


distribute data across browser threads, and across browser state and
remote databases as well. As such, developers currently need to write
code to access the data, which they often need to further optimize. Our
goal is to develop abstractions that (1) free developers from sending
data manually between local and remote processes, (2) allow devel-
opers to easily change their data storage and compute sources (e.g.,
between the main browser thread, a WebWorker [32], a local database,
or cloud databases) without rewriting their application code, and (3)
unobtrusively perform low-level optimization (e.g., caching).

Asynchronous Events. When data is local on one client, user inter-
actions are the only events that a developer has to work with. Thus,
computation caused by interactions, such as filtering data based on
a selection, can be handled synchronously. However, when data is
remote, asynchronous events are the norm: responses from a server,
streaming data from real-world events, or events generated by other
users. These asynchronous events are outside of the application’s direct
control and, thus, have to be handled as they arrive. Our goal is to
develop abstractions and a library that allow developers to (1) create
consistent user experiences in the face of concurrency and out-of-order
execution, and (2) easily experiment with different designs for handling
asynchronous events.

To effectively work in this new paradigm of distributed data and
asynchronous events, we adapt two patterns from the field of distributed
systems programming:

Logical Constraints. Rather than imperatively manipulating data, de-
velopers express logical constraints (i.e., queries) over data, and the
system determines the methods used to execute the queries [9, 40].
By decoupling the how from the what, logical constraints allow the
system to plan and optimize the execution of the query (possibly span-
ning multiple databases) [40], relieving the developer of this burden.
This approach also has practical implications. In particular, SQL and
dataframe libraries express logical constraints over data, and have been
widely adopted by developers and database engines [3, 35, 49] alike.

Immutable Events. Past events, along with their time steps, are stored
as an immutable log by the system. Developers declare the current state
of the application as a logical constraint over the immutable log rather
than transiently handling events and mutating state via side effects [2,
19]. As a result, developers can coordinate events declaratively without
worrying about how to update the application state through callbacks
over transient events.

In this work, we bring these ideas from distributed systems pro-
gramming to the context of interactive visualization. DIEL

1 models
interactions and asynchronous data computation events as timestamped
records in event tables, and the state of the interface as a query over the
event tables and data tables. The DIEL runtime maintains an event loop
to reevaluate queries as event tables change, ensuring that the interface
is responsive to interactions. With DIEL, we are able to achieve the re-
quirements outlined earlier — developers no longer need to implement
low-level networking with remote databases or perform optimizations,
and have a way to easily coordinate asynchronous events that maintain
a consistent interface.

To evaluate DIEL’s expressiveness, we construct a diverse set of
interactive visualizations over distributed data and asynchronous time.
Examples include ways to handle request-response asynchrony [59,61],
interactions on streaming data, composing two related interactions,
and interaction scents [14, 57]. These examples show that DIEL’s ab-
stractions allow developers to rapidly and concisely explore different
interface designs. We also present a heuristic analysis of the usabil-
ity of these abstractions using the Cognitive Dimensions of Notation
framework [5], highlighting both gains to fluidity, and compromises to
premature commitment. Finally, we verify the viability of DIEL through
performance measurements of a prototype, and show that DIEL adds
low overhead and scales as data increases in size.

2 RELATED WORK

DIEL builds on prior work in databases, visualization systems, and
distributed systems programming.

1Declarative Interaction Event Log

Database and Visualization Systems. Research at the intersection
of visualization and database systems has traditionally focused on en-
hancing performance — for instance, by offloading data aggregation
and filtering to a remote database [30, 51] or by embedding a high-
performance database-like query engine into the browser [44]. In con-
trast, our work is not motivated primarily by performance but instead
by the programming experience of visualization developers. Although
DIEL embeds a SQL query engine in the browser, it does so for its
benefits as a programming construct, and its ability to interoperate with
a remote database. Critically, DIEL is agnostic to the specific database
system, which could range from a SQLite instance in the browser’s
main thread [27], to commonly used databases on a server, such as
SQLite, Postgres [35], or new research systems [26, 39].

