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Abstract
Designing off-policy reinforcement learning al-
gorithms is typically a very challenging task, be-
cause a desirable iteration update often involves
an expectation over an on-policy distribution.
Prior off-policy actor-critic (AC) algorithms have
introduced a new critic that uses the density ratio
for adjusting the distribution mismatch in order to
stabilize the convergence, but at the cost of poten-
tially introducing high biases due to the estimation
errors of both the density ratio and value function.
In this paper, we develop a doubly robust off-
policy AC (DR-Off-PAC) for discounted MDP,
which can take advantage of learned nuisance
functions to reduce estimation errors. Moreover,
DR-Off-PAC adopts a single timescale structure,
in which both actor and critics are updated simul-
taneously with constant stepsize, and is thus more
sample efficient than prior algorithms that adopt
either two timescale or nested-loop structure. We
study the finite-time convergence rate and charac-
terize the sample complexity for DR-Off-PAC to
attain an ε-accurate optimal policy. We also show
that the overall convergence of DR-Off-PAC is
doubly robust to the approximation errors that
depend only on the expressive power of approxi-
mation functions. To the best of our knowledge,
our study establishes the first overall sample com-
plexity analysis for a single time-scale off-policy
AC algorithm.

1. Introduction
In reinforcement learning (RL) (Sutton & Barto, 2018), pol-
icy gradient and its variant actor-critic (AC) algorithms have
achieved enormous success in various domains such as game
playing (Mnih et al., 2016), Go (Silver et al., 2016), robotic
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(Haarnoja et al., 2018), etc. However, these successes usu-
ally rely on the access to on-policy samples, i.e., samples
collected online from on-policy visitation (or stationary)
distribution. However, in many real-world applications,
online sampling during a learning process is costly and un-
safe (Gottesman et al., 2019). This necessitates the use of
off-policy methods, which use dataset sampled from a be-
havior distribution. Since the policy gradient is expressed
in the form of the on-policy expectation, it is challenging
to estimate the policy gradient with off-policy samples. A
common approach to implement actor-critic algorithms in
the off-policy setting is to simply ignore the distribution
mismatch between on- and off-policy distributions (Degris
et al., 2012; Silver et al., 2014; Lillicrap et al., 2016; Fuji-
moto et al., 2018; Wang et al., 2016; Houthooft et al., 2018;
Meuleau et al., 2001) but it has been demonstrated that such
distribution mismatch can often result in divergence and
poor empirical performance (Liu et al., 2019).

Several attempts have been made to correct the distribu-
tion mismatch in off-policy actor-critic’s update by intro-
ducing a reweighting factor in policy update (Imani et al.,
2018; Zhang et al., 2019b; Liu et al., 2019; Zhang et al.,
2019c; Maei, 2018), but so far only COF-PAC (Zhang et al.,
2019c) and OPPOSD (Liu et al., 2019) have been theoret-
ically shown to converge without making strong assump-
tions about the estimation quality. Specifically, COF-PAC
reweights the policy update with emphatic weighting ap-
proximated by a linear function, and OPPOSD reweights the
policy with a density correction ratio learned by a method
proposed in (Liu et al., 2018). Although both COF-PAC
and OPPOSD show much promise by stabilizing the con-
vergence, the convergence results in (Zhang et al., 2019c)
and (Liu et al., 2019) indicate that both algorithms may
suffer from a large bias error induced by estimations of
both reweighting factor and value function.

The doubly robust method arises as a popular technique to
reduce such a bias error, in which the bias vanishes as long
as some (but not necessarily the full set of) estimations are
accurate. Such an approach has been mainly applied to the
off-policy evaluation problem (Tang et al., 2019; Jiang &
Li, 2016; Dudı́k et al., 2011; 2014), and the development of
such a method for solving the policy optimization problem
is rather limited. (Huang & Jiang, 2020) derives a doubly
robust policy gradient for finite-horizon Markov Decision



Doubly Robust Off-Policy Actor-Critic

Process (MDP) and only for the on-policy setting. (Kallus &
Uehara, 2020) proposed a doubly robust policy gradient esti-
mator for the off-policy setting, but only for infinite-horizon
averaged MDP, which does not extend easily to discounted
MDP. Moreover, model-free implementation of such dou-
bly robust policy gradient estimators typically requires the
estimation of several nuisance functions via samples, but
previous works proposed only methods for critic to estimate
those nuisances in the finite-horizon setting, which cannot
extend efficiently to the infinite-horizon setting.

Thus, our first goal is to propose a novel doubly robust
policy gradient estimator for infinite-horizon discounted
MDP, and further design efficient model-free critics to esti-
mate nuisance functions so that such an estimator can be
effectively incorporated to yield a doubly robust off-policy
actor-critic algorithm.

On the theory side, previous work has established only the
doubly robust estimation, i.e., the policy gradient estima-
tor is doubly robust (Huang & Jiang, 2020; Kallus & Uehara,
2020). However, it is very unclear that by incorporating
such a doubly robust estimator into an actor-critic algorithm,
whether the overall convergence of the algorithm remains
doubly robust, i.e., enjoys doubly robust optimality gap.
Several reasons may eliminate such a nice property. For ex-
ample, the alternating update between actor and critic does
not allow critics’ each estimation to be sufficiently accu-
rate, so that doubly robust estimation may not hold at each
round of iteration. Furthermore, the optimality gap of the
overall convergence of an algorithm depends on interaction
between critics’ estimation error and actor’s update error as
well as other sampling variance errors, so that the double ro-
bust estimation does not necessarily yield the doubly robust
optimality gap.

