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A B S T R A C T

In this paper, a Decision Support System (DSS) with digital twinning-based resilience analysis is proposed as a
modern tool for port resilience computation and updating. The proposed DSS assesses the resilience of a port un-
der possible disruptive events given its design, operations and potential pre-defined post-event recovery actions
to mitigate the impact of the disruption. Digital twinning provides the fidelity required to realistically predict
port performance with taken post-event recovery actions under various possible disruptive events. In addition
to hedging against impacts from probabilistically known disruption events, this approach also enables inclusion
of ordinary operational uncertainties within the resilience evaluation. This is not generally feasible with other
existing resilience quantification approaches. To tackle computational challenges of applying a digital twin for
real-world size applications, an optimal computing budget allocation policy is adopted to improve computational
efficiency. Results of numerical experiments using a real-world size port demonstrate the effectiveness of the pro-
posed DSS and criticality of accounting for ordinary uncertainties in operations in resilience estimation.

1. Introduction

Ports play a critical role supporting global and regional trade as
the primary interface for cargo flows between land and sea. Hazards
and other causes of disruption can significantly impact their operations.
To aid in minimizing hazard impacts, a resilience concept is adopted
to evaluate port readiness and potential adaptation strategies for im-
proved continuation of performance in the face of any number of po-
tential hazard scenarios. Building on work by Chen and Miller-Hooks
[14] for larger, rail-based intermodal networks, Nair et al. [46] recog-
nized that a port's resilience comes from an ability to quickly and cost-ef-
fectively restore functionality to near pre-event levels. This character-
istic depends on the port's design, operations and post-event response
capacity. Resilience is computed through a mathematical modeling ap-
proach that embeds within its constraints details of operational strategy
or readiness option, it is necessary to predict the impact of disruptions
on port operations and probable effectiveness of recovery actions to
mitigate a disruption event's impacts. Such prediction requires detailed
models of the operations and impact effects on the facilities that are dif-
ficult to capture in closed mathematical form. For this purpose, a de

cision support system (DSS) for port resilience quantification is devel-
oped that exploits digital twinning capabilities and advances in simu-
lation-optimization. Building on the mathematical modeling approach,
the digital twin replaces relevant constraints in the model to capture op-
erational details, enabling replication of the multitude of complex, inter-
acting activities, and greater realism in resilience estimation.

Glaessgen and Stargel [28] described the digital twin concept as inte-
grating physical models through multi-physics, multi-scale and stochas-
tic simulation, and exploiting data received from both historical records
and sensor updates. Digital twinning seeks to replicate or “mirror” real
life of that which it twins. Improvements in computing technologies
have enabled digital twinning of detailed systems to support complex
decision making in various areas, including production planning and
condition monitoring in manufacturing [31,53], fault detection in ma-
rine applications [16,33], and building energy management [25]. This
paper seeks to expand its application to port resilience analysis.

Recent green port initiatives have stimulated the electrification of
container terminals in new developments or upgrades at ports in Rot-
terdam, Dubai, Shanghai and Singapore. Although electrification sig-
nificantly reduces terminal emissions, it leads to new vulnerabilities in
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port operations caused by power supply disruption. Fig. 1 illustrates
a typical terminal layout, where power substations are built along the
wharf to distribute power supply for terminal lighting and powering ves-
sels, equipment and other supporting devices. When power supply is in-
sufficient, the port must shut down some equipment. Because of com-
plex interactions among equipment and processes, it is likely not clear
what is the best allocation of the limited power that would maximally
preserve the performance of the port, and a mathematical modeling ap-
proach as used in prior port resilience studies will not fully capture the
operational details needed for such determination. Additionally, power
disruptions are relatively rare and the electrification of ports is a recent
phenomenon. Consequently, many port operators do not have prior ex-
perience with power disruptions. Adaptations taken in terms of re-allo-
cation of limited power to preserve or restore functionality are key to
the port's resilience. Yet, without assistance from a reliable DSS, port op-
erators would likely suspend operations altogether until power supply is
restored to normal levels.

The DSS proposed herein enables the computation of the port's re-
silience to a given disruption or set of possible disruption scenarios,
along with the selection of the best post-disruption action to take for
any given scenario. An added methodological contribution is the in-
clusion of ordinary operational uncertainty in modeling post-disrup-
tion operations, which is made possible via the use of the digital twin.
The approach enables evaluation of numerous potential recovery ac-
tions that provide adaptive capacity, a key component of resilience.
This evaluation, however, requires numerous simulation runs. Because
digital twin runs are time-consuming, there are important trade-offs
between making enough runs for accurate estimates and computation
time. For real-world size applications, especially when used to support
real-time operations, efficient run designs with good statistical accuracy
are needed. It is likely that with insufficient runs to guarantee statistical
accuracy the DSS will select a sub-optimal recovery action for a given
scenario and, simultaneously, develop an incorrect (reduced) resilience
assessment. To tackle this computational challenge, the proposed DSS
integrates a state-of-the-art simulation-optimization method known as
optimal computing budget allocation (OCBA) (Chen and Lee [12,13]) to
determine the number of simulations to be executed for each candidate
recovery action under a given simulation budget.

OCBA formulates its own optimization problem, where the decision
variables are the numbers of simulation runs for each recovery action,
and the objective function is the estimated probability of correctly se-
lecting the best action using noisy simulation estimates. For a given

simulation budget, e.g., constrained by the time-window that a port op-
erator needs to respond to a disruption, OCBA solves this optimization
problem and determines the number of simulation runs to spend on each
scenario. It aims to achieve the highest probability of correctly select-
ing the best action among all possible simulation fixed-budget allocation
schemes. As demonstrated in a case study, OCBA reduces the number of
runs required to accurately identify the best recovery action and, thus,
makes the application of the high-fidelity digital twin approach feasible.