FORWARD is a general web application programming framework
that directly binds database records and query results to DOM ele-
ments [15]. DIEL is similar in that it manages how elements in the
visualization are updated based on changes in the underlying database
that represents user interactions. However, DIEL uniquely addresses the
challenges of asynchronous events, which are shown to be especially
challenging for interactive visualizations [61]. DIEL does so through a
novel declarative programming API over event histories.

Visual Programming over Tables. There is a close connection be-
tween visual querying and textual queries — visual querying systems
combine textual query specification with direct manipulation and data
visualization. For instance, VIQING maps visual selections, joins, and
reordering to SQL operators [34]. Polaris endowed the pivot operator
with powerful interactive capabilities [51]. Wrangler brings together in-
teractions and a query based DSL for data transformations [23]. Many
commercial tools, such as Trifacta, Tableau, and Microsoft Power
BI/Query, provide a combination of these capabilities.

Beyond the connection between queries and interactive visualiza-
tion, Psallidas and Wu demonstrated the application of query lineage
in interactive visualizations [38]. Also leveraging lineage, B2 instru-
ments interactive cross-filtering visualizations in computational note-
books [60]. DIEL builds on these close connections using relational
queries to define the data transformation logic of interactions. However,
DIEL differs from these systems in that it is a programming abstraction
for a middleware layer designed to support general purpose interactive
visualization programming.

Interactive Visualization Libraries. While DIEL makes use of inter-
active visualization libraries, such as D3 [6] and Vega [44], it is not one
itself. DIEL relies on the front-end visualization libraries to map data to
visual encodings, perform visualization-specific transformations (such
as voronı̈, treemap, or wordcloud [37]), create interactors, and capture
selection values. Existing abstractions in these libraries support inter-
actions in a synchronous setting where the computation is expected to
finish immediately. As a result, the events are also transient by default
and assumed to be unnecessary for subsequent events. In contrast,
DIEL supplements existing frontend visualization libraries by filling
in the gap of working with distributed data and asynchronous events.
Of particular note is how DIEL differs from Vega, which also models
interaction events as streaming data. Like other libraries, events in Vega
are transient by default and, although a rich set of data transformations
are offered, they only operate over client-side data. DIEL, on the other
hand, records all events into a persistent log and offers a simple set
of relational abstractions over distributed data. Future research could
consider how to further extend Vega’s dataflow abstractions [45, 46] to
better integrate with, or adopt DIEL’s abstractions.

Frameworks for Provenance and Asynchrony. With current pro-
gramming paradigms, developers need additional instrumentation to
support features like logging or undo/redo. For example, Trrack is a
purpose-built library that augments existing interactive visualizations
with a provenance graph of state history [12]. DIEL, in contrast, offers
a more general-purpose set of abstractions which provide provenance
tracking via first-class event histories.

Similarly, to be able to share and synchronize multiple users’ changes
over the network, programmers of collaborative groupware applications
rely on special-purpose frameworks. Toolkits such as Janus help devel-
opers resolve concurrent and possibly conflicting events to ensure that



each participant views a consistent artifact [47]. DIEL takes inspiration
from these systems, e.g., the time-stamped events in Janus [47], but
also adds specialization for interactive visualizations, such as providing
support for working with distributed data and tracking request-response
provenance. DIEL was directly inspired by distributed programming
language research, notably the Bloom [2] language and CRDT [36]
data structures. Like Bloom, DIEL focuses on the semantics of atomic
timesteps immediately after the user interacts, helping developers rea-
son about out-of-order events. DIEL differs from the prior work in its
focus on reifying a log of history as a core aspect of its data model.

Reactive Programming. Reactive Extensions (Rx) is a widely-used
example of a Functional Reactive Programming (FRP) library, which
coordinates event-based and asynchronous computations such as mouse
moves and high-latency calls to Web services [29]. Vega [46] and
Bloom [2] also follow the model of reactive programming. DIEL takes
inspiration from these libraries, implementing reactive programming
semantics. Meijer’s article about Rx, Your Mouse is a Database [29],
informed our formulation of user events as record insertions into tables.

