = Z(t)dt, (4.29)
dZ(t) = —[2Z(t) + Vg(X(1))] dt, ‘
where Z(t) = X (t); algorithm (2.4) is equivalent to
Tt = Tk + V0 2k, (4.30)
Zk+1=[1—%}21{—\/5V9<$k+2,%§’\/32k)7 '

where zj, = (2341 — xx)/V/9, which can be recasted as

Thtl—Tk __ 2k
{ Zk+\l/§zk _ 3 2 —Valx + 2k+3\/32 (4‘31)
Vi tprave kT VINTET 43 k)

where we take t;, = kv/0. We approximate (zy, 2;) by continuous curves (X (t), Z(t)). Note

that as 6 — 0, 3v/d — 0 and 2,5%;’\/5% — 0 in (4.31), which are negligible relative to tx

and x3. We take step size v/§ as dt and turn the discrete difference equation system (4.31)
into the continuous differential equation system (4.29).

Second, we replace (g, z) in (4.30) by (x,2;"), where 2" = (2}, — ™) /v/3, and
write the sample-level algorithm (4.26) in the following equivalent forms,

T = a2,
{ k+1 k k (4.32)

1/4
g = |1 = g o — VO Vg (aff + VI ) — SL[HP (tesa) — H' (1))
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or equivalently,

T, om
- (4.33)
s _ 3 m _ m 2k+3 m\ _ &Hgn(tkﬂ)*HE"(tk) ’
= ik = Vo (o + VO ) - A,
where again t; = kv/. Third, we approximate (2}, 2)*) by some continuous process

(X5 (t), Z5*(t)). As Theorem 7 suggests, we substitute Hy"(t) by H(t), with dH(t) =

o (X (t))dB(t); dropping the negligible terms 3v/8 and 2,5%3?\@ 2" and taking the step size

V6 as dt, we move from the discrete difference equation system (4.33) to the following
stochastic differential equation system,

dX§H(t) = Z§ (t)dt,
m 3 m m §1/4 (434)
Az () = — [2Z(t) + Vg(Xp (1)) dt — 2o (X (1)dB(t).
which—together with X7'(t) = ZJ"(t)—is equivalent to the following second-order stochas-
tic differential equation,

X5 + %st”(t) + Vg(XJ (1) + (§/m*) e (X (£)B(t) = 0, (4.35)

where initial conditions X*(0) = zf' and XJ*(0) = 0, X(t) is defined by the ordinary
differential equation (2.6), B(t) is a p-dimensional Brownian motion, and B(t) is white
noise defined as the time derivative of B(¢) in the sense of generalized functions (Hida and
Si, 2008).

As we have discussed and demonstrated for the stochastic gradient descent case in
Section 4.1, similar to the stochastic differential equations (4.21) and (4.22) for the stochastic
gradient descent algorithm, the second-order stochastic differential equations (4.34) and
(4.35) depend on ¢ and m through the stochastic Brownian terms. They are used to account
for the random fluctuation in mini-batches used for gradient estimation from iteration to
iteration in algorithm (4.26), where m~'/2 and §'/4 are statistical normalization factors
with m for the mini-batch size and [T'/§'/?] for the total number of iterations considered in
[0, 7] (as 6'/2 for the step size), or equivalently, the total number of mini-batches used in
[0, T7.

The theorem below indicates that the second-order stochastic differential equation (4.35)
has a unique solution. Here, again, we consider the solution in the weak sense that for each
fixed 0 and m, there exist continuous process Xj*(t) and Brownian motion B(t) on some
probability space to satisfy equation (4.35). As in Section 4.1, process Xj"(t) provides a
continuous approximation of iterate z}* given by algorithm (4.26). As § — 0 and m — oo,
the Brownian term in equation (4.35) disappears, and X§"(t) approaches X () defined by
the ordinary differential equation (2.6). Define Vi (t) = (m?/8)/4[X™(t) — X (t)]. Then,
X(t), X§*(t), and Vg™ (t) live on C([0,T1]). Treating them as random elements in C([0,77),
we derive a weak convergence limit of V{™(¢) in the following theorem.

Theorem 8 Under Assumptions A1-AJ5, the second-order stochastic differential equation
(4.35) has a unique solution in the weak sense, and as 6 — 0 and m — oo, V" (t) weakly
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converges to a Gaussian process V(t) on C([0,T]), where V (t) is the unique solution of the
following linear second-order stochastic differential equation,

V(t) + %V(t) + [Hg(X )]V (t) + (X (t))B(t) = 0, (4.36)

where IH is the Hessian operator, X (t) is the solution of the ordinary differential equa-
tion (2.6), o(0) is defined in Assumption A3, B(t) is a p-dimensional standard Brownian
motion, and initial conditions V(0) = V(0) = 0.

Remark 11 As X(t) and X"(t) in the accelerated case are viewed as the population and
sample Lagrangian flows in Remark 1, respectively, we treat X§'(t) as a stochastic La-
grangian flow in the accelerated stochastic gradient descent case and regard the Gaussian
limiting distribution of V"™ (t) as the central limit theorem for the stochastic Lagrangian
flows, which we simply call the Lagrangian flow central limit theorem (LF-CLT).

The step process z3'(t) in definition (4.27) is the empirical process for iterate z}' gen-
erated from algorithm (4.26). Treating «§*(¢) as a random element in D([0,T]) we consider
its asymptotic distribution in the follow theorem.

Theorem 9 Assume that there exists a € (0,1/2), such that 6m? =29 is bounded below
from zero. Then, under Assumptions A1-A5, as § — 0 and m — oo, we have

sup o' (t) — X3 ()] = op(m~1/26"%) 4 0y(6/%|10g 8]),

t<T
where z5'(t) and X§*(t) are given by the definition (4.27) and the stochastic differen-
tial equation (4.35), respectively. In particular if we choose (8, m) to further satisfy that
m/25141og 5| — 0 as § — 0 and m — oo, then for the chosen (6,m), (m?/8)"*[x(t) —
X (t)] weakly converges to V(t), t € [0,T], where V(t) is governed by the stochastic differ-
ential equation (4.36).

Remark 12 As mentioned earlier, similar to the stochastic gradient descent case, the con-
tinuous modeling depends on both § and m, and Theorems 7-9 are in parallel with Theorems
4-6. However, for the accelerated case, the challenges are largely with regard to the techni-
cal proofs. For example, we must handle second-order stochastic differential equations like
(4.35) with singularity (similar to the singularity case for the ordinary differential equations
(2.6) and (3.15)); it is difficult to analyze the complex recursive relationship in the accel-
erated stochastic gradient descent algorithm (4.26). Theorems 8 and 9 show that iterate
sequences x}' generated from the accelerated stochastic gradient descent algorithm (4.26)
may be very close to the continuous curve Xj'(t) governed by the stochastic differential
equation (4.35), and appropriate choices of (§,m) enable the empirical process x§'(t) for
iterates x}* to have the same weak convergence limit as the continuous curve X' (t).

Remark 13 The two conditions on (§, m) are compatible. The bound condition indicates
that for some generic constant C, 6*/2=1/4m=12 < C or§ > Cm=2/1=29) and the condition
m1/2(51/4|10g 5| — 0 requires that 6 should decrease faster than m~2. For evample, if we
take § = m~ for any b > 2, then §%/2~V/*m=12 < 1 holds for 1/2 > a > 1/2 — 1/b, and

m'/25' /4| log §| = bm'/?~P/*logm — 0.
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Below, we continue to study Example 1 considered in Section 3.4 under the stochastic
gradient descent case.

Example 2. In Example 1, we have already calculated Vg() = 6 — 8, IHg(6) = I,
o(0) = diag(r,62), and X (t) = 6 + (g — §)e~*. For the stochastic gradient descent case,
solving the stochastic differential equation (4.21), we obtain

X (t) = afe ™t +0(1 —e ) \/7/ u))dB(u)
=0+ (" —0)e " — \/E(T/O “tdBy (u), 92/: “tng(u)>/

= X(0) + (@ —zo)e™ + \/gdiagv, G)A(t)

= X(t) + (z" — xzp)e ™" + %V(t), (4.37)

where A(t) = —([f) e* tdBi(u), [; € 'dBy(u)) is an Ornstein-Uhlenbeck process whose
stationary dlstrlbutlon is a blvarlate normal distribution with mean zero and variance
equal to half of the identity matrix, and V(t) = diag(r,02)A(t) is the solution of the
stochastic differential equation (4.24). It is evident that the weak convergence of Vi"(t) =
(m/8)Y2[ X (t) — X (t)] to V(). For the accelerated case, as we have seen, the solution of

the ordinary differential equation (2.6) has the following form,

2(zo — 0)

X(t) =6+ ;

Ji(t).

Below we provide solutions of the stochastic differential equations (4.35) and (4.36) in this
case. First, we consider the solution V() of the stochastic differential equation (4.36). It is
easy to verify that ¢tV (¢) satisfies the inhomogeneous Bessel equation of the first-order with
constant term t3diag(7, #2)B(t), and its solution can be expressed as follows:

V(t) =

2 Jlt(t) /0 Ji(w)u?ding(r, 0)dB(u) — 7 Jlt(t) /0 Ji(w)u*diag(r, 62)dB(u),

where J;(t) and Ji(t) are the Bessel functions (Gatson, 1995) of the first and second kind
of order one, respectively. Since in this case, Vg is linear, IHg = 1, and the stochastic
differential equations (4.35) and (4.36) differ by a shift § and a scale m~/2§'/%, we can
easily find

j 4 208 =0 5y 125y )

MJI (t) + m~ Y254 (1),

With the initial value given in A5, it is evident that Vy™(t) = (m?/8)Y4 (X7 (t) — X (t)]
weakly converges to V().

24



JOINT COMPUTATIONAL AND STATISTICAL ANALYSIS OF GRADIENT DESCENT ALGORITHMS

4.3 Joint Computational and Statistical Asymptotic Analysis for Stochastic
Gradient Descent

As we advocate a joint asymptotic analysis framework in Section 3.4, here X(t), X" (¢),
Vi™(t), and V(t) provide a joint asymptotic analysis for the dynamic behaviors of the
stochastic gradient descent algorithms (4.18) and (4.26). The weak convergence results
established in Theorems 4-9 can be used to demonstrate the corresponding weak conver-
gence results in C(IRy) and D(IR,). It is more complicated to consider the asymptotic
analysis with ¢ — oo for the stochastic gradient descent case and extend the convergence
results further from [0,00) to [0,00]. As ¢t — oo, the Brownian motion B(¢) behaves like
(2tloglogt)'/2, and process H(t) often diverges; however, there may exist meaningful dis-
tributional limits for processes X§*(t), «5*(t), V5" (t), and V (t). For the stochastic gradient
descent case, we establish the weak convergence of V{™(t) to V(t) on D(IR,) and study
their asymptotic behaviors as ¢ — oo in the following theorem.

Theorem 10 Suppose that Assumptions A1-A5 are met, IHg(0) is positive definite, all
eigenvalues of fg Hg(X (s))ds diverge as t — oo, Hg(61) and IHg(02) commute for any
01 # 6o, and assume m'/25|log§|'/2 — 0, as 6 — 0 and m — oo. Then, we obtain the
following results.

(i) As & — 0 and m — oo, VI (t) = (m /&)X (t) — X (t)] and (m/8) 2z (t) — X (1)]
weakly converge to V (t) on D(IR4).

(ii) The stochastic differential equation (4.24) admits a unique stationary distribution
denoted by V (c0), where V (00) follows a normal distribution with mean zero and covariance
matriz I'(00) satisfying the following algebraic Ricatti equation,

I'(00) Hy (X (o0)) + Hy(X (00))T(00) = 02(X (s0)). (4.38

)

(i11) Further assume that there exists a unique stationary distribution, denoted by X" (00),

for the stochastic differential equation (4.21). Then, as § — 0 and m — oo, Vy"(c0) =
(m/8)2[ X (00) — X (00)] converges in distribution to V (co).

Remark 14 Similar to Theorem 3 and Remark 4, Theorem 10 indicates that for the
stochastic gradient descent case, as 6 — 0 and m — oo, Xj*(00) approaches X (oo) = 0,
Vit(t) = /m/6[ X5 (t) — X(t)] converges to V(t), t € [0,00], and V (t) weakly converges
to V(00) as t — oo. Intuitively, V(t) is a time-dependent Ornstein-Uhlenbeck process with
stationary distribution V(oc0) as its limit when t — oo, and similarly the solution X§"(t) of
the stochastic differential equation (4.21) may admit a stationary distribution Xj3"(co) as
the limiting distribution of X§*(t) when t — oo (Da Prato and Zabczyk, 1996; Gardiner,
2009). Naturally, X§*(co) corresponds to V(co). Mandt et al. (2017) essentially take these
results as their major model assumptions to establish that stochastic gradient descent can be
treated as a statistical estimation procedure in the Bayesian framework. Kushner and Yin
(2003) mainly investigated the convergence of stochastic approximation algorithms, such
as xy in (3.8) and ' in (4.18), by the so-called mean ordinary differential equations.
The main ideas are described in the following manner. Random effects in the algorithms
asymptotically average out, their convergence dynamics are determined effectively by the tail
behaviors of the iterates from the algorithms, and the mean ordinary differential equations
can asymptotically approximate the tail iterates (which are the iterates with iteration index
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k shifted toward infinity). Kushner and Yin (2003, chapter 10) also studied tail iterates
centered at the true target X (co) = @ (instead of X (t) in our case) to obtain a station-
ary Ornstein-Uhlenbeck process, instead of the time-dependent Ornstein-Uhlenbeck process
(4.24) in this paper. The stationary Ornstein-Uhlenbeck process corresponds to V(c0) in our
case, which is employed to describe the convergent behaviors of the algorithms around the
actual target X (0o0) = 6. In the convergence study of the Langevin Monte Carlo algorithm,
Dalalyan (2017a, 2017b) and Dalalyan and Karagulyan (2019) derived explicit error bounds
on the algorithm’s sampling distribution with respect to the target invariant distribution of
the Langevin diffusion.

Note that stochastic gradient descent is designed for the pure computational purpose,
and there is no corresponding objective function nor analog of minimizer 6,, for the stochastic
gradient descent algorithm, as mini-batches (and their corresponding gradient estimators)
change along iterations. It is not clear whether there are known statistical estimation
methods that correspond to the limits of §*(t) and X§*(t) as t — co. Below, we provide an
explicit illustration of the point through Examples 1 and 2 considered in Sections 3.4 and
4.2.

Example 3. First, from Examples 1 and 2 we evaluate

10) = [ o(X@)dB@w = (~Bi(0). 6B2(0)
where o(X(u)) = diag(r,60s), and X(u) = 0 + (zo — §)e . By the law of the iterated

logarithm for Brownian motion, H(t) diverges like (tloglogt)'/? as t — co. From (4.37),
we have

Xp() = X<t>+<xa"—xo>e-t+\/Zdiagmégm(t)

)
= X(t)+ (2 — x0)e " + EV(t), (4.39)
where A(t f b ou— 1talBl f b ou— tng )) is an Ornstein-Uhlenbeck process whose sta-

tionary dlstrlbutlon is a bivariate normal distribution with mean zero and variance equal
to half of the identity matrix, V(t) = diag(r, f2)A(t), and Vi (t) = (m/8)/?(a] — z0)e ™t +
V(t). As t — oo, A(t) approaches its stationary distribution given by Z/v/2, where
Z = (Z1,75), and Z; and Z, are independent standard normal random variables. Us-
ing expression (4.39), we conclude that as t — oo, Xj*(t) converges in distribution to
XI"(00) = 0 + (5/m)"/?diag(r,09)Z/+/2. For the initial values satisfying Assumption A5,
a — 20 = o((6/m)'/?), Vi (t) weakly converges to V (t), and Vj"(oo) weakly converges to
V(OO) = (TZl, 9222)/\/5

On the other hand, the stochastic gradient descent algorithm (4.18) yields

le = x?—l + 5(ﬁ:nk - :Ezn—l)’ k= 172a )

where U* . = (Ufy, -+ ,U*,), k > 1, are mini-batches, and U, is the sample mean of
15> Ul - In comparison with the recursive relationship ! = 27_; +9 (Un —xy_,) for

the stochastic sample optimization (3.7) based on all data and x = 1 + 6(9 — Tg—1)
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for the deterministic population optimization (2.1), the differences are (U, — U,) and

o( _;jlk — 9), respectively. In fact, for the stochastic gradient descent case, we rewrite the

recursive relationship as 2" = (1 — §)z* | + 6U*, and obtain

zp(t) = 2p' (1 - O 45> (1 - o)+, (4.40)
ké<t
Similarly, we have
22(t) = 231 — )M 4 U,6 Z =k g s(t) = wo(1 — 6/ + G5 Z §)rl—
ké<t ké<t

Letting t — 0o, we obtain

2§(00) = Und Y (1= 0)" =Ty, a5(c0) =10,
k=1

¢ 00
P(o0) =8 Jim S (1= 0)107,; =8 31— )T,

j=0 k=1
where sequence {U** }j is defined as the reverse sequence of {U, }x. It is evident that
X (00) = z5(c0) = 0, X"(c0) = x5(c0) = B, and X7"(00) and x§"(c0) approach 6 but
do not correspond to any statistical estimation procedures like én For ¢t € [0,00), when
d is small and m is relatively large, z5'(¢) can be naturally approximated by its ‘limit’
et +0(1 —e7t) — ((5/m)1/2 ev~to (X (u))dB(u), which is equal to X35 (t), where the
last term on the right-hand 51de of (4.40)—after being centered at 6 and normalized by
§1/2—weakly converges to fg e to(X(u))dB(u). To compare these processes, we assume

initial values z(' = z§ = ¢ for simplicity. Then, we have

22 (t) = 24(t) + (U — 6) [1 (- 5)W5J} , (4.41)
() = (1) +8 3 (1= &) HTz, - 0,
ké<t
= 25(t) + (U — 0) [1 (1- W]} 465 (1= KTy~ Ty (442)
ko<t

The second and third terms on the right-hand side of (4.42) account for, respectively, the
variability due to statistical estimation and the random fluctuation due to the use of mini-
batches for gradient estimation from iteration to iteration in the stochastic gradient descent
algorithm. Note that U, — # and Uq*nk — U, are of orders n~Y/2 and m~1/2, respectively.
This is true even for the case that mini-batches U , = (U{, -+ ,U} ), k > 1, are sampled
from the large data set U,, for the bootstrap resampling case. In fact, we may resort to the
strong approximation (Komlés et al., 1975, 1976; Csorgd et al., 1999; Csorgé and Mason,
1989) to obtain

7% — Uy =m Y2 A 4+ Op(m™logm), U, —0=n""2D, + Op(n~'logn), (4.43)
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where Ak, kK = 1,2,---, are almost i.i.d. random variables defined by a sequence of
independent Brownian bridges on some probability spaces, with random variables D,, de-
fined by another sequence of independent Brownian bridges on the probability spaces. As
m/n — 0, we easily conclude that the second term on the right-hand side of (4.42) is
of higher order than the third term, where the the third term represents the cumulative
mini-batch-subsampling effect up to the k = [t/d]-th iteration, with the second term for the
statistical estimation error. Equations (4.41) and (4.42) show that as m,n — oo, () and
x§*(t) approach 6; moreover, on average both gradient descent and stochastic gradient de-
scent algorithms remain on target, with the only difference being their random variabilities.
Theorems 1 and 2 establish an order of n~1/2Z for the random variability of the gradient
descent algorithm using all data, while Theorems 5 and 6 indicate that for the stochastic
gradient descent algorithm, the cumulative random fluctuation up to the [t/d]-iteration can
be modeled by process (§/m)"/2V (t), where V(t) given by the stochastic differential equa-
tion (4.24) (or its expression 4.25) is a time-dependent Ornstein-Uhlenbeck process that may
admit a stationary distribution with mean zero and variance o (X (00))/[2IHg(X (c0))], fac-
tor m~1/2 accounts for the effect of each mini-batch of size m, and factor 6'/2 represents
the effect of the total number of mini-batches that is proportional to 1/§. The normalized
factor (6/m)'/2 implies that while each mini-batch of size m is not as efficient as the full
data sample of size n, the repetitive use of mini-batch subsampling in stochastic gradient
descent utilizes more data and improves its efficiency, with the improvement represented
by 61/2, where 1 /9 is proportional to the total number of mini-batches up to the time ¢ (or
the t/d-th iteration). In other words, repeatedly subsampling compensates the efficiency
loss due to a mini-batch of small size at each iteration. Intuitively, this implies that the
stochastic gradient descent algorithm invokes different mini-batches to cause some random
fluctuation when moving from one iteration to another; as the number of iterations in-
creases, subsampling improves efficiency with factor (6/m)'/? instead of m~1/2
make up loss from n~2 to m~/2—that is, updating with the use of a large number of
mini-batches can improve accuracy for the stochastic gradient descent algorithm.

in order to

4.4 Convergence Analysis of Stochastic Gradient Descent for Non-Convex
Optimization

Our asymptotic results may have implications for stochastic gradient descent used in non-
convex optimization particularly in deep learning. Recent studies often suggest that stochas-
tic gradient descent algorithms can escape from saddle points and find good local minima
(Jastrzebski et al., 2018; Jin et al., 2017; Keskar et al., 2017; Lee et al., 2016; Shallue et
al., 2019). We provide new rigorous analysis and heuristic intuition to shed some light on
the phenomenon. First, note that we can relax the convexity assumption on the objective
function g(6) for the deterministic population optimization (2.1) in Theorems 46 and, thus,
Theorem 10 can be easily adopted to non-convex optimization with 6 being a critical point
of g(f). Suppose that stochastic gradient descent processes converge to the critical point
6. Applying the large deviation theory to the stochastic differential equations (4.21) and
(4.22) corresponding to the gradient descent algorithm, we find that as §/m goes to zero,
if the critical point is a saddle point of g(#), the continuous processes generated from the
stochastic differential equations can escape from the saddle point in a polynomial time (pro-
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portional to (m/8)'/?log(m/d)) (Kifer, 1981, Theorems 2.1-2.3; Li et al., 2017b, Theorem
3.3); in contrst, if the critical point is a local minimizer of g(6), the continuous processes
take an exponential time (proportional to exp{c(m/8)'/?} for some generic constant ¢) to
leave any given neighborhood of the local minimizer (Dembo and Zeitouni, 2010, Chapter
5; Li et al., 2017b, Theorem 3.2). We may also explain the phenomenon from the limiting
distribution perspective. Theorem 5 indicates that the continuous processes Xj"(¢) and
X(t) generated from the stochastic differential equations (4.21) and (4.22) are asymptoti-
cally the same as the deterministic solution X (¢) of the ordinary differential equation (2.3)
plus (8/m)'/2V (t), where V(t) is the solution of the stochastic differential equation (4.24).
The limiting process V(t) is a time-dependent Ornstein-Uhlenbeck process given by the
expression (4.25). Then, we propose the following theorem for the behaviors of g(Xj"(t))
and g(X[*(t)) around the critical point 6.