Generally, this study shows how a traditional industry like maritime
logistics can be transformed through a new era of Industry 4.0 or Indus-
trial Internet. Instead of relying on experience-based decision making
by human operators, using various data sources, the proposed DSS can
be part of a digitized Terminal Operating System (TOS) that efficiently
performs planning, control, and monitoring of a modern port. The DSS
can be integrated into the TOS as a planning-level module. In the event
of a power shortage, the DSS collects and compiles information on fu-
ture activities, human resources, and equipment resources from other
TOS modules and recommends actions to the port operator. The pro-
posed DSS provides such a capability, enabling a port operator to opti-
mally configure equipment to minimize the impact of a power disrup-
tion event. This study may further stimulate the development of digi-
tal-twin enabled decision support in other traditional industries.

The remainder of the paper is organized as follows: Section 2 re-
views literature related to decision support for maritime systems, digi-
tal twinning, and recent relevant developments in resilience assessment.
The DSS is described in Section 3. Section 4 presents results from nu-
merical experiments and conclusive remarks are offered in Section 5.

2. Literature review

The maritime industry is a mature, but traditional industry in which
decisions associated with the majority of activities, including key oper-
ations, rely heavily on human experience. In recent years, DSSs have
been proposed to aid decision-making at ports and in maritime ship-
ping to achieve greater efficiency and higher levels of throughput with
lower total cost. Fagerholt [21] introduced a DSS for vessel fleet sched-
ule planning. This tool has been used successfully by several shipping
companies. Similarly, Fazi et al. [24] developed a DSS to generate
schedules for the transportation of containers by barge from sea to in-
land terminals. A model-driven DSS was developed to evaluate opera-
tional policies and manage equipment taking an overall terminal per

Fig. 1. Terminal layout under disruption caused by power shortage.
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spective in [35]. Fazi [23] most recently proposed a DSS framework for
the stowage of maritime containers in the context of inland shipping.
Also, recently, Irannezhad et al. [32] presented a prototype DSS for hor-
izontal and vertical cooperation among freight agents involved in port
logistics.

Several additional works proposed a DSS for use at the operational
level. Ursavas [54] created a DSS that determines a joint berthing and
crane allocation strategy. Wong et al. [58] and Lee et al. [34] developed
DSSs for speed optimization in liner shipping. Optimizing speeds can re-
duce fuel use and emissions. DSSs were also developed in recent works
to make berth and equipment allocation decisions in bulk terminals [48]
and container stacking allocation decisions in container terminals [41].

With the rapid technological developments of the last several years,
it is now possible to simulate complex industrial systems and develop
and run digital twins in real-time settings. Digital twins offer an ability
to complete off-line”what-if” analysis in a close-to-reality virtual envi-
ronment before implementing tested actions in actual operations. Man-
souri et al. [42] reviewed dozens of articles in the literature on decision
support to enhance environmental sustainability in maritime shipping.
Among the 26 papers reviewed that focused on modeling, five used sim-
ulation. Furthermore, simulation-based decision support has been devel-
oped for different purposes, including: operational changes to minimize
environmental impact of port activities [9]; operational and tactical de-
cision-making on cargo flows between sea and dry ports [22]; and truck
arrival coordination at port gates [66].

Applying digital twin technologies in operations requires computa-
tional speed. To reduce the digital twin run times for this purpose, sim-
ulation-optimization has emerged as a promising area. In simulation-op-
timization, the objective function of an optimization problem is approxi-
mated rather than computed exactly (see Andradóttir [3], Fu et al. [26]
and Xu et al. [60] for background). A comprehensive review on sim-
ulation-optimization in maritime operations can be found in [67]. For
performance improvement, simulation-optimization was adopted for de-
signing a terminal gate system [62], vehicle control at terminal gates
[18,57,66], yard crane scheduling [30], storage space assignment [40],
berth allocation [36,55], quay crane scheduling [1,37,63], and more.
For high-level planning purposes, simulation-optimization has been ap-
plied for fleet sizing and empty container repositioning in [19,20,59],
container supply chain network design in [29] and terminal resource
configuration in [39].

Port resilience, an ability to efficiently restore port functionality to
pre-event levels, relies on both planning- and operational-level deci-
sions. At the planning level, recovery actions must be designed and
preparations must be taken to enable their implementation should they
be called for in an event. In the past decade, an increasing number
of researchers have developed metrics, models and solution methods
for post-disaster resilience quantification in the context of a variety of
civil infrastructure lifelines and services. Few works, however, focus on

ports. Nair et al.'s work (building on work by Chen and Miller-Hooks
[14]), one of the earliest works on resilience measurement for a trans-
portation application, focused on the resilience of ports and other in-
termodal connections [46]. This work provides the basis for the solu-
tion framework development herein. Nair et al. modeled port operations
through a network conceptualization of physical entities and processes,
and used a network throughput ratio as a measure of resiliency. They
generated thousands of hazard events as input. Mathematical represen-
tation of the operations was comprehensive, but simplistic in compari-
son to the digital-twin based methodology described herein. Moreover,
it assumed deterministic knowledge of all aspects of port operations ex-
cept the occurrence of a disaster event and its impacts. That is, all activ-
ities, e.g. vessel berthing, container stacking and train car loading, were
all assumed to occur with a deterministically-known, constant rate. The
approach described herein accounts for uncertainty in foreknowledge of
these and other workings of a port as is the case in both ordinary and
extraordinary circumstances.

Three other relevant works on resilience of either in-land or seaports
include: Pant et al. [47], Shafieezadeh and Burden [50], and Alyami et
al. [2]. Pant et al. [47] proposed and evaluated several measures for pri-
oritizing repairs for an inland waterway port using simulation to repli-
cate port operations. A metric based on an integral of post-event perfor-
mance over time was proposed for measuring seaport seismic resiliency
in (Shafieezadeh and Burden [50]) and a fuzzy rule-based method for
use in evaluating post-disruption criticality for container terminals was
proposed by Alyami et al. [2]. The aim of this latter work is to reduce
some of the stringency needed by exact methods associated with knowl-
edge of uncertain quantities, such as risk.