However, compared to Rx, DIEL has a much more restrictive model
targeted at visual analytic applications. Unlike Rx, DIEL does not
support general purpose applications but provides domain specific func-
tionalities for the use cases in interactive visualization. One could
implement DIEL-like logic as a specialized design pattern in an FRP
language like Rx but doing so would involve implementing the dis-
tributed query execution logic that DIEL provides, which is not a casual
task for a visualization developer.

3 PROGRAMMING INTERACTIONS ACROSS SPACE & TIME

To address the challenges of asynchronous events and distributed data,
we look to distributed systems programming for inspiration and adapt
the ideas to interactive visualization programming.

3.1 Asynchronous Interactions: Immutable Events

Asynchronous events, unlike their synchronous counterparts, need to be
coordinated by developers to ensure a good user experience [61]. This
coordination can be challenging as developers need to maintain relevant
information of past events and selectively trigger event handlers. And,
since different parts of the event handling and bookkeeping logic are
scattered across functions and variables, these imperative bookkeeping
and callbacks can become tedious to maintain and prone to errors. This
situation is exacerbated when new types of events need to be supported
(e.g., a new interaction). To address these challenges, we look to key
methods in distributed systems programming.

Events as Data. An important technique in distributed systems pro-
gramming is making events immutable and first class [19]. Events are
stored as a log, and the state after each event is defined as a function
(or query) of the log [1]. This design abstracts away the details of main-
taining state (no more mutations with callbacks) and makes it easier
to reason about the consistency of the application [2]. We can apply
this framing directly to interactive visualizations: user interactions are
events, and queries over these events (and other tables) can specify the
state of the interface.

Atomic Timesteps. Compared to synchronous events, asynchronous
events can, by definition, arrive out of order. This behavior can lead to
a variety of “inconsistent” visualization states, as documented by Wu
et al. [61]. One simple example is naively rendering a response when it
is received, even if it is for an “old” interaction made prior to the most
recent one. To deal with unpredictable sequences of events, developers
need to reason about what prior events occurred, and when they did so.

Given this challenge of inconsistency, one obvious solution is to
synchronize the events. However, this solution violates a core HCI
principle: responsiveness [20, 21]. Making events synchronous means
that the user is blocked from performing new interactions until their
previous interaction result has been executed completely (including
being sent to the server, computed on the server database, received by
the client, and rendered to the UI). As this process can take a significant
amount of time to complete, making the interface unresponsive yields
a frustrating user experience.

To maintain a smooth user experience, it is important to work with
asynchronous events. Here, one idea from distributed programming
is particularly helpful: atomic timesteps [2], whereby the system guar-
antees an atomic unit of evaluation by computing the state of the ap-
plication in full before admitting another input event. With atomic
timesteps, developers reason independently, “frame by frame”, about
what computation needs to be computed synchronously within a given
timestep. Moreover, developers can reference the explicit timesteps
stamped on events, with the guarantee that an event with a smaller
timestep precedes an event with a larger timestep. Finally, developers
can be sure that the interface satisfies the constraints specified at every
timestep, which could support robust UX in the face of asynchrony.

3.2 Distributed Data: Logical Constraints

To be able to scale an interactive visualization application, a developer
must be able to flexibly change where the data is stored and computed
upon. They may initially build a prototype over small datasets that
are stored and computed in the main thread of the browser. To use a
larger dataset, they may utilize WebWorkers [32], which allow the data-
rich tasks to run asynchronously in the background and not block the
interface. Then, as the developer deploys the application to real-world
datasets, they may move the computation to a database on their local
machine or a cloud database.