Theorem 11 Suppose that Assumptions A1-A5 (except for the convexity of g(-)) are met,
and the gradient descent process X (t) given by the ordinary differential equation (2.3) con-
verges to a critical point 6 of g(-). Then, we have the following results,

g(X5 (1)) = g(X () + (8/m)" 2V g(X (D) V;"(¢) + %[‘Csm(t)]’ﬂg(X(t))%m(t) +op(d/m)

=9(0) + %[X(t) — 0+ (8/m)" 2V () Hy(0)[X (8) — 6+ (5/m) "2V (¢)]

+op (3/m+[X(1) — ), (4.44)
V(X5 (1) = V < (1)) + (&/m) g (X () V" (1) + op ((3/m) %)
= Hy(O)[X (1) — 8+ (6/m) 2V (1)] + op ((0/m)/ + X (1) - 01) (4.45)

and the same equalities hold with X replaced by X, where X (t), XF'(t), and XI*(t) are
the solutions of the differential equations (2.3), (4.21), and (4.22), respectively; Vi"(t) =
(m/0)Y2[ X (t) — X(t)], and the equalities hold in the weak sense that we may consider
X5'(t), Vi™(t), and V(t) on some common probability spaces through Skorokhod’s represen-
tation.

If 0 = X (00) is a local minimizer with positive definite Hg(0), then as t — oo, V(1)
has a limiting stationary distribution with mean zero, its covariance matriz I'(00) satisfies
the algebraic Ricatti equation (4.38), and

Elg(X5" ()] = 9(X (1)) + %tr{aZ(X(OO))] +o(d/m), (4.46)
E[[Vg(X5"(1))]°] = [Va(X (t))” + %tr[ﬁ(X(OO))Hg(X(OO))] +o(d/m).  (4.47)

If 0 is a saddle point, V(t) diverges and, thus, does not have any limiting distribution.

Theorem 11 shows that as X (t) gets close to the critical point 0 within the range
of order (§/m)Y/2, g(Xi(t)) and g(X(t)) are approximately quadratic. As Theorem 5
indicates that V'(t) is the limit of Vy"(t), we may replace V3" (t) by V() in the expansions
of g(X§*(t)) and Vg(Xj*(t)) and find that V (¢) plays a key role in determining the behavior
of the stochastic gradient descent algorithm. If the critical point 6 is a saddle point of g(0),

29



WANG AND WU

Hy(-) is non-positive definite around the saddle point; then, the time-dependent Ornstein-
Uhlenbeck process V(t) does not have any stationary distribution—in fact, it diverges.
Thus, processes X7'(t) and X7*(¢) have unstable behaviors around the saddle point and
can make big moves, which leads them to escape from the saddle point. On the other hand,
if the critical point @ is a local minimizer of g(6), then g(-) may be approximately quadratic
with positive definite JHg(-) around the local minimizer. Moreover, V' (¢) has a stationary
distribution, and all the processes maintain stable stochastic behaviors. In addition, the
stochastic component (§/m)Y?V (t) plays a dominant role in determining the behaviors of
g(X(t)) and g(X!"(t)) around the local minimizer. In fact, equations (4.44)-(4.47) imply
that g(XF*(t)) and g(XF*(t)) behave as

g(X (1) + (6/m)'2Vg(X(8))V (1) + %[V(t)]/HQ(X(t))V(t),

whose mean is asymptotically equal to

GX(0) + 1 trlo(X(00))]

and Vg(X(t)) and Vg(X[*(¢)) function in a similar manner as
Vg(X (1)) + (8/m)" > Hy (X (1))V (1),

which has mean Vg(X (¢)) and variance asymptotically equal to

2 trlo(X (c0) g (X (00))].

m

First, it must be noted that the stochastic components in equations (4.44)—(4.47) depend
on the learning rate ¢ and the batch size m only through their ratio 6/m. Second, they are
characterized by the local geometry of the objective function around the local minimizer,
where the local geometric characteristics include the Hessian IHg(X (t)) and the gradient
covariance o?(X(t)). In particular, utilizing the joint analysis along with the algebraic
Ricatti equation (4.38) for the stationary covariance of the Ornstein-Uhlenbeck process,
we establish equations (4.46) and (4.47) to specify how the minima found by stochastic
gradient descent are influenced by four factors: the learning rate J, batch size m, gradient
covariance o%(#), and Hessian IHg(f). These may have implications regarding the behavior
of stochastic gradient descent for non-convex optimization. For example, equations (4.46)
and (4.47) indicate that the ratio § /m of learning rate to batch size is inversely proportional
to tr[o?(0)] for a given level of the expected loss at @ and tr[e?(6)IHg(f)] for a specific level
of the expected loss gradient at §. In other words, for a larger §/m, stochastic gradient
descent tends to find a local minimum with smaller tr[o?(0)] and tr[o?(0)IHg(6)]. For
a more sharp (or wide) local minimizer 6, we have larger (or smaller) IHg(f) as well as
faster (or slower) changing gradient around 6, which points to a tendency of larger (or
smaller) tr[o?()] and trlo?(0)Hg(f)]. However, tr[e?()] and tr[o?()IHy(d)] together
do not characterize sharpness or flatness of local minimizers, and batch size alone does not
determine the ratio of learning rate to batch size. Hence, our results do not directly support
or contradict the claims in Keskar et al. (2017) on large/small batch methods for finding
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sharp/flat local minima regarding generalization errors, which requires further theoretical
and numerical studies (Shallue et al., 2019).

A case in point is a special case studied in Jastrzebski et al. (2018) that identified three
factors that influence the minimum found by stochastic gradient descent. We describe
the special case in the following manner. Suppose that U has a pdf f(u;#), and the loss
function £(0;u) = —log f(u;6). Since we take the loss as a negative log likelihood, this
is the MLE case, and the gradient covariance o?(f) corresponds to the negative Fisher
information, which in turn is equal to E[IH((0;U)] = IHg(f). In this case, because the
stochastic differential equation (4.24) has the commutable diffusion coefficient (X (¢)) and
drift HHg(X (t)) = o?(X(t)), we have an explicit expression (4.25) for the time-dependent
Ornstein-Uhlenbeck process V(t), with the simple stationary distribution N(0,T'(c0)) =
N(0,I)/2. With these explicit forms and IHg(X(t)) = o?(X(t)), Jastrzebski et al. (2018,
Equation 9) employed direct calculations for this specific example to essentially establish a
special form of (4.46) with only three of the four factors regarding a relationship between
the ratio of learning rate to batch size and the width of the minimum found by stochastic
gradient descent. However, their corresponding formula no longer holds for the general case.
In fact, for this case, given IHg(X (t)) = o?(X(t)) and the explicit expressions of V (¢) and
its stationary distribution, our general results can easily recover the relation in Jastrzebski
et al. (2018, Equation 9). Moreover, our results are supported by additional numerical
studies (Luo and Wang, 2020; Wang, 2019).

Foster et al. (2019) revealed that the complexity of stochastic optimization can be
decomposed into the complexity of its corresponding deterministic population optimiza-
tion and the sample complexity, where the optimization complexity represents the minimal
amount of effort required to find near-stationary points, and the sample complexity of an
algorithm refers to the number of training-samples required to learn a target function suf-
ficiently well. Equation (4.45) indicates that finding near-stationary points of g(Xj"(t))
can be converted into making |Vg(X(¢))| small and controlling (5/m)Y2MHg(X (t))V (t).
Making |Vg(X(t))| small means finding a near-stationary point for the corresponding de-
terministic population optimization. Equation (4.47) implies that the control of (§/m)/?
Hg(X(t))V(t) can be achieved through bounding its variance—namely, imposing a bound
on tr[o?(X (00)) IHg(X (00))] along with selecting a sufficiently small ratio §/m of learning
rate to batch size—where the variance tr[o?(X (c0))IHg(X (o0))] is used to describe the
sample complexity of the associated statistical learning problem for the time-dependent
Ornstein-Uhlenbeck process. This indicates that our results are in line with Foster et al.
(2019), and future study may reveal further intrinsic connection between our results and
those of Foster et al. (2019).

Example 4. Consider the problem of orthogonal tensor decomposition (Ge et al., 2015;
Li et al., 2016). A fourth-order tensor Y € R has an orthogonal tenor decomposition if
it can be written as

d
4
T=D of,
=1
where a;’s are orthonormal vectors in IR? satisfying |a;| = 1 and a;ak = 0 for j #

k, and the problem is to find tensor components «;’s given such a tensor T. Since the
tensor decomposition problem has inherent symmetry—that is, a tensor decomposition is
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unique only up to component permutation and sign-flips—the symmetry property makes
the corresponding optimization problem multiple local minima and, thus, non-convex.

A formulation of orthogonal tensor decomposition as an optimization problem to find
one component was proposed in Frieze et al. (1996) as follows:

max 1(3,8,8,8)-
1B12=1

Take Y = E[U®?] to be the fourth-order tensor whose (i1, 2, i3, i4)-th entry is E(Uy, U;, Ui, Us,),
where U is a d-dimensional random vector with distribution (). Assume that U = AW,
where W is bounded, and has symmetric and i.i.d. components with unit variance, and A
is an orthonormal matrix whose column vectors a, - - - , g form an orthonormal basis. Let
1 be the k-th moment of i.i.d. components of W, with 11 = 0, ¥» = 1, and ¥4 equal to
its kurtosis. The optimization problem can be equivalently casted as the problem of finding
components a;’s into the solution to the following population optimization problem,

d
min —sign(y — 3)E[(B'U)"] = min Y —(afB)* subject to 8] = 1.
j=1

It is well known that there is an unidentifiable tensor structure for ¢4 = 3. For ¥4 # 3, we
may consider the empirical objective function )" | —sign(¢s — 3)(87U;)* based on avail-
able data Uy, --- ,U,, and study the corresponding stochastic optimization. The objective
function of the population optimization has the gradient and Hessian in the tangent space
as follows:

sign(va — 3)VY(B,8,8,8) =4 ([57 — |18I1]41.- - . 83 — |1BIl1]Ba) »

sign(ys — 3)IHY (B, 3,8, 8) = —12diag(B7, - - , 83) + 4/18[11a.

Applying both gradient descent and stochastic gradient descent algorithms for solving the
population and sample optimization problems, we obtain iterates x; at the population-level
and iterates 27" at the sample-level. As learning rate 6 — 0, x;/5) converges in probability
to the population gradient flow X (¢) that satisfies

d
= A (Xi —;_ljxe), i=1,--.d,

and (m/8)'/? [x’[?/ =X (t)] has a weak convergence limit V' (¢) that satisfies
AV (t) = —p(X 1)V (t)dt — o (X(t))dB(2),

where
p(B) = —12diag(87, -+, B7) + 4(|18)31s, o*(B) = 16Cov([BTW]*W).

In order to better understand the complex gradient flow system and time-dependent Ornstein-
Uhlenbeck process limit, we derive explicit expressions for the case of d = 2, where X (t) =
(X1(t), X2(t))" has the following closed-form solution,

X2(t) = 0.5+ 0.5[1 + cexp(—4t)] %%, X2(t) =1 — X3(¢),
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with constant ¢ depending on the initial value. In particular, if the initial vector([X7(0)]? <
[X2(0)]? (resp. ([X1(0)]? > [X2(0)]?), then X;(t) approaches 1 (resp. 0) as t — co. Direct
calculations yield

(1) /16 = E([uy W1 + usWoPWWT) — E([u1 W1 + uoaWa>W)[E([u1 Wi 4 uaWa]>W)]T,

where E([uyW1 + uaWa W) = (uithy + 3uiu3, udhs + 3uiug),

6
E([U1W1 + UQWQ]GWE) = Z gu1u2 ¢Z+2w6 0y
/=0
6
E([uiWh + UQWQ]GWQQ) = o Ugul ¢£+2¢6 ¢, and
/=0

6
E([un Wy + ugWa] " WiWa) = Clufud ™ “Pri1tbs_eqa.
=0

We may simplify (X (t)) and o (X (¢)) further by approximating X (¢) with its limit w, (some
critical point). For example, if X (¢) approaches critical point w, = (1,0) (saddle point), we
may approximate (X (t)) and a?(X (t)) by p(w,) and o?(w.), where

p(w,) = —12diag(w?;, w?) + 41 = diag(—8,4), o*(w.) = diag(ys — V3, Ve),

and obtain an approximate stochastic differential equation for the weak convergence limit
V() that satisfies

dV (t) = 4 | ~diag(—2, 1)V (t)dt — [diag(ys — v, ¥%)]/2dBy | .

On the other hand, if X (t) approaches critical point w, = 271/ 2(1 —1) (local minimizer),
we have p(w,) = —12diag(w?;, w%) + 41/d = —81/d = —41, and o%(w,) is equal to

1 <¢8 + 1696 + 1597 — 260315 — (Y4 +3)* 309395 — 126 — 2007 + (Y4 + 3)° >
8\ 30935 — 12406 — 2007 + (s +3)>  ¢bs + 166 + 159 — 269395 — (P4 +3)% )

dV (t) = —4V (t)dt — o (u.)dBy.

It is evident from the stochastic differential equations that V' (t) has a stationary distribution
for the local minimizer case, while V' (¢) diverges for the saddle point case (in fact, the first
component of V(¢) has a variance with exponential growth in ¢). Moreover, algorithms are
available to compute numerical solutions to the ordinary or stochastic differential equations
(Butcher, 2008; Kloeden and Platen, 1992).

4.5 Statistical Analysis of Stochastic Gradient Descent for Output Inference

There is a great current interest in the statistical analysis of stochastic gradient descent.
Examples include statistical variability analysis and Bayesian inference (Chen et al., 2020;
Li et al., 2018; Mandt et al., 2017; Toulis and Airoldi, 2017). Our results may have im-
portant implications on the statistical analysis of stochastic gradient descent. For the case
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of stochastic gradient descent, Theorems 5 and 6 reveal that output sequence z}' gen-
erated from the stochastic gradient descent algorithm (4.18) is asymptotically equivalent
to the continuous processes X(t) and X7'(¢) generated from the stochastic differential
equations (4.21) and (4.22), respectively; in turn, they are both asymptotically the same
as (6/m)'/2V (t) plus the deterministic solution X (¢) of the ordinary differential equation
(2.3), where V(t) is the solution of the stochastic differential equation (4.24). The limiting
process V (t) is a time-dependent Ornstein-Uhlenbeck process, and its stationary distribu-
tion is a normal distribution with mean zero and covariance I'(c0) specified by the algebraic
Ricatti equation (4.38), which is given by Theorem 10. This suggests that the statistical
inference based on x}" can be asymptotically equivalent to the statistical inference based
on discrete samples from X (t) 4+ (6/m)"/?V (t). As t — oo, X(t) converges to the true
minimizer X (co0) = 6, V(t) converges in distribution to V(co), which follows its stationary
distribution N (0,T'(c0)). Thus, inferences based on z}* can be asymptotically equivalent to
inferences based on discrete samples from the Ornstein-Uhlenbeck process with stationary
distribution N (6, T (c0)/m). Below, we discuss two specific cases.

Consider the Bayesian treatment of stochastic gradient descent in Mandt et al. (2017).
As described above, Theorems 5, 6, and 10 imply that outputs from the stochastic gra-
dient descent algorithm (4.18) are asymptotically equivalent to discrete samples from the
Ornstein-Uhlenbeck process with stationary distribution N (6, 6T (c0)/m), where T'(c0) is
given by the algebraic Ricatti equation (4.38). Applying the Bernstein-von Mises theorem
to discrete samples from the Ornstein-Uhlenbeck process, we find that the posterior distri-
bution is asymptotically equal to a normal distribution with mean and covariance equal to
the MLE of 6 and the Fisher information evaluated at the MLE, respectively. Since the
stochastic gradient descent outputs are asymptotically equivalent to discrete samples from
the Ornstein-Uhlenbeck process, the posterior distribution based on outputs from stochastic
gradient descent is asymptotically the same as the posterior distribution for the Ornstein-
Uhlenbeck model; thus, it is asymptotically equal to the normal distribution. The obtained
results can be employed to justify the essential inference assumptions in Mandt et al. (2017)
and Li et al. (2018) that stochastic gradient descent is a stationary Ornstein-Uhlenbeck
process, and the corresponding posterior distribution is Gaussian.

Another case is the average output from stochastic gradient descent. Denote by z§* the
average of N outputs fo = 2§ (ty,), = 1,---, N, from the stochastic gradient descent
algorithm (4.18), where N may depend on m and ¢, and N — oo as 6 — 0 and m — oo.
By Skorokhod’s representation theorem and Theorems 5 and 6, we have that as § — 0 and
m — 00, the average of 23"(¢) has the same asymptotic distribution as the average of Xj*(t)
and the difference between

N N N
(m/o)' 7 |INTIY X (t,) = NV X (t,)| and N7'Y Vi(ty,)
=1

i=1 =1

is negligible. Note that deterministic N1 sz\il X (tg,) converges to X (co) = 0 and that for
large N, the distribution of N—1/2 Zfi 1 V(tx,) can be approximated by a normal distribu-
tion with mean zero and covariance A~1SA~!, where with notations in Theorem 10 we set

A= Hy(0) = Hg(X(0)), S=02(0) = o2(X(c0)). (4.48)
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This suggests that (m/0)/2(z{* — §) has an asymptotic normal distribution with mean
zero and covariance A~'SA™!, and we may use outputs from stochastic gradient descent
to estimate A~'SA~! and employ the associated Ornstein-Uhlenbeck process to justify the
estimation approaches. See Chen et al. (2020) and Li et al. (2018) for the covariance
estimation study of stochastic gradient descent.

Note that there is a difference between the asymptotic covariances I'(co) and A=1SA~!
for stochastic gradient descent described above and in the literature. For example, in Chen
et al. (2020), Kushner and Yin (2003), Li et al. (2018), and Polyak and Juditsky (1992),
the average output from stochastic gradient descent has asymptotic covariance A=1SA™!,
while Mandt et al. (2017) and Theorem 10 indicate that the asymptotic covariance of the
corresponding outputs is equal to the stationary covariance I'(co) [defined in (4.38)] of the
associated Ornstein-Uhlenbeck process. We explain and reconcile the difference between
the covariances A71SA~! and T'(co) in the following manner. On the one hand, although
the Ornstein-Uhlenbeck process V(t) approaches its normal stationary distribution with
mean zero and covariance I'(c0), its re-scaled average ﬁ Zf\il V(ty,) =~ ﬁ fON V(s)ds
has asymptotic covariance A~'SA~!. Indeed, without confusion, we denote by V(t) the
stationary solution of the Ornstein-Uhlenbeck model as dV (t) = —AV (t)dt + S*/?dB; and
define its auto-covariance function as ((s1 — s2) = E[V(s1)(V(s2))’]. Then, the variance of

1 N .
i Jo V(s)ds is equal to

N pN N N
]1V/0 /0 B[V (s1)(V(s2))']ds1dss = ]1,/0 /0 C(s1 — s9)ds1dsy
N /Oo ((u)du+O(N")=AT'SAT + O(N ), as N — oo,

where A and S are given by the expressions (4.48) and the last equality is due to the fact
that

¢(0) =Var(V(s)) = /000 e A5Se 4305 = I'(o0) satisfying ((0)A + AC(0) = S,

¢(s) = e74°¢(0), ¢(=s5) =¢(0)e™™, 5 >0, and

/ C(u)du = A71C(0) + C(0)A™ = A7HC(0)A + AC(0)]A™H = A71s AL,
On the other hand, the stationary covariance I'(c0) is derived by treating the stochastic
gradient descent recursive equation as an approximate VAR(1) model (Polyak and Juditsky,
1992), where the VAR(1) model can be expressed as Vi, = UVj_1+eg, with ¥ = I —0A, and
random errors ey has covariance Var(eg) = 6S. The VAR(1) model can be approximated

by an Ornstein-Uhlenbeck model dV (t) = —AV (t)dt+ S'/2dB;. From the VAR(1) equation
and stationarity, we obtain

Var(Vy) = OVar(Vi_1)¥ + 68 = Var(Vy) — 6 AVar(Vy) — 6Var(Vi,) A + 62 AVar (Vi) A + 5.
Canceling out Var(Vy), dividing by § on both sides, and then letting 6 — 0, we have

AVar(Vy) + Var(Vy) A= S,
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which recovers the algebraic Ricatti equation (4.38) for the stationary covariance I'(co) of
the Ornstein-Uhlenbeck process V(). In particular, for the one-dimensional case, the AR(1)
variance has an expression Var(ey)/(1 — ¥?). Plugging ¥ = I — A and Var(e;) = §S into
the variance formula, we obtain

Var(ey) 5S _ 5
1-02  1-(1-64)2 24

+ 0(9),

where the leading term % is the exact stationary variance of the Ornstein-Uhlenbeck pro-

cess.

5. Proofs of Theorems

Denote by C generic constant free of (d,m,n) whose value may change from appearance to
appearance. For simplicity, we assume initial values xj = x{' = xo. In this proof section,
lemmas are established under the conditions and assumptions in corresponding theorems,
and we often do not repeatedly list these conditions and assumptions in the lemmas. To
track processes under different circumstances and facilitate long technical arguments, we
adopt the following notations and conventions.

It is often necessary to place processes and random variables on some common probabil-
ity spaces. At such occasions, we often automatically change probability spaces and consider
versions of the processes and the random variables on new probability spaces, without alter-
ing notations. Because of this convention and Skorokhod’s representation theorem, we often
switch between “convergence in probability” and “convergence in distribution.” Moreover,
because of the convention, when no confusion occurs, we attempt to use the same notation
for random variables or processes with identical distribution.

Convention 1. We reserve z’s and y’s for sequences generated from gradient descent
algorithms and the corresponding empirical processes, respectively, and X’s for solutions of
ordinary differential equations (ODEs) and stochastic differential equations (SDEs).

Convention 2. As described at the end of Section 1, to solve optimization (3.7) using
gradient descent algorithms, we add superscripts n and m to notations for the associated
processes and sequences based on all data in Section 3 and based on mini-batches in Section
4, respectively, while notations without any superscript are for sequences and functions
corresponding to optimization (2.1).

Convention 3. We reserve V'’s for normalized solutions difference between differential
equations associated with optimization (2.1) and optimization (3.7) under the cases for all
data and mini-batches, while we reserve V without any superscript as their corresponding
weak convergence limits.

Convention 4. As described at the end of Section 1, we add a superscript * to notations
U’s associated with mini-batches, and as in Convention 2, their corresponding process
notations have a superscript m.

Convention 5. We denote by |¥| the absolute value of scalar ¥, the Euclidean norm
of vector U, or the spectral norm of matrix V.
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5.1 Proof of Theorem 1

We show that the solution of the linear differential equations (3.12) and (3.13) are Gaus-
sian, assuming existence and uniqueness. For equation (3.12), its solution has an expression
V(t) = p(t) fg[Ho(s)]_1Z(X(s))ds, where IIy(¢) is a p by p deterministic matrix con-
structed by the Magnus expansion for solving the homogeneous linear differential equation
V(t)+ [IHg(X (t))]V (t) = 0 (Blanes et al., 2009). Thus, the limiting distribution of V"™(t) is
Gaussian. For equation (3.13) in the accelerated case, we may convert the second-order ho-
mogeneous linear differential equation V (¢)+ 2V (¢)+[IHg(X (t))]V (t) = 0 into an equivalent
first-order homogeneous linear differential equation system

( g(%) ) - [—Hg(()X(t)) —1§’] (

where Z(t) = V(t). Similar to the first-order case, we apply the Magnus expansion to
solve the first-order homogeneous linear differential equation system and then show that
the solution of the differential equation (3.13) linearly depends on Z(-). Therefore, the
limiting distribution of V() is also Gaussian. As a matter of fact, the theorem shows that
in the special case of Z(0) = o(6)Z, we have V (t) = II(¢)Z to clearly indicate the Gaussian
limiting distribution.