While additional works consider resilience and/or reliability in the
context of the larger maritime system or a port network (see Asadabadi
and Miller-Hooks [4] for more detail), the authors know of no prior
work that has attempted port resilience computation with the granu-
larity enabled by digital twinning. Nor has any prior work accounted
for ordinary operational uncertainties in evaluating port resilience. The
DSS with digital twinning-based resilience analysis described herein fills
these gaps. It further creates the possibility of real-time port resilience
computation and updating, which has not been considered previously in
the literature.

3. Decision support system for port resilience analysis

The architecture of the proposed DSS is presented in Fig. 2. The
DSS has two key modules: recovery analysis and resilience analysis. For
a given physical environment and disruption scenario(s), the recovery
analysis module, enabled by digital twinning, evaluates candidate re-
covery actions. The resilience analysis module uses these outputs from
the recovery analysis module to compute user-defined resilience met-
rics, which are then provided to the terminal manager to evaluate the
resilience level of the terminal under potential disruption scenarios.

Fig. 2. Proposed DSS architecture for maintaining a resilient port.
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The DSS includes three additional units that support the generation
of the physical environment: (1) terminal configurations that parameter-
ize equipment, layout, and operational processes; (2) disruption scenar-
ios with their physical and operational impacts and occurrence proba-
bilities; and (3) candidate recovery actions with their effects. These pro-
vide input to the recovery and resilience analysis modules.

In general, the DSS offers port resilience assessment from two as-
pects. In a planning phase, it assesses the resilience to the chosen poten-
tial scenarios given its design, operations and post-event actions made
to be at the ready. When the port is in operation, the DSS is applied
on a portion of a larger TOS to aid in choosing the post-event actions
for which to prepare. It identifies which actions to take given limited,
post-event resources and disruption event impact realization. Adaptive
actions taken post-event are key to any system's resilience. Next, Sec-
tions 3.1 and 3.2 provide details on the enabling technologies of the
recovery analysis module, the digital twin for a container terminal and
OCBA for reducing the computational effort needed to identify best re-
covery actions to mitigate disruption impacts through smart simulation
run designs. The resilience analysis module is discussed in Section 3.3.

The specification of the physical environment, generation of disrup-
tion scenarios and the corresponding sets of candidate recovery actions
are exogenous to the DSS itself. These components are thus not discussed
in this section. Section 4 presents a case study on power supply short-
age disruptions and shows how disruption scenarios and recovery ac-
tions are specified for resilience assessment of a real-life size port.

3.1. Digital twinning

Fundamental to digital twinning is discrete event simulation (DES),
a technology that has been widely adopted as a practical tool for sys-
tem performance evaluation for maritime as well as other industries. A
high-fidelity DES model can describe a complex system that closely mir-
rors the real system, capturing details of model component operations,
interactions between components and system dynamics.

Maritime studies using commercial DES software abound in the
literature. Some examples include: AutoMod [49,64], Arena [10,57],
em-Plant [11], Modsim [27] and FlexTerm [61].

Although these software products provide user-friendly interfaces
and animation capabilities, they lack flexibility for integration with ex-
ternal analysis algorithms. Therefore, the digital twin used in the DSS
is developed using an open-source O2DES.Net DES framework ([39],a).
O2DES.Net has been successfully used to model operations of termi-
nal horizontal transport networks [65] and terminal gate systems [66].
With the integration of an external simulation-optimization algorithm,
O2DES.Net was also used to optimize terminal configuration [39].

Fig. 3 depicts the hierarchical structure of the digital twin model
for a container terminal. At the highest level, the model is made up of
a terminal module, a vessel generator, and an external truck generator.
Within the terminal module, there are three components: 1) quay area,
which includes berth management and quay crane (QC) operations; 2)
yard area, which includes yard space management and yard crane (YC)
operations; and 3) traffic network, which connects quay and yard areas by
way of automated guided vehicles (AGVs). Each component has entities
representing terminal equipment or resources. For example, the quay
area consists of several QC sub-models. Instead of using a single server
to represent a QC, the sub-model consists of multiple servers to repre-
sent the hoist, trolley and gantry, along with their interactions (see Li et
al. [38] for details). The yard area follows the same structure, where the
YC sub-model consists of multiple servers. The traffic network is repre-
sented by a network of servers based on the method in [66]. Each server
corresponds to a segment of the road network, and the service rate is
dynamically adjusted according to the number of AGVs using the server
to simulate traffic congestion.

Fig. 3. Container terminal digital twin modeling.

The overall simulation logic is depicted in Fig. 4. There are three
types of container activities, including import, export and transshipment
operations. Importing activities discharge containers from vessels to the
yard block and eventually to external trucks. Exporting activities first re-
ceive containers from external trucks and load them to the yard block,
and then load the containers from the yard block onto vessels. Trans-
shipment activities are between vessels and the yard block. These three
activities can be further summarized into two major container flows, i.e.,
the discharging flow, consisting of container movements from vessels to
the yard block, and loading, which moves in the opposite direction of
discharging flows.

The discharging and loading operations are both initialized by the
vessel generator. When a new vessel is generated and docks at the berth,
containers for discharging and loading are generated and scheduled.
From the container's perspective, each container passes through multiple
simulation components while simultaneously interacting with resources
within the component. Using discharging as an example, when a vessel
arrives, a set of QCs is assigned to the vessel for a duration that ends
when all planned activities are complete. A discharging operation will
trigger the QC to pick up the container, move it from sea side to land
side, and then wait for the arrival of an empty AGV for retrieval. Once
the container is discharged to the AGV, the AGV is scheduled to travel to
its destination at the yard block. Shortly before AGV arrival at the yard
block, the container will schedule a YC for pickup. When the container is
lifted from the AGV, the AGV is released to respond to another request.
Once the container is stored in the yard block, the YC is released and
the discharging operation finishes. The loading operation has the oppo-
site sequence of activities. Corresponding to this, details of the uncertain
quantities in the digital twin model are given in Table A.4 in the Ap-
pendix.