To achieve this flexibility, the system should abstract data access
details from developers. The field of databases has tackled this prob-
lem using a concept that is not unfamiliar to interactive visualization
developers: relations (also called tables). Relations are sets of data
tuples with a fixed schema, and computation over relations is governed
by an algebra of select, project, join, and group by operators [9]. Rela-
tional query languages bring with them two important properties for
our purposes:

Physical Data Independence. Currently, to change from storing and
computing data in the main browser thread to any other options re-
quires custom code: developers may need to map interaction logic
from JavaScript to SQL, handle the database connection, and perform
networking. This work is needed for two reasons. First, developers
often specify how to access the data. If the data location changes, the
program changes. Second, the computation abstractions on the client
and other locations may be different. Relational languages can address
both of the factors. They allow developers to specify what data to
access, making the program independent from the physical details of
the data. Furthermore, if a standard relational language is used ev-
erywhere, be it the client, a WebWorker thread, or a remote database,
the developer can work with one abstraction and not have to translate
between specifications.

Rich Optimization Currently, developers may implement optimiza-
tions manually, such as caching. This is not ideal for two reasons: one
is a higher programming barrier, and another is that the developer may
not have enough time for more involved optimizations beyond a simple
cache. Having relational abstractions over both the client and the server
can relieve the optimization burden from the developer and allow the
system to compile the logical specification into a physical execution
plan, using a wealth of optimization techniques [40].

4 THE DIEL MODEL

To address the challenges in Section 1, DIEL manages user interactions,
remote databases, and the communication between local and remote.
On the browser frontend, the developer specifies the data that the user
can interact with and select (e.g., using Vega-Lite [44]) and translates
them into events that are sent to DIEL via its JavaScript API. DIEL stores
events in the local in-browser local database and manages query pro-
cessing on the remote databases, which are connected to DIEL through
a set of remote-side APIs. Through standard database connection li-
braries such as node-postgres and sqlite3, DIEL allows the developer to
connect to remote databases ranging from SQLite, to PostgreSQL, to
cloud databases like Amazon Redshift.

Note that remote databases and their asynchronous complexities
can arise in surprising settings. In addition to databases on remote
servers (such as Redshift), remote databases also arise when data is







data they query changes. We tackle this problem pragmatically in our
prototype: we implement update mechanisms for views in the our local
database code; for remote databases, we count on their native support
for materialized view maintenance.

3. Automatic caching. Developers often build a client-side cache by
hand to amortize the compute and network time to a server. For any
given specification, DIEL can automatically instrument this function-
ality, thus saving the developers’ time. The server response data are
already stored in the event log. To make use of the past values, DIEL

analyzes the execution plan at this stage and instruments a layer of in-
direction to the evaluation of the EVENT VIEWs when a new event arrives:
DIEL hashes the parameters of the relevant rows of the event tables and
looks up the hash in an event cache table instrumented by DIEL. If the
hash is present, DIEL returns that value, and if not, DIEL dispatches
the dataflow. DIEL’s automatic caching process saves storage by not
having multiple copies of the responses, which is especially limited
on the client. In addition to helping save the developers’ time, DIEL’s
automatic caching process also alleviates the additional memory usage
caused by DIEL’s log of events.

4. Automatic Index Selection. Good database performance is typically
tied to building indexes that suit your query workload. For a given DIEL

program, this workload is known in advance as part of the spec, hence
DIEL analyzes the query structure to statically determine indexes that
will result in good performance.

Besides optimizing the dataflow, we also optimized the execution
speed of the local database. Unlike the remote databases, the implemen-
tation of the local database is controlled by DIEL. The local database
runs in the browser’s main-thread and any delay would directly block
user interactions and HTML updates. Therefore, it is critical that the
local database executes quickly. We make use of a recent advance in
browser technology, WebAssembly [54]. It provides fast execution of
SQLite in the browser by compiling C code to WebAssembly.

The above highlights the most novel aspects of the prototype imple-
mentation. Other details, such as the full DIEL syntax specification,
along with additional language features discussed in Section 8, are
detailed in supplementary materials.