Now, we are ready to provide detailed arguments for the accelerated case, as results for
the plain case are relatively easier to show and will be established subsequently. Henceforth,
for simplicity, we provide proof arguments only for the case of Z(0) = o(0)Z, as the proof
for general Z(#) is essentially the same.

5.1.1 DIFFERENTIAL EQUATION DERIVATION
With U, = (Uy,---,Upn)7, let R™(0;U,) = (R}(6;U),--- , Rj(0; Up))", where

R}(6:U,) = v ié%f(e;m G| KRR
Then, we obtain
1
R™(0:Up) = vn [n ;W(Q; Ui) — Vg(e)] :
For the accelerated case, we can re-express ODE (3.11) as
(1) + %X”(t) V(X)) + \}ER”(X”(t); U,) = 0. (5.49)

By Lemma 5 below we obtain that X" (¢) converges in probability to X (¢) uniformly
over any finite interval. Thus, for large n, X" (¢) falls into © x, and Assumption A4 implies
that as n — oo, R"(X"™(t); U,) = Op(1), and n~/2R*(X"(t); U,)| — 0. Hence, ODEs
(3.11) and (5.49) both converge to ODE (2.6).

From Assumption A4 we have that R"(0;U,,) converges in distribution to o (6)Z uni-
formly over § € Ox, and the generalization of Skorokhod’s representation theorem in
Lemma 1 below shows that there exist UL and Z; defined on some common probability
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spaces with Z; ~ Nj,(0,1I,) and UIL identically distributed as U,, such that as n — oo,
R™(0;U}) — o(0)Z; = o(1) uniformly over # € ©x. Thus, we hold that the solution X"(t)
of equations (3.11) is identically distributed as the solution X{'(t) of

(1) + 2X7(0) + Vo(X7(0) + =R (X} () UF) =0,

Bl

which in turn may be written as

Xr(t) + %Xf(t) + V(XL (1) + \}ﬁa(xy(t))zT +o (n_1/2> —0. (5.50)
In particular, (5.50) is equivalent to (3.17) up to the order of n~/2, which implies that as
n — 0o, ODEs (3.11), (3.17), and (5.50) all converge to ODE (2.6), and X{'(¢) almost surely
converges to X (¢). Since the solutions of equations (3.11), (3.17), and (5.50) are defined
in the distribution sense, when there is no confusion, with a little abuse of notations, we
exclude index f and write equation (5.50) as

() + %X”(t) + V(X" (1)) + \/lﬁa(X"(t))Z o (n2) =0, (5.51)
where Z is a Gaussian random vector with distribution N,(0,I,), and initial conditions
X™(0) = 2o and X"(0) = 0.

The arguments for establishing Theorem 1 in Su et al. (2016) can be directly ap-
plied to establish the existence and uniqueness of the solution X" (¢) to (5.49) for each n.
We can employ the same arguments with Vg(-) replaced by Hg(X (t))II(t) + o(X(¢)) or
Hg(X(t))V(t)+o(X(t))Z to show that linear differential equations (3.15) and (3.13) have
unique solutions.

For the plain gradient descent case, Lemma 2 below shows that X™(t) converges to
X (t) uniformly over any finite interval. Similarly, we can establish that ODE (3.9) is
asymptotically equivalent to ODE (3.16), and the standard ODE theory reveals that they
have unique solutions.

Now, we provide a generalization of Skorokhod’s representation theorem. Assumption
A4 indicates that R"(0;U,,) converges in distribution to Z(#), and Skorokhod’s representa-
tion theorem enables the realizations of R™(0;U,,) and Z(#) on some common probability
spaces with almost sure convergence. The following lemma generalizes Skorokhod’s repre-
sentation theorem for a joint representation of U, and R"(6;U,) along with almost sure
convergence for R™(0;U,,) and Z(6).

Lemma 1 There ezist U}, and Z:(0) defined on some common probability spaces with
Z(9) and U}, identically distributed as Z(0) and U, respectively, such that as n — oo,
R™(0;U}) — Z:(9) = o(1) uniformly over 6 € Ox.

Proof. Our proof argument follows the construction proof of Skorokhod’s representation
theorem in Billingsley (1999, Theorem 6.7), with some delicate modifications involving the
joint distribution of U,, and R"(6;U,,) as well as its associated conditional distributions.
Let ¥y be the normal distribution of Z(#). Assume random variables U,, are defined on
probability space (2, F,P). Denote by ¥y, the joint distribution of U, and R"(6;U,),
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and by Wy, ¢y and ¥y, r the marginal distributions of U,, and R"(; U,,), respectively. Let
Z0(0),- - ,Ek(0) be the partition of IRP (the support of normal distribution Wy), such that
(i) Yy(Z0(0)) < €, (ii) the boundaries of Zy(f),--- ,Zx(0) have probability zero under Wy,
and (iii) the diameters of Z1(0), - - - ,Zx(0) are bounded by €. Here, we use notation =;(#) to
indicate the possible dependence of the partitions on 0. For r = 1,2,---, we take ¢, = 27"
and obtain partition Eg(6),--- ,=; (#). Assumption A4 indicates that R"(6; U,) converges
in distribution to Z(#) uniformly over # € ©x, which implies that for each r there exists an
integer n) (free of 6), such that for n > n7,

Vonr (5i(0) = (1—6)0(Z7(0),  i=1--k, 0 cOx.

As in Billingsley (1999, Theorem 6.7), we can always find a probability space to support
a random element with any given distribution; moreover, by passing to the appropriate large
or infinite product space, we can show that there exists a probability space (Qy, F;, IP;) to
support random variables £, Z+(0), U,,, and U:rw-,
other—with the following four properties.

(i) & follows a uniform distribution on [0, 1].

(ii) Z1(0) follows a normal distribution Wy, and U,, has distribution Vo nu-

(iii) For each ny < n < nj,; and for each Zj(#) with non-zero probability under Wy,

and A, n,i > 1—all independent of each

we take UILJ. to be an independent random variable on (€4, F;, IP;), such that U;rm. and
R”(Q;Ul’i) jointly follow distribution Wy ,(-|=7(#)), which denotes the joint conditional

distribution of U, (w) and R" (0; Uy (w)) given R" (0; U, (w)) € ZI(8) (the restriction of
the joint distribution Wy, on the set {u, R" (f;u) € Z7(0)})—that is, for any Borel sets
Ay C IR™ and A, C IRP,

P; U] () € Ay, B" (6,04 (wp)) € 4]

= PT [U-n(WT) S Al, R" (9; Un(wT)) S A2| R" (9; fJn(wT)) € EZT(Q)]

= P[U,(w) € A1, R" (0; U, (w)) € A2| R" (0; U, (w)) € E7(6)]

= \Ifg’n(Al X AQ’E:(Q))
Taking A; = IR™ in the above equality, we obtain the marginal result for R"™(6; Ujm),

Py [R (0:U], (o)) € Ao| = I, [R" (6 Un(wy)) € Ao| B (6: Un (1)) € Z1(6)]
= IP[R" (6;Up(w)) € As| R" (6; Un(w)) € Z{(0)] = Yo.n.r (A2|Z(0))
(iv) For each ny <n < ny_;, the distribution of A, is given by

ko

va(A) = 'Y Wo (A x RPIZ[(6)) [Wo,n,r(E(9) — (1 — &) Lo(E](6))].
1=0

Now, we define U}, on (Q4, Fy, IP;) in the following manner. For n < nj, take U, ; = U,.
For each ny; <n <nj,, define

kr
UL =) "Ul {6 <1— 6., Z4(0) € E1(0)} + Apl{€ > 1 — ).
=0
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We derive the distribution of UIL. For any Borel set A; C IR™,

P-(Ul € 4)) = ZJPT[ L€ ALZ(0) €TI0),E<1—e,

—I—ZPJ[(An € A,€> 1 — ET)

=(1-¢) ZIPT[ € A1] PPy [Z4(0) € Z5(0)] + 6vn( A1)

kr
= (1—€) ) Ton(Ar x RP|Z[(0))Te(Z(6)) + €rvn(Ar)
i=0
kr
= Wgn(Ax RP|Z}(0)) ¥ r(Z](0))
1=0

ky

=Y PU, € AL R (0:U, () € ZH0)
=0

= P[Un € Al] = qj@,n,U(Al)7

where the fifth equality is on account of the definition of distribution 1, (which is a reverse
construction). In other words, we have shown that U}, is identically distributed as U,
for all n. Let Qp = {€ < 1-6,%:(0) € E5(0)} and Qf = liminf, o0 Q1. Then,
IP;(Q7 1) > 1 — 2¢, and an application of the Borel-Cantelli lemma leads to IP;(€2) = 1.
For ny < n < ny ,, on set Q.+, R"(0; U}) and Z.(0) fall into the same set Z}(6), whose

diameter is less than €. Thus, on Qf, R"(0; U}) a.s. converges to Z:(6) uniformly over
fcOx.

5.1.2 WEAK CONVERGENCE AND TIGHTNESS

To prove the weak convergence of V,,(t) to V(t), we need to establish the usual finite-
dimensional convergence as well as uniform tightness (or stochastic equicontinuity) (Kim
and Pollard, 1990, Theorem 2.3; Pollard, 1988; Van der Vaart and Wellner, 2000). We
establish finite-dimensional convergence below.

For the accelerated case, taking a difference between ODEs (2.6) and (5.50), we have

X7(0) = KO+ 170 - KO+ Vo 0) ~ 9(X(0)] + =0 (X7 0)Z =0 (n7172).

Let V(1) = VAILXE(1) — X(0)]. As n = 00, XE(1) s X(0), 0(X7(1) = o(X (1) +0(1),
and Vg (X7(8) ~g(X (£)] = V(X O)XP ()~ X(O-o(XP()~X (1)) thus, V(1) satisis
V7(6) + SVP(0) + Ha(X (VP (1) + o (X (1) 21 = o(1).
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As n — oo, Vi (t) almost surely converge to the unique solution V;(t) of the following linear
differential equation,

T4(0) + VA1) + [E(X(0)]Vi (1) + o(X (1) =0,

where X () is the solution of equation (2.6), random variable Z; ~ N,(0,1,), and initial
conditions V;(0) = V;(0) = 0. As V(t) and V;(t) are governed by the equations with the
same form but identically distributed random coefficients Z and Z;, we easily see that V(¢)
and V() are identically distributed.

The almost sure convergence of V{"(¢) to V;(t) implies the joint convergence of (Vy"(t1),
o, V() to (Vi(ta), -+, Vi(tk)) for any integer k and any tq,---,t; € IRy. From the
identical distributions of X™(¢) with X{'(t), V" (¢) with V{"(¢), and V (¢) with V;(t) we imme-
diately conclude that (V™(t1),---,V™(tx)) converges in distribution to (V' (t1),---, V(tx)).
This establishes the finite-dimensional distribution convergence of V"™(t) to V (t).

For the plain gradient descent case, an application of the similar argument to ODEs
(2.3) and (3.16) can establish the finite-dimensional convergence.

Now, we show the tightness of V,,(t). To establish the tightness of V,,(t) on [0,7T], we
need to show that for any € > 0 and 1 > 0, there exists a positive constant J, such that

lim sup P sup Vo (t1) — Vi(t2)| > n| <e, (5.52)
n—o0 (t1,t2)€T(T,5)
where T(T, (5) = {(tl,tg),tl,tg S R+,max(t1,t2) <T, ‘tl — t2’ < (5} The tightness of Vn<t)
on IR, requires the above result for any T' < oc.
Note that as (5.52) requires only some probability evaluation, with the abuse of nota-
tions, we drop index 1 and work on equation (5.51).
5.1.3 WEAK CONVERGENCE PROOF FOR THE PLAIN GRADIENT DESCENT CASE

Lemma 2 For any given T > 0, we have

X™(t) — X(t)] = Op(n~?).
trerfgg}l (t) (t)] p(n= %)

Proof. From ODEs (2.3) and (3.9), we obtain
X" () = X(t) = =[Vg(X"™(1)) = Vg(X ()] = n >R (X"(t); Un),
and using Assumptions Al and A2, we arrive at

[Vg(X™ (1)) — Vg(X(8)] < LIX™(t) — X ()],
n~ V2 RM(X"™(t); U,) — RM(X(£); Uyp)| < <n—1 Z hi(U;) + L) X" () — X(t)].
i=1
Combining them we have

X1 - X)) < n V2 / [R"(X(s); Up)lds
0
+ (n_l Zhl(Ui) + 2L> / | X" (s) — X (s)|ds,
i=1 0
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and an application of Gronwall’s inequality leads to

[X"(t) = X ()] < n_m/ [R™(X(5); Un)lds

t
_1/2< —1Zh1 —|—2L>/ e(n 1 il m(Ui)+2L) “du/ |R™(X (s); Un)lds,
0

which implies that

T
max | X™(1) — X(1)| gn—1/2/0 IR (X (5): U,)|ds

t€[0,T
T u

+n1/2< *1Zh1 +2L>/ e(”lz?lhl(U"HQL)“du/ |R™(X (s); Uy)|ds.
0 0

Since Assumptions A3 and A4 indicate that sup, |[R"(X(t); U,)| ~ sup,|o(X(¢))Z] =
Op(1),and n=t3"1 | hy(U;) converges in probability to E[h; (U)] < oo, the above inequality
shows that maxc(o ) [ X" () — X(t)] = Op(n~%). m

Lemma 3 For any given T' > 0, V"(t) is stochastically equicontinuous on [0,T].

Proof. Lemma 2 has shown max,co 7] [V"(t)| = Op(1). From ODEs (2.3) and (3.9), we
have

VM (t) = Va[X" (1) — X (8)] = —v/alVg(X" (1) — V(X (1)] — R"(X"(); Uy,),
V()] < ValVg(X™ (1) = V(X (£)] + [R*(X"(1); U,)|
< LVRIX™ (1) = X(8)] + | R (X" (£); U,)|:

Lemma 2 shows that /n|X"(t)) — X (t)| = Op(1), which indicates that for large n, X™(t)
falls into © x and assumption A4 in turn implies | sup, R™(X"(t); Uy,)| ~ sup, |o(X"(t))Z| =
Op(1). Substituting these into the upper bound of |V"(t)|, we prove that maxe(o,7] Vr(t)| =
Op(1). Combining this with max;cpo 7y [V"(t)| = Op(1) shown in Lemma 2, we immediately
establish the lemma. B

Proof of Theorem 1 for the plain gradient descent case. The same perturbation
argument in Section 5.1.2 can be used to show finite-dimensional distribution convergence of
V"™ (t) to V(t) for simple ODE (3.9) in the plain gradient descent case. With the tightness of
V" (t) shown in Lemma 3 together with the finite distribution convergence, we immediately
prove the weak convergence of V"(t) to V (t) in the plain gradient descent case. B

5.1.4 WEAK CONVERGENCE PROOF FOR THE ACCELERATED CASE

We can use the same proof as that given in Su et al. (2016, Theorem 1) to show that
ODE (3.11) has a unique solution for each n and U,. While the proof arguments in Su
et al. (2016, Theorem 1) mainly require local ODE properties, like those near a neighbor
of zero, our weak convergence analysis needs to investigate global behaviors of processes
generated from SDEs and ODEs with random coefficients. First, we extend and refine a
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few local results for the global case and establish several preparatory lemmas for proving
weak convergence in the theorem.
Given an interval Z = [s,t] and a process Y (t), define for a € (0, 1],

Mo(s,1;Y) = Mo(Z;Y) = sup
u€|[s,t]

(5.53)

In the proof of Theorem 1, we take a = 1 and use M;(s,¢;Y). We need M,(s,t;Y) with
a < 1 subsequently in the proof of Theorem 8.

Lemma 4 For X (t) and X™(t), we have

MilotiX) < s | (24 25 )1k + e )]

1
T (U + 2L = 56
(24 O 2EEZ D) ot (w4 2R (090,
" 1
M 65 X5 = X0 < 160, v 2Lt = 9)2/6
+20(Un) + SLYX"(s) - X()] + 0~ V2RI (X" (5); Uy)|

Ml(svt; Xn) <

{8/s+ (= 9)[C(U) +2L)|X"(5) = X(s)]

+n 2 sup R"(X(U);Un)—R"(X(5)5Un)‘}’

w€[s,t]

when s > 0 and t — s < \/6/[C(U,) +2L], ((U,) = L3 hi(U;), and hi(-) is given in

n
Assumption A1. In particular, for s =0,

Vg (o)l + n~ /2| R" (20; Uy)|
1—[C(Un) +2LJt2/6

——— M;(0,t; X") <

. n-1/2
B T (UM TG

|R™(w0; Un)| + P [R" (X (u); Un) — R"(x0; Un)|
u€|0,t

Proof. Because of similarity, we provide proof arguments only for Mi(s,t; X™ — X). As

Vi(t) = /n[X™(t) — X ()], we have Mi(s,t; V") = \/nM;i(s,t; X" — X) and establish the
inequality for M (s,t; V™). V"(t) satisfies the differential equation

V() + %V"(t) +vnVg(X" (1)) — g(X ()] + R"(X"(t); Uy) = 0. (5.54)
Let

H(t; V") = vnVIg(X"(t)) — g(X(8))] + R"(X"(t); Un),
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and J(s,t; H,V") = fst u3[H (u; V™) — H(s; V™)]du. Then, we have

[H (V") = H(s; V)| < V| VIg(X™ (1) = 9(X"(s)) — (X (1)) + g(X(s))]]
+ R (X" (t); Uyp) — R™(X"™(5); Uy).

As in the proof of Lemma 2, using Assumptions A1l and A2, we obtain

Vi |VIg(X™ (1)) — g(X"(s)) — g(X (1)) + g(X(s))]]
< Lv/n|X"(t) = X(8)| + Lyv/n|X"(s) — X (s)],
[R™(X"(8); Un) — R™(X"(5); Un)| < [R™(X"(2); Un) — R”( (1); Un)|
+ R (X" (5); Up) = RM(X(5); Un)| + [R™(X(2); Un) — B*(X(s); Un)|,
| R (X"™(w); Un) — R*(X (u); Un)| < [((Un) + LIVn| X" (u) = X (u),

VAL (0) = X(O) = V() = [ 1770 = V76l V) (6 97
Putting together these results, we arrive at
|H(t; V") — H(s; V")| < [¢(U,) + 2L]
[ 177 = V20 )+ - V)| + 17X 0 U) = B9 0)
On the other hand, we have

/ |V”(u)—V”(s)\du§/(u—s)|Vn(u)_Vn(s)|du§/(u—s)Ml(s,t;V")du

u—=S

t
/ My (s, VPYuB(u — 5)2du/2 < My(s, t: V)t — 5)°/6.
S
Substituting the above inequalities into the upper bound for |H (u; V™) — H(s; V™)| and the

definition of J(s,t; H, V™), we conclude that

|T(s, 6 H,V™)| < (¢ — 5) sup |[R"(X(u); U,) — R*(X(s); U,

u€|[s,t]

+[C(UR) + 2] { My (s, 15V (= 8)°/6 4+ RIVE(3)] + (¢ = )[ V()3 — )}

ODE (5.54) is equivalent to

B3V (t
‘;t( ) _ —t3H(t; V"), which implies that
. ) t 4t
B3V (t) — 3V (s) = —/ uPH(u; V™) du = — H(s; V™) — J(s,t; H, V™),
Tn(p\ _ Umn 33 4 _ M4 CH. Y
V() -V (s):_t s "(s) — t*—s H(S;V”)—J(S’t’ ,V )’
t—s t3(t — s) 43(t — s) t3(t —s)
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and using the upper bound of |J(s,t; H, V")| and algebraic manipulation, we obtain

Vi) = Vi(s)| _ 2= th— st J(s, t; H,V"

VIO V0 ¢ B2 vy LY
2 S S 2 S S

< #W”( )| + W|H(S;Vﬂ)|

AT .
+ 100+ 22] [ MG, v 2 o) 4 - 1)

+ sup |R™(X(u);U,) — R"(X(s); Up)|.
u€|[s,t]
As the above inequality holds for any ¢ > s, we replace t by v, take the maximum over
€ [s,t], and use the definition of M;(s,¢; V™) (which is increasing in t) to obtain

Mo, 15V < 206 4 1B V) 4 (0 + 22, 1)

+ 16U + 2LV + (= )T+ s R (0; Un) = R (X ()50
— 5)?
< 2] + LV )] + B0 U]+ (G0, + 2202, s v E

+[C(Un) +2L]2/V"(s)| + (t = 8)[V™(s)[] + sup |R"(X(u); Un) — R"(X(s5); Un)|-

u€|s,t]

Further, solving for M;(s,t; V™) yields
1
1—1[C(Un) + 2L](t — 5)?/6

Mi(s,1:V") < {3/5+ (= 9)[C(Un) +2L))|V"(5)]

+[2¢(Un) +5L][V*(s)| + [R*(X"(5); Un)| + sup [R"(X(u); Uy) — R"(X(S);Un)l} ,

U€E|[s,t]

when s >0and t —s < \/6/[C(Un)'+ 2L]. If s = 0, we replace the coefficient 3/s by 1/t in
the above inequality, and V"(0) = V"™(0) = 0, X™(0) = X(0) = x¢. Then, we obtain

1
1—[¢(Un) +2LJt2/6

M (0,8 V") <

|R"(w0; Uy)| + 81[1p] [R"(X (u); Up) —R”(fvo;Un)!] :
u€l0,t

which specifically implies that

wy | XO-X@1

t</3/[¢(Un)+2L] t

that is, X" (t) — X (¢) uniformly over [0, NIRCBESIN

2|R"(z0; Up)| + sup |R"(X(U);Un)!] — 0,
u€[0,t]

Lemma 5 For any given T > 0, we have

X" (¢t X _ -1/2 n — 1
e [X7(0) ~ X(0] = Opln™%), s [V'(0)] = O3 (1),

’ = _1/2 =
i [X7(8) = X(0)] = Op(n™%), - max [V(5)] = Op(1).
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Proof. As V™(t) = /n[X"(t) — X(¢)], we need to establish the results for X"(¢) — X(¢)
only. Since, as n — oo, ((U,) = 3" m(U;)) — E(h(U)). Divide the interval

[0,T] into N = {T\/[E(hl(U)) +2L]/3} + 1 number of subintervals with length close

to /3/[E(h1(U)) +2L] (except for the last one), and denote them by Z; = [si_1, si],
i=1,---,N (with s = 0, sy =T, 71 = [0,s1], Zy = [sn-1,T]). First, for t € Iy,
from Lemma 4 we have

X" (8) = X(8)] < [T Mi(Za; X7 — X) < O™ V2 [|R (203 U)| + [R™ (X (51); Un) ]

[X"(t) = X ()] < /I X" (1) = X (w)|du < On~ 2 [|R"(20; Un)| + [R* (X (s1); Un)|] -

Assumption A4 implies that R"(xo; Un) = Op(1), and R"(X(s1); Uy,) = Op(1); thus, the
upper bounds of X™(t) — X (t) and X"(t) — X (t) over t € Z; are Op(n~1/?).
ForteZ;,i=2,--- ,N, from Lemma 4 we have
[ X7 (8) = X (8) = X" (si-1) + X (si-1)| < |T[Mi(Zi; X" - X)

<C [[C(Un) + C1|X™(5i-1) — X (si—1)| + [C(Un) + Co] | X" (si-1) — X (si-1)|

+Cn /2 {|Rn(Xn(5i—1)§ Un)l + 2sup | R" (X (w); Un)l} )

and
| X™(t) — ()|<\X”(8z 1) = X(si—1)| + |Tl| X" (si=1) — X (si—1))
/ X7 (1) — X () = X"(s1-1) + X (551)ldu

[[C(U ) + C1)|X™(si-1) — X (si-1)| + [C(Un) + Co)|IX"(si-1) — X (si-1)]

+Cn~1/? {|R”(X"(si_1); U,)| + 2sup |R™ (X (u); Un)|} )
u>0

We use the above two inequalities to prove by induction that the upper bounds of X" (t) —

X(t) and X"( ) — X (t) on [0,T] are Op(n~'/?), and the upper bounds of X"(t) — X (t) and
X"( ) — X( ) on [0, T] are Op(n ~1/2). Assume that the upper bounds of X™(t) — X (t) and
X™(t)— X (t) on UZ _1Z; are Op(n~'/2). Note that N is free of n, and by induction we show
that the upper bounds of X™(t) — X (t) and X" (t) — X (t) over t < s;_; are Op(n~"/?)—in
particular X"(s;—1) — X(s;—1) in probability—and, thus, assumption A4 indicates that
R™(X"™(si-1); Up) = Op(1), and sup,>q |R"(X (u); U,)| = Op(1). The above-mentioned
two inequalities immediately reveal that their upper bounds on Z; are also Op('rfl/ 2,
Hence, we establish that the bounds of X™(t) — X (t) and X™(t) — X (t) on Uévlej = 10,7
are Op(n~12). m

Lemma 6 V" (t) is stochastically equicontinuous on [0,T].