For smooth coordination and operations, terminals often rely on the
TOS to make planning and scheduling decisions for vessels, vehicles
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Fig. 4. Digital twin modeling logic.

and containers. Since resources are shared among all activities, highly
complex interactions occur and it is necessary to apply experience-based
operational policies. Examples of such policies include that: 1) the num-
ber of QCs assigned to a vessel depends on the vessel's length and work-
load; 2) a pool of vehicles is assigned to serve a specific vessel; 3) the
number of vehicles in the pool is dynamically determined by the vessel
workload; 4) vehicles follow a first-available-first-serve policy for ser-
vice by cranes; and 5) containers are allocated to the yard following a
80–20 rule, which stipulates that 80% of containers to be loaded onto a
departing vessel must be allocated to yard locations within 20% of the
vessel-to-yard range (defined as the maximum distance from the depart-
ing vessel to any point in the yard via the traffic network). Most of the
policies used in this model are based on actual approaches used by op-
erators at some of the world's busiest ports.

The digital twin has two groups of input parameters that define
run-time control and experimental scenarios. Primary run-time control
parameters include days of the warm-up period, days of the running pe-
riod, and a random number seed. A warm-up period is needed, because
the simulation is initialized from an empty terminal, i.e., no vessel is
moored and all equipment is idle, including all vehicles parked at the
wharf. After the warm-up period, the simulation is run for additional
time to output the actual operational statistics. The random number seed
of each simulation run is also set to produce independent and identically
distributed (IID) observations.

Experimental scenario parameters include the total number of ac-
tivated equipment/resources, such as the total number of AGVs, QCs,
berths, and yard blocks. As a yard block is vertical to the wharf, YCs
cannot move to other yard blocks. Hence, the number of YCs per block
is fixed.

There are numerous performance indicators that may provide per-
tinent output data for a container terminal, and each terminal opera-
tor may have its own preferred indicators. Commonly used indicators
include: terminal throughput, ship turnaround time, ship waiting time,
gross quay crane rate, and berth-on-arrival (BoA) rate (or the BoA ratio)
[17,43,52]. User preferences can guide the customization of the digital
twin output.

Input parameters and output measures are not limited to these items.
The open-source nature of O2DES.Net allows the tuning of other parame-
ters, such as arrival vessel pattern (including vessel type, vessel length,
draught, workload, arrival rate), external truck arrival rate, and other
equipment parameters.

The digital twin model developed by the Center of Excellence in
Modeling and Simulation for Next Generation Ports (C4NGP) with sup-
port and input from Maritime and Port Authority of Singapore and port
operators in Singapore, including the simulation logic, model parame-
ters, and simulation results, has been verified and validated by port
operators using actual system-level port performance measurements of
BoA and gross crane rates for a target annual throughput.1

The digital twin model used in this paper was further upgraded to
include battery-powered AGVs and a facility allocation strategy for as-
signing AGVs to charging stations at regular intervals.

3.2. Optimal computing budget allocation

The value of each recovery action in mitigating the effects of a dis-
ruption scenario on the port is assessed using the digital twin. Benefiting
from the granularity of the digital twin and its outputs, this study explic-
itly considers ordinary operational uncertainty and, as part of resilience
computation, performs multiple IID simulation replications to estimate
the chosen key performance indicator (KPI). This KPI may be the ex-
pected throughput, machine utilization or a measure of on-time perfor-
mance, for example. The KPI used in the case study is a function of the
number of BOAs. The KPI of action x is estimated by the sample average
from N(x) simulation replications:

(1)

where Yn(x) is the nth IID simulation estimate of the KPI for x. For a set
of I candidate recovery actions X = {xi, i = 1, …, I}, the best action is
selected as

(2)

Denote the action that achieves the highest KPI by xi∗. As N(x) in-
creases, converges to the true KPI with a rate of under

1 Its success is reported by the media, e.g. Manifold Times, 2018, https://www.
manifoldtimes.com/news/insight-exclusive-nus-creates-digital-twin-
of-singapores-next-gen-port/; Port Technology International, 2018, https://
www.porttechnology.org/technical-papers/digital_twin_and_capacity_
planning_next_generation_ports/
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mild conditions, and thus the correct selection will be achieved when
. However, when the simulation budget is limited, there may be

significant estimation errors in and thus selecting the best action is
subject to error, i.e., . This problem is especially relevant when a
computationally expensive digital twin model is used to evaluate a large
number of recovery actions. In the DSS, if the probability of incorrect
selection is high, the recovery analysis module would then frequently
return sub-optimal recovery actions, and the resilience analysis module
would produce erroneous estimates of resilience level.

To address this problem, the recovery analysis module integrates
OCBA, a state-of-the-art simulation optimization algorithm, to optimally
determine N(xi), i = 1, …, I. Given a total simulation budget of T repli-
cations, OCBA computes an allocation scheme that maximizes the proba-
bility of correct selection (PCS), . Let δ(xi) = Y(xi∗) − Y(xi) for
any i ≠ i∗. Under the assumption that the sampling distribution of Yj(xi)
is normal with mean Y(xi) and variance σ2(xi), and is independent across
actions, the asymptotically optimal allocation of simulation budget sat-
isfies

(3)

By the central limit theorem, the normal sampling distribution as-
sumption holds approximately as the BoA rate is obtained from the av-
erage of many random samples generated during simulation runs. When
OCBA is implemented, sample means and sample variances calculated
from N0 initial simulation replications are used as estimates of δ(xi) and
σ(xi), i.e. and sample standard deviation s(xi) are
used as estimates of δ(xi) and σ(xi) in (3). N(xi) can be readily obtained
through solution of (3). Because of estimation errors in and
, it is not recommended to compute the allocation of the total simula-
tion budget using and estimated from these N0 initial repli-
cations. Instead, a sequential procedure is used to incrementally allocate
simulation budget. The procedure starts with N0 replications allocated to
each solution to obtain initial estimates of δ(xi) and σ(xi). Then N(xi) are
computed through solution of (3). The procedure then allocates the next
simulation replication to the solution with the largest deficit, i.e., the
solution with the largest N(xi) − N0. The procedure then updates
, , and N(xi), and calculates the new allocation. It keeps iterating
until the simulation budget has been exhausted. See Chen and Lee [12]
for more details.