Thus, our second goal is to establish a finite-time conver-
gence guarantee for our proposed algorithm, and show
that the optimality gap of the overall convergence of our
algorithm remains doubly robust.

1.1. Main Contributions

Doubly Robust Estimator: We propose a new method
to derive a doubly robust policy gradient estimator for an
infinite-horizon discounted MDP. Comparing with the pre-
viously proposed estimators that adjust only the distribution
mismatch (Liu et al., 2019; Imani et al., 2018; Zhang et al.,
2019b;c), our new estimator significantly reduces the bias
error when two of the four nuisances in our estimator are
accurate (and is hence doubly robust). We further propose a
new recursive method for critics to estimate the nuisances
in the infinite-horizon off-policy setting. Based on our pro-
posed new estimator and nuisance estimation methods, we
develop a model-free doubly robust off-policy actor-critic
(DR-Off-PAC) algorithm.

Doubly Robust Optimality Gap: We provide the finite-
time convergence analysis for our DR-Off-PAC algorithm
with single timescale updates. We show that DR-Off-PAC
is guaranteed to converge to the optimal policy, and the
optimality gap of the overall convergence is also doubly
robust to the approximation errors. This result is somewhat
surprising, because the doubly robust policy gradient up-
date suffers from both non-vanishing optimization error and
approximation error at each iteration, whereas the double
robustness of the optimality gap is independent of the op-
timization error. This also indicates that we can improve
the optimality gap of DR-Off-PAC by adopting a powerful
function class to estimate certain nuisance functions.

Our work is the first that characterizes the doubly robust
optimality gap for the overall convergence of off-policy
actor-critic algorithms, for which we develop new tools for
analyzing actor-critic and critic-critic error interactions.

1.2. Related Work

The first off-policy actor-critic algorithm is proposed in (De-
gris et al., 2012) as Off-PAC, and has inspired the invention
of many other off-policy actor-critic algorithms such as off-
policy DPG (Silver et al., 2014), DDPG (Lillicrap et al.,
2016), TD3 (Fujimoto et al., 2018), ACER (Wang et al.,
2016), and off-policy EPG (Houthooft et al., 2018), etc, all
of which have the distribution mismatch between the sam-
pling distribution and visitation (or stationary) distribution
of updated policy, and hence are not provably convergent
under function approximation settings.

In one line of studies, off-policy design adopts reward shap-
ing via entropy regularization and optimizes over a different
objective function that does not require the knowledge of be-
haviour sampling (Haarnoja et al., 2018; O’Donoghue et al.,
2016; Dai et al., 2018; Nachum et al., 2017; 2018; Schul-
man et al., 2017; Haarnoja et al., 2017; Tosatto et al., 2020).
Although the issue of distribution mismatch is avoided for
this type of algorithms, they do not have convergence guar-
antee in general settings. The distribution mismatch issue
is also avoided in a gradient based algorithm AlgaeDICE
(Nachum et al., 2019), in which the original problem is
reformulated into a minimax problem. However, since non-
convex minimax objective is in general difficult to optimize,
the convergence of AlgaeDICE is not clear.

In another line of works, efforts have been made to ad-
dress the issue of distribution mismatch in Off-PAC. (Imani
et al., 2018) developed actor-critic with emphatic weighting
(ACE), in which the convergence of Off-PAC is amelio-
rated by using emphatic weighting (Sutton et al., 2016).
Inspired by ACE and the density ratio in (Gelada & Belle-
mare, 2019), (Zhang et al., 2019b) proposed Geoff-PAC to
optimize a new objective. Based on Geoff-PAC, (Lyu et al.,
2020) further applied the variance reduction technique in
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(Cutkosky & Orabona, 2019) to develop a new algorithm
VOMPS/ACE-STORM. However, since the policy gradi-
ent estimator with emphatic weighting is only unbiased in
asymptotic sense and emphatic weighting usually suffers
from unbounded variance, the convergence of ACE, Geoff-
PAC and VOMPS/ACE-STORM are in general not clear.
So far, only limited off-policy actor-critic algorithms have
been shown to have guaranteed convergence. (Zhang et al.,
2019c) proposed a provably convergent two timescale off-
policy actor-critic via learning the emphatic weights with
linear features, and (Liu et al., 2019) proposed to reweight
the off-PAC update via learning the density ratio with the
approach in (Liu et al., 2018). However, both convergence
results in (Liu et al., 2019) and (Zhang et al., 2019c) suffer
from bias errors of function approximation, and the two
timescale update and the double-loop structure adopted in
(Zhang et al., 2019c) and (Liu et al., 2019), respectively, can
cause significant sample inefficiency. Recently, (Kallus &
Uehara, 2020) proposed an off-policy gradient method with
doubly robust policy gradient estimator. However, they also
adopted an inefficient double-loop structure and the overall
convergence of the algorithm with such an estimator was
not shown to have the doubly robust property. In contrast
to previous works, we develop a new doubly robust off-
policy actor-critic that provably converges with the overall
convergence also being doubly robust to the function ap-
proximation errors. Our algorithm adopts a single-timescale
update scheme, and is thus more sample efficient than the
previous methods (Liu et al., 2019; Zhang et al., 2019c;
Kallus & Uehara, 2020).