Proof. Lemma 5 indicates that max,c(o 71 |V"(t)| = Op(1) and max,c( 1] V()| = Op(1),
which implies that V™ (t) is stochastically equicontinuous on [0,7]. W

Proof of Theorem 1. Lemma 6 along with the finite distribution convergence imme-
diately lead to that as n — oo, V"™(t) weakly converges to V (¢). B
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5.2 Proof of Theorem 2

We prove Theorem 2 in two subsections for the plain and accelerated cases.

5.2.1 PROOF FOR THE PLAIN GRADIENT DESCENT CASE

Lemma 7 For the case of the plain gradient descent algorithm, we have

ma [« (1) — X7(0)] = Op(9), | max, [z, — X" (k6)| = Op ).

where {x}'} is generated from algorithm (3.8), with x}(t) its continuous-time step process,
and X" (t) the solution of ODE (3.9).

Proof. Algorithm (3.8) is the Euler scheme for solving ODE (3.9), and we apply the stan-
dard ODE theory to obtain the global approximation error for the Euler scheme. First,
by Assumption Al, we have that VL"(0;U,) is Lipschtiz in 6 with Lipschitz constant
LS, hi(U;), which converges in probability to E[hi(U)] < co. On the other hand, taking
derivatives on both sides of ODE (3.9), we obtain

Xn(t) = —IHL(X"(t); Up) X™(t) = EHLY (X" (t); U, ) VLY(X"(t); Uy).

Using Lemma 2, we conclude that for large n, X™(t) falls into © x; thus, Assumption A4 in-
dicates that sup, |[VFL™(X™(t); U,)| ~ sup, |VFg(X™(t)) + n~ 20, (X" (t))Z| = Op(1),
where Z, are standard normal random variables. Combining these results, we obtain
SUPyefo, 7] |X™(t)] = Op(1). An application of the standard ODE theory for the global
approximation error of the Euler scheme (Butcher, 2008) leads to

-1
tIerfoa}’}] lz5(t) — X"(t)| <6 ( Zhl ) sup |X"(t [exp < Zhl ) - 1]

t€[0,T)]
=0Op(0). W

Proof of Theorem 2. Lemma 7 establishes the first order result for x}(t) — X"™(t),
and the weak convergence result is the consequence of the order result and Theorem 1. B
5.2.2 PROOF FOR THE ACCELERATED GRADIENT DESCENT CASE

Note that (z,yx) and (x},y;') are generated from accelerated gradient descent algorithms
(2.4) and (3.10), respectively, and X (¢) and X"(¢) are the respective solutions of ODEs
(2.6) and (3.11).

Lemma 8 For fired T > 0, as § — 0, we have

max |Tj — X(k:élﬂ)‘ = 0(6"?|10g d)), (5.55)
k<TS§-1/2

max |z — X(k51/2)‘ = 0(6'?10g d|), (5.56)
k<Té-1/2

where sequence xy, is generated from algorithm (2.4), X (t) is the solution of the correspond-
ing ODE (2.6), and zj, = (xp4+1 — a:k)/éé is given in (4.31).
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Proof. We rewrite (2.4) as

k 2k+3 1
Trt2 = Y1 — OVG(Ykt1), Ykt1 = Thy1 + o 3($k+1 —TE) =Tk + 13 62 2,
and obtain
2k
Zk+1 = <1 — /{:j—?;) 2k — 5%Vg <£L’k + 2 _’—_'_33(5é2k> . (557)
Denote by y* the critical point of g(-). Then, we have
IVa(y)l = [Valyr) — Va(y")| < Llyk —y*| < Cn,

where C is some constant, and

20l = |1 — 20| /57 = 62|V g(ao)| < C16°, (5.58)

k—1 1 1
|Zk| < o ’Zk_1| + C162 < (k + 1)01(52. (5.59)

To compare xj and X (kd %) and derive the difference between them, we first need to identify
the relationship between X(k:éé) and X ((k+ 1)5%) and between X(k:éé) and X ((k+ 1)6%).
As in (4.29), we let Z = X, and ODE (2.6) is equivalent to

X=2 7= —%Z — Vg(X).

Then, with convention ¢ = kzéé, we have for k > 1,

X (torr) = X(t) + /t M w)du = X (1) + 53 2(t) + /t " ) — Z0)]du, (5.60)
Z(te) = Z(te) — /t o %Z(u)du— /t V(X (w)du (5.61)

_ (1 - 2) Z(ty) — /t:k“ E’LZ(U) - iZ(tk)} du —

PV ()~ [ 199X (1) = Va(X(t)ldu.
Lemma 4 shows that on (0,77, | X (t)|/t is bounded, |Z(t)| < Ct, and |Z(t)| = | X (t)| < C

for some constant C. Then, we easily derive bounds for the following integrals that appear
on the right-hand sides of (5.60) and (5.61);

/ 120 - Z(t)au| = 0(),

tg
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ty

/tk+1 |:
tg

/ (VX () - V(X (ty))]du

3 20 - iZ(tk)} du

du

< / Rz - 2]

U
tet+1 3 3
+ S AT
/tk (u tk) (t)

12
O9 , 3(tkt1 —te)” Cty, = 0(52k™Y),

du

T trtrr1

<1 [ bt - X (@l =00).

173

Plugging these integrals bounds into (5.60) and (5.61), we conclude

X (trg1) = X (t) + 02 Z(tx) + O(9),
3

Z(ther) = (1 - k) Z(t) — 65Vg(X (1)) + O3 ) + O(9).

Let ay = |z, — X (tr)], bk = |2k — Z(t)|, and Sk = by + b1 + ... + b. Using the definition of
2z, and (5.57)-(5.59), we have

br+1

ININ TN

ap =0, ap+1 < ag + 5%bk’ + 0(5)7

a, < 628,_1 + O(kd), (5.62)
bo = |20| < C162, by = |21 — Z(t1)] = O(52),

3 9
(1 — k‘—{—3> b + m’Z(tk)’ +

2% +3 1 1
3 0225 — X ()| + O(52k~1) + O(5)

b + O(62k™) + Lézay, + 2L5(k + 1)C152 + O(62k~1) + O(6)
by + L3Sp_1 + L62O(kd) + O(8) + O(62 k™)
b + LOSk_1 + O(62 (k + 1) 1). (5.63)

L(S% T +

Since for 1 < k < T62, k62 = O(1),0(8) = O(62k~1), k=1 < 2(k + 1)~L. Moreover, with
by = 0(5%), it is evident that can see that (5.63) holds for k = 0. Therefore, there exists
some constant Cy > 0, such that

brs1 < b + L8Sk 1 + Cod2 (k+ 1)1,

Define a new sequence by, from by, in the following manner. Let by = bo, b}, = b, +LdS;_, +

025%(141 +1)71, where S, = b, + b} + ... + b,,. Then, we can easily prove by induction that
b, < b, Indeed, if b; < b’ for j =0,1,....k, then Sy <5,

brir < be+ L6Sk 1 + Cod2(k+1)"" < b, + LSy | + Cad2(k+1)"" = b, .
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On the other hand, as LJS; ;| + 025%(]{ +1)~' >0, {b,} is an increasing sequence. Thus,
Sy < kb, and

oy < Uy + Lok, + Co87 (k+ 1)L,
Again, we define another sequence b} from bj, in the following manner. Let b§ = b, b}, 1=

by, + Lékby, + Cgéé(k +1)~!. The same induction argument can prove that b} < bj. The
recursive definition of by, easily leads to the following expression,

k—1 k k—1
bp=02 [ Cr [JA+Loj) + > it [+ Lay) |,
7j=1 =1 Jj=t
and, hence, we obtain
S . < T5Eb_ ., <TSR , <Té b,
|76 2]-1 |76 2] |75 2| |75 2]
17677 -1 7672 |76 %)-1
< c| I a+zsap+ > it J] (+Léj)
j=1 =1 Jj=t
17673 |1 \T6~3|  |T6 % |-1
1 1
< c| I a+rorsz)+ > it ] (+LsTs2)
j=1 =1 j=t
17673 |
1
< CeM 1+ Y it | < Clog(T672) = O(|log d]).
=1

Finally, using the above inequality and (5.62), we arrive at

max |y — X (k62)| < 628 +0(T62) = 0(52|log 8)),

1
k<T§ 2

|76~ % |1

which proves (5.55). It is easy to see that the left-hand side of (5.56) is bounded by bFTé,l/Q},
which is of order 62 |log d|. M

Lemma 9
1
max |z¥(t) — X™(t)| = 0,(62]|logd|),
ma [x (1) ~ X7(8)] = 0(93 log )
where x§(t) is the continuous-time step processes for discrete sequence xj generated from al-
gorithm (3.10), and X" (t) is the continuous-time solution of the corresponding ODE (3.11).

Proof. The objective function associated with (10) and (11) is VL"(6;U,) = 23",
V{(0; U;), which has Lipschitz constant 2 -7 | hy(U;) = Op(1). Then, for any € > 0, there
exists some constant Lo > 0, such that for all n, P( S ha(U;) > Lo) < €. For each

1
n
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n, on the event {% Yoy hi(U;) < Lo}, Lemma 8 indicates that there exists constant M
(which depends on Ly only and is free of n), such that

max |z — X"(kd2)| < M52|logé|.
K<T6~ %
Consequently, we have
; | 1 <
P ( max |z — X"(k62)| > M52|1og<sy> <P ( > m(U) > L> <e
_1 n
k<T6~2 i=1

holds for each n, that is

max

= 0,(62|log ).
K<T6~ %

2 — X" (k62)

Lemma 4 indicates that sup,c(o 1] |X™(t)| = O,(1) and, hence, we obtain

SIS

sup[X(t) — X"(s)] < 67 sup [X(8)] = Op(6
5,0€[0,T],t—5<53 t€[0,T]

).

Finally, for any ¢ we can find k, such that ¢, <t < tx41, and show that

1
7’L < n o __ n n — n = 2 .
tgg§]lwa() (t)] _tgg§]{lwk X"™(te)] + [ X" (th) — X"(t)|} = Op(62[log o). W

Proof of Theorem 2. Lemma 9 establishes the order result for z§(t) — X" (t), and the
weak convergence result is the consequence of the order result and Theorem 1. B

5.3 Proof of Theorem 3

Using Assumption A4 and the standard empirical process argument (van der Vaart and
Wellner, 2000), we can show that 6,, is \/n-consistent. Define 9 = n'/2(6 — ). We apply
Taylor expansion to obtain

L0, U,) = L"0,U,) + VL (0,U,) (0 — 0) + (6 — ) HL™(0,U,) (0 — )/2
+ OP( —1/2)

= L"(6,Un) +n[Vg(6) +n~?a (6)Z]0 + n~ "9 Hy(6)9/2 + op(n~")
= L£"(0,U,) +nto(0)Z9 +n " Hg(0)9/2 + op(n™t),

where Z stands for the standard normal random vector, the second equality is due to
Assumptions 2 and 4, Skorokhod’s representation theorem, and the law of large numbers,
and the third equality is from Vg(f) = 0. As 6, is the minimizer of £(0, U,), ¥, = n'/2(0,,—
0) asymptotically minimizes o (0)Zd + ' Hg(0)9/2 over ¥ and thus, has an asymptotic
distribution [IHyg(#)] 'e(6)Z. Note that C(IRy) is a subspace of D(IRy), and because of
the metrics used in C'(IR4) and D(IR4 ), the weak convergence of these process on D(IRy)
is determined by their weak convergence on D([0,7]) for all integers T only (Billingsely,
1999; Jacod and Shiryaev, 2002). Treating X (t), X"(t), V(t), V"(t), and 2§ (t) as random
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elements in D(IRy), since the weak convergence results established in Theorems 1 and 2
hold for X™(t) and z§(t) on D([0,T]) for any T' > 0, we conclude from these established
weak convergence results that V"(t) = /n[X"(t) — X(t)] and /n[z}(t) — X(t)] weakly
converge to V(t) on D(IR,).

On the other hand, it is known that as k — oo, x; generated from algorithms (2.2)
and (2.4) converge to the solution @ of (2.1) with speeds of orders (6k)~! and (v6k)~2
respectively, while as ¢ — 0o, their corresponding continuous curves X (¢) as the solutions of
ODEs (2.3) and (2.6) approach § with speeds of orders t~! and ¢~2, respectively (Nesterov,
1983, 2004; Su et al., 2016). Similarly, for fixed n, as k,t — oo, z} and z§(t) from
algorithms (3.8) and (3.10) and X" (¢) from ODEs (3.9) and (3.11) approach the solution 6,
of (3.7). For the weak limit V'(¢) governed by (3.14) or (3.12), as t — oo, both ODEs lead to
[IHg(X (00))]V (c0) + o (X (c0))Z = 0, or equivalently, V(co) = [IHg(X (00))] 1o (X (c0))Z.
In fact, the solutions of (3.14) and (3.12) admit simple explicit expressions, for example,

V(t) = / exp [— / tHg(X(u))du} o (X())dsZ, (5.64)
Ve > 0, 3tg > 0, such that Vs > t, |[ 9(X(s)] 'o(X(s)) — [HHg(X (00))] o (X (c0))| <,
/t:exp - [ B o t:exp[ [ Bx ] Hxo)

[y (X ()] (X(5)) — (X (00)] (X (00)) } d

n / e [~ [ Byx()ad] Hg(X(s)>ds[ﬂg<x<oo>>rla<x<oo>>. (5.65)

Since the assumptions indicate that o (X(s)) and IHg(X(s)) are bounded continuous on
[0, to], fgo |o(X (s))|ds is finite, and ﬂ; Hg(X (u))du has finite eigenvalues. We immediately

conclude that the eigenvalues of ftz IHg(X (s))ds—which are no less than the eigenvalues

of fot HHg(X (s))ds minus the maximum eigenvalue of foto Hg(X (s))ds—diverge as t — 0.

Therefore, we obtain
/Oto exp [— /:H—Ig(X(u))du] (X (s))ds t /Ot“ o (X () |ds
/:exp [— / tﬂg(X(u))du] Hy(X(s))ds = 1 — exp [_ tﬂg(X(s))ds] 51,

< Hg(X(u))du}

exp [—

— 0, fo
/t: exp [— /: HQ(X(U))du] Hg(X(S))‘ HHQ(X(S))]_IO'ZX(s))

~[Hy(X (00))] " o (X (00))| ds

(X))

<e—c€ <,

exp {_

to
which goes to zero, as we let ¢ — 0. Combining these results with (5.64) and (5.65), we
conclude that as t — oo,

Cexp | [ Hg(X(w))du] o (X (5))ds — (X (00)] (X (00)).
[l |
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and V (t) converges in distribution to [IHg(X (00))] to (X (c0))Z. B

5.4 Proofs of Theorems 4-6

Theorem 4 is proved by Lemma 10, with Theorems 5 and 6 shown in Lemma 18, where
both lemmas are established in this subsection.
Denote by @, the empirical distribution of mini-batch Uf,,---,U; ... Then, we have

VL™ (0, U, /weu du),

/ V(6: 0)Q(du) = E[VE6: U)] = Vg(0).

Let R™(0; Uy, (1)) = (RT(0; Uy, (1)), - -+ , R (0; Uy, (1)), where

o U (1) = vim | LS~ 2 po vty — 2 -
R (0; U, (1) = vm [m ; aejf(G,Ui (1)) 8ejg(@)] s J=1p
We have
m~Y2R™(9; U ( /w (0; u) Q%1 (du) /w (6;u)Q(du),

Vﬁm(leﬁU k) = Vg(ap ) +m~ Usz(iUk 15 Uk

It is evident that R™(x}" ;U ), k =1,---,T/§, are martingale differences and that
Hj*(t) is a martingale. We may use the martingale theory (He et al., 1992; Jacod and
Shiryaev, 2003) to establish weak convergence of Hj"(t) to the stochastic integral H(t).
Below, we employ a more direct approach to prove the weak convergence and obtain further
convergence rate results.

Lemma 10 As § — 0 and m — oo, H*(t) weakly converges to H(t fo u))dB(u),
t € 0,T].

Proof. Let

(1) = (md)'/2 3 [VE™ (X (t-1); Uy () = Vg (X (t1-1)|

tp<t
[t/0]

(mé 1/22 [ / Vi(X 1)8); u) Q% (du)
- / VO ((k - 1>5>;u>@<du>} .

B | [ i@t = [ vusmaum),
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a*(0) = mVar | [ T00:0Qu(a0)]| = [(7060)7Q(n)
-/ ww;u)Q(du)r,

which are the mean and variance of V/(0;U), respectively. Since U ., k=1,2,--- ,[T/4],
are independent, then Hj"(t) is a normalized partial sum process for independent random
variables and weakly converges to fg o (X (u))dB(u). Indeed, its finite-dimensional distri-
bution convergence can be easily established through Lyapunov’s Central Limit Theorem
with Assumptions A3 and A4 and Lemma 14 below and its tightness can be shown by the
fact that for r < s <t,

B ) - 1) P | () - 7P} < 00 = X, (5.66)

where Y(-) is a continuous non-decreasing function on [0,7] (Billingsley, 1999, Equation
13.14 & Theorem 13.5). To establish (5.66), because of independence, we have

B{|H(t) - By ()|’ |57 (5) - By ()"} = B{ | B3 (1) — B3 (5)*} E{ | 3" (5) — H ()}
=8 3 wrlo?(X((h - 108)] 3 wrlo(X((k— 1))

s<kdé<t r<kdé<s
N / 1[0 (X (u)]du / o (X (u))du.

Since X (t) is a deterministic bounded continuous curve, and o2() is a continuous positive
definite matrix,

2

/ trio?(X (u))]du /5 trie?(X (u))]du < [/ trio?(X (u)]du| = [Y(t) — T ()]

We have shown that as § — 0 and m — oo, H*(t) weakly converges to H(t). By the
limit theorem for stochastic processes (Jacod and Shiryaev, 2003, Theorem 3.11 in Chapter
VIII), we obtain that the quadratic variation [H", Hf"]; converges in probability to [H, H];
for t € [0,T7.

The Lipschitz of V/(0;u,Q) in 6 implies the Lipschitz of Vﬁm(Q;U;‘nk,Q) (which is
proved at the beginning of the proof of Lemma 11 below), and Lemma 12 below indicates
that as § — 0 and m — oo, x}]' — X (kd) converges to zero in probability (with order
o+ m_1/251/2) uniformly over 1 < k < T/§. These two results along with the Lipschitz of
Vg(0) immediately show that

e [ [F5", F)e — (H, HY'Lo| = Op ((md) 67116 4+ m™'126%]) = op(1),

and, hence, quadratic variation [Hj", H§"|; also converges in probability to [H, H]; for ¢ €
[0,7]. An application of the limit theorem for stochastic processes (Jacod and Shiryaev,
2003, Theorem 3.11 in Chapter VIII) leads to the conclusion that as § — 0 and m —
oo, HM(t) weakly converges to H(t)—that is, HJ*(t) and H}™(t) share the same weak
convergence limit H(¢). B
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Lemma 11 We have
—1/2
max |zi' —x m ,
k:<T/6| k k‘ P( )

where xy, and ' are defined by (2.2) and (4.18), respectively.

Proof. Let ((UZ,) = L+ >, hy(U};,), which converges in probability to E[h1(U)] as m —
o0. Then, we obtain

VL™ (8; Uyp) — VL™ (03 Up )| < (U )10 = 9], L™ (6; U] < (U,
10— 23] <10 = 2] + 8|VL™ (23 1; Upy) = VL™ (0; Upy)| + 6| VL™ (6; Uy )|
< (L+8C(UL )0 — 2Ly | + 8| VL™(6; Uy,

< (14 3B ()] + Op(om72)"
k

+(1—|—5E[h1(U)]+Op 5m_1/2) 83 1IVg(@)] +m~ Y2 R™(6;U;,))])
Jj=1

< UL 4 [Vg(0)] + Op(m™'/2)] = "IN 4 Op(m~1/7)],
namely, 27" is bounded uniformly over £ < T'/§. On the other hand, we have

off =y = i~ VL1 Vi) Vi)

= TR — Th1 — 5[Vﬁm($k 1 Unk) — il (k-1 Upp)] — 5m71/2Rm(33k—1; Ulk)
= (af"y = mp-1)[1 = SHL™ (w13 Upyp)] = om™ PR (g1, Upry)

k
= —om ™2 (L= SHL™ (715 U )P R™ (w13 Up),
j=1

where 27", _; is between z;_1 and 27 ;. Using ((Uy,;) — E[h1(U)] and Assumption A4, we
obtain for J, k <T/6,

I[1 = 6HHL™ (213 U )l | < [L+6¢(U, )]0 < TP+ Op(m™1/2)],
R™ (xj—lvaj) ~ U(xj_l)z = OP(1)7

k
af — aal < OmTY2 Y |14 6¢(U; TR (251, Uy )| = Op(kém™/%) = Op(m ™). m
j=1
Lemma 12
max | X (kd) — 2| = Op(8 +m~1/261/2),
k<T/§

where X (t) and x}" are defined by (2.3) and (4.18), respectively.