Experimental results from application of the DSS on a case study in
the next section will show the effectiveness of applying the OCBA within
the recovery analysis module and, ultimately, resilience computation in
the resilience analysis module.

3.3. Resilience analysis

For a given disruption scenario s and set of candidate recovery ac-
tions X(s) = {x1, …, xI}, the recovery analysis module returns the best
recovery action xi∗ and the corresponding post-disruption performance
of the port Y(xi∗). Denote pre-event performance as Y0. Miller-Hooks et
al. [44] and Chen and Miller-Hooks [14] defined the resilience level of
an intermodal freight transportation network as a network's capability to
resist and recover from a disruption or disaster.They suggest a resilience
metric that uses a ratio of post-event to pre-event performance levels.
Following this definition and approach, the resilience level of the port
under disruption scenario s is computed as

(4)

With this core capability, the proposed DSS supports advanced prob-
abilistic resilience analysis. For example, if there is a probability distri-
bution function F(⋅) defined over the disruption scenario space , the
average resilience level of a port is given by

(5)

With K IID scenarios sampled from using F(⋅), the DSS would then
estimate R by

(6)

The resilience analysis module can also output data to plot his-
tograms showing the distribution of R(s) and better inform operators on
the performance of the port under potential disruption scenarios in set

.
The generation of a disruption scenario set and the associated can-

didate recovery actions is specified by the port operator
and is external to the DSS. The case study reported in Section 4 pro-
vides one example on how and may be specified. The
focus herein is on showing the capability of the DSS to efficiently assess
each R(s) for a given scenario s and set of recovery actions X(s).

4. Case study

This section presents a case study based on the knowledge gained
from previous projects with port operators. It demonstrates the capabil-
ity of the DSS in assessing port resilience under several potential power
supply disruption scenarios. The physical infrastructure studied has 7
berths and a total berth length of 2700 m, as would be present at a
medium to large terminal. The expected annual throughput is 7 mil-
lion Twenty-foot Equivalent Units (TEUs), which is practically achiev-
able and is based on knowledge gained from operator experience. Due
to confidentiality considerations, the case study used realistic, but syn-
thetic data.

4.1. Disruption scenarios and recovery actions

During a disruption due to a power supply shortage, instead of run-
ning equipment under rated capacity, a subset of the QCs and AGVs
would need to be shut down. AGVs rely on charging stations for power
and must be recharged at regular intervals. With fast charging technol-
ogy, the recharging time for each AGV during the day is considered to
be inconsequential. Hence, it is assumed that power demand by the traf-
fic system is correlated to the number of AGVs. Unaffected resources/
equipment, such as berths and YCs, will be operated as usual. In reality,
the shortage can have a much broader impact. For example, the reduced
wireless communication connectivity would affect the remote control of
equipment, and the reduced lighting level in the terminal area would af-
fect equipment throughput rates.

In practice, the equipment configuration is set according to expert
input, e.g., each berth (350 m to 400 m) is equipped with 4 to 5 QCs.
The ratio between QC and AGV is also a fixed number. In this study, the
default configuration is set as 32 QCs and 128 AGVs under normal op-
erating circumstances. The ratio of AGVs to QCs is 4. One AGV requires
150 kilowatts (kWs) and one QC requires 1,200 kWs. The total power
demand is, thus, 57,600 kWs.

The BoA rate is used as the KPI in this study. Usually, customers
such as vessel owners expect prompt berthing of their vessels upon ar-
rival. BoA evaluates if the arriving vessel is able to berth at the terminal
within a contracted time window (usually 2 h). Achieving a high BoA
rate would not only benefit terminal business with more contracts, but
also maintain well-managed sea channel flows, which is a big concern
for local maritime authorities.
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Three power supply disruption scenarios are investigated. In prac-
tice, many port operators would choose to suspend operations until
power supply is restored to normal, because they lack experience in
responding to power disruptions. By this action, the BoA rate and re-
silience level would both be 0. Another action deemed by port operators
as reasonable would be to adjust the numbers of activated AGVs and QCs
in the TOS to follow the same ratio as is used under standard operating
conditions. Here, the default recovery action is set to create an AGV to
QC ratio of approximately 4:1 subject to the reduced power supply. This
choice of a 4:1 ratio is based on common industrial practice, and results
of runs using this design ratio serve as a benchmark to evaluate the ef-
fectiveness of the proposed digital-twin enabled DSS. The three tested
disruption scenarios and corresponding default actions are as follows:

• Scenario 1: 70% power shortage, power supply of 40,320 kW, 22 QCs
and 92 AGVs, and ratio 4.18;

• Scenario 2: 60% power shortage, power supply of 34,560 kW, 19 QCs
and 78 AGVs, and ratio 4.11; and.

• Scenario 3: 50% power shortage: power supply of 28,800 kW, 16 QCs
and 64 AGVs, and ratio 4.

The port operator may also consider other combinations of QCs and
AGVs that do not follow the routine 4:1 ratio. Because QC is the primary
resource, the number of QCs varies between a minimum and maximum
number incrementing by one, based on input from operators in Shanghai
and Singapore ports. The remaining power supply is used for the AGVs.
Table 1 lists all candidate recovery actions for the scenarios.

4.2. Experimental design

To obtain statistically valid estimates of the BoA rate, each simula-
tion replication has a three-day warm-up period, followed by a one-day
running period during which the BoA rate is measured. 1000 IID sim-
ulation replications were conducted to obtain estimates of the BoA
rate under each recovery action. Simulations were conducted on a Dell
Precision Tower 7810 machine running Windows 10 OS with an In-
tel Xeon Processor E5–2695 v4 (18 cores, 2.1GHz) and 64GB memory.
Even with 30 simulation runs running in parallel, more than three days

Table 1
Recovery actions for Scenarios 1 to 3.