2. Background and Problem Formulation
In this section, we introduce the background of Markov
Decision Process (MDP) and problem formulation.
We consider an infinite-horizon MDP described by
(S,A,P, r, µ0, γ), where S denotes the set of states, A de-
notes the set of actions, and P(s′|s, a) denotes the transition
probability from state s ∈ S to state s′ with action a ∈ A.
Note that |S| and |A| can be infinite such that P(s′|s, a) is
then a Markov kernel. Let r(s, a, s′) be the reward that an
agent receives if the agent takes an action a at state s and
the system transits to state s′. Moreover, we denote µ0 as
the distribution of the initial state s0 ∈ S and γ ∈ (0, 1) as
the discount factor. Let π(a|s) be the policy which is the
probability of taking action a given current state s. Then,
for a given policy π, we define the state value function as
Vπ(s) = E[γtr(st, at, st+1)|s0 = s, π] and the state-action
value function as Qπ(s, a) = E[γtr(st, at, st+1)|s0 =
s, a0 = a, π]. Note that Vπ(s) = Eπ[Qπ(s, a)|s] and
Qπ(s, a) satisfies the following Bellman equation:

Qπ(s, a) = R(s, a) + γPπQπ(s, a), (1)

where R(s, a) = E[r(s, a, s′)|s, a] and

PπQπ(s, a) := Es′∼P(·|s,a),a′∼π(·|s′)[Qπ(s′, a′)].

We further define the expected total reward function as
J(π) = (1 − γ)E[γtr(st, at, st+1)|s0 ∼ µ0, π] =
Eµ0

[Vπ(s)] = Eνπ [r(s, a, s′)], where νπ(s, a) = (1 −
γ)
∑∞
t=0 γ

tP(st = s, at = a|s0 ∼ µ0, π) is the visita-
tion distribution. The visitation distribution satisfies the
following “inverse” Bellman equation:

νπ(s
′, a′) = π(a′|s′)[(1− γ)µ0(s

′)

+ γ

∫
(s,a)

P(s′|s, a)νπ(s, a)dsda]. (2)

In policy optimization, the agent’s goal is to find an optimal
policy π∗ that maximizes J(π), i.e., π∗ = argmaxπ J(π).
We consider the setting in which policy π is parametrized by
w ∈ Rd. Then, the policy optimization is to solve the prob-
lem maxw J(πw). In the sequel we write J(πw) := J(w)
for notational simplicity. A popular approach to solve such
a maximization problem is the policy gradient method, in
which we update the policy in the gradient ascent direction
as wt+1 = wt + α∇wJ(wt). A popular form of ∇wJ(w)
is derived by (Sutton et al., 2000) as

∇wJ(w) = Eνπw [Qπw(s, a)∇w log πw(a|s)]. (3)

In the on-policy setting, many works adopt the policy gra-
dient formulation in eq. (3) to estimate ∇wJ(w), which
requires sampling from the visitation distribution νπw and
Monte Carlo rollout from policy πw to estimate the value
functionQπw(s, a) (Zhang et al., 2019a; Xiong et al., 2020).

In this paper we focus on policy optimization in the behavior-
agnostic off-policy setting. Specifically, we are given access
to samples from a fixed distribution {(si, ai, ri, s′i)} ∼ Dd,
where the state-action pair (si, ai) is sampled from an un-
known distribution d(·) : S × A → [0, 1], the successor
state s′i is sampled from P(·|si, ai) and ri is the received
reward. We also have access to samples generated from the
initial distribution, i.e., s0,i ∼ µ0. In the behavior-agnostic
off-policy setting, it is difficult to estimate∇wJ(w) directly
with the form in eq. (3), as neither νπw nor Monte Carlo roll-
out sampling is accessible. Thus, our goal is to develop an
efficient algorithm to estimate∇wJ(w) with off-policy sam-
ples from Dd, and furthermore, establish the convergence
guarantee for our proposed algorithm.

3. DR-Off-PAC: Algorithm and Convergence
In this section, we first develop a new doubly robust policy
gradient estimator and then design a new doubly robust
off-policy actor-critic algorithm.
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3.1. Doubly Robust Policy Gradient Estimator

In this subsection, we construct a new doubly robust policy
gradient estimator for an infinite-horizon discounted MDP.
We first denote the density ratio as ρπw = νπw(s, a)/d(s, a),
and denote the derivative of Qπw and ρπw as dqπw and dρπw ,
respectively.

Previous constructions (Kallus & Uehara, 2020) for such an
estimator directly combine the policy gradient with a num-
ber of error terms under various filtrations to guarantee the
double robustness. Such a method does not appear to extend
easily to the discounted MDP. Specifically, the method in
(Kallus & Uehara, 2020) considers finite-horizon MDP with
γ = 1, and further extends their result to infinite-horizon
average-reward MDP. Their extension relies on the fact that
the objective function J(w) in average-reward MDP is in-
dependent of the initial distribution µ0. In contrast, J(w) in
discounted-reward MDP depends on µ0. Any direct exten-
sion necessarily results in a bias due to the lack of the initial
distribution, which is unknown a priori, and hence loses the
doubly robust property.

To derive a doubly robust gradient estimator in the dis-
counted MDP setting, we first consider a bias reduced
estimator of the objective J(w) with off-policy sample
(s, a, r, s′) and s0, and then take the derivative of such an
estimator to obtain a doubly robust policy gradient estima-
tor. The idea behind this derivation is that as long as the
objective estimator has small bias, the gradient of such an
estimator can also have small bias. More detailed discussion
can be referred to the supplement material.

Given sample s0 ∼ µ0(·) and (s, a, r, s′) ∼ Dd and estima-
tors Q̂πw , ρ̂πw , d̂qπw and d̂ρπw , our constructed doubly robust
policy gradient error is given as follows.

