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Abstract

Existing studies indicate that momentum ideas
in conventional optimization can be used to im-
prove the performance of Q-learning algorithms.
However, the finite-time analysis for momentum-
based Q-learning algorithms is only available for
the tabular case without function approximation.
This paper analyzes a class of momentum-based Q-
learning algorithms with finite-time convergence
guarantee. Specifically, we propose the Momen-
tumQ algorithm, which integrates the Nesterov’s
and Polyak’s momentum schemes, and general-
izes the existing momentum-based Q-learning al-
gorithms. For the infinite state-action space case,
we establish the convergence guarantee for Mo-
mentumQ with linear function approximation un-
der Markovian sampling. In particular, we charac-
terize a finite-time convergence rate which is prov-
ably faster than the vanilla Q-learning. This is the
first finite-time analysis for momentum-based Q-
learning algorithms with function approximation.
For the tabular case under synchronous sampling,
we also obtain a finite-time convergence rate that is
slightly better than the SpeedyQ [Azar et al., 2011].
Finally, we demonstrate through various experi-
ments that the proposed MomentumQ outperforms
other momentum-based Q-learning algorithms.

1 INTRODUCTION

Reinforcement learning (RL) aims to design strategies for an
agent to find a desirable policy through interacting with an
environment in order to maximize an accumulative reward
for a task. RL has received drastically growing attention in
recent years and accomplished tremendous success in vari-
ous application domains such as playing video games [Mnih
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et al., 2013], bipedal walking robot [Castillo et al., 2019],
board game [Silver et al., 2017], to name a few. This paper
focuses on Q-learning, which is a widely used model-free
RL algorithm for finding the action-value function (known
as the Q-function) of the optimal policy.

Q-learning was first proposed in Watkins and Dayan [1992]
and has been studied extensively since then. For scenarios
with a finite state-action space, the Q-function can be conve-
niently represented as a tabular function. The convergence
of Q-learning in the tabular case was proved in Jaakkola et al.
[1994]. In the case with a continuous state-action space, one
typically approximates the Q-function with a parameterized
function class of a relatively small parameter dimension.
Among the rich approximation classes, linear function ap-
proximation [Bertsekas and Tsitsiklis, 1996, Sutton and
Barto, 2018] and neural network function approximation
[Mnih et al., 2013] are often adopted in the literature. We
will review these studies in more details in Section 1.2.

The central idea of Q-learning algorithms is to solve an opti-
mal Bellman equation [Bertsekas and Tsitsiklis, 1996] itera-
tively as a fixed point problem. Since the Bellman operator is
expressed as the expected value over the underlying Markov
decision processes (MDP) which is unknown, Q-learning
(as a model-free algorithm) approximates it via its sampled
version, and such an update can be viewed analogously to
the first-order (stochastic) gradient descent algorithm [Baird,
1995]. This connection thus motivated several studies on ac-
celerating Q-learning by incorporating various momentum
schemes, such as Heavy-ball (HB) [Polyak, 1964] and Nes-
terov’s accelerated gradient (NAG) [Nesterov, 2013] which
were shown to accelerate gradient descent in conventional
optimization algorithms. For example, speedy Q-learning
(SpeedyQ) proposed in Azar et al. [2011] can be viewed as
incorporating NAG to Q-learning and has been proved to ac-
celerate the convergence with particularly designed learning
rate in the tabular case. Devraj et al. [2019] applied HB and
NAG to Q-learning separately with a matrix learning rate
in the tabular case and analyzed their asymptotic properties.
Vieillard et al. [2019] proposed momentum-based value iter-
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ation by viewing the greedy policy as an analog of gradient
ascent. However, the convergence is not guaranteed. To the
best of our knowledge, the finite-time convergence rate has
not been established for momentum-based Q-learning algo-
rithms with function approximation. The focus of this paper
is to address the above important question.

1.1 MAIN CONTRIBUTIONS

This paper investigates a general momentum-based Q-
learning scheme (referred to as MomentumQ hereafter),
which involves both NAG-type and HB-type of history infor-
mation for accelerating Q-learning. The main contribution
of this paper is three-fold.

First, we establish the finite-time convergence rate for Mo-
mentumQ with linear function approximation, and we show
that this algorithm provably accelerates vanilla Q-learning.
To the best of our knowledge, this is the first finite-time con-
vergence guarantee for momentum-based Q-learning with
linear function approximation.

Second, the only existing finite-time baseline bounds for
momentum-based Q-learning is given by SpeedyQ [Azar
et al., 2011] and Generalized SpeedQ [John et al., 2020] for
the tabular case. Hence, to be able to compare with such a
baseline, we also provide a finite-time analysis of Momen-
tumQ in the tabular case. We show that it achieves a better
(but order-wisely the same) convergence rate than SpeedyQ.
Technically, due to the additional momentum terms in Mo-
memtumQ, its analysis is more challenging than SpeedyQ
and requires substantial new technical developments.

Finally, our numerical results show that the proposed Mo-
mentumQ outperforms the vanilla Q-learning as well as the
other existing momentum-based Q-learning algorithms for
both tabular and function approximation cases.