Proof. For k=1,---,T/4,

/ Ve 1) Qo () / Ve w)Q(du)
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are martingale differences with conditional mean zero and conditional variance o (22" ;)/m.
Since z, in (2.2) is the Euler approximation of solution X (¢) of ODE (2.3), the standard
ODE theory shows
— X(kd)| = O(9). 5.67
ma [z — X (k)] = O(9) (5.67)
By Lemma 11, we have that with probability tending to one, z}* ,k = 1,---,T/d, fall
within the neighborhood of the solution curve of ODE (2.3); thus, the maximum of o%(27" ,),
k=1,---,7/4, is bounded. Applying Burkholder’s inequality (Chow and Teicher, 1997;
He et al., 1992; Jacod and Shiryaev, 2003), we obtain

max
1<k<T/$

mg [ [ vt @it - | wxzﬁil;u)Q(du)H = 0p(571/2),

that is,

= Op(m™/2571/2).

max
k<T/5

k
m™ 2N Ry Uy)
=1

Therefore, for k =1,--- ,T/4,

k k
Tt =x9—0 Z Vg(zyty) — m_1/252 R™(zy 15 Ury)
=1 =1
k
=20~ 8)_ Vaf'y) — Op(m™'/%51/%).
/=1

and with the same initial value z(, comparing the expressions for x; and z}*, we obtain

aft =y = afly — apoy — 0Vg(afly) — Vg(ap)] — sm™ PR (215U

k k
=3 [Vg(xe) = Vglaiy)] —dm™"2 Y R™(aLy; Upy).
=1 =1

Using the L-Lipschitz assumption on Vg(-), we conclude for k =1,--- ,T/J,

k k
ot — k| S LOY |afy — x| +0m” Y2 )y R Uy)
=1 =1
k
< LT mo_ 5 —-1/2 m(,m . JT* )
< 7 g oy sl om ™2 SR

Finally, we can easily show by induction that

m_ =0 ~1/251/2y
e |zg" — 2| = Op(m )

The lemma is a consequence of the above result and (5.67). W
The following lemma refines the order regarding m~'/26%/2 in Lemma 12.
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Lemma 13 We have

e |2 — X3 (k3)] = op(m™"/26%) + Op(6 + dm™"*|log 0]'/2),

max o (1) — X3 (1)] = op (m™/%6'/2) + Op(0]log |'/%),
where X§*(t) is given by (4.21), and x}* and x§*(t) are defined by (4.18) and (4.19), respec-
tively.

Proof. With weak convergence of Hj"(t) to H(t) in Lemma 10, by Skohorod’s representation,
we realize Hj"(t) and H(t) on some common probability spaces, such that as § — 0 and
m — 0o, under the metric in D([0,T), H§"(t)— H(t) is op(1). We may use arguments based
on Lemma 37 (in Section 5.7) and stochastic equi-continuity to establish the convergence
of H{*(t) — H(t) under the maximum norm. Here, we adopt a direct approach. Consider
linear interpolation ﬂg"(t) between the values of H{"(ké), k =1,---,T/0, which satisfies

mae [} (1) ~ H}'(8)] < "2 ma |R" (a1 U]

By Assumptions Al and A2, we have

[Ve(zy™1; Uik) = V()] = [VUX (k= 1)6); U) — Vg(X((k — 1)d))]]
< [ (Ui) + Loty — X ((k = 1)d)],

and then
|R™ (2313 Upye) < [R™(X((k —1)0); Uy,

+m71/2z zk + L ’xk 1 X((k - 1)5)‘7

_ < §4/2 _
max |H;" ( ) A5 (0)] = 077 masc |R™(X((k = 1)); Upn )|
1 m
1/2 1 x 1/2 m 1
+6 kn;%% {m i:E 1 hi(Uj,) + L} m krg%% lzp" 1 — X ((k —1)0)|.

Lemma 12 implies m!/2 max,<r/s |25 — X ((k—1)4)] =m!20p(6+m~1261/2)=0p(m!/?5+
5'/2)=0p(1); by Lemma 14 below, we derive that max;<p |HJ*(t) — H(t)| = 0p(6'/4] log d]).
Thus, HJ'(t) weakly converges to H(t) in D([0,T]). As both HJ'(t) and H(t) live in
C([0,T)), the weak convergence of HI(t) to H(t) holds in C([0,T]). Again, by Sko-
rokhod’s representation theorem, we realize ﬁg”(t) and H (t) on some common probability
spaces, such that as § — 0 and m — oo, maxi<r |HJ(t) — H(t)| = op(1) and, hence,
maxe<r |[Hg"(t) — H(t)| = op(1).
Note that for 1 < k < T/,

SVL™ (& ;U ) = 0Vg(al ) + m~ Y282 HP (k6) — HPY ((k — 1)6)],
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aft =y = —0Vg(a™ (te—1)) — m~ V262 [HE (kS) — HY'((k —1)6)],

k
il =0 — 0y V() —m 262 H (ko)
=1
k
=20 — 52 Vg ) —m~ Y262 H(k6) 4+ op(m™1/261/2).
(=1

Define &' = x¢, and
P — B = —6Vg(EP ) — mT V26V [H (k6) — H((k — 1)6)). (5.68)

Then, the situation is the same as that in the last proof part of Lemma 12, and the same
argument can be used to derive a recursive expression for z}' — " and prove by induction
that

max |27 — & = op(m~Y/261/2).
e [ — 2| = op( )

The lemma is a consequence of the above result and Lemma 15 below. B

Lemma 14

sup EY|R™(X (£); Ul )| ¢ € [0, 7],k = 1, , T/8} < o0,

1/2 1 % * _ 1/4
51/ ;;%{m;’“( i) = Bl (U)] ¢ = 0p(6"/4]10g d]),

1/2 m B I "
017 mae |R™ (X ((k —1)0): Upy)| = Op(6'/*1og d]).

Proof. Direct calculations lead to

1/2 m _ T 1/4
P (5 o IR (X (= 100): U0 > 61053 )

=1 T P (0" IR (X (k= 1)6); Uyl < |log o))
kE<T/6

<1- [[ [1-6E{R™X((k—1)0); Us)[*} /Ilog b[]
kE<T/§

<1—exp[-2T7/| log5|4] ~ 277 /|log6|* — 0,

where we use Chebyshev’s inequality, log(l — u) > —2u for 0 < uw < 0.75, and 7 =
supy . EY[R™(X(8): UZ,)[*} = sup E{|R™(X(t); U, ) < t € [0,T],k = 1,---,T/5} the
finiteness of which will be shown below. Indeed, it is sufficient to show that each compo-
nent of R™(X(t); U’ ;) has finite fourth-moment uniformly over t € [0,T],k =1,--- ,T/0
and, thus, we need to prove it only in the one-dimensional case with a gradient equal to the
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partial derivative. With this simple set-up, we have

m 4
[R™(X(£); Up)|* = m ™2 | Y {VUX(1);Uj) — V(X (1)}
=1

= m 2 S {VUX (1) UL) - Vg(X () PHVUX (0 Ufy) — Vg(X (1)}
1#]

+m 2 Z{VE(X(t); %) — Vg(X (1) }* + odd power terms,
i=1

E{|R™X(1); Up)['y =m™2 Y E{VUX(1);U) — V(X ()}']
=1

+m =) E[{VAX () U) = Ve(XO)IE{VAX () Ui) = V(X (1))
ij

< {BE[{VUX (2); Ufy) = V(X ()]} + E{VAX (1): Uy) — Va(X (1) }']/m
< AB[{VUX (2); Urr) = V(X (0)}]}? + E{VLX (t); Uw) = Va(X (1) }*]/m,

where we use the fact that all odd power terms have mean zero factor V/(X(t);U}.) —
Vg(X(t)) and, thus, their expectations are equal to zero. By Assumption Al, we have

Sup E{VU(X(1); Uy) — Vg(X(1)}?] < 2sup {IX(t) = zol*} E[RI(V)]

+ 2B[{V(x0, U)}?] + 25up{[Va(X (t))]*},

t>0

sup B{VAX(1); Une) - V(X (1)} < 64 sup {1X(t) — wo*} E[h1(U)]

+ 64E[{V(z0,U)}] + 8 jgg{[Vg(X(t))]“},

which are finite because X (t) is deterministic and bounded. Thus, we obtain that 7 =
sup, , E{|R™(X (t); Uy,;.)|*} is finite.
Similarly, as h1(U) has the fourth moment, we have

FE { ‘m_l/Q Z{hl(U{;@) — E[h(U)]}

} < Var(h(U)? + B [{n(U) = Ela(U)]}*] = 7,

P <(51/2 max
k<T/$

m~! Zhl(Uﬁ:) — E[h (U]
=1

> 51/4|10g6]>

15E{'mlzh1( k) — Elhi(Uj)] }/log64]

<1—exp [—2T7'1/]log5|4} ~ 2T7/|log6|* — 0, as § — 0,

<1- ]

k<T/s
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which together with E[hi(U},)] = Elhi1(U)] imply
51/2 max {Z h(Uj)Y/m = 6Y2E[hy (U)] + Op(6Y/4|1og 6]). @

Lemma 15

max |Z — X7(kd)| = Op(8 + dm~/?|log 6]/?),
t€[0,T]

_ym _ 1/2
ma [XJ(2) ~ X7 (5)| = Op(3/log "),

where " and X3'(t) are defined by (5.68) and (4.21), respectively.
Proof. By (4.21) we have

IXP (1) - XP(s)] < / V(X7 ()| + /26112 / o (X (u)dB(u)

S

= Op(6 + m~25|log 8|'/?),

where we use the fact that uniformly over 0 <t — s < 9,

/yvg X7(w))|du = Op(6), /a(X(u))dB(u)—Op(51/210g6]1/2),

and the order for the Brownian term is derived by the law of the iterated logarithm for
Brownian motion.

Note that ] is the Euler approximation of SDE (4.21). The first result follows from
the standard argument for the Euler approximation. Let D(k) = [} — X§"(kd)|. As
g = X5"(0) = xg, we have

7 / V(X5 (u))du — §Vg(xo),

D(1) = |27 = X5 (0)| = !/0 [Vg(X5"(w)) = Vg(xo)ldu|
= 2 —1/252 1/2
<C60rga§5]X5 (u) — o] = Op(6* + m™ /6% log 0|/ *),

where we use the fact that for u € [0, 4],

X7 (u) — o] < / V(X7 (0))|dv + m™1/251/2
0

/u o (X (v))dB(v)

0

= Op(6 + m~Y25|1og 6]*/?).

For the general k, we obtain

k& k
D) = | [ Vol ()du =530 V()
/=1
k&
<D(k—1)+ / V(X2 (u))du — 6Vg(# )|,
(k—1)6
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ko ko
/ V(X5 (u))du — 6Vg(2;" ) = / [Vg(X5"(v) — Vg(X5"((k — 1)6))]du
(k—1)5 (k—1)5

+0[Vg(X((k — 1)) — Vg(z;24)],
[Vg(X((k =1)8)) = Vg(25=1)| < CIX((k = 1)8) — 314 | = CD(k - 1),
[Vg(X5"(w)) = V(X5 ((k = 1)9)) = [Hg(X5" (ue)) [ X5" (u) = X5 ((k = 1)0)]]

<C IVg(XT(v))|dv 4+ Cm~ /2642
(k—1)8

/(u o (X (v))dB(v)

k—1)8

= Op(8+m~"/5|log 5|'/?),
and, thus, we conclude that
D(k) < D(k —1) + C6D(k — 1) + Op(6% + m™1/26%| log 6|*/?),
which shows that for k < T/,
D(k) < (14 CO)*1D(1) + Op(ké? + km™/26%|1og 6|"/?) = Op(6 + m~ /28| log 5|'/?). m

Lemma 16

majgc|X§n(t) — X(t)| < Cm~26'/2 max

— Op(m_1/251/2),
t< t<T

t
/ o (X (u))dB(u)

0

where X (t) and X3 (t) are defined by (2.3) and (4.21), respectively.

Proof. With the same initial value for X (¢) and X3, from (2.3) and (4.21) we have

XP(t) — X(1)] < /0 V(X)) — V(X (u))|du -+ m~Y/25Y? / & (X (u))dB(u)

0

gc/o X (w) — X (u)|du + m— /2512 /0 o (X (u))dB(u)

Applying the Gronwall inequality, we obtain

XP() — X(8)] < m~ 2512 [

/ o (X (#)dB(w)| + © /0 ' Cl-s)

0

/OS o(X(u))dB(u)

ds} ,

which implies

max [ X (t) — X (t)| < Cm~ Y262 max

— OP(m—1/251/2)7
t<T t<T

/ o (X (u))dB(u)

0

where the last equality is due to Burkholder’s inequality. H

Lemma 17
max | X' (1) = XJ(1)] = Op(m~6).

where XI*(t) and X*(t) are the solutions of (4.21) and (4.22), respectively.
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Proof. We have
XP(t) — XP(8)] < /0 IVg(XT(w)) — Vg(XT(w))|du

+ m—1/251/2

[ lotx) - o5 )dB)

0

gc/o X () — X (u)|du + m~ Y2512 /[a(X(u))—a(Xy(u))}dB(u) .

0

BIXg (1) - Xp@P) < C /O E(IXT(u) — X7(u) ] du

2

+2m~6E /0 [o(X (u)) — U(Xg”(u))]dB(u)

< 0/0 B[ X} (u) —Xg"(u)|2]du+2m—15/0 Ello(X(u)) - o(X§"(u))[*)du
gc/o E[| X (u) —Xg”(u)|2]du+01m‘16/0 B[ X (u) = X§"(u)[*]du

t
+Com 15 [ BIXP (@) - X ()])du,
0
where the last inequality is due to
|o(X (1) — o (X5 (w))| < C1X (u) — X5 (u)| < O|X (u) — X5 (1)] + C|XF" () — X5 ().
The Gronwall inequality leads to

EJX5 (6) = X3 (0)) < Om™ S max E|X (s) — X3"()).

Using Lemma 16, we have

2

mELg(EHX(s) — X (s)]2] < Cm™E

max
s<t

/0 (X (u))dB(u)

< Cm™SE [/Ot[a'(X(u))]Qdu} )
where the last inequality is from Burkholder’s inequality. Hence
BIXp 0 - X7 0F) < On 255 | [ o)),
and we can adopt the same argument to establish it for ¢t as a bounded stopping time.

Finally, we prove the lemma by applying Lenglart’s inequality for semi-martingale with
n; = Dym 1§ for some positive constants D;,

Cm~282 [N (X (uv)))2du
P(T%f‘X@)—X?(s)bm)s fo;; ()

t
+P (Cm_2(52/ [o(X (u))]?du > 77%) — 0, as D; — co. W
0
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Lemma 18 As § — 0 and m,n — oo, we have Vi"(t) and Vi™(t) both weakly converge to
V(t). Moreover, if m(nd)'/? — 0, and m'/25|log6|*/? — 0, (m/8)/?[z(t) — X (t)] weakly
converges to V (t).

Proof. As the solutions of (4.21) and (4.22) have difference of order m ™16, they have the
same asymptotic distribution, and we can easily establish the result for Vy"(¢) by that for
Vy™(t) and Lemma 13.

Let us consider the easier one for X3*(¢). From (4.21) and (2.3), we have

d[XF'(t) = X ()] = =[Vg(XJ'(t) = Vg(X ()]t —m~ /26" e (X (¢))dB(¢),
and for t € [0, 7],

meemw——éw@wmwmm—XWWWJnW&@Aawmwmmx

where X¢ is between X (u) and X§*(u) and, thus, Lemma 16 shows that uniformly over
[0, 77,
| Xe — X(u)|] < X§"(u) — X(u)| = OP(m_1/25).

Then, we obtain

xww:—ﬁmm&m?mm—ﬁawmwmw (5.69)

First as 6 — 0, m,n — oo, equation (5.69) converges to (4.24).
We need to show stochastic equicontinuity for Vi™(t). From (5.69), we obtain

uwwmc%wmwm+uaawwmw,

and by the Gronwall inequality, we have

max |V§"(t)| < C'max
t<T t<T

Y

Aaawwmw

that is V{™(t) is bounded in probability uniformly over [0,7]. Again, (5.69) indicates that
for any s,t € [0,T], and ¢ € [s, s+ 7],

V) - V() = - [ (Xl i~ [ o(X(w)dB(w)

IW%%VﬂﬂSC/H@WWw%/oMWMHw

SC/H?W—W%WMCWﬂWWﬂ+/o@wwmw.

Finally, applying the Gronwall inequality, we obtain uniformly for ¢ € [s, s + 7],

Vs (t) = V5" (s)| < Cy|Vs'(s)| + C max 1/2 12y,

s<t<s+vy

/ o (X (u))dB(u)

= Op(y+~/%|log~|

which proves stochastic equicontinuity for Vi*(¢). B
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5.5 Proof of Theorem 7

Theorem 7 can be proved by the same proof argument of Theorem 4, except for changing
the step size from 6 to 6%/2. W

5.6 Proof of Theorem 8

We prove Theorem 8 in two subsections, with one for solutions of the second-order SDEs
(4.35) and (4.36) and one for weak convergence of V{™(t).

5.6.1 THE UNIQUE SOLUTION OF THE SECOND-ORDER SDES

In this subsection, we prove Lemma 25 below that the second-order SDEs (4.35) (with fixed
d and m) and (4.36) have unique (weak) solutions in the distributional sense.

Due to the similarity, we provide representative proof arguments only for the following
second-order SDE,

V(6) + 2V (6) + [Vg(X V(1) + o (X(0)B(H) =0, (5.70)

where initial conditions V (0) = ¢ and V(0) = 0, B(t) is a standard Brownian motion, V(t)
and V (t) are the first and second derivatives of V (t), respectively, B(t) = d]fhgt) is white

noise in the sense that for any smooth function h(¢) with compact support,

/h(t)B(t)dt = /h(t)dB(t),

and the right-hand side is an It6 integral.
The second-order SDE (5.70) is equivalent to

t . . t t .
V() = V() + 5 V), V() =~ XV~ L o(XO)BW, (671
where V(0) = ¢,V(0) = 0, and Y(0) = V(0) = ¢. Denote by V;(t) the solution of the
smoothed second-order SDE

3

V() + ——
n()+t\/n

Vy(t) + [Vg(X (1)) V(1) + o (X (1))B(¢) = 0, (5.72)

with initial conditions V;,(0) = ¢ and V,(0) =

Recall the notation M,(s,t;Y) defined in (5.53). In the proofs of Theorems 1 and 4, we
have employed M,(s,t;Y) with a = 1, as curves and processes are solutions of ODE and,
thus, differentiable. For this protion of proofs, we need to handle the Brownian motion and
SDEs, and the related processes have less than 1/2-derivatives, so we fix a € (0,1/2) and
consider M,(s,t;Y) with a < 1/2.

Lemma 19

V(X ()] < [Vg(X ()] + Lt = 5)|X ()| + LMa(s, t; X)(t — 5)'7/(1 + a),

V(X () Vy(t) = Va(X(5))V(s)] < LIVy(s)|(t = 9)[X (s)] + [Vg(X(2))[(t — 5)[ Vi (s)]
+ [LIVy ()| Ma(s, t; X) + [Va(X () [ Ma(s, t; V)l (¢ = $)' /(1 + a).

64



JOINT COMPUTATIONAL AND STATISTICAL ANALYSIS OF GRADIENT DESCENT ALGORITHMS

Proof. We prove the lemma by the following direct calculation

[Vg(X @)V (t) = Vg(X () Vy(s)] < [Vg(X(0)[[Vy(t) = Vi (s)|
+Vg(X (1)) = Vg(X(s))[[Vy(s)]
< [Vg(X0)[[Vy(t) = Vn(S)IJrL\V( $)|[X (1) = X (s)]

< LIV (s H/ v+ (t — )X (s)|

+[Vg(x H/’ v + (¢ - $)Vy(s)
< LIV (s)|(t = 9)[X (s)] + [Vg(X (1)t — 5)|[Vy(s)]
+ LIV, (s \/ v s 7de\+\Vg (X(1) H/ v—s) (S)dv]

< LVy(s)I(t = 5)| X (s )\+ [Vg(X@)I(t = )[Vy(s)]

+ [LIVy(5) | Ma(s, t; X) + [Vg(X ()| Ma(s,; Vi) (t = 5)F/(1 + a),
[Vg(X ()] < [Vg(X(s))| + LIX(t) — X(s)]
< |Vg(X(5))] + L(t — 8)| X (5)| + LMa(s, t; X)) (t = 5)'7%/(1 + ). W

Lemma 20 There exists ng > 0, such that for n € (0,m0], 1 — |[Vg(X(0))|n?/[(1 + a)(2 +
a)] — LM, (0,n; X)n3+2/[(1 4 a)?(3 4 2a)] is bounded below from zero. Then, for n € (0,no],
we have
1
1—|Vg(X(0)[n?/[(1+ a)(2+ a)] = LMa(0,n; X)n**t/[(1 + a)*(3 + 2a)]
L|V7(0)[Ma (0, n; X)n®

Ca 1 s [* s
DX Oyt~ + VSR s | om0 [ im0 ) o) |

Proof. As Vg(X(0)) and M,(0,n; X) for each n are deterministic and finite, and M,(0,n; X)
is continuous and increasing in 7, we easily show that |Vg(X(0))|[n%/[(1 4+ a)(2 + a)] +
LM, (0,m; X)n*T%/[(1 + a)?(3 + 2a)] approaches zero as ) — 0, which leads to the existence
of ng. Then, Lemma 19 indicates

[Vg(X (1)) Vy(u) = Vg(X(0))V;(0)]
< [LIVy(0)[Ma(0, u; X) + [Vg (X (u))| Ma (0, us Vy)Ju' /(1 + ),
IVg(X ()] < [Vg(X(0))] + LMq(0,u; X)u' /(1 + a).

Mq(0,7m; V) <

For t € (0,n], V;, satisfies

. 3. )

Va(t) + Evn(t) + [Vg(X(O)V; (1) + o (X (1))B(t) = O,
which is equivalent to

[Vt = T g(X (O)]Va(t) — /o (X (1)B(1),
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V(1) = / 39/1(V (X ()] Vi (1) — / &1/ (X (1)) B ()

0 0

= —Vg(X(O))Vn(O)/O 63”/’7du—/0 NV g(X (u)Vy(u) = Vg(X(0))Vy(0)]du

t
- / e (X (u))dB(u).
0
Thus, for ¢ € (0, 7], we have

Va(t)
t(l

1 ¢ 1
< e T O] [+ e

/ t e (X (u))dB(u)

0

1 B t a u
+ T 3t/n/0 [L|V;(0)| M (0, u; X) + [ Vg (X (u)) | My (0, u; Vi) JulHee3/ M du,

[L]V3(0)[Ma (0,8 X) + [Vg(X(0))| Ma(0, ¢, V) In?
(1+a)(2+a)
/ t e (X (u))dB(u)| .