GDR(w)

= (1− γ)
(
Q̂πw (s0, a0)∇w log πw(a0|s0) + d̂qπw (s0, a0)

)
+ d̂ρπw (s, a)

(
r(s, a, s′)− Q̂πw (s, a) + γQ̂πw (s

′, a′)
)

+ ρ̂πw (s, a)
[
− d̂qπw (s, a)

+ γ
(
Q̂πw (s

′, a′)∇w log πw(a
′|s′) + d̂qπw (s

′, a′)
)]
, (4)

where a0 ∼ πw(·|s0) and a′ ∼ πw(·|s′). The following the-
orem establishes that our proposed estimator GDR satisfies
the doubly robust property.

Theorem 1. The bias error of estimator GDR(w) in eq. (4)
satisfies

E[GDR(w)]−∇wJ(w)
= −E[ερ(s, a)εdq (s, a)]− E[εdρ(s, a)εq(s, a)]
+ γE[ερ(s, a)εq(s′, a′)∇w log(a′|s′)]
+ γE[ερ(s, a)εdq (s′, a′)] + γE[ερ(s, a)εq(s′, a′)],

where the estimation errors are defined as

ερ = ρπw − ρ̂πw , εq = Qπw − Q̂πw ,

εdρ = dρπw − d̂
ρ
πw , εdq = dqπw − d̂

q
πw .

Theorem 1 shows that the estimation error of GDR(w) takes
a multiplicative form of pairs of individual estimation er-
rors rather than the summation over all errors. Such a
structure thus exhibits a three-way doubly robust prop-
erty. Namely, as long as one of the three pairs (ρ̂πw , d̂

ρ
πw),

(Q̂πw , d̂
q
πw), (ρ̂πw , Q̂πw) are accurately estimated, our esti-

matorGDR(w) is unbiased, i.e., E[GDR(w)]−∇wJ(w) = 0.
There is no need for all of the individual errors to be small.

3.2. Estimation of Nuisance Functions

In order to incorporate the doubly robust estimator eq. (4)
into an actor-critic algorithm, we develop critics to respec-
tively construct efficient estimators Q̂πw , ρ̂πw , d̂qπw , d̂ρπw in
GDR(w) in the linear function approximation setting.

Critic I: Value function Q̂πw and density ratio ρ̂πw . In
the off-policy evaluation problem, (Yang et al., 2020) shows
that the objective function J(w) can be expressed by the
following primal linear programming (LP):

min
Qπw

(1− γ)Eµ0πw [Qπw (s, a)]

s.t., Qπw (s, a) = R(s, a) + γPπQπw (s, a),

with the corresponding dual LP given by

max
νπw

Eνπw [R(s, a)]

s.t., νπ(s
′, a′) = (1− γ)µ0(s

′)π(a′|s′) + γP∗πνπ(s, a).

Then, the value function Qπw(s, a) and the distribution
correction ratio ρπw(s, a) can be learned by solving the
following regularized Lagrangian:

min
ρ̂πw≥0

max
Q̂πw ,η

L(ρ̂πw , Q̂πw , η)

:= (1− γ)Eµ0 [Q̂πw (s, a)] + EDd [ρπw (s, a)(r(s, a, s
′)

+ γQ̂πw (s
′, a′)− Q̂πw (s, a))]−

1

2
EDd [Q̂πw (s, a)

2]

+ EDd [ηρ̂πw (s, a)− η]− 0.5η2. (5)

We construct ρ̂πw and Q̂πw with linearly independent
feature φ(s, a) ∈ Rd1 : ρ̂πw(s, a) = φ(s, a)>θρ and
Q̂πw(s, a) = φ(s, a)>θq for all (s, a) ∈ S × A. In such
a case, L(ρπw , Qπw , η) is strongly-concave in both θq and
η, and convex in θρ. We denote the global optimum of
L(θρ, θq, η) as θ∗ρ,w, θ∗q,w and η∗w. The errors of approx-
imating Qπw and ρπw with estimators Q̂πw(s, a, θ

∗
q,w) =

φ(s, a)>θ∗q,w and ρ̂πw(s, a, θ
∗
q,w) = φ(s, a)>θ∗ρ,w, respec-

tively, are defined as

εq = max
{
max
w

√
ED[(Q̂πw (s, a, θ∗q,w)−Qπw (s, a))2],
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max
w

√
EDd·πw [(Q̂πw (s′, a′, θ∗q,w)−Qπw (s′, a′))2]

}
,

ερ = max
w

√
ED[(ρ̂πw (s, a, θ∗ρ,w)− ρπw (s, a))2].

To solve the minimax optimization problem in eq. (5),
we adopt stochastic gradient descent-ascent method with
mini-batch samples Bt = {(si, ai, ri, s′i)}i=1···N ∼ Dd,
a′i ∼ πwt(·|s′i) and Bt,0 = {(s0,i)}i=1···N ∼ µ0, a0,i ∼
πwt(·|s′0,i), which update parameters recursively as follows

δt,i = (1− γ)φ0,i + γφ>i θρ,tφ
′
i − φ>i θρ,tφi

ηt+1 = θρ,t + β1
1

N

∑
i∈Bt

(φ>i θρ,t − 1− ηt)

θq,t+1 = ΓRq

[
θq,t + β1

1

N

∑
i∈Bt,Bt,0

(δt,i − φ>i θq,tφi)
]

θρ,t+1 = ΓRρ

[
θρ,t − β1

1

N

∑
i∈Bt

(riφi + γφ′>i θq,tφi

− φ>i θq,tφi + ηtφi)
]
, (6)

where ΓR indicates the projection onto a ball with radius R.
Such a projection operator stabilizes the algorithm (Konda
& Tsitsiklis, 2000; Bhatnagar et al., 2009). Note that the
iteration in eq. (6) is similar to but difference from the Gradi-
entDICE update in (Zhang et al., 2020b), as GradientDICE
can learn only the density ratio ρπw , while our approach
in eq. (6) can learn both the value function Qπw and the
density ratio ρπw .