1.2 RELATED WORK

We review the most relevant studies on Q-learning here with
a focus on the theoretical convergence analysis.

Q-learning with function approximation: When the state-
action space is considerably large or even continuous, it is
practical to properly discretize the space [Shah and Xie,
2018], or parameterize the Q-function with a certain func-
tion class. For linear MDP, Melo and Ribeiro [2007], Yang
and Wang [2019] proposed provably sample-efficient Q-
learning algorithms with linear function approximation. For
more general MDPs with linear function approximation
of the Q-function, finite-time convergence analysis was es-
tablished in Zou et al. [2019], Chen et al. [2019] under
Markovian sampling, in Du et al. [2019] on exploration
samples and in Weng et al. [2020a] by incorporating Adam-
type updates. Recently, Cai et al. [2019], Fan et al. [2019]
and Xu and Gu [2019] established the convergence rate of

Q-learning with neural network approximation in the over-
parameterized regime under i.i.d. and non-i.i.d sampling,
respectively.

Tabular Q-learning: Q-learning was first proposed in
Watkins and Dayan [1992] under finite state-action space.
Regarding the theoretical studies, research of tabular Q-
learning has focused on the asymptotic convergence which
was usually studied via its connection to the corresponding
stochastic approximation algorithm (see, for example, Tsit-
siklis [1994], Jaakkola et al. [1994], Borkar and Meyn
[2000], Melo [2001]). More recently, Lee and He [2019]
provided asymptotic results for asynchronous Q-learning by
formulating it as a switching affine system. Another research
line has focused on the finite-time (i.e., non-asymptotic)
analysis. Finite-time performance for Q-learning was first
established in Szepesvári [1998]. Considering both syn-
chronous and asynchronous Q-learning, Even-Dar and Man-
sour [2003] investigated the convergence rates under dif-
ferent choices of the learning rates. Sharper bounds on the
finite-time convergence rate have been established in more
recent work [Wainwright, 2019a, Qu and Wierman, 2020,
Li et al., 2020].

Momentum-based Q-learning: For tabular Q-learning,
several studies incorporated the momentum idea in con-
ventional optimization to accelerate the convergence. Azar
et al. [2011] proposed the SpeedyQ algorithm and char-
acterized the finite-time performance. John et al. [2020]
generalized SpeedyQ by introducing a relaxation parame-
ter which was used to modify sample distribution and to
redistribute the momentum. Devraj et al. [2019] extended
HB and NAG with a matrix learning rate on the momentum.
The asymptotic performance was analyzed under simplified
assumptions. Vieillard et al. [2019] proposed a momentum-
based value iteration and generalized the scheme to DQN.
While some theoretical properties of the algorithms were ex-
plored in the tabular case, the convergence of the algorithm
was not established. Among these studies, only Azar et al.
[2011], John et al. [2020] characterized the finite-time rate
for SpeedyQ in the tabular case, and such finite-time anal-
ysis for momentum-based Q-learning algorithms has not
been provided for the function approximation case, which
is the focus of this paper.

Other variants of Q-learning: Other than the above
momentum-based Q-learning algorithms, which mainly
exploit the acceleration ideas in conventional optimiza-
tion, Q-learning also inspires a number of other variants,
including residual Q-learning [Baird, 1995], phased Q-
learning [Kearns and Singh, 1999], Zap Q-learning [Devraj
and Meyn, 2017], periodic Q-learning [Lee and He, 2020],
variance reduced Q-learning [Wainwright, 2019b, Li et al.,
2020], and double Q-learning [Hasselt, 2010, Weng et al.,
2020b, Xiong et al., 2020b] to name a few. These algorithms
are proposed to speed up convergence rates or improve the
performance by mitigating various issues in the implemen-



tation of Q-learning. In this paper, we mainly focus on the
momentum-based Q-learning algorithm motivated by the
optimization idea.

2 PRELIMINARIES

In this section, we provide the necessary background.

2.1 MARKOV DECISION PROCESS

We consider the standard reinforcement learning setting,
where a learning agent interacts with a (possibly stochastic)
environment modeled as a discrete-time discounted Markov
decision process (MDP). Such an MDP is characterized by
a quintuple (X ,U , P,R, γ), where X is the state space, U is
the action space, P : X ×U ×X 7→ [0, 1] is the probability
transition kernel, namely, P (·|x, u) denotes the probability
that the system takes the next state given the current state x
and action u. In addition, R : X × U 7→ [0, Rmax] denotes
the reward function (or negative of the cost function) map-
ping the state-action pairs to a bounded subset of R, and
γ ∈ (0, 1) is the discount factor. A policy π : X 7→ U repre-
sents a strategy to take actions, i.e., it captures the probabil-
ity of taking each action at any given state. By following a
policy π, we perform an action uk with probability π(uk|xk)
at time k, observe a reward rk = R(xk, uk), and evolve to
the next state xk+1 with the probability P (xk+1|xk, uk).