ID Scenario 1 Scenario 2 Scenario 3

QCs AGVs QCs AGVs QCs AGVs

1 29 36 25 30 21 24
2 28 44 24 38 20 32
3 27 52 23 46 19 40
4 26 60 22 54 18 48
5 25 68 21 62 17 56
6 24 76 20 70 16 # 64 #

7 23 84 19 # 78 # 15 72
8 22 # 92 # 18 86 14 ∗ 80 ∗

9 21 100 17 ∗ 94 ∗ 13 88
10 20 108 16 102 12 96
11 19 ∗ 116 ∗ 15 110 11 104
12 18 124 14 118 10 112
13 17 132 13 126
14 16 140 12 134
15 15 148
16 14 156

Note: default actions are indicated with #; the best post-event recovery actions are indi-
cated with ∗.

were required to finish all runs. The sample average BoA rates from the
1000 replications were used to select the best recovery action for each
scenario (indicated with ∗) in Table 1. Note that default actions (indi-
cated with #) were not the best recovery actions in all three scenarios.

4.3. Recovery and resilience analysis

Table 2 reports BoA rates under different power disruption scenar-
ios achieved by default and best recovery actions. Without the DSS, the
default action would be to operate the AGVs and QCs following the rou-
tine 4:1 ratio subject to the reduced power supply. The table refers to
the default approach as the inherent coping capacity of the port, defined
as the ratio of the BoA rate under the default action to the pre-event BoA
rate (98.58%). Port resilience is calculated using Eq. (4). The difference
between resilience and inherent coping capacity values is due to the im-
plementation of a best recovery action for the given scenario realization.

The results show that when the extent of the disruption is small, e.g.,
a 30% drop in power supply as in scenario 1, the port can maintain a
BoA rate close to its pre-event level by implementing the best recovery
action selected by the DSS, and, thus, outperforming the default action
by 12.51%. For 40 and 50% decreases in power supply, the DSS-recom-
mended recovery actions outperform the default action by 15.74% and
12.06%, respectively.

4.4. Value of the stochastic solution

The digital twin integrated in the DSS encompasses key sources of
randomness in port operations, thus, accounting for true variation in
ordinary operations. To examine the value of this fully stochastic ap-
proach, in this section, the best recovery actions selected by the sto-
chastic digital twin, referred to as stochastic solutions, are compared to
the best actions selected by a deterministic version of the digital twin
model. The deterministic digital twin model is adapted from the stochas-
tic digital twin model by fixing vessel arrival patterns (including vessel
sizes and workloads), truck arrival patterns, and crane service rates to
the mean values of the corresponding probability distributions obtained
from the stochastic digital twin model.

This deterministic version of the digital twin model still contains
some randomness embedded within it, because the digital twin model
implements randomized operational decision rules for yard allocation
and traffic management that are difficult to pre-set. Those randomized
decision rules, if removed, could create significant traffic jams within
the port, and thus, were not predetermined. 1000 IID simulation repli-
cations were run for each of the recovery actions under all three sce-
narios as was conducted in the earlier stochastic runs. Fig. 5 compares
BoA rates for different recovery actions estimated by the stochastic and
(mostly) deterministic digital twin models, respectively. Corresponding,
detailed BoA rates can be found in Table B.5 in the Appendix.

It can be observed from Fig. 5 that sub-optimal recovery actions
are suggested under scenarios 1 and 3 under the deterministic runs. In
scenario 1, the deterministic model chose action 9 with an estimated
BoA rate of 95.79%. However, the actual (if account properly for ran

Table 2
Average estimated BoA rates achieved by default and DSS-selected recovery actions.

Scenario
ID

BoA rate under
default action

BoA under
DSS action

Inherent coping
capacity Resilience

1 79.39% 91.90% 80.53% 93.23%
2 60.92% 76.66% 61.80% 77.77%
3 43.39% 55.45% 44.01% 56.25%

Note: the BoA rate before disruption is 98.58%.
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Fig. 5. Comparison between stochastic and deterministic solutions.

domness in operations) BoA rate of action 9 is only 87.39%. In compar-
ison, the stochastic model chose action 11 with an estimated BoA rate
of 91.90%. For scenario 3, the deterministic model chose action 7 with
BoA rate 52.59%. A BoA rate of 55.45% is achieved by the stochastic
model which identifies action 8 as optimal.

For scenario 2, while the solutions of both model versions coin-
cide, the deterministic model incorrectly overestimates the BoA rate at
87.96% instead of 76.66% as estimated by the stochastic model. This
estimate may lead port operators to mistakenly believe the port is re

silient under this disruption scenario; they might fail to adequately re-
spond to the disruption. This problem is greater under scenario 3, where
the deterministic solution estimates a BoA rate of 72.35%, again leading
the port operator to seriously underestimate the impact of a 50% power
shortage. Based on predictions from the stochastic model, the BoA rate is
only 55.45% rather than 72.35% even with the best stochastic solution.
Fig. 5 illustrates that the BoA rate is most often overestimated through
use of deterministic assumptions.

In summary, comparisons with the deterministic digital twin demon-
strate both the value of accounting for stochasticity in system operations
that arise routinely, and the danger of assuming their mean values in as-
sessing resilience whether or not randomness in the disruption event is
considered. Despite its importance, this aspect may not have been previ-
ously considered in the resilience literature, and was not considered in
port resilience previously.

4.5. Comparison of simulation policies

When a disruption occurs, a port operator must make a decision in
a short time window. Therefore, it would not be practical to run 1000
replications to estimate the BoA rate for each recovery action. There is a
need to reduce the number of runs while maintaining a similar level of
accuracy in the results.

Fig. 6 shows box plots of post-event BoA rates for different recovery
actions from the 1000 simulation replications. Using scenario 1 as an ex-
ample, because the medians of the BoA rates (middle lines in the boxes)
achieved by actions 1 to 7 are much lower than those of actions 9 to 12,
intuitively far fewer simulation replications are needed for actions 1 to
7 than for actions 9 to 12. The question is then how many simulation
replications are needed, and how should they be allocated across actions
knowing that equal allocation is neither efficient nor necessary. In the
following, results from two sets of experiments are reported to compare
the efficiency gain achieved by OCBA compared to an equal allocation
(EQ) approach.