Critic II: Derivative of value function d̂qπw . Taking deriva-
tive on both sides of eq. (1) yields

dqπw(s, a) = γE[dqπw(s
′, a′)|s, a]

+ γE[Qπw(s′, a′)∇w log πw(a
′|s′)|s, a], (7)

We observe that eq. (7) takes a form analogous to the
Bellman equation in eq. (1), and thus suggests a recur-
sive approach to estimate dqπw , similarly to temporal differ-
ence (TD) learning. Specifically, suppose we estimate dqπw
with a feature matrix x(s, a) ∈ Rd3×d, i.e., d̂qπw(s, a) =
x(s, a)>θdq for all (s, a) ∈ S × A. Replace Qπw(s, a)
with its estimator Q̂πw(s, a) = φ(s, a)>θq in eq. (7). The
temporal difference error is then given as

δdq (s, a, θq) = γx(s′, a′)>θdq

+ γφ(s′, a′)>θq∇w log πw(a
′|s′)− x(s, a)>θdq

and θdq can be updated with the TD-like semi-gradient

θdq,t+1 = θdq,t + β2x(s, a)δdq (s, a, θdq,t). (8)

However, in the off-policy setting, the iteration in eq. (8)
may not converge due to the off-policy sampling. To solve

such an issue, we borrow the idea from gradient TD (GTD)
and formulate the following strongly convex objective

H(θdq , θq)

= E[x(s, a)δdq (s, a, θq)]>E[x(s, a)δdq (s, a, θq)].

We denote the global optimum of H(θdq , θ
∗
q,w) as θ∗dq,w,

i.e., H(θ∗dq,w, θ
∗
q,w) = 0. The approximation error

of estimating dqπw with estimator d̂qπw(s
′, a′, θ∗dq,w) =

x(s, a)>θ∗dq,w is defined as

εdq = max
{
max
w

√
ED
[∥∥∥d̂qπw (s, a, θ∗dq ,w)− dqπw (s, a)∥∥∥22

]
,

max
w

√
EDd·πw

[∥∥∥d̂qπw (s′, a′, θ∗dq ,w)− dqπw (s′, a′)∥∥∥22
]}
.

Similarly to GTD, we introduce an auxiliary variable wdq
to avoid the issue of double sampling when using gradient
based approach to minimize H(θdq , θq). With mini-batch
samples Bt = {(si, ai, s′i)}i=1···N ∼ Dd, we have the fol-
lowing update for θdq .

θdq ,t+1 = θdq ,t + β3
1

N

∑
i∈Bt

(xi − γx′i)x>i wdq ,t,

wdq ,t+1 = wdq ,t + β3
1

N

∑
i∈Bt

(xiδdq ,i(θq,t)− wdq ,t). (9)

Critic III: Derivative of density ratio d̂ρπw . We denote
ψπw(s, a) := ∇w log(νπw(s, a)), and construct an estima-
tor for dρπw as d̂ρπw(s, a) = ρ̂πw(s, a)ψ̂πw(s, a), where ρ̂πw
and ψ̂πw are approximation of ρπw and ψπw , respectively.
Note that eq. (2) can be rewritten in the following alternative
form

νπw(s̃
′, a′) =

∫
πw(a

′|s̃′)P̃(s̃′|s, a)νπw(s, a)dsda, (10)

where P̃(·|s, a) = (1 − γ)µ0 + γP(·|s, a). Taking
derivative on both sides of eq. (10) and using ∇g(w) =
g(w)∇ log g(w), we obtain

νπw(s̃
′, a′)ψπw(s̃

′, a′)

= ∇w log(πw(a
′|s̃′)) ·

[
πw(a

′|s̃′)∫
s,a

P̃(s̃′|s, a)νπw(s, a)dsda
]

+
∫
s,a

[
πw(a

′|s̃′)P̃(s̃′|s, a)νπw(s, a)
]
ψπw(s, a)dsda

= ∇w log(πw(a
′|s̃′)) · νπw(s̃′, a′)

+
∫
s,a

[
πw(a

′|s̃′)P̃(s̃′|s, a)νπw(s, a)
]
ψπw(s, a)dsda

= ∇w log(πw(a
′|s̃′)) · νπw(s̃′, a′)

+
∫
s,a
νπw(s̃

′, a′)P (s, a|s̃′, a′)ψπw(s, a)dsda
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where the second equality follows because
πw(a

′|s̃′)
∫
s,a

P̃(s̃′|s, a)νπw(s, a)dsda = νπw(s̃
′, a′),

and the third equality follows because if (s, a) ∼ νπw(·),
then (s̃′, a′) ∼ νπw(·), and Bayes’ theorem implies that
πw(a′|s̃′)P̃(s̃′|s,a)νπw (s,a)

νπw (s̃′,a′) = P (s, a|s̃′, a′). Then, dividing
both sides by νπw(s̃

′, a′) yields

ψπw(s̃
′, a′)

= ∇w log(πw(a
′|s̃′)) +

∫
s,a

P (s, a|s̃′, a′)ψπw(s, a)dsda.