6 EVALUATING DIEL’S EXPRESSIVITY

To assess the benefits of DIEL, we show examples of interactive visual-
izations that deal with the variety of challenges that arise when manag-
ing asynchrony and distribution, including coordinating responses from
remote servers, streaming data, and composing interactions. Our dis-
cussion focuses on the aspects addressed by DIEL and omits implemen-
tation details of the frontend. We also show how DIEL specifications
compose in a modular manner, by building each new interaction on the
running example of Fig. 2. Since the challenges are independent of the
particular choice of visual encodings, we do not focus on varying the
visual designs.

Coordinating Requests and Responses. Latency from remote
databases’ responses can cause inconsistencies in the interface, if not
handled properly [61]. For instance, Fig. 4 shows a timeline of user
interactions (selection) and server responses (yearDistributionEvent).
The user clicks TX and then CA, but the remote database responds with
the result for CA first. Rendering the most recent result (TX) would
surprise a user who is expecting CA. To avoid inconsistent interfaces,
developers can use DIEL to specify a range of designs in a few lines of
code. We walk through three possible designs shown in Fig. 4.

Option A always displays the result of the most recent interac-
tion. The DIEL spec first identifies the interaction by selecting the
rows with the highest timestep (LATEST selection), then selects the rows
in yearDistributionEvent with matching request-response timesteps
(d.request timestep = e.timestep). If no match is available yet, nothing
is returned. The front-end visualization logic could indicate as such,
e.g., using a spinner as shown.

Option B always displays the most recent response and its corre-
sponding selection, as well as pending selections. The DIEL spec first
selects the most recent response (LATEST yearDistributionEvent), then
joins it with the selection table to retrieve the corresponding value of
the selection (e.us state) by matching their timesteps. The second out-

put pending represents pending selections and is computed by finding
the request(s) that do not have a corresponding response.

Option C displays “snapshots” of all interactions [59], where past
interactions and their results are scaled down into a scrolling pane of
small multiples at the bottom. The DIEL spec simply selects all the in-
teractions from the event table selection, joined with the corresponding
responses by their timesteps. The snapshots allow a user to interact
with the visualization and navigate to prior states, concurrent with the
loading of new responses.

Without DIEL, implementing these designs would require the de-
veloper to manually keep track of events — store the points of interest
selected, their respective responses, and the global ordering of all the
events — and coordinate multiple event handlers. While each step is
simple in isolation, put together the complexity of this low-level data-
recording and event handling compounds substantially. Developers
may have trouble reasoning about the overall design.

DIEL, on the other hand, encourages a consistent experience by
asking the developer to specify which of the events should be in the
output at any given time. There is no accidental design resulting from
interrupt-driven event handling, such as immediately rendering what-
ever response arrives. Furthermore, DIEL takes care of recording event
history and provenance. The developer can query these data directly —
for example identifying the responses from remote databases with
timestep data that DIEL automatically maintains. As a result, the devel-
oper can iterate on alternate designs without instrumentation overhead.

Streaming Data. Given the real-time nature of fires, the developer
may want to incorporate streaming data into their visualization. Fig. 6
overlays the choropleth in Fig. 2 with a symbol map of active current
fires. The event incident contains the location of the fire and whether it
is new or contained. When a new incident event arrives, fires are either
added to or removed from the symbol map overlay. To implement this
design with DIEL, the event incident is captured as an event table and
the data for the overlay is captured by the output table fireMap. Each
tuple from the latter is used to query the incident table to identify fires
that have not yet been controlled, via the NOT IN subquery. Note how the
developer can rely on a few lines of DIEL code, instead of programming
custom JavaScript functions to store and manipulate streaming events2.

Composing Events: Interaction and Streaming. Cross-linking is a
common interaction technique [48]. Fig. 7 shows a new brush selection
added to the map visualization, linked to the bar chart (the backing
query is not shown for brevity). contained checks if the lat, lon values
in fireMap are within the min and max bounds of the brush. It is a
utility function defined by DIEL, using the user-defined function (UDF)
construct in SQL [40]. UDFs are supported by the frontend database
library we use, sql.js [28], and developers can define UDFs through
the DIEL runtime API, AddUDF.