0

< 17 Vg(X(0)Vi(0)] +

LMq(0,6 X)Mo(0,, Vi)™ 1 ),
(14 a)?(3+ 2a) te

Taking the maximum over ¢ € (0,7] on both sides of the above inequality, and using the
definition of M, (0,¢;-) (which is increasing in t), we can easily prove the lemma through
simple algebra manipulation (which is also employed in the proof of Lemma 4). B

Lemma 21 There exists ng > 0, such that for n € (0,m0] and n < t < n+ny, 1 —
3+a
(= Vg(X(n)| — LMo (n.:X) (=) ™ s bounded below from zero. Then, for n € (0, no]

(1+a)( 2+a (14a)2(3+2a)
and n <t <n+ny, we have
(t—n)’ LMq(n,t; X)(t —n)**™
M . _ X _

< C1 Mo (0,15 Vi) + Co|Vg(X (0))Vy(n)]

—n)*e . _ )3 _
+ EE D2 v + DIXO) + T+ 4o s LT () M. X)

(t_n)Q # t0u30_ u : u)au
DIV ) Mo, ) + i | n)“/n (X (u))B ()l

(1+a)(2+a) to€(n,t]

Proof. Since Vg(X(n)) and M,(n,t; X) are deterministic and continuous in 7, their max-

imum over 7 in a neighborhood of 0 is finite. As ¢t —n — 0, @W\Vg( (m)] +

LMq (n,t:X)(t—n)3
(14a)2(3+2a)

. approaches zero, and the existence of 7 is obvious. For ¢t > 7, V;, satisfies

() + SV3(0) + [Va(XO)IVa(0) + o (X(H)B() =0,
which is equivalent to

BV, = ~EITax ONV0) — o (X (0)B(),
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and

t

ts%(t)zn?’vn(n)—/ w V(X (u)]Vy(w)du — [ w’o(X(w)B(u)du
n

S

= 1°Vy(n) — / w?[Vg(X (u))Vy(u) = Vg(X (1)) Vy(n))du — / u?[Vg(X (n))]Vy(n)du
- / wo (X (u)B(u)du.
n

Thus, we obtain

[Va(t) - Vn(n)|<(t3 S)U“IVn(U)!+ tt—n*
(t— At/ L 43t — )

/ [LIVa () (w = )X ()] + [V g (X ()] (u = )|V () [Ju du
n

V(X (1)) Vi (n)]

i (1+a)t3(tfn) /n[LW( ) [ Ma(n,u; X) + [Vg(X (w) [ Ma(n, u; V) Ju? (u — )+ du

1
" t3(t —n)®
a 4 4

3 _ 3 .
< S M0, Vi) + s VX Vo)

—n)?e . _ )3 '
+ D20V, )]+ DI+ VX0 + st LV ) M, 85X)

/ W (X (1)) B(u)du

— 2
i g VA DIMa (0, 15.X) + 199X )M, 5 Vo)
L LM, X) Ma (.8, Vi) (t - )3+ .

(11 a)2(3 + 2a) B =)

t
/ wo (X (u))B(u)dul .
n

As in the proof of Lemma 20, replacing ¢ by u in the above inequality, taking the maximum
over u € (n,t] on both sides, and using the definition of M, (n,t;-) (which is increasing in
t), we conclude that

Mo (n,t; V) < C1Mo (0,15 Vi) + Ca|Vg(X (1)) Vi (n)]

_ 2—a X o 3 .
+ (tg)[L(an(n)l + DIX ()| + [Vg(X ()] + m(t@(glr@uvn(n)Ma(n,t; X)

_ )2
%[LIVn(n)!Ma(n,t; X) + [Vg(X (1)) | Ma(n, t; V)]
LMt X) Mo 1 Vy) (0= )
(1+a)2(3+2a) to€ (n t]

# t0u30_ u : u)au
Ao | KB,

which leads to the lemma. B
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Lemma 22 There exists no > 0, such that for n € (0,m] andn < s <t <n+s<T,
LMq( HX

1— WWQ( (s)|— 13’;2 ()3(122)) is bounded below from zero. Then, forn € (0, no]

andn <s<t<n+s, wehave

— )2
- e Ve )] -

< C1Mq(0, 5; V) + Caf V(X () V3 (s)]

M,(s,t;Vy) |1

LM,(s,t; X)(t — s)3te
(1+a)?(3+2a) }

(t 8)2 *a[ (| ( )| 1)| ( )| | ( ( )H w[f‘ ( )|M( t'X)
+ 5 L Vns + X(s)|+|Vg(X(s —|—(1 a)(3 ) VnS alS, 13

&l V. ]\{ S X max 1 o u30_ X (u B‘ wdu

(1+a)(2+a) V() [Ma(s, 1 X) toe(s1] | t5(to — s)° / (X (u))Bu)du

Proof. Note that for s,t > 7, V, satisfies

[#V,0)] = ~EIVaxONV(0) - o (X (0)B(),

and
BV, (1) = 52V (5) — / WV (X (u))]| Vi ()t — / WP (X (1)) B (1)
— T (s) - / WAV g(X (1)) Vy () — Vg(X (3))Vi(s)]du — / BV g(X (5))]Vi(5)du
- / wo (X (u))B(u)du.

Then, we work on w
M s a

proof of Lemma 21 with 7 replaced by s. B

. The reminder of the proof argument is the same as in the

Lemma 23 We have

P <max

- /U wdo (X (u)dB(u)| < oo for all 0 < s < t> =1.
vE(s,t] )

v3(v—s

Proof. We need to show that the Gaussian process [ u3o(X (u))dB(u) has the a-th deriva-
tive. Indeed, we have

# vugo' u u) — S =0 v
; / (X(u))d[B(u) — B(s)] = o(X(0))

v3(v—s
1 Vduda (X (u))]
- B(u) — B(s)|d
03 (v — 5)° /s [B(u) (s)]du
_BOIZBO, () L [ difeK ) o5 B B,
(v—s)® v3 Jy du (v=29) (u—s)*
which is a.s. finite, due to the fact that 0 < (v — s)*/(v — s)* < 1, X(-) and o (-) are con-
tinuously differentiable and Lipschitz, and the Brownian motion has a well-known property
that for all w > s > 0, sup,,, BW=BE) ig a5, finite. W

(u=s)?
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Lemma 24 For any given T > 0, V,(t) is stochastically equicontinuous and stochastically
bounded on [0,T] uniformly over 7.

Proof. Take 7, to be the smallest 1y defined in Lemmas 20-22. Divide the interval [0, T']
into N = [T'/n, + 1] number of subintervals with length almost equal to 7, (except for the
last one), and denote by Z; = [s;—1,s;], i = 1,--- ,N (with so =0, sy =T, Z; = [0,T/N],
1/N <n./T, Iy = [sn-1,T]). First, for t € Z;, we have

V(O] < |T1]"Mo(Z1; Vi), |Vy(8)] < [V, (0)] + i V) (w)|du,
1

and the upper bounds on V,(t) and V,(t) over Z; are a.s. finite uniformly over 7, which
implies that V;,(t) is stochastically equicontinuous and stochastically bounded over ;.
ForteZ;,,1=2,--- , N, we have

Vi (8) = Viy(siz1)| < |Ti|“Ma(Zi; Vi),

and

V(O] < Walsic0)l+ TG0l + [ Vi) = Valsion )l

Note that IV is free of . We use the above two inequalities to prove by induction that the
upper bounds of V;(t) and Vn(t) on [0, 7] are a.s. finite uniformly over 7. Assume that the
upper bounds of V;(t) and V;(t) on U};lle are a.s. finite uniformly over 7. The above-
mentioned two inequalities immediately show that their upper bounds on Z; are also a.s.
finite uniformly over 7. This implies that the uniform finite bounds of V;(t) and V;(t) on
Ué\’:llj = [0,T] and, thus, V;(t) is stochastically equicontinuous and stochastically bounded
on [0,7]. m

Lemma 25 For fized (§, m), the second-order SDEs (4.35) and (4.36) have unique solutions
in the distributional sense.

Proof. Due to the similarity, we provide proof arguments for (5.70) only. We take a
decreasing sequence of 7 in the following manner: ng, kK = 1,2, -, are decreasing, and as
k — oo, i — 0. Lemma 24 implies that {V}, (t),k = 1,2,...,} is tight and, thus, there
exists a subsequence that has a weak limit process V;(t). We show that V;(t) satisfies (4.36).
Without loss of generality, we may assume that V;, (t) weakly converges to V;(t). Further,
using Skorokhod’s representation theorem, we may assume that V;, () converges to V;(t)
a.s.. Vp, (t) obeys the initial condition V;, (0) = V;, (0) = 0; thus, V;(0) = 0, and

’Vﬂk (t) — Vﬁk (0)‘
t

Vi) - Vo)l _

t k—o0

= klim Vi (€)] < limsup[t® M, (0, ¢, Vi, ).
—00

k—o0

Since M,(0,t,V;,) is a.s. finite uniformly over 7y, taking ¢ — 0, we obtain VT(O) = 0.
For t > ny, the second-order SDE (5.72) is equivalent to the following smoothed stochastic
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differential equation system,

V’?k t) = % Yo (t) — % Vi (t)
Volt) = 5 [Va(XO)]Vy, (1) — 5 o (X(0)B0)

Its inherited initial conditions are Vj, (0) = Y, (0) = ¢ and V;, (0) = 0. The right-hand side
of the second equation in the above system implies that as k — oo, Y}, (t) converges to Y (t)
defined by

Y(6) = 3 V(X O)VE(0) - 5 o (X()B(), Y(0) =c.

which in turn shows that V;, (t) converges to Vi(t), given by

Since V, (t) converges to Vi(t), Vi(t) = Vi(t). Thus, Vi(t) satisfies

Vil = 2¥(0) - 2 Vi),

which impies that V;(t) obeys

4(6) + SV (0) + [Vg(XO)VE () + o (X () B(1) = .

Suppose that the equation has two solutions (V' (¢),B(t)) and (Vi(t),B.(¢)). Then, we
may realize both solutions on some common probability space such that B(t) = B.(t).
Hence, U(t) = V(t) — Vi(t) obeys

lﬂﬂ+%U@%HVdX@mU@%=Q U(0) =U(0) =0,

which has a unique solution zero, as it is a second-order ODE similar to ODEs (2.6) and
(3.15). Thus V (t) = Vi(t)—that is, the two solutions have an identical distribution, which
proves the unique solution. H

Remark 15 As in Section 5.1, the inhomogeneous linear SDE (4.36) has a corresponding
homogeneous linear ODE, and its solution V (t) enjoys an explicit expression in terms of
the solution for the homogeneous linear ODE. We may prove the unique solution result by
analyzing the ODE and using the explicit expression. In fact, denote by 111 (t) an invertible
solution of the following 2nd order linear matriz ODE,

s (0) ~ 1a(6) | + Viog (X)) | + I ()[R X 0)] = 0

and by Tla(t) the solution of the following matriz ODE,

11 (t)

Ilo(t) = Iy (t) (X))

(¢), I(0)=L
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Let . 0
T, (¢
H(t) = Hg(lx(t))'

Then, (I11(¢),1L.(¢),2(t)) satisfies the 1st order linear ODE system

dlly (t) = IL.(¢) Hg (X (t))dt,
(BT

dlL(t) = [3IL.(t) —
dlla(t) = Tl (t)[TLe (¢)] "1y (¢), T2(0) =1.

Direct calculations with Ito lemma lead to
t t
(v = [ { [ T o) af i oG 9)an0e),

Thus, the solution of SDE (4.36) has the following expression,

. —1 ;

1Ty (v) /
Hy(X (v)) 0
5.6.2 WEAK CONVERGENCE OF V" (t)

Lemma 26 For X(t), X§(t), and V{"(t), we have

Mo 5) < s | (24 K D) X+ waxenl] i - <2,

: -1
I1; (u)
Hg(X(u»] "“X(“»dB(u)}dv.

V() = ~ [My(t)] ! / I, (v)

0

. yvm 1 —a 3 L(t—S) m
M 37 < g 00 (5 ) e
1/4,,—1/2 v
=9 g o) + s Do [ (X (w)aB ()

1

Ma(S, t, V(;m) S

1—L(t—3)?/[(a+1)(a+2)]
[t = 9) = {2V (3)] + [3/s + Lt = 9)]IV"(5)|}

1 v 3 :
—_ X(u))B(u)d
+ max e / o (X (u)B(u) u] ,
when s >0 and t — s < \/(a+ 1)(a +2)/(2L). In particular, for s = 0 we have

[Vg(zo)|
: <
M1(07t7X) =1 _Lt2/67

/4 (mT)~1/2 v
19|V g (20)| + max,e (s g S| [V ubar (X (u)dB(u)]
1—Lt?/[(a+1)(a+2)] ’

/0 "o (X (u))B(w)du

My(0,t; X5") <

1 1
Mq(0,4;V5™) < v3ta
0.6V5") < 1— Lt2/[(a + 1)(a + 2)] ve(od [v3+a
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Proof. Because of similarity, we provide proof arguments only for M (s, ¢; V™. Let H(t; Vy")
= 7 PN X (1) — V(X ()], and (s, b,V = [ (s V) = F (s Vil
Then, we obtain

H (6 V)| < Lo 4 m 2 X7 (1) — X(0)] = LIV (1),
H(5 V) — H(s; Vi) = 574! Vg (X7 (1) - g(XF(s)) — g(X () + g(X(5))]
< L5~ P IXP (1) — X(0)] + L4 2 XP () - X (s)] = LIV (8)] + LIV ()]

V) = [V e+ V) = [ 17 - V@l V) + - 9)),
HEV — H VP < L[5 ) = V7 (s)ldu + LRIV ()] + [ - 977

/: Vi™(u) — V3™ (s)|du < /St(u _ 8)a|Vam

_ M (s, Vi) (8 — 5)**!
- a+1

t
/ My (s, u; VM (u — 5)*Tdu <

(u) = V" (s)|

(u—s)

t
du < / (u—5)*Mq(s,t; Vi) du

I

L
a+1

LM (s, t; VM3 (t — s)*+?
(a+1)(a+2) ’

LtB(t _ 8)a+2
(a+1)(a+2)
SDE (4.35) is equivalent to
3V (1)
dt
. . t t .
t?’V(;m(t) — 83V5m(s) = —/ u3H(u; Vi) du —/ u3o'(X(u))B(u)du

| J (s, 8 H, V5")| < Ma(s, ; V3™) + LR2IVE™ (s)] + (t = s) [V (s)[[£3(t — s).

= —t3H(t; V™) — 3 (X (¢))B(t), which implies that

th— gt t .
i H(s; V§") — J(s,t; H, V(;m)—/ wdo (X (u))B(u)du,
Vm(t) — Vim(s 3 —g3 . th— st J(s,t; H,VI"
: <i—s(5 S B0 ) T gEg ey Ve - (t3(t—s)6 :
_t?’(tl—s)/s o (X (u)B(u)du,

and using the upper bounds of H(s;Vy") and J(s,t; H,V;") and algebraic manipulations,
we obtain

LGHURAAEL e Al (s, V)
< Vm ER—— © Vm 1S\ vy 20, Vs 1
t—s _t3(t—s)‘ J (8)‘+4t3(t—3)| (V5" + Bl )

1 b .
- t2 + st + 52

L(t _ 8)a+1
(a+1)(a+2)

/ wo (X (u)B(u)dul .

o 2+ 3 (t+ s m m
@)+ EEED Ly o) 4 (s, 737)

1

+ L2IVE™ (s)] + (t — )| V3™ ()] + Bli—s)
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As the above inequality holds for any s < t, an application of the definition of M,(s,t; V™)
leads to

M (s, £ V") < (t — ) {\Va (>r+L[4\v5m<s>\+<t—s>\%m<s>\]}

Lt —s)?
Mo(t, s Vs" ) ———~7—"o7 T om—
Ml s ) S e v 2) T Bl — 9y

/v wdor (X (u)B(u)dul,

and solving for M,(s,t: VJ™) to obtain

1
“1-L(t—9)?/[(a+1)(a+2)]

[t = )= {ALIV ()| + 3/ + Lt = 9)][V3"(3)]}

M, (s, t;V5") <

1 v, .
b / " a(X(u))B(u)du} ,
when s > 0 and t — s < \/(a+ 1)(a +2)/(2 ) = e replace the coefficient 3/s by
1/t in above inequality, and V§"(0) = V™ (0) = Z;”( ) = X (0) = xg. Then, we conclude
that
Mo (0,8 Vi) < ! ! / 36 (X () B (u)d
a\Y, 1; = max | ——— )
S =TI [(a+ Da+ 2)] vetog |vdte | f, © TR

which proves the lemma. B

Lemma 27 For any given T' > 0, we have

_ _ 1/4, —1/2
ma VE"(0)] = Op(1). - mase IXP'(1) = X(0)] = Op(6"/'m™2)

V()] = Op(1 xXm X(H)] = Op(5Y/4m=1/2).

s V5" (0)] = Op(1), - mas [X57(t) = X(8)] = Op(6Tm~%)
Proof. As Vi™(t) = 6~ Y/4m1/2[X(t) — X (t)], we need to establish the results for V" (t)
only. Divide interval [0, 7] into N = [T\/ZL/{(a +1)(a+ 2)}} + 1 number of subintervals

with length /(a + 1)(a + 2)/(2L) (except for the last one), and denote the subintervals by
Zi = [si—1,8i), it =1,--+ N (with so =0, sy =T, Z1 = [0,+/3/L], Iy = [sny—1,T]). First,
for t € 71, from Lemma 26 we have

‘ 1
Vi) < [T [* Mo (Ty; Vi) < C
V™ (8)] < 1T Ma(Z; V) < Ugéé‘,?ﬂ[vw

/O "B (X (1) B(w)du

] 1
V)| < [viro Vi du < C
VOIS VO + [ 1V w)ldu US%S‘?;][W

/0 "B (X (u))B(w)du

The upper bounds of V;"(t) and V{™(t) on Z; are a.s. finite uniformly over (,m).
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ForteZ;,i=2,--- , N, from Lemma 26 we have
V() = Vi (sio1)| < |Ti|* Mo (T3, V™) < C [4L\Vam(8z‘—1)! + (3/s1 4 Ls1)[V5" (si1)|

1
+C max

’L)G(Sifl,si} ’U3(U — Sz‘_l)a’ ’

/ " Bo (X (w)Bu)du

i—1

Vi ()] < V3™ (sim1)| + 1Tl [Ve" (sie1)| + /I V™ (u) = Vi (si-1)|du
< |Vi™(si—1)| + /3/L|V3"(si—1)| + C [4L\‘/(sm(5i—1)| +(3/s1 + Ls1) V3™ (si—1)|

+C L
max -,
veE(si—1,84] 1)3(1) - Sl‘_l)a

/U o (X (u)B(u)dul .

We use the above two inequalities to prove by induction that the upper bounds of
Vit(t) and Vg™ (t) on [0,T] are a.s. finite uniformly over (m,d). Assume that the upper
bounds of Vj"(t) and Vy™(t) on U;;lllj are a.s. finite uniformly over (m,d). Note that

N u3U(X(u))B(u)du‘ is a.s. finite, and N is free of (m, ). The

8i—1,81] m Sic1

above-mentioned two inequalities immediately show that the upper bounds of Vi"(t) and
VI'(t) on Z; are also a.s. finite uniformly over (m,§). This implies that the uniform finite
bounds of V{™(t) and V{"(t) on Uj-V:le =1[0,7]. &

maxve(

Lemma 28 For any given T > 0, as § — 0 and m — oo, V"™(t) is stochastically equicon-
tinuous on [0,T].

Proof. Lemma 27 proves that maxc(o 7 |Vy"(t)| = Op(1) and maxcjo 1) Vin(t)| = Op(1),
which implies that Vj"(t) is stochastically equicontinuous on [0,77]. B

Proof of Theorem 8. Lemma 25 indicates the unique solutions of SDEs. Moreover,
(4.36) is a linear SDE, and its constant term linearly depends on B(t); thus, its solution
V(t) is Gaussian. As in Section 5.1.2, we can easily establish finite distribution convergence
for V{™*(t). Lemma 28 along with the finite distribution convergence immediately lead to
the conclusion that as  — 0 and m — oo, V3" (t) weakly converges to V(¢). B

5.7 Proof of Theorem 9

Recall that sequences {xj,yr} and {z}',y;*} are defined by algorithms (2.4) and (4.26),
respectively, with initial values zf' = y* = xo; Xj"(t) and X (t) are the solutions of ODE
(2.6) and SDE (4.35), respectively.

We discretize SDE (4.34), which is equivalent to (4.35), to define a new sequence in
the following manner. Let {Z}", 9"} be the sequence, with initial values 3" = 97" = o,
generated by

k—1
k+2

T = gy = 0Vg(a) —m VRS H (t) — H (b)) 0 = 24— (= 33), (5.73)
t
where H(t) = / o (X (u))dB(u) and ty = k§'/2.
0
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We rewrite algorithm (4.26) to generate {«}",y;} as follows:

o = G — OV — ST 1) — HY )], o = o + s o — ).

(5.74)

Note that (5.73) and (5.74) share the same recursive structure with the only difference

being between Hj"(t) and H(t). The approach to our proof is that (i) Lemma 34 below

reveals that {z]",y;"} and {2}, 9"} can be realized on certain probability spaces within

a small order distance; (ii) Lemma 38 below derives an order bound for the discretization
error &' — X§'(t); (iii) the theorem is proved by combining two lemmas in (i) and (ii).

Lemma 29

max |z — X (t)| = O(6Y?|logd]), max |z — X (t)| = O(6Y2|log ),
k<T§-1/2 E<T5—1/2

max |y — xx| = O(6/?).
k<T§-1/2

Proof. As X(t) is the solution of ODE (2.6), it is shown that X (t), X (t), and Vg(X(t))
are uniformly bounded on [0,7], and Lemma 4 further indicates that X(t) is Lipschitz.
Let Z(t) = X (t). With deterministic sequence {x, yx} given by algorithm (2.4), we define
20 =0, 2z, = (z, — zx_1)/6"/%. Lemma 8 indicates that

max |z, — X ()| = O(6"[logd|), max |z, — Z(tx)| = O(5"*|log d]),
k<T§-1/2 k<T§-1/2

3k+4 51/2

i3 2k, which implies that

and yp — T =
_ 1/2 _ _ 1/2
max |yp — x| < 30 max |z — Z(ty)|+ max |Z(tx)] ) =0(7<). A
k<Ts-1/2 k<Ts-1/2 k<T§—1/2

As in the proofs of Theorems 4-6, we use notations R™(0; U? (t)) = (R7*(0; U}, (1)), - -
R}(0;U5, (1)), where

RIY6;U;, (1) = vVm [ Z U0 U () — 19(9)] L j=1,-,p.

Lemma 30

max  B[|[R™(X (tp—1); Up)|'] < C.
k<T5§—1/2

Proof. For simplicity, we write R; = Rm(X(ti);U*m(iH)),

m
Vg(X(t;)). Then, R; = m~1/? qu. Since X (t) is deterministic, and Upra=12,--,m,
q=1

and ry = V(X (t;); U;(i+1)) -

are independent, we have that ry,ro,...,r,, are independent with mean 0, and

Itg| < P (Uyip1))| X () — Ol + V€003 Uygiy1))| + V(X ()],
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Elrg]* < 3 (E[R(U)]|X (t:) — bof* + E|VE(00; U)I* + [Vg(X (t:))]%),

Elxg|* <27 (BIR{(U)]|X (t:) — 0ol + E[VL(0o; U)[* + Vg (X (t:)[).
Note that sup | X (t) —60y| and sup |[Vg(X(t))| are bounded, and Assumption A1l implies that
E|ry|? and é ry|* are uniforml; bounded. Therefore, we obtain

2

m m
E|R*=m™'E qu :m_le\rngC,
q=1 qg=1

[ m
= m’E Z |rq|4 + 2(4(1";31}1)2 + 2rp2rq2)]

q=1 p<q

IN

r<q

m
m”? [Z Elrg|* + Z 6Erp|*Elry|?
q=1

< m3(mC +3m*C?) < C + 302,

where we use the inequality (r}ry)? < [rp[?[r|?. In other words, we show that E(|R;|?) and
E(|R;|*) are uniformly bounded. W

Lemma 31

m _m 2 < m o 2
tgﬁ%E[lGa (t) — G (t)!]_C,gr%%EHyk X(ty)|*],

where GT(t) and GT(t) are defined in (5.78) and (5.80) below, respectively.