(11)

With linear function approximation, we estimate ψπw(s, a)
with feature matrix ϕ(s, a) ∈ Rd2×d i.e., ψ̂πw(s, a) =
ϕ(s, a)>θψ for all (s, a) ∈ S × A. The temporal differ-
ence error is given as

δψ(s̃
′, a′)

= ∇w log πw(a
′|s̃′) + ϕ(s, a)>θψ − ϕ(s̃′, a′)>θψ, (12)

Note that in eq. (12), we require s̃′ ∼ P̃(·|s, a). To obtain a
sample triple (s, a, s̃′) from such a “hybrid” transition ker-
nel, for a given sample (s, a, s′), we take a Bernoulli choice
between s′ and s0 ∼ µ0 with probability γ and 1 − γ,
respectively, to obtain a state s̃′ that satisfies the require-
ment. Then, similarly to how we obtain the estimator d̂qπw ,
we adopt the method in GTD to formulate the following
objective

F (θψ) = E[ϕ(s′, a′)δψ(s̃′, a′)]>E[ϕ(s′, a′)δρ(s̃′, a′)].
(13)

We denote the global optimum of F (θψ) as θ∗ψ,w, i.e.,
F (θ∗ψ,w) = 0, and define the approximation error of
estimating dρπw with estimator d̂ρπw(s, a, θ

∗
ρ,w, θ

∗
ψ,w) =

φ(s, a)>θ∗ρ,wϕ(s, a)
>θ∗ψ,w as

εdρ = max
w

√
ED
[∥∥∥d̂ρπw (s, a, θ∗ρ,w, θ∗ψ,w)− dρπw (s, a)∥∥∥2

2

]
.

Given mini-batch samples Bt = {(si, ai, s′i)}i=1···N ∼ Dd,
a′i ∼ πwt(·|s′i) and Bt,0 = {(s0,i, a0,i)}i=1···N ∼ µ0, we
have the following update for θψ:

θψ,t+1 = θψ,t + β2
1

N

∑
i∈B̃t

(ϕ′i − ϕi)ϕ′>i wψ,t,

wψ,t+1 = wψ,t + β2
1

N

∑
i∈B̃t

(ϕ′iδψ,i − wψ,t), (14)

where wψ,t is the auxiliary variable that we introduce to
avoid the double sampling issue.

DR-Off-PAC Estimator. Given parameters θρ,t, θq,t, θψ,t
and θdq,t, the doubly robust policy gradient can be obtained

Algorithm 1 DR-Off-PAC
Initialize: Policy parameter w0, and estimator parame-
ters θq,0, θρ,0, θdq,0 and θψ,0.
for t = 0, · · · , T − 1 do

Obtain mini-batch samples Bt ∼ Dd and Bt,0 ∼ µ0

Critic I: Update density ratio and value function esti-
mation via eq. (6): θq,t, θρ,t → θq,t+1, θρ,t+1

Critic II: Update derivative of value function estima-
tion via eq. (9): θdq,t → θdq,t+1

Critic III: Update derivative of density ratio estima-
tion via eq. (14): θψ,t → θψ,t+1

Actor: Update policy parameter via eq. (15)
wt+1 = wt + α 1

N

∑
iG

i
DR(wt)

end for
Output: wT̂ with T̂ chosen uniformly in {0, · · · , T −1}

as follows

GiDR(wt)

= (1− γ)
(
φ>0,iθq,t∇w log πw(s0,i, a0,i) + x>0,iθdq,t

)
+ ψ>i θψ,t(r(si, ai, s

′
i)− φ>i θq,t + γEπwt [φ

′>
i θq,t])

+ φ>i θρ,t(−x>i θdq,t
+ γφ>i θq,t∇w log πw(st,i, at,i) + x>i θdq,t). (15)

DR-Off-PAC Algorithm. We now propose a doubly robust
off-policy actor-critic (DR-Off-PAC) algorithm as detailed
in Algorithm 1. The stepsizes β1, β2, β3, and α are set to be
Θ(1) to yield a single-timescale update, i.e., all parameters
are updated equally fast. At each iteration, critics I, II, and
III perform one-step update respectively for parameters θq ,
θρ, θψ, and θdq , and then actor performs one-step policy
update based on all critics’ return. Note that Algorithm 1
is inherently a tri-level optimization process, as the update
of w depends on θρ, θq, θψ, and θdq , in which the update
of θdq depends on θq. Thus the interactions between actor
and critics and between critic and critic are more compli-
cated than previous actor-critic algorithms that solve bilevel
problems (Konda & Tsitsiklis, 2000; Bhatnagar, 2010; Xu
et al., 2020b). Due to the single timescale scheme that
Algorithm 1 adopts, actor’s update is based on inexact esti-
mations of critics, which can significantly affect the overall
convergence of the algorithm. Interestingly, as we will show
in the next section, Algorithm 1 is guaranteed to converge
to the optimal policy, and at the same time attains doubly
robust optimality gap with respect to approximation errors.

4. Convergence Analysis of DR-Off-PAC
In this section, we establish the local and global convergence
rate for DR-Off-PAC in the single-timescale update setting.
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4.1. Local Convergence

We first state a few standard technical assumptions, which
have also been adopted in previous studies (Xu et al., 2020b;
2019; Zhang et al., 2020a;b)

Assumption 1. For any (s, a) ∈ S ×A and w ∈ Rd, there
exists a constant Cd > 0 such that ρπw(s, a) > Cd.

Assumption 2. For any (s, a) ∈ S × A, there exist posi-
tive constants Cφ, Cϕ, Cψ, and Cx such that the following
hold: (1) ‖φ(s, a)‖2 ≤ Cφ; (2) ‖ϕ(s, a)‖2 ≤ Cϕ; (3)
‖ψ(s, a)‖2 ≤ Cψ; (4) ‖x(s, a)‖2 ≤ Cx.