The new interaction composes with the streaming firemap view from
before — if there is a new event received that falls into the brushed
area, the incidents selected in brushedIncidents will also be updated,
and any dependent output views will be updated as well. This subtle
instrumentation, automatically performed by DIEL, may be difficult for
a developer to catch in a traditional implementation where the logic
may be dispersed into different event handlers.

Composing Events: Brushing and Panning. Different interactions
serve different purposes and more than one interaction could be em-
ployed for the same visualization, which the developer may need to
coordinate. Following the running example, suppose now the developer
wishes to introduce a pan-zoom interaction, shown in Fig. 8. The brush
table is defined in geographic coordinates, so the user can pan the map
to an area where the brush is no longer visible, and the value of the
selection is in question. We present two possible designs to address this
ambiguity. Both derives a new brush, effectiveBrush for use in place of
the raw brush.

Option A invalidates the brush when the user initiates a new pan-
ning interaction. The DIEL spec selects the most recent brush (LATEST

2As with materialized views in Section 5, we take a pragmatic approach

in our prototype: we handle streams in the client database, but do not support

streaming in the remote databases.







However, DIEL does not fully represent the complex domain of data
visualizations. For example, the Vega authors identify that visualiza-
tions involving small multiples often require hierarchical structures
with second-order quantification [45].

We agree that the expressiveness of SQL, and hence DIEL, is more
limited than interactive visualization frameworks, which are imple-
mented in turing complete languages. Relational languages like DIEL

express only first-order logic. In particular, DIEL can define and quan-
tify relationships between entities, but cannot quantify over a data-
dependent set of table names or column names. Yet this limitation is
key for distributed execution and optimization. Neither physical data
independence nor the rich optimization methods discussed in Section 3
would be easy to implement without the relational abstraction. In this
sense, any alternative approach towards distributed execution at scale
will end up using the same principles and hence facing similar limita-
tions. Moreover, developers could transform the data into other forms
by manipulating the output tables provided by DIEL in any JavaScript
functions. For instance, they can use Vega to transform the tabular data
into nested groups to render small multiples. These data transforma-
tions happen at the end of DIEL’s dataflow and does not diminish the
effectiveness of DIEL’s ability to orchestrate query evaluations across
the client and remote databases.

Consistency (similar semantics are expressed in similar syntactic
forms). In DIEL, the only data structure is a table. One of the key
contributions of DIEL’s model is to unify both “live” events and “stored”
data in a single frame of reference—tables—which store both data and
history. Once events are reified as data in an event table, DIEL presents
a unified data-centric language.

Premature Commitment (constraints on the order of doing things). For
DIEL to be effective, it imposes a premature commitment. Developers
must represent the state of visualizations using tables (rather than
arbitrary data structures) upfront. This premature commitment can
hamper a rapid prototyping process, but we believe the advantages of
the table format outweigh these concerns. As discussed in Section 3,
the table format facilitates working with distributed data, and makes
explicit possibly concurrent processes.

Role-expressiveness (the purpose of an entity is readily inferred). DIEL

reuses an existing, well-established data model of relational tables
and queries, and introduces only two additional constructs: EVENTs and
OUTPUTs. This approach has proven sufficiently expressive, as demon-
strated by the examples in Section 6. DIEL operates as a middleware
layer between the frontend and backends, and lifts the logic of data
exchange between client and remotes. The relatively small surface
area of DIEL’s abstractions stands in contrast to the existing imperative
code written to support such use cases, which is often dispersed across
custom functions with a commensurate burden of role-expressiveness.

Hidden Dependencies (important links between entities are not visible).
DIEL makes dependencies quite explicit. The only type of dependency
DIEL introduces is between tables, which are syntactically evident in
queries: the table a query creates is dependent on the tables it references.
In contrast, current imperative practice distributes dependencies across
different functions, each with custom logic and bookkeeping formats
that require additional effort to navigate and make sense of.