Proof. Define filtration F; = o(y5"(s), Uy, (s);s < t), where y3*(t) and Uy () are given by
(4.27). Then, for ¢ > j, we obtain

E{(R™ (yi"; U;(iﬂ)) — R™(X (t:); ;kn(iJrl)))/(Rm(y?; U;kn(jﬂ)) — R™(X(t;); U:z(jﬂ))}
= E{E[(R™(y"; Uyy41) — B"(X(:); Upyip))

(R™ (v Upjany) — B (X(E5); Uy DIF 1
= E{(R™(y"; Upyip1)) — R™(X(4); Upyi0))

ER™(yi" Uy i) — B (X () Upy ) 1,1}

=0.
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Set rq; = VL(y" ’U*(Hl)) — Vg(y™) — (VX (t;); U;(Hl)) — Vg(X(t;)). Then, we have

AN m * * -
Di = R™(y"; Uppisyy) — R™(X(); Uppiyyy) = m /2 Z "ais

and for g # s,
E(ryrsi) = E(E(ryrsil Fr,)) = E(E(ry| Fy, ) E(reilFt;)) =0
On the other hand, we obtain [rg| < (h1(Ugig1)) + L)|yi"* — X ()],
E(lrgil*) < E(B[(h1(Uyit)) + L)y — X(t:)]|F.]) < C - Ely* — X (),

and, thus, we arrive at
E|Di]> < C- Bly" - X(t;)|*.

Direct calculations show that for ¢+ <t < tg4o,

5 , o2 k s1/2 F ) )
E|GF(t) - Gg* (D" = gE ZCz ZC E|D;|
i=1

< k8/2C - max Bly" ~ X (L)< C- mgngm — X (),

and, therefore, we conclude that

E G (t)? < C - Ely™ — X(t)>. =
nax, G5'(t) - G5 ()" < C max 7 (tr)]

Lemma 32

max Ellyf" — el =0(m™2), max E[lyp" — X(t)|*] = O(m™> + 6"/2|1log 4]).
k<T5§—1/2 k<T5—1/2

Proof. The second result can be easily established from the first one and Lemma 29. We
prove the first result below.

Recall that dy = 0, d, = 2 — xp—1, dj* = 0, d' = ' — ] ¢, ar = |z — 2,
bk = ’dk — d?’ We have ag — 0, bo = O,

ap < |wp—1 — xp | + |di — d}'| = ag—1 + by < Sk,

where S = by + by + - - - + br.. Moreover, we obtain

k—1
d = dp — 0
= o Va(yr),
m k— 1d _5 5 —-1/2 pm m. ¥
k1= o0 Vy(yg') — om R™(yi m(k+1))7

lyi' — yr| < ak + by
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Since maxg<p,. [yx — X (tx)| = O(6/2|log d|), we have maxp<p,. |yx| = O(1), and as in Lemma
30, max 75172 B[|R™ (yx: U, 440))1 '] = O(1). For simplicity, we let Ry, =|R™ (yx; Uy, .4 1))l-
Recall that

[B™ (Wi Upnrrny)| <Br + m~/? Z[hl(Ui*(kJrl)) + Ly — vkl
i=1
Y Ugiry) = B (O] - 1 = wil

i=1
+m!' 2 (E((U)) + L) - [yi" = yl.

<Ry + m~ /2

Let hy, = m~ Y2 |7 [ (U

) E(hl(U))]‘ Then, we have

E[h}] = 0(1),
ponax [hy] (1)

bey1 < by 4+ Lo(ag + bg) + m™ 2Ry + (6m™Y2hy + C6)(ar, + br),

and using ap + b < 2S5k, we obtain

b1 < b+ CO(14+m™Y2h) Sy, + dm ™2 Ry
Define a sequence bj, that satisfies b, = 0,

f1 = b + C8(1+m™Y2hy)S) + om~Y/2Ry,.
Then, b, < b}, b} is non-decreasing, and since ko2 < T,
Vyrr < b+ CO(1+m™ V2 hy) kbl +0m ™2 Ry < (14082 (14+C8Y2m =2y )b)+6m = V2 Ry,.
Define another sequence b; that satisfies by = 0,
bipr = (1+C8Y2) (1 + O3 2m= 2oy + om ™2 Ry,

Then, b}, < bj, and

k—1 k—1
b = 1+ o2t TT (4 €8'Pm™ 1 2hy) | om ™ /2R,
i=0 j=i+1
k—1 k-1

<Com 2y [T @+ €8 Pm=hy) | Ry
i=0 J=i+1

Since for r = C6'/2m=1/2 < 1,

E(1+rhj)* <14 4rEh; + 6rEh; + 4rEh3 + rEh] <1+ Cr,
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and R;, hit1,...,hr_1 are independent, we obtain

max Eay, < E(krbj, )"

k<kr
kr—1 kr—1 4
<CPm7kk Y EL | [ @+ C6V2m2h)) | R,
i=0 j=i+1

kr—1 kr—1
< CPmT2 Y II B +co'?m'h)*| ER}
i=0 j=i+1

< 061/2m_2kT(C(1 + 051/2m—1/2)kT)
=0(m™2).

Finally, we conclude that

Elly™ — yelt] < E b)) < C Elai +bi]=0(m™2).m
max [lyk ?/k‘]—]?%%}; [(ak +br)"] < max lag + bp] = O(m™)

Lemma 33

max E[|[R™(yi"1; Uyl < C.
k<TS§—1/2

Proof. Define filtration 7; = o(y5"(s), U;,(s);s < t), where y§*(t) and U} (t) are given
by (4.27). For simplicity, we write R} = Rm(y?;UTn(kH)) and rq, = VL y ’U*(k:+1))
Vg(y"). Then, given Fy,, 71k, ..., g are conditionally independent with conditional mean

0,
m
-1/2
Ry =m ™2 g,
q=1

E\qu|4gc(E[|h1< )i = 0011+ Ely — 6ol* + E|VL(00, Uy oy y)I* + [Vg(60)] )
<

which is bounded uniformly over 1 < k < kr, since E[|y7*—6o|*] < E[ly—yi|*]+|yx—00|*]
C (implied by Lemmas 29 and 32), and

Elh(Uygos )y =00/ "1 = E[E[ 71 (Ul =00l | F )] = E(1ha (U)[) Ellyi — 60| < C.
Finally, we conclude that

m m
E|RZL|4:m72E E ngk quk Zr;k quk Fip
q=1

q=1 q=1 q=1

m
_ 1
<m~? E E’qu|4+6 g (E|Tpk|4'E|qu|4)2
q=1 p<q

<C.m
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Lemma 34 There exist simulttaneous realizations {7, g}, {#0, g}, standard Brown-
ian motion B, and H(t) = o (X (u))dB(u) on some common probability spaces, such

that sequences {Z}", ", k < T/6"%} have the same distribution as {a7, ym k < T/6Y2},
and sequences {7, 47",k < T/5'/%} are generated from H(t) in the same manner as
{z7,gm, k < T/5Y2} generated from H(t) according to (5.73), and as & — 0,m — o0,

P | = —1/251/4), 5.75
kg%%ﬂ T — | = op(m ) ( )

Proof. For k > 1, let dk =ap, — @,
di' = =6V g(xo) —m™28¥* (H(t1) — H (o)),
and rewrite (5.73) as

k1

Tphy =T + m(ii” — &) — 6Vg(g) — m” V2SN H () — H(ty)).

Then, we obtain

k—1

dit = it = OVe(E) — mT R H (teg) - H (1))
k—1 (k-2 . -
T kt2 (mdk—z = 0Vg(GRL) —m” 2 (H (1) — H(tkl))>

—6Vg () — m~ Y263 (H (ty1) — H(tr)

= —Z< R )(Wg( P+ m T 26 (H (1) — H(t:))

k+2 k+1 1+ 3

k
k:+2 k+1)k
=1

Similarly, let di* =z, | — 27",
Ay = —6V L™ (x0; Ulyy) = —0Vg(x0) — 8(VL™ (w05 Upyy) — Vg(o)),
and we have

i m
k5v£ (yz aUm(’L+1)) (577)

80



JOINT COMPUTATIONAL AND STATISTICAL ANALYSIS OF GRADIENT DESCENT ALGORITHMS

and define cadlag processes G§'(t) and G;(t) as follows:

0, 0<1t<ty,

(51/4Rm(l‘0; U;knl), t1 <t <ta,
am(t) = (5.78)

51/4 ZC’ yz ) :1(i+1))7 1 <t < tpyo,

07 0<t< t1,
H(tl) - H(to), 11 <t <t

Gslt) = k (5.79)
Z tH‘l (ti))¢ tht1 <t < tgpqa.

By Assumption A4, R™(0;U* ) weakly converges to N(0,0%(f)) uniformly over 6 as
m — oo. Note that H(t;11) — H(t;) follows N (0, /ti+1 o%(X (u))du), and Var(§/*R™(y";
U;"n(iﬂ))) is approximately equal to f o UQ(X(utS)du. According to Lemma 35 below,
there exist G7*(t) and H(t) = / t o (X (u))dB(u) on some common probability spaces, such
that G'(t) and G(t) are iden%ically distributed, Gs(t) is generated by H(t) in the same
manner as G5(t) by H(t) via scheme (5.79), and as 6 — 0, m — oo,

max |G (1) — Gs(1)] = 0p(1).

t<T
Using GP(t), we define associated sequences { Ry} and {Z", 7"} as follows:
Ro=6"Y4GP (1), 20 = 3" = o,
k—

B = G — SV — bV R, = A+ L G — ),
3 _ 1 Bl
Ry =6 V4GP (thyr) — o > R
=1

Since G§(t1), ..., GF(t),) have the same distribution as G (t1), .G (t), we easily conclude
that {7}, 7"} are identically distributed as {z}",y;'}, and dj' = ]’ | — &} satisfies

k
~ ~ > Ci ~m — ~m
dy' = =0V g(wo) —m™ PGP (1), dff = =Y —6Vg(i) —m PG (thga).

i=1 K
Similarly, we define {Z}", 97} by Gs(t), and set j? =&, — &}, so that
dy' = —6Vg(xo) —m~ 253 Gs(t), dft = =Y —6Vg(G") — m™ 284G (tra).

i=1
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Let ay, = & — &|, by = |d* — d|, S = bo+- -+ by, and Y = m~1/25%/ f&a%!é?(t)—

G5(t)|. Then, we have by < Y,

ap = |F A dP —F —dP | <apy A+ bpy <bo+by A +Fbpy =Sk,

~ kji]- 3 ot k*l <
zy + ﬁdk—l — Iy — mdk—l <ag+br—1 < Sk—1+ bi—1,

o — k| =

k k
b LSS |G =G|+ Y < L8> (Sic1+bio1) + Y < 2L6kSp_1 + Y < C6'2S_1 + V.
=1 i=1

Let by = YV, b, = 051/25,’;71 + Y, where S = by + ... + b;.. Then, by induction we easily
conclude that

bo < b, bp < COV2S,_ 1 +Y < COY2SE [+ YV =0}, 5 < S
Since b1:+1 = 0(51/25,: + Y leads to bl:+1 —by = 051/2132 for all £ > 0, we immediately obtain
the geometric sequence b} = (1 + C§'/2)kY and find its sum S;. Finally, we conclude that

FI_ gm * 1/2 1/2\T/61/2
k;%%m 2" = 25| < S\ysiz) 1 < Spygre o ST/07(14C67) y

< CY/5Y? = 0,(m™/251 ). m
Lemma 35 Given that G§'(t) and Gs(t) are defined by (5.78) and (5.79), respectively, we
t ~
can show that there exist G§*(t) and H(t) = / o (X (u))dB(u) on some common probability

~ 0 ~ ~
spaces, such that G§'(t) and G§'(t) are identically distributed, G5(t) are generated by H(t)

in the same manner as G5(t) by H(t) via scheme (5.79), and as 6 — 0,m — oo,

max |G (1) = Gs(0)] = o,(1).

Proof. Define a cadlag process

0’ 0<t< t1,
; 6 AR (03 Upyy), t <1<t
0= 1< (5.80)
51/4a Z GR™(X(6); Usyivny)s  tepn <t < trpo.
=1

Note that the only change in (5.80) is to replace y;" in (5.78) by X(t;). Define G(t) =
t

3 u?o (X (u))dB(u). We prove that GT(t) weakly converges to G(t). Set C) = §%/2¢; =

0

titiv1tito, and for any fixed=mpg<i<m<---<7 < T, let k;s = max((), LTj/(Sl/ZJ — 1).

Then, Cgé = 53/2k?(k§ + 1)(k§ +2)— 7']3, as 0 — 0. Using the definition of G*(t), we have
J

S5
k;

Ym 1 m *
G§'(15) = 51/462526553 (X () Upyisny)s
3 i=1
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Ky
Chs, G5 (51) = CL Gy (my) = 01/ 3 CIR™(X (1) Uy s4))-
i=k%+1
J

The right-hand side of the above equation is the sum of independent random variables,
by Assumption A4, as m — 00,0 — 0, ng+ngn(Tj+1) - ng G%'(7;) converges in distribu-
Ti+

1
tion to a normal distribution with mean 0 and variance / uS0?(X (u))du. Because of

.
independence between consecutive differences, we can easily arrive at that

(€G3 (7). €Ly G (72) = Cla G (M), - Chs G (m) = €y Gi(min))
converges in distribution to
(rPG(m), 73 G(r2) — T8G(11), ..., 7P G(n) — 7 1 (mi—1))
which immediately shows that <Cg‘f Gg”(Tl),CZg G™ (1), ...,CO G’g”(n)) converges in distri-

’ k?
bution to (1$G(1),73G(12),...,7°G(7)) . Since Cgé — 77 as § — 0, we conclude that
) 3 ; J
(GF(11), GF(72), - - ., G§*()) converges in distribution to (G(r1),G(72),...,G(n)). Thus,
we prove the finite-dimensional distribution convergence of G (t).
We establish the tightness of Gg”(t) by proving that for any 0 <r < s <t <T,

E{|G3(t) = G§(s)PIGF (s) = GF(r)|*} < Ot —r)*. (5.81)

To simplify some notation, we let R; = R™(X (¢;); Ul Jrl)). First, we show that for any
fixed 1 <j <k <l

k 2

I
1 1
*E ii—*g iRi| ¢ < C(l—j), .82
‘CZ ¢iR o ¢R < C(l—3j) (5.82)

k J

2
iZCiRi - Ci ZciRi

C
L )

E
i=1 =1

where C' is a generic constant free of the choice of (j, k,1).
Lemma 30 implies that E(|R;|?) and E(|R;|*) are uniformly bounded over 1 < i <
T6-1/2. Since Ry, R1, R, ... are independent with mean 0, we have

k
> _cilt:
i=1

2

k
= ZC?E\RJZ < Cke,
i=1

E

4
k
E <Y EIR T+ 6} EIRPE|R;|* < Ck*c,
=1

1<j

k
>,
=1

where we recall the convention that C' denotes any generic constant free of (d,m,n) and
(i,4,k,1), and its value may change from appearance to appearance.

Let
j k !
Di=> cRi,Dy= Y cRi,Ds= Y R
i=1 i=j+1 i=k+1

83



WANG AND WU

Then, D1, Do, and D3 are independent, and similarly we can show that

E|Do|* < C(k — j)ci, E|Do|* < C(k —

7)ch,

E|Ds]* < C(l - k), E|D3|* < C(1 — k)*c},

(ck — cj)?
i

Ck—Cj_l_

ck
Therefore, we establish (5.82) as follows:

2
E ‘

1 <& 1<
S SS S
Rt %=

1< 1 <&
— CAR._i CARA
CZ;H CkZ;

2

_ pl|PitDe D |Di4 Dyt Dy Dyt Dsf?
- Ck Cj Cl Ck
D : D - 2
_ E{Q_Ck: CJD1’ D3 ¢ Ck(D1+D2) }
Cl CkCj C| C|Ck
Dol? (e —¢j)? D3> (¢ —cp)?
Ck kG G € C
D k—j D3| -k
< 9C-E | ;‘ + 23|D1|2 <‘ 2‘ + = (|D1|2+|D2|2)>
c; kes & lcy
< of E=DEl k) (k—j)ei(l = k)jc] N (I = k)(k —j)ci
- c%c? cﬁlc% lci
k—5)jc2(l—k)? (k-1 -kt  (k—5)jc2(1—k)(k—j)c
o (k—=g)jc;(—k)eg (k=) —k)jc; (k—j)jcj(l —k)(k—j)ck
kc?c% k:c?lc% k:c?lc%
< O(—j)?

Second, we prove

2
E

1< 1< 1
G 2 GRi= ) el | =) af
i=1 7 =1 7 =1

Indeed, similar direct calculations lead to
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1 k J 1 J 2
FE ; ZCiRi — - Zcsz ; ZCiRi
ki1 i=1 7 i=1
D 2
= E {‘ 1+ Dy Dyt Dy }
Ck cj C;
D c ci)? D
. CiC; ;
(k=j)eic;  i°cj
< C 22
CiC; c;
< Ok

Third, for any 0 <r < s <t < T, we may choose (j, k, 1) such that t;11 <r <tjio,tpr1 <
§ < tpgoytipr <t < tyyo. If j=Fkork =1, then r = s or s =t, and (5.81) is obvious.
Assume that j < k < [, and we prove (5.81) for each scenario. If j = —1 and k = 0, then

E{|GF(t) = G (s)PIG () = G§'(r)*}

< OO =C(tyy —t1)? < C(t—1)2

If j=—1and k > 1, then

E{IG3 (1) = G (s)PIGF (s) — GF(r)*}

I k 2

;ZCZRZ — ;Zcle

i=1 i=1

= 0F

< OO =Cti —t)2 < C(t—r)%
If 7 =0, then

E{IG3 (1) = G (s)PIGF (s) = G ()P}

2 2

l k

CllZ:CZRZ — ;ZQRZ

=1 =1
< O81? <AC(ty1 — t2)* < 4AC(t — )2

k

;ZciRi — Ry

=1

= 0F

If 7 > 1, then
E{|G () - GF'(s) |G (s) = GF (r)*}

1< 1< Tl & 1<
— c;R; — — Rl | — c¢iR; — — ¢ R;

Co(1 — 5)? <4C(t11 — tjr2)? < 4C(t — 7).

2
= O0F

IN
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Now, with the established finite-dimensional distribution convergence and tightness for
G™(t), we conclude that G*(t) weakly converges to G(t).

Note that the only difference between GT(t) and GJ(t) is y and X(#;) used in
R™(;U? ;). By Lemmas 31 and 32, we immediately show the finite-dimensional distri-
bution convergence of G§*(t) to G(t).

The same argument for deriving the tightness of (v}'gl(t) can be used to establish the
tightness of G§'(t) by proving that for any 0 <r <s <t < T,

B{|G (1) — G (s)PIGF (s) = GF(r)[*} < C(t — 7). (5.84)
Again, for simplicity, we let R, = R™(y."; U;(k +1)), and we show that for any fixed 1 <
J<k<l,

2

E

2
‘ <C(l—7)> (5.85)

1 < 1<
— E CiRi—f E CZ'RZ'
Cc “ C ©

=1 =1

1 i 1 J
— E CiRi - — E CiRi
Ck “— Cj “—

i=1 i=1

Indeed, recall that ¢; = i(i + 1)(i 4+ 2), and define Sy = Zle c;R". Then, there exists
a constant O = v2C, v > 1, such that E|Si|* < C1k%c}, which we prove by induction.
Lemma 33 implies that it holds for £ = 1. Assume that it holds for k£ — 1; then, using
Lemma 33, we obtain

k k k k
i=1 i=1 =1 =1
k—1
<BISk ' + GEIRP + 4> et BRP - |[RPP) + 662 B(|Sk—1[*| Ry [)
=1
+4 3" ccjack E((RPY Ry (R RyY)

1,7,l<k
<Ci(k —1)%¢ + ¢C + 4(k — 1)} C + 6¢2/Ci(k — )2V C
<cp(C1(k —1)? + (4 + 67)Ck)
< (C1(k —1)? ++%Ck)
SCll{?QCi,

where we take v = 7 so that 4 + 6y < 2, and we employ the Cauchy-Schwarz inequality
multiple times. Moreover, in the above derivation, we use the fact that

1 4y 3
E(IR["| - IRI'*) < (BIR[Y - (BIRP[M) < C,

B8 1PIBPP) < \/EISkaf* - BRI < /Ci(h = 1)V
and the zero conditional mean for i, j,1 < k,

E((R")' R} (R")'Ry') = E[E((R]) Ry (R") Ry | F )] = E[(R") R (R") E[R} | Fy, ] = 0.
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Note that all we have used in proving E|Sk|* < C1k%c} are the above zero conditional mean
and E|R7|* < C implied by Lemma 33. Applying the argument to Sy — S;, we obtain
E|Sk — Sj|* < C1(k — 7)*c}. Since
(ck 2%) ST g JG+1DG +2) §1_1§3<k ]>7
c Ck kE(k+1)(k+2)

direct calculations show

14 _ Q. o 4
E&—i :ESk SJ—Ck CJSJ"
Ck Cj Ck CiCL
< g Bl =S N E|Sj|*(cr — ¢;)*
- cﬁ cjfci
) 9C1j2(k — j)*
<8 <C’1(k —1)2 + ]ig)
< Cok — j)?

Hence, for j < k < I, we conclude that

J<(e )

which proves (5.85). The remaining arguemnts for establishing (5.84) are easy and pretty
much the same as those for establishing (5.81).

The finite-dimensional distribution convergence and (5.84) show that GJ'(t) has the
same weak convergence limit, G(t), as GT*(t). Skorokhod’s representation theorem indicates
that there exist G(t) and G(t) on some common probability spaces, such that G7*(t) and
G7(t) are identically distributed, G(t) and G(t) are identically distributed, and as § — 0
and m — oo, under the metric d in D[0,T7,

d(G3'(t), G(1)) = 0p(1).

S, S|?

a Ck;

St S

Ci Cj

Sy Sk

a Ck

Sk S

Cl Cj

A\ 3
E ) < Oy(1 - §)?,

By Lemma 37 below, we obtain that if we further prove the tightness of G(t), then
the above-mentioned op(1) result under the metric in D[0, 7] can be strengthened to the
maximum norm—that is,

max G5 (1) = G(1)] = 0p(1). (5.86)

We must establish the tightness of G(t). Because G(t) and G(t) are identically distributed,
if we show that for any 0 <r <s<t<T,

E{|G(1) - G(s)PIG(s) — G2} < C(t — ). (5.87)

Then, G also satisfies the above inequality and both G(t) and G(t) are tight.
We prove (5.87). If r > 0, let

Dy = /0 "o (X (u))dB(u), Dy = / W (X () dB(w), Ds = / u’o (X (u))dB(u).
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By Assumption A3, we have
lo®(X ()] < lo*(Bo)l| + LIX(t) — bo| < C.

S
D, follows a normal distribution with mean 0 and variance ¥ = / ubo? (X (u))du, and
T

120 < [ o) du < s - s

Taking eigen-matrix decomposition ¥ = I'VAT", we obtain that I"'Dy follows a normal distri-
bution with mean 0 and variance matrix A, and

E|Dy|?> = E|ITDo)? = tr(A) < C(s —r)s®
E|Do|* < CE|TDo|* < Ctr(A%) < C(s — 74)2812‘

Similarly, we have
E|Di|* < Cr", B|Dy|* < Cr',

E|Ds3]* < C(t — s)t% E|Ds|* < O(t — s)*t!2.