Assumption 3. The matrices A = EDd·πw [(φ − γφ′)φ>],
B = ED̃d·πw [(ϕ−ϕ

′)ϕ′>] and C = EDd·πw [(γx′−x)x>]
are nonsingular.

Assumption 4. For anyw,w′ ∈ Rd and any (s, a) ∈ S×A,
there exist positive constants Csc, Lsc, and Lπ such that
the following hold: (1) ‖∇w log πw(a|s)‖2 ≤ Csc; (2)
‖∇w log πw(a|s)−∇w log πw′(a|s)‖2 ≤ Lsc ‖w − w′‖2;
(3) ‖πw(·|s)− πw′(·|s)‖TV ≤ Lπ ‖w − w′‖2, where
‖·‖TV denotes the total-variation norm.

The following theorem characterizes the convergence rate
of Algorithm 1, as well as its doubly robust optimality gap.

Theorem 2 (Local convergence). Consider the DR-Off-PAC
in Algorithm 1. Suppose Assumption 1 - 4 hold. Let the
stepsize α, β1, β2, β3 = Θ(1). We have

E[
∥∥∇wJ(wT̂ )∥∥2]
≤ Θ

(
1√
T

)
+Θ

(
1√
N

)
+Θ(ερεdq + εdρεq + ερεq).

Theorem 2 shows that Algorithm 1 is guaranteed to con-
verge to a first-order stationary point (i.e., locally optimal
policy). In particular, the optimality gap (i.e., the overall
convergence error) scales as (ερεdq + εdρεq + ερεq). Thus,
the optimality gap of Algorithm 1 is 3-way doubly robust
with respect to the function approximation errors, i.e., the
optimality gap is small as long as one of the three pairs
(ερ, εq), (ερ, εdρ), (εq, εdq ) is small.

There are two key differences between the doubly robust
properties characterized in Theorem 2 and Theorem 1. (a)
At the high level, Theorem 1 characterizes the doubly robust
property only for the policy gradient estimator, and such a
property has been characterized in the previous work for
other estimators. In contrast, Theorem 2 characterizes the
doubly robust property for the optimality gap of the overall
convergence of an algorithm, which has not been character-
ized in any of the previous studies. (b) At the more technical
level, the estimation error ε defined in Theorem 1 captures
both the optimization error εopt determined by how well we
solve the nuisances estimation problem, and the approxima-
tion error εapprox determined by the representation power
of approximation function classes. Thus, Theorem 1 shows

that GDR(w) is doubly robust to the per-iteration estimation
errors that depend on both the optimization process and the
approximation function class. As a comparison, Theorem 2
indicates that the optimality gap of DR-Off-PAC is doubly
robust only to approximation errors determined by the ap-
proximation function class, which implies that the doubly
robust property of the overall convergence of DR-Off-PAC
is not affected by the optimization process.

Now in order to attain an optimization target accuracy ε
(besides the doubly robust optimality gap), we let T =
Θ(1/ε2) and B = Θ(1/ε2). Then Theorem 2 indicates
that Algorithm 1 converges to an ε-accurate stationary point
with the total sample complexity NT = Θ(1/ε4). This
result outperforms the best known sample complexity of
on-policy actor-critic algorithm by an factor of O(log(1/ε))
in (Xu et al., 2020b). Such an improvement is mainly due
to the single-loop structure that we adopt in Algorithm 1,
in which critics inherit the most recently output from the
last iteration as actor updates in order to be more sample
efficient. But critic in the nested-loop algorithm in (Xu et al.,
2020b) always restarts from an random initialization after
each actor’s update, which yields more sample cost.

4.2. Global Convergence

In this subsection, we establish the global convergence guar-
antee for DR-Off-PAC in Algorithm 1. We first make the
following standard assumption on the Fisher information
matrix induced by the policy class πw.
Assumption 5. For all w ∈ Rd, the Fisher information
matrix induced by policy πw and initial state distribution
µ0 satisfies

F (w) = Eνπw [∇w log πw(a|s)∇w log πw(a|s)>] � λF · Id,

for some constant λF > 0.

Assumption 5 essentially states that F (w) is well-
conditioned. This assumption can be satisfied by some
commonly used policy classes. More detailed justification
of such an assumption can be referred to Appendix B.2 in
(Liu et al., 2020).

We further define the following compatible function approx-
imation error as

εcompat

= max
w∈Rd

√
Eνπ∗ [(Aπw (s, a)− (1− γ)χ∗>πw∇w log πw(a|s))2],

where Aπw(s, a) = Qπw(s, a) − Vπw(s) is the advan-
tage function and χ∗>πw = F (w)−1∇wJ(w). Such an error
εcompat captures the approximating error of the advantage
function by the score function. It measures the capacity of
the policy class πw, and takes small or zero values if the
expressive power of the policy class is large (Wang et al.,
2019; Agarwal et al., 2019).
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The following theorem establishes the global convergence
guarantee for Algorithm 1.