Hard Mental Operations (high demand on cognitive resources). There
are two potentially challenging programming tasks in DIEL. One chal-
lenge is debugging in SQL [16]. Consider the case where the developer
is debugging a view O which involves both V1 and V2 views; they need
to inspect both of the views to locate the error. To address this challenge,
we built view level constraints, similar to SQL table constraints [40],
so that developers could make assertions on intermediate queries. For
instance, if O is unexpectedly empty, the developer could assert V1
NOT EMPTY and V2 NOT EMPTY respectively to pin-point the error as they
arise. Another challenge is not being able to mutate state. It could
be challenging to define the state of the visualization with only raw
events, especially when the logic is more complex (e.g., undo-redo). To
help, we took a page from the construct of state programs in relational
transducers [1], which allow developers to maintain derived state by
inserting values into tables after events.

Diffuseness (verbosity of language). The current DIEL syntax hews

close to SQL, and as such does not have syntactic conveniences one
might like for visualization (e.g., binning [24]). Some aspects of DIEL’s
current verbosity can be alleviated by introducing syntactic sugar for
common operations. Through our own experience working with DIEL

and analyzing code snippets, we identified the most common program-
ming patterns and implemented a handful of syntactic sugars. For
instance, LATEST selects the most recent event (i.e. row(s) with the high-
est timestep). Similarly, the default asynchrony policy for output views
over distributed data creates an event table for the developer and selects
the response for the most recent interaction. We provide additional
details in the supplement.

9 CONCLUSION AND FUTURE WORK

By adapting two key ideas from distributed systems programming —
immutable events and logical constraints — DIEL contributes a substan-
tive step towards declarative programming over distributed data and
asynchronous events for interactive visualization. Through examples,
we demonstrate that developers can use DIEL to declaratively specify
a variety of emerging interactive visualization use cases. And, to as-
sess the challenge that DIEL’s use of a relational language poses to
developers, we conducted a heuristic evaluating using the Cognitive
Dimensions of Notation [5]. We find that although DIEL introduces
premature commitment and possible hard mental operations, these dis-
advantages are outweighed by a decrease in viscosity when working
with distributed data and asynchronous events. Moreover, as our per-
formance benchmarks suggest, this declarative model allows DIEL to
reason about the specification and optimize the execution plan.

As data grows in size and computation grows in complexity, op-
timizing the performance of interactive visualization application is a
hot topic. DIEL’s unique middleware architecture that spans the lo-
cal and remotes allows for a number of research opportunities. To
start, operator-level materialized-view maintenance techniques [8] can
make the frontend database even faster. Federated databases that op-
timize globally across multiple databases [13] can help us optimize
data exchange between the local database and remote database. An-
other possibility is to automatically parallelize query evaluation [40]
across multiple threads of computation, e.g. multiple WebWorkers in
a browser. Finally, we can enhance the performance of each timestep
with “garbage collection” by removing rows that are no longer in use
from logs. This pattern is common in many areas, such as in repli-
cated database systems [41], multi-version concurrency control [4] and
distributed systems programming [10].

In terms of usability, having SQL as the host language has both
advantages and disadvantages (discussed in Section 8). To reduce the
disadvantages of expressibility, future iterations of DIEL may benefit
from using a syntax closer to dataframe libraries like pandas that are
better integrated with JavaScript [58].

In terms of functionality, DIEL does not yet support an important
distributed use case, collaborative interactive visualizations (Fig 1 3 ).
Coordinating communication between multiple users is a classic chal-
lenge in distributed systems and CSCW [52]. A global order of events
across multiple editors cannot be guaranteed without explicit coordi-
nation that decreases the interface’s responsiveness. Instead, various
coordination-free proposals have emerged that use more involved meta-
data than simple local timesteps to provide distributed consistency
guarantees [11, 55]. Supporting change from multiple locations would
also unlock the support for streaming, since a change from the remote
database could then drive change on the client. It would be interesting
to extend DIEL with ideas from this work.

DIEL is an open source system available at https://github.com/
yifanwu/diel.
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