Putting them together, we arrive at

E{|G(s) = G(r)? !G s)|*}
_ B Di+Dy Dy D1+D2+D3 Dy + Dy |?
N s 3 t3 8

Do (= o\ (1Dl (6 =
< C-E{<‘ 36‘ + s 1D ) (e + T (1D D)
[Do]*  s—r o\ [IDs]?  t—s 2 2
< - F D D D
< oo p{ (120 i) (B 4 L2 mi + papy
< (s —7)s8(t —s)t® (s —1)sS(t —s)r"  (t—s)(s —r)?s!?
s ¢ 56¢6 + tsl2 + tsl2
(s—r)r'(t—s)t° (s—7r)t—s)rt (s—r)r7(t —s)(s—r)s’
+C < 51616 + s1r0t56 + s1r0ts6
< C(t— 7“)2.
In addition, similar arguments show that for 0 < r < s,
E{|G(s) - G(r)]? |G )1*}
_ B Di+ Dy  Di|*| Dy
- 53 AR
[D2* [ s—r ) |[Dif?
< C-F D
- {( s6 + 576 D1l 70
(s — r)s6r7 (s — 7")7“14
< C < 5676 + orl2
< Cs.
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With H(t) = /to'(X(u))alB(u)7 Gs(t) generated by H(t) via scheme (5.79), G(t) =
0
L[ty -

3 u3dH (u). Lemma 36 below indicates that as § — 0
0

2(t)| = 0p(1).
tmax |Gs(t) — G0)| = 0,(1)
Finally, combining the above result with (5.86), we conclude

max |G (1) = Gs ()] < max | G5 () = G(O)] + max [Gs (1) = G(B)] = op(1). W

Lemma 36 Given Brownian motion B(t), we define G(t) = t=3 f u))dB(u) and
Gs(t) by (5.79), as in the proof of Lemma 35. Then, we have

max |G5(t) — G(1)]

t|leqT

op(1).

Proof. Denote by Xj the variance of Gs(tx) — G(tx). Then

Gs(ty) — G(tr) = jg /0 (6 — )0 (X (u))dB (1),

7
1= < th; < 0o\,
1

Let Cf = t@'ti+1ti+2. We have for k Z 1,

1 k tit1
Gs(thy1) — G(tp) = 57— /

o (€3t} 1 — Clu)o (X (w)dB(w).
k"k+1 ;=0

t;

k ot
1 s 3 3y2, 2
2k+1 W / (tit’i+1ti+2tk+1 — tktk_l’_ltk_;’_Qu ) (e (X(u))du
kYk+1"k+2"k+1 j—q 7t

Since |titit1tipaty 1 — thtkritrou’] < Ot +151/2, titra > t3, /2, we obtain

5
IBreall < 77— Z/ t19  6du < G0 e,
k—i—l =0 tk+1

In other words, | Zx|| < C6'/2 uniformly over k < T6~'/2. As both Gj(t) and G(t) are
normally distributed, we get

E|Gs(ty) — G(t)|* < C,
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and, hence, for any 1 > 0, we have

kr
Pl Caltr) = Gl > ) < 3 PIIGs() ~ 6w >0
kT 4 kT 1/2
E|Gs(t) — C(ts)| s CTs
< <320 < 0
kgo ,'74 kgo 774 774

Finally, the tightness of G(t) implies that

s,tSTﬁ?§§§1/2‘ ( ) (8)‘ OP< )7

and, thus, we conclude that

max |Gs(t) — G(1)] < max |Gs(ts) = G(te)| + | max ~ [G(t) = G(tx)| = op(1). W

t<T k<krtp<t<tgi:
The following lemma is a known result, but we state it explicitly in our context.

Lemma 37 Let D[0,T] be the space of all cadlag functions on [0,T], equipped with metric
d(X(t),Y(t)) given by

d(X(t),Y(t)) = inf {6 : Jone to one map T on [0, T]such that sup,p |L(t) —t] <6,
supyr [X(D(8) = Y (1)] < 0}

For processes X,(t) and X(t) in DI[0,T], assume that X(t) is tight, and as n — oo,
d(Xy,(t), X (t)) = 0p(1) under the metric in D[0,T]. Then, we have

sup [ X, (t) — X (8)] = o,(L).
t<T

Proof. For any € > 0,1 > 0, by the tightness of X (¢), there exists 6 < n/2 such that
P( sup | X(t) — X(9)] >n/2) <e/2.
5,t<T,|t—s|<d
Let

$,t<T,|t—s|<d

A, = { sup | X(t) — X(s)] < 77/2} N{d(X,(t), X(t)) <0},

t<T

B, = {sup [ Xn(t) — X(1)] < 77} :

Then, A, C B,. Indeed, if d(X,(t), X (t)) < 9, then there exists a one-to-one map I' on
[0, T, such that sup,<p [['(t) —t| < & and sup,<p | Xn(t) — X(['(t))| < J. If we also have
sup |X(t) — X(s)] < n/2, then

jt—s|<6

Sup [X(T(t) — X(8)] <n/2,
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Sup [ Xn(t) — X(t)] < Sup [ Xn(t) = X(I'(8))] + Sup [X(T() - X@B)<d+n/2<n.

Hence, we have P(BS) < P(AY), and

P<sup | X (t) — X(t)] > 17) §P< sup | X(t) — X(s)] > 17/2) +P(d(X,(t), X (t)) > 9).

t<T 5,t<T,|t—s|<8
Since d(X,(t), X op(1), AN, for n > N, P(d(Xn(t), X(t)) > 6) < /2, then
P(Sup|X X(t)] >17> <eg/2+4¢e/2=c¢.
t<T

This completes the proof. l

Lemma 38

m _ ym _ 1/2
kgr;lg_%/z\fck X5 (te)| = Op(67/7|log d]),

where T} and X3* are defined by (5.73) and (4.35), respectively.

Proof. The same proof argument of Lemma 23 can be easily used to show

v,= sup is a.s. finite. (5.88)

0<s<v<T

1 v
| / o (X (u))dB(u)

(v—s)°

By Lemma 27, we have

X < X™ () — X(t 1
tgfy;l 5 ()] tgg§]! 5 (1) ”'ﬂ?}é"é]’ (t)] = Op(1),

max | X5"(t)] < max [X5"(t) — X (¢)] + max |X(t)] = Op(1),

t€[0,T te[0,T] t€[0,T]
xr < 0 L- X(t) — 6o = 1).
tIeng}JE] (Vg(X5" ()] < [Vg(bo)| + tIe%%}T(H 5 (t) = bo| = Op(1)

Let

= v, xm X5'(t)], Vg(X5"® .
3 max{ v i [X3(0)], max |X5(0)], mae [V(X7'( m}
Then, Y5 = Opy(1). For simplicity, we continue to use notation Y§' to denote it after
multiplying and adding some generic constant C' or adding random variable ¥, in (5.88),
as long as it is Op(1).

For a fixed a < 1/2, set £ = y/(a + 1)(a + 2)/2L. By Lemma 26, we have for ¢t < ¢,

M (0,8 XJ") < 2(8' 7| Vg(wo)| + 6"/ *m~1/2YY"),
X5 ()] < Ot + 16 'm0,
and for s >0 and t — s <€,

(et

C/:\OO

) X7+ (= 8) Vg (XD ()] + 61/4m—1/2w} |
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If further ¢t — s < s, then for s < &,

= se (24 25D i)

< C(t _ 8)1—(1 <i) + L(t2— S)) (S + Sa51/4m—1/2frgn)
Lt — Lt — 5)s®
< Ct—s)'e <3 + “28)3> +C(t—s)t <35a—1 + “25)3> § /A1 /2p
_ 1-a _ <\2—aa
< Ot — 8)141 +C |3 (t . 5) n L(t‘;)S] 51/4m71/2ﬂrgn
< Ot — ) + oV Am~ 12y,
and for s > &,

(t—s)'=@ <‘:’ + L(tz_ 3)) |XP(s)| < Ot — s)' o,

Putting them together, we conclude that
| X)) — XTU(s)| < Ot — s)(YP 4+1) 4+ C(t — 5)%6*m~ /21D
<Co(TP+1) [(t — )+ (- s)a51/4m_1/2] . [(t — 8) + (t — 5)°5M4m 12|

where we use the notation convention noted early to write Y§* for C(Y§J" + 1).
The theorem assumption implies that 6%/2-1/4m=1/2 < Cy for some generic constant
Cy. For 61/2 < ¢, if t —s < 6Y2 and t — s < s, we obtain

X5 (0) = X3 ()] < [6/2 4 6226 A= 2] T < 6121+ Co) T < 62
and if t < §1/2,
X (0] < [8/2 4+ 0026 Am 2] 1y < 8121+ Co) TR < 612

Recall that t, = k6'/2 for any k > 1, and tg4q — tx = §1/2 < .. Then, for any
t € [tg,txr1], we have

X5 (8) = X3 (t)] < 02 | XF (th) — X5 (1)) < 87207,
and, thus, we obtain
X5 (8] < X ()] + [ X5 (b2) = XF (00| + - + | X5 (tr) = X5 (k)| < k62T = X7,

thy1
XD (1) — XD (t)] < / X (0)]dt < 6V2TT.

tr

Define ' = 0, 2" = (#* — # ,)/6%/2. Using the definition of &7 and " in (5.73), we
obtain
2= (F] — 20) /6" = —5Y2Vg(xo) — m~ V2V H(t) — H(to)).
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Then, using (5.88), we have
4" < 62|V g ()| +m 261152 W, < 6Y2(1Vg(a0)| + CoPa)-

Again, we use the notation convention to write T§* for T§* + [Vg(zo)| + Co®, (which is
still Op(1)). Using the above result, the notation convention and the definition of #}* and
gt in (5.73), we obtain

t1 .
7 o] < 82610 = OTP, X () — ol < [ 1K @)t < 5T
0

Let a, = |#}* — X§"(tx)|. Then, ag =0, a1 < 26Y§". For k > 2,

tr .
X§'(tr) = X5 (te—1) + X5 (t)dt

tk—1
. 173 .
= XP(ti) + 8PP (1) + / (X2(t) — X2 (ty))dt.

tk—1

Set ZI'(t) = XJ'(t), by = |2 — Z'(t1)]. Then, by = 0, by < 267/27. Combining above
equality with the definition of 2" (i.e. ZJ' = &* | + 6'/25"), we conclude that

ar = |T3" — X5 ()]
tk . .
< JE = X5 (teo)| + 6P IEE — 25 () +/t | X5 (te) — X5 (¢))dt
k—1
< ap_i+ 620, + 6TT
< ay +6Y23(by+ -+ by) + (k—1)0TR
< Y28, + kST, (5.89)

where Sy, = by + - -+ + by Note that ZJ*(t) = XJ*(t) obeys
Az (t) = —%Zgn(t)dt — Vg(XPV(t))dt —m ™25V AdH (1),

and, thus, we arrive at

Z () = 230 = [ 2z war= [ Ve o)
—m 26V (H (t1) — H (1)
1/2 tos1
= 7 - =z - [ A0 = 22| - 80 )
— [ 9 0) = Va3 (et — S ()~ H0). (590
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For k > 1, we have

[ - S

t
B33

du +/ < - > Z§ (tr)
tr t tk

5 dt
2
HYT < 662K,

IN

—125" (1) = Z§" ()]

/tk+1
tr t

367y N 3(tpy1 — t)
- i trtrr1

and

trt1
< L/ IXI(t) — X2 (t)|du < LOTT

tg

tet1
/ Vg(XI(8)) — V(X (t))]du

ty

Recall (5.76) and note that 2" = d" , /6'/?; then, we have
sm k-1 sm 1/2 ~m —-1/251/4
A =gtk — 0 V(g —mT RO (H (ter) — H(t))-

Using the above equality and (5.90), we arrive at

3

~m m ~m m 6 m
b1 = 5% — Z5 (k)| < <1 - k:+2> 2" — Z5" (te)| + mwa (tr)]

—+

/t Bzg"wdt - f;zgq(tk)] dt' + 012 Vg (X5 (1) = V(i)

[ - Vg<Xs”<tk>>1dt\

22

m - k—1 sm
X5 (tk) — 2y — m51/2zk
by + 126" 2E1Y + L6 (ak + 821 Z5 (8| + |57 - Zg”(tk)l)) + LYy
b + 126Y2k710 4+ L6Y2(8Y/28) 4+ k6TT + 6Y2(XT + by)) + LOTT
b + C8S), + OO 2E=1rT,

IN

by + 120V 2k~ 4 L6/? + LoYY

IN

VARVA

where we use the fact § < T9Y/2k~L.
Let b} = by, b, = b}, + C6S; + C6Y/2k~1YT, where Sj = bf + b + ... + V). Then, we
prove by induction that by < b. Indeed, if b; < b} for j = 1,...,k, then S < S,
bpr1 < by + O3Sk + O8I < b, + COS), + COY 2RI = b, 1.
Next, since C.5), + Cdl/Qk_ng” >0, and {b}.} is non-decreasing, we obtain S}, < kb,

i1 < bl + Okb), + O3V 2k=1r,
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Similarly, let b} = by, by, = b + Cokby + C’(Sl/zkfl'fgl. The same argument leads to
b, < by. It is easy to derive from the definition that

biw = (1+COk)b; + CoY 2k
= (14 Ck)((1+Co(k —1))b}_, + O (k —1)71TP) 4+ C6Y 21y

k
(1+ Cok)* ( by +Co'2rp > 5
j=1

(1+ Cok)* (51/21‘3” sl + log(k:))> .

IN

IN

Let kp = |T/6Y/2]. Then, using (5.89) and the above bound result, we conclude that

max |7 — X™(t.)| = max ap, < 6Y28% 4+ kpoYT
kgkéf’k 5 (tn)] max aj < kg T kT

< 6 2krb;, + TSY2YY
< (1+ C8T/8Y2)T/5 2 0§12y m (1 + log(T/5%/2)) + T2

< CTeCT V2T (1 + T + | log 6|/2) + T§'/21
= 0,(6Y?|1og 6|). ®
Proof of Theorem 9 As in Lemma 34, we realize z}', B(t), H(t), &}', and X§"(t)
[defined by B(t) via (4.35)] on some common probability spaces and consider their versions
', B(t), H(t), :%’k?, and X§"(t) on the probability spaces. An application of Lemma 38

leads to

max |7 — X(t)] = Op(6Y/%|log 8]).
k<Ts—1/2

Combining the above result with Lemma 34, we obtain

max [T} — XJ'(tx)| = 0, (m/?6"/%) + Op(5'/%|log ).
k<T/81/2

For process X§"(t), we have shown in the proof of Lemma 38 that

max |[XP(£) = Xp'(s)] < 827 = 0,(5"/2),

t—s<o1/2
and thus the same result also holds for Xg”(t) Therefore, we conclude that
mae |F(1) — X7 (6)] = op(m~26/%) + 0,(5' | o ),
where we use the fact that z§'(t) = x}" for t;, <t < tg41. With the theorem condition
m'/26Y/4log §| — 0, we immediately arrive at

m!/25~ 14 max 25 (t) - X5 (0] = 0p(D),

and Theorem 8 indicates that m'/26=1/4[z(t) — X (t)] weakly converges to V(¢). B
Remark 16 The proof arguments in fact also establish
max [y (1) — X ()] = O, (m™1/2614 4 61/2|10g 4)).
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5.8 Proof of Theorem 10

Part (i) can be proved by using the same argument for showing Theorem 3. First, we show
parts (i) and (iii) in one dimension. From solution (4.25) of SDE (4.24) we find that V (¢)
follows a normal distribution with mean zero and variance

I(t) = /Ot exp [—2 /t IHg(X(v))dv} o?(X (u))du.
It is easy to check that I'(¢) satisfies ODE
(1) + 2[Hg (X ())]T() — o(X(¢)) = 0,
and show that the limit I'(co) of I'(¢) as t — oo is equal to
D(00) = o%(X (00))[2HHg (X (00))] .
Thus, as t — oo, V(t) converges in distribution to V(c0) = [I'(c0)]'/?Z, where Z is a
standard normal random variable.

Denote by P(6;t) the probability distribution of Xj"(t) at time t. Then, from the
Fokker-Planck equation, we have

O _y [—Vg(H)P(G;t) (X (1) VP t>] !

and its stationary distribution P(#) satisfies
0=v [—ng)P(e) — 202 (X (o)) vm} ,

which has solution

PO) xep {- 502;7(19)9(9)} .

The corresponding stationary distribution Py(v) for Vi (c0) = (m/8)Y/2(XF'(c0) — 0) takes
the form

Row) o exp {5 (5 VaTmo) b enp {20 [ot0)+ A0 ]|

ocexp{_f?g(g)vz},

where we use the fact that Vg(6) = 0, and the asymptotics are based on taking § — 0,

, g ;I((?)), and we conclude that Vi"(oco) has a

limiting normal distribution with mean zero and variance o2(6)[21Hg ()]~ = I'(c0).
Similarly, we can show parts (ii) and (iii) in the multivariate case by following the
matrix arguments given in Gardiner (2009, Chapters 4 & 6) and Da Prato and Zabczyk

m — oo. Therefore, Py converges to N (0
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(1996, Chapter 9) in the following manner. Using the explicit solution (4.25) of SDE (4.24),
we find that V(¢) follows a normal distribution with mean zero and variance matrix

(1) —/Otexp [— [Hg(X(v))dv] o (X () (X ()] exp [— /tﬂg X(v dv] du
:/Otexp [—/utﬂg(X(v))dv] (X (00))[o exp[ /Hg dv} du+ G,

(5.91)

where

= [ e |- [ B0 {o (X)X - o (X () (X ()]}

exp [_ /u t Hg(X(v))dv] du

Similar to the proof for Part 3 of Theorem 3, we show that as t — oo, |(;] — 0. Indeed, for
any € > 0, there exists g > 0, such that for any u > tg,

|o(X (w)[o (X ()] = (X (00))[o(X (c0))]'| < e, [Hg(X(u))[Hg(X(00))] 7| >1 e,

/tOeXp[ /Hg dv] {o(X()]o(X(u)] = (X (0))[o(X (0))]'}

ool o]

1y (X ()

t

0 o (X @) o(X @) - o(X (00))[o (X ()| du

<

exp [—2
to

<C — 0,

Hg(X(v))dv}

exp [2
to

[ew |- [ Buccon] (e x@latr)) - sx oo}

t

o[- [rcson]

<5 [ oo [ [ morona] mce)

S50 -9

du|Hg(X (c0))| ™

t

‘1—exp 2 [ B o) | (o0

to

= ﬁ’ﬂg()((wm_l — 0, as we let € — 0,

and these results implies that the integral in (; can be divided into two parts over [0, o]
and [to, t], both of which go to zero as t — oo.
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Now, we verify the detailed balance condition using (5.91) and {; — 0. Direct algebraic
manipulations show that

Hy(X(1))U(t) + T'(t) Hyg (X (¢))

- [ mgcxa s |- / Iy (X(0)d | o (X () (X ()] exp [— / tng(X(v))dv} du
+ [ e - [ maxe >>dv} o (X()lr(X(w)] exp |- [ (0)de] B (X ()
(X (1) exp[ / Hy(X ] (X (00) (X (00))] exp [— / Hg(X(v))dv} du

+/Otexp [ ; Hy(X (v ))dv} o (X(c0))[o(X exp[ /IHg dv] Hg(X(t))du
+Hy(X(1))G + GIHg(X (1))

IH
_ /0 d‘i{ |- / Iy (X (0)de| o (X (00D o (X (00 ex | [Hgmv))dv}}du

t))G + GIHg(X (1))
)[o (X (00))]f

—e - [ x| ool (X)) exp [ [ Bt (0]
§ (X (1) + GH(X(1).

where by assumption we have that as ¢t — oo, fot HHg(X (v))dv — oo, which together with
(¢ — 0 indicates that the last three terms on the right-hand side of the above expression
go to zero. Hence we have shown that as t — oo, Hg(X(¢))['(t) + I'(t)Hg(X(t)) —
o (X (00))[o (X (00)))—that is, their limits obey the following detailed balance condition,

IHg(X (00))T'(00) + T'(00) HHy(X (00)) = o(X (20))[o (X (00))]" (5.92)

With the limit I'(co) of I'(t) as ¢t — oo, we conclude that V(t) converges in distribution to
V(00) = [['(00)]*/2Z, where Z is a standard normal random vector.

Denote by P(0;t) the probability distribution of Xj*(t) at time t. Then, from the
Fokker-Planck equation, we have

OP(6;1)
ot

= |-ValO)PO:t) - o (KO (X)) TP

m
and under the detailed balance condition (5.92), its stationary distribution P() satisfies

J
0= [-V50)r ) - 5o (X)X ()] 770
which corresponds to a normal stationary distribution N(0,I'(c0)) for Vy"(c0) = (m/ )1/
(X§"(00)—6). Thus, we conclude that V™ (co) has a limiting normal distribution with mean
zero and variance I'(c0). B

98



JOINT COMPUTATIONAL AND STATISTICAL ANALYSIS OF GRADIENT DESCENT ALGORITHMS

5.9 Proof of Theorem 11
As Vg(#) = 0, by Taylor expansion we have

9(X3() = g(X (1) + (6/m) "2V g(X () V5" (1) + %[‘Csm(t)]’ﬂg(X(t))%m(t) +op(d/m),
Vg(XJ'(t) = V(X (1)) + (6/m) " Hy(X (1)) V5" (t) + op((6/m)'?),
g(X(t)) ~ g(0) + Va(O)[X (1) — 6] + %[X(t) — 0/ Hy(0)[X(t) - 0]
= 9(0) + S[X () — 0/ Hg(0)[ X (¢) - 0],
Vg(X(t)) ~ Hy(0 )[ (t) — 6], Hg(X(t)) ~ Hy(0),
9(X5" (1) ~ 9(0) + 5 [ 7' (t) — 0) Hy(0)[X5" (t) — 0],
XJ'(t) = 0= X(t) = 6+ (6/m)" 2V ().

—_

Thus, by Theorem 5, we have that g(X§"(t)) and Vg(X§"(t)) behave as, respectively,

(X (1)) + (6/m) 2V g(X (£))V (1) + %[V(t)]’HQ(X(t))V(t),

and V(X (t)) + (6/m)Y2Hg(X (t))V (t).

Similar to the stationary distribution part of the proof for Theorem 10, when IHyg(f) is
positive definite, we can derive the stationary distribution of V' (¢) to be a normal distribution
with mean zero and variance I'(co) defined by (4.38). Thus, we have

EV()] =0,  E{[V()Hy(X(t))V(t)} = tr['(co) Hy(X(t))],
Var{Hg(X(t))V (t)} = tr[I'(co) {Hg(X (1))}?],

where the expectation is taken under the stationary distribution. Taking the trace on both
sides of (4.38), we obtain

tr[I'(00) Hy (X (00))] = tr[IHg(X (00))T(00)] = tr[o?(X (c0))]/2,

and multiplying IHg(X (c0)) on both sides of (4.38) and then performing the trace operation,
we arrive at

tr[I'(00){IHg(X (00))}?] = tr[IHg(X (c0))T'(00) Hy (X (00))] = trle® (X (c0)) Hy(X (c0))]/2.

Putting these results together and using IHg(X (t)) — IHg(X(o0)) as t — 0o, we prove
(4.46) and (4.47).

For the saddle point case, for simplicity, we assume that Hg(é) is a diagonal matrix
with eigenvalues A;, ¢ = 1,--- ,p. Then, V(t) has covariance function (Gardiner, 2009)

[Cov(V(£), V(s))]ii = 0(2);@)) I

which, for negative \;, diverge as t, s — 0o. Thus, V(t) does not have any limiting stationary
distribution. W
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