Theorem 3 (Global convergence). Consider the DR-Off-
PAC update in Algorithm 1. Suppose Assumption 1, 2, 3 and
5 hold. For the same parameter setting as in Theorem 2, we
have

J(π∗)− J(wT̂ ) ≤
εcompat
1− γ

+Θ

(
1√
T

)
+Θ

(
1√
N

)
+Θ(ερεdq + εdρεq + ερεq)

Theorem 3 shows that Algorithm 1 is guaranteed to converge
to the global optimum at a sublinear rate, and the optimality
gap is bounded by Θ(εcompat) +Θ(ερεdq + εdρεq + ερεq).
Note that the error term Θ(εcompat) is introduced by the
parametrization of policy and thus exists even for exact pol-
icy gradient algorithm (Liu et al., 2020; Wang et al., 2019).
The global convergence of DR-Off-PAC in Theorem 3 also
enjoys doubly robust optimality gap as in Theorem 2. By
letting T = Θ(1/ε2) and N = Θ(1/ε2), Algorithm 1 con-
verges to an ε-level global optimum (besides the approxima-
tion errors) with a total sample complexity NT = Θ(1/ε4).
This result matches the global convergence rate of single-
loop actor-critic in (Xu et al., 2020c; Fu et al., 2020).

5. Experiments
We conduct empirical experiments to answer the following
two questions: (a) does the overall convergence of DR-
Off-PAC doubly robust to function approximation errors
as Theorem 2 & 3 indicate? (2) how does DR-Off-PAC
compare with other off-policy methods?

Figure 1. A variant of Baird’s counterexample.

We consider a variant of Baird’s counterexample (Baird,
1995; Sutton & Barto, 2018) as shown in Figure 1. There
are two actions represented by solid line and dash line,
respectively. The solid action always leads to state 7 and
a reward 0, and the dash action leads to states 1-6 with
equal probability and a reward +1. The initial distribution
µ0 chooses all states s with equal probability 1

7 and the
behavior distribution chooses all state-action pairs (s, a)
with equal probability 1

14 . We consider two types of one-
hot features for estimating the nuisances: complete feature

(CFT) and incomplete feature (INCFT), where CFT for each
(s, a) lies in R14 and INCFT for each (s, a) lies in Rd with
(d < 14). Note that CFT has large enough expressive power
so that the approximation error is zero, while INCFT does
not have enough expressive power, and thus introduces non-
vanishing approximation errors. In our experiments, we
consider fixed learning rates 0.1, 0.5, 0.1, 0.05, 0.01 for
updating w, θq, θψ, θdq, and θdρ, respectively, and we set
the mini-batch size as N = 5. All curves are averaged over
20 independent runs.

Doubly Robust Optimality Gap: We first investigate how
the function approximation error affects the optimality gap
of the overall convergence of DR-Off-PAC. In this experi-
ment, we set the dimension of INCFTs as 0, which results
in trivial critics that always provide constant estimations.
We consider the following four feature settings for critics

0 5000

steps

0

10

J(w)
All CFTs
CFTs: Q, 

CFTs: Q, d
q

CFTs: , d

Figure 2. DR-Off-PAC under difference feature settings.

to estimate the nuisance functions (Q, ρ, dq, dρ): (I) all nui-
sances with CFTs. (II) (Q, ρ) with CFTs and (dρ, dq) with
INCFTs; (III) (Q, dq) with CFTs and (ρ, dρ) with INCFTs;
(IV) (ρ, dρ) with CFTs and (Q, dq) with INCFTs. The re-
sults are provided in Figure 2. We can see that DR-Off-PAC
with all nuisances estimated by CFTs (red line) enjoys the
fastest convergence speed and smallest optimality gap, and
DR-Off-PAC with only two nuisances estimated with CFTs
can still converge to the same optimal policy as the red line,
validating the doubly robust optimality gap in the overall
convergence characterized by Theorem 2 and Theorem 3.

Comparison to AC-DC: As we have mentioned before, pre-
vious provably convergent off-policy actor-critic algorithms
introduce an additional critic to correct the distribution mis-
match (Liu et al., 2019; Zhang et al., 2019c). Such a strategy
can be viewed as a special case of DR-Off-PAC when both
θdq and θψ equal zero. Here we call such a type of algo-
rithms as actor-critic with distribution correction (AC-DC).
In this experiment, we set the dimension of INCFTs as 4
and compare the convergence of DR-Off-AC and AC-DC
in the settings considered in our previous experiment. The
learning curves of DR-Off-PAC and AC-DC are reported in
Figure 3. We can see that the overall convergence of DR-
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Figure 3. Comparison between DR-Off-PAC and AC-DC.

Off-PAC (each solid line) outperforms that of AC-DC (dash
line with the same color) for all feature settings (where each
color corresponds to one feature setting). Specifically, In
(III) or (IV), when either Q or ρ is estimated with incom-
plete features, the performance of AC-DC is significantly
impeded by the approximation error and thus has lower
accuracy, whereas DR-Off-PAC has better convergence per-
formance by mitigating the effect of such approximation
errors via the doubly robust property. Interestingly, even in
the settings where bothQ and ρ are estimated with complete
features (S1 and S2) so that AC-DC is expected to achieve
zero optimality gap, our DR-Off-PAC still converges faster
and more accurately than AC-DC, demonstrating that DR-
Off-PAC can improve the convergence of AC-DC even when
both ρ and Q are estimated with a complete approximation
function class.

6. Conclusion
In this paper, we first develop a new doubly robust policy
gradient estimator for an infinite-horizon discounted MDP,
and propose new methods to estimate the nuisances in the
off-policy setting. Based on such an estimator, we propose
a doubly robust off-policy algorithm called DR-Off-PAC for
solving the policy optimization problem. We further study
the finite-time convergence of DR-Off-PAC under the single
timescale update setting. We show that DR-Off-PAC prov-
ably converges to the optimal policy, with the optimality gap
being doubly robust to approximation errors that depend
only on the expressive power of function classes. For fu-
ture work, it is interesting to incorporate variance reduction
technique (Xu et al., 2020a; Cutkosky & Orabona, 2019) to
DR-Off-PAC to improve its convergence performance.
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