To measure the PCS achieved by EQ or OCBA, EQ or OCBA would be
applied to allocate a fixed simulation budget to all I actions. The best ac-
tion would then be selected using simulation estimates. This procedure
would be repeated M times using different random number seeds each
time to produce IID simulation output. Suppose out of those M experi-
ments, EQ or OCBA correctly selected the best solution m times. The PCS
(denoted by p) achieved by EQ or OCBA would then be estimated by

(7)

However, such an experimental procedure would incur a prohibi-
tively high computational workload, because M needs to be large to pro-
duce an accurate estimate of PCS. This is because the relative error of
the PCS estimate in (7) is given by [45].

(8)

For example, when p = 0.5, the M required to achieve a 5% relative
error is M = 400. If the simulation budget is 1000 runs in each experi-
ment, it would require 400,000 simulation runs to produce one reliable
PCS estimate, a prohibitively high computational workload.

To maintain a manageable computational workload, instead of gen-
erating new IID simulation outputs, IID random samples from an empir-
ical distribution for the simulated BoA rate are used in the experimental
procedure to measure PCS. The empirical distribution is constructed as
follows. For a given action x, denote by Y(x) = {Y1(x), Y2(x), …, YN(x)}
a set of simulation outputs from N IID replications. The probability
mass function PE(⋅) of the empirical distri
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Fig. 6. Box plots of estimated BoAs with 1000 replications.

bution for the simulation output Y(x) is given by

(9)

where is the indicator function, i.e., when Yj(x) < y,
and 0 otherwise. Sampling from PE(⋅) is equivalent to random sam-
pling with replacement from the set Y(x). This re-sampling technique
is known as bootstrapping, and it produces statistically valid estimates
of the PCS. While a large value of M, e.g. M = 10,000, is typically re-
quired [6], the experimental procedure is still very efficient, because it
no longer requires running the actual digital twin. In the following, for
each scenario and action, estimated BoA rates from N = 1000 IID sim-
ulations were used to construct empirical distributions, and M is set to
10,000.

To examine the PCS achieved by EQ or OCBA as a function of sim-
ulation budget, the number of simulation replications allocated to any
action, denoted as N, by EQ is varied from 10 to 60. The total simu-
lation budget T is thus T = N × I replications, where I is the number
of actions to evaluate (I = 16, 14, and 12 for scenarios 1, 2, and 3, re-
spectively). OCBA allocates these N × I simulation replications to all I
actions using the allocation policy described in Section 3.2. For OCBA,
the initial number of replications is set to n0 = 10.

The measured PCS as a function of the number of simulation replica-
tions consumed by EQ/OCBA is plotted in Fig. 7. The total simulation
budget for scenario 1 is 60 × 16 = 960 replications, because there are
16 recovery actions and the maximum N is 60. For scenarios 2 and 3,
the total simulation budget is 60 × 14 = 840 and 60 × 12 = 720, re-
spectively.

Fig. 7 reveals a substantial risk of selecting a sub-optimal action
when there is not a statistically sufficient number of simulation replica-
tions. In scenarios 1 and 2, using the sample averages from 10 simula-
tion runs, the PCS values were both lower than 0.5. The values obtained
for scenario 3 had only minimally better performance. Greater numbers
of replications are required to achieve higher PCS values and realize the
benefits of using a stochastic digital twin.

The outcome shows that with a given simulation budget of 60 repli-
cations per candidate action, EQ was only able to achieve a PCS of 0.65
for scenario 1, 0.52 for scenario 2, and 0.78 for scenario 3. In contrast,
OCBA achieved a PCS of 0.88, 0.56, and 0.92 for scenarios 1, 2, and 3,
respectively. For scenarios 1 and 3, OCBA produces large improvements
in PCS over EQ. Scenario 2 turned out to be challenging, because it has
two actions (9 and 10) that are difficult to rank correctly. Even in this
scenario, though, OCBA outperforms EQ.

Another perspective is to examine the speedup achieved by using
OCBA over EQ. Table 3 summarizes the speed-up factor of OCBA over
EQ. The speed-up factor is defined as the ratio between the number of
replications that EQ used to achieve a specific PCS and the number of
replications that OCBA spent to achieve the same PCS. For example, in
scenario 1, with N = 60 and thus a total of 960 simulation runs ex-
pended, EQ achieved a PCS of 0.65. In comparison, OCBA only used 368
runs to achieve the same level of PCS. Then the speed-up factor is 960/
368 = 2.61. Speed-up factors for N = 20,30,40,50,60 are reported in
Table 3.

For all three scenarios, as the simulation budget increases, the
speed-up factor obtained by using OCBA also increases. OCBA, there-
fore, achieves the largest speed-up factors at the most desirable (i.e.
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Fig. 7. PCS achieved by EQ and OCBA.
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Table 3
OCBA speed-up factors over EQ as a function of the number of EQ replications N.

Scenario ID N = 20 N = 30 N = 40 N = 50 N = 60

1 1.33 1.76 2.00 2.27 2.61
2 1.43 1.88 2.11 2.00 2.31
3 1.54 1.88 2.11 2.08 2.40

highest) PCS values. This is is ideal, because it enables reliable estimates.

5. Conclusions and future work

As disruptions can significantly impact port operations, maintaining
a resilient port is essential. In this paper, a DSS is developed that ex-
plores digital twinning and simulation-optimization capabilities for re-
silience assessment with recovery action optimization. The digital twin
replicates detailed port operations that cannot be captured through
more traditional mathematical modeling approaches. Digital twinning
also enables the modeling of uncertainty in the disruption events, as well
as subsequent port recovery operations. The authors are not aware of
any previous work in the resilience literature that computes resilience
with the granularity enabled by digital twinning or that accounts for or-
dinary operational uncertainties in resilience computation. Outcomes of
the case study showed that omitting ordinary operational uncertainty
from port models embedded within a resilience estimation methodology
can significantly overestimate resilience levels, erroneously suggesting
to port operators that their port is resilient. Consequently, they might
fail to adequately prepare for, or respond to, disruptions. In some cases,
sub-optimal, post-event response action might also be applied.

The proposed framework integrates OCBA, a state-of-the-art simu-
lation-optimization algorithm, to improve the computational efficiency
for real-world size applications. In a case study based on a real-world
container terminal, three power supply disruption scenarios were ana-
lyzed. Power supply disruption is an understudied but important hazard
for ports, especially as they become increasingly dependent on power
for automated activities and use more clean energy solutions. This work
shows that using the proposed DSS provides an optimal equipment con-
figuration that may greatly alleviate the impact of a power supply dis-
ruption.

In the case study, compared to routine equipment configurations,
the optimal configuration was able to increase the BoA rate by 15.74
percentage points. The value of including ordinary operational uncer-
tainties within the resilience evaluation was demonstrated via compar-
isons with a mostly deterministic digital twin. Deterministic solutions
were not only sub-optimal, but substantially underestimated (by up to
24.97 percentage points) the impact of disruptions, thus overestimating
resilience levels. Such erroneous estimates may cause a port operator to
fail to adequately respond to disruptions. Numerical results also showed
that OCBA can reduce the amount of computations required by the DSS
to make an accurate decision by as much as 2.40 times.

To further extend this work, there are several directions that might
be explored. Examples follow:

(1) Chen and Miller-Hooks [14] pointed out that a port's resilience re-
lies on the ability to withstand the disruption event with minimal
loss in function, which depends on effective preparedness, such as
training, pre-determining operational modifications, and preposi-
tioning resources. The proposed DSS framework can be extended to
optimize such preparedness decisions as in [44]. As both prepared-
ness analysis and recovery analysis require high-fidelity simula-
tion run evaluation, two-stage simulation budget allocation methods

might help improve the overall computational efficiency. One pro-
cedure that may be used in this context is described in [56].

(2) For a complex industrial system like a container terminal, there is
significant uncertainty in the outcome of a post-event recovery ac-
tion. If a recovery action is implemented yet the outcome is not as
expected, a second action may be warranted. This motivates further
development of digital twinning functions to enable real-time recov-
ery action implementation with feedback and adjustment.

(3) Brantley et al. [7,8] showed that when the underlying decision
space can be approximated with a metamodel, such as a quadratic
regression model Barton [5], the computational efficiency of OCBA
can be significantly enhanced. Given the complexity of port opera-
tions, a polynomial metamodel may no longer provide adequate fit
and more flexible metamodels, such as stochastic kriging, may be re-
quired Chen and Zhou [15]; Shen et al. [51]. However, the optimal
allocation of the simulation budget is only understood for embedded
metamodels with linear or quadratic form. Beyond these, optimal
allocation is an open question. Further development of digital-twin
enabled DSS may also stimulate and benefit from research on OCBA
with more flexible metamodels.
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Appendix A. Randomness in digital twin model

Table A.4
Randomness in digital twin model.

Mod-
ule Randomness

Ves-
sel
genera-
tor

• Three types of vessels have different parameters on length (uniform),
workload (uniform), and inter-arrival time (exponential).

Ex-
ternal
truck
genera-
tor

• Inter-arrival time follows exponential distribution.

Quay
area

• The number of QCs assigned to each vessel is based on the vessel length
and workload using a lookup table.
• The QC single or twin lift is proportionally generated.
• Vehicle holding buffer has a finite capacity and queuing may occur.
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Quay
crane

• Distance between stowage and AGV, aiming time, and acceleration, decelera-
tion, and max speed of gantry, hoist and trolley are used to compute an average
loading/unloading time, which is then used to parameterize a gamma distribu-
tion model from which random loading/unloading times are drawn.

Yard area • The access points per yard block have finite capacity and queuing may occur.
• Container allocation follows the 80–20 rule, and the allocation is uniformly
distributed in each range.

Yard
crane

• Distance between stacking position and AGV, acceleration, deceleration, and
max speed of hoist and trolley are used to compute an average loading/unload-
ing time used to parameterize a gamma distribution model from which random
loading/unloading times are drawn.

Traffic
network

• ehicle congestion is simulated following Zhou et al. [67].
• A pool of vehicles is assigned to serve a specific vessel using a lookup table
• The number of vehicles in the pool is dynamically determined based on vessel
workload.

Appendix B. Comparison between stochastic and deterministic
solutions

Table B.5
BoA rates estimated by stochastic and deterministic digital twin models.

ID Scenario 1 Scenario 2 Scenario 3

S-DT D-DT S-DT D-DT S-DT D-DT

1 13.63 1.86 6.82 0.05 2.95 0
2 13.91 6.41 8.85 1.22 3.88 0.22
3 15.20 11.28 11.24 7.19 6.60 3.59
4 20.50 18.24 16.08 15.84 13.13 20.18
5 31.93 39.78 27.35 37.63 28.92 52.03
6 47.12 63.87 45.44 63.60 43.39# 68.36#
7 65.28 84.25 60.92# 81.38# 52.59 72.35**
8 79.39# 92.45# 71.57 87.65 55.45* 64.28
9 87.39 95.79** 76.66* 87.96** 52.01 57.38
10 91.26 95.42 76.56 83.76 46.78 52.89
11 91.90* 93.97 71.77 75.24 38.52 41.16
12 90.01 91.83 63.85 64.72 30.71 30.49
13 85.82 89.59 54.03 57.07
14 79.36 84.43 46.87 52.71
15 71.76 75.45
16 63.90 64.77

Note:
(1) S-DT and D-DT denote solution obtained by stochastic and deterministic digital twin,
respectively.
(2) Default actions are indicated with #.
(3) Best recovery actions according to S-DT are indicated with *.
(4) Best recovery actions according to D-DT are indicated with **.
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