We define the value function as the expected return of
following policy π and starting from state x, given by
V π(x) = EP

∑∞
k=0 γ

krk, where EP denotes the expec-
tation with respect to the transition probability P . The
Q-function is defined as the state-action value function
Qπ(x, u) = R(x, u) + γ

∑
y∈X P (y|x, u)V π(y), which

is the return of performing action u at state s at the first step
and following policy π thereafter.

2.2 TABULAR Q-LEARNING

Q-learning seeks to maximize the expected discounted re-
turn over policy π as formulated below.

maximize
π

V π(x0) = EP

[ ∞∑
k=0

γkR(xk, π(xk))

]
,

subject to xk+1 ∼ P (·|xk, π(xk)), (1)

We let π? denote the optimal stationary policy π? : X 7→ U
which is the solution of the above optimization problem.

Define the Bellman operator T pointwisely as

T Q(x, u) = R(x, u) + γEP max
u′∈U(x′)

Q(x′, u′), (2)

where x′ ∼ P (·|x, u) and U(x) denotes the admissible
set of actions at state x. It can be shown that the Bellman

operator T is γ-contractive in the supremum norm ‖Q‖ :=
supx,u |Q(x, u)|, i.e., it satisfies

‖T Q(x, u)−T Q′(x, u)‖ ≤ γ ‖Q(x, u)−Q′(x, u)‖ . (3)

Thus, T has a unique fixed point Q? given by

Q?(x, u) = R(x, u) + γEP max
u′∈U(x′)

Q?(x′, u′). (4)

The above property suggests that starting with an arbitrary
initial Q-function, we can apply the Bellman operator T
iteratively to learn Q?. Hence, the optimal policy can be
obtained from the optimal Q-function as:

π?(x) = argmax
u∈U(x)

Q?(x, u), ∀x ∈ X . (5)

Note that the knowledge of the transition probability P is
not needed in (5), which is one advantage of Q-learning.

In practice, exact evaluation of the Bellman operator (2)
is usually not feasible due to the lack of the knowledge
of the transition probability kernel. Instead, the sample-
based empirical Bellman operator is used as an estimator.
Specifically, for the kth round of iteration at the state-action
pair (x, u), we sample the next state yk ∼ P (·|x, u), and
then evaluate the empirical Bellman operator T̂k as

T̂kQk(x, u) = R(x, u) + γ max
u′∈U(yk)

Qk(yk, u
′). (6)

Then the update of tabular Q-learning is implemented as

Qk+1 = Qk − αk(Qk − T̂kQk), (7)

where αk is the stepsize and we omit the dependence on
(x, u) for simplicity when there is no confusion.

2.3 Q-LEARNING WITH LINEAR FUNCTION
APPROXIMATION

For relatively large or even infinite state-action space X ×U ,
it is impractical to express the Q-function in an explicit
tabular form with respect to each state-action pair. In such a
case, the update rule of (7) is no longer directly applicable.

To handle such cases, a parametric function Q̂(x, u; θ) is
adopted as an approximation of the Q-function, where the
parameter vector θ is of small dimension. Our focus here
is the linear function class, which is often considered in
the literature for establishing the finite-time analysis [Zou
et al., 2019, Chen et al., 2019, Du et al., 2019]. Then the
Q-function Q̂(x, u; θ) can be written as

Q̂(x, u; θ) = Φ(x, u)T θ, (8)

where θ ∈ Rd, and Φ : S ×A → Rd is a vector function of
size d, and the elements of Φ represent the nonlinear kernel



(feature) functions. Correspondingly, the updating rule of
Q-learning with linear function approximation is given by

θk+1 =θk − αkΦ(xk, uk)
[
Φ(xk, uk)T θk −R(xk, uk)

−γ max
u′∈U(xk+1)

Φ(xk+1, u
′)T θk

]
, (9)

where αk is the stepsize.

3 MOMENTUMQ ALGORITHM

In this section, we introduce the MomentumQ algorithm.

3.1 TABULAR MOMENTUMQ

Overall, MomentumQ integrates the Nesterov’s momen-
tum [Nesterov, 2013] and Polyak’s Momentum [Polyak,
1964] together, with the learning rates flexibly interpolating
between the two to optimize the momentum performance.
Specifically, MomentumQ takes the form given by

Sk = (1− ak)Qk−1 + akT̂kQk−1,

Pk = (1− ak)Qk + akT̂kQk, (10)
Qk+1 = Pk + bk(Pk − Sk)︸ ︷︷ ︸

Nesterov’s momentum

+ ck(Qk −Qk−1)︸ ︷︷ ︸
Polyak’s momentum

,

where ak, bk, ck determine the learning rates. Algorithm 1
implements MomentumQ with a particular family of learn-
ing rates under synchronous sampling [Even-Dar and Man-
sour, 2003]. One special feature of the algorithm is the
additional freedom introduced by the hyperparameter m.
This hyperparameter actually stems from our finite analysis
of MomentumQ in the tabular case. It helps to better bound
the propagation of the learning error (i.e., Q∗−Qk, see also
the proof of Lemma 7) via the particularly designed learn-
ing rate. Unlike SpeedyQ, which only admits a fixed set of
learning rate (namely, 1/k), MomentumQ’s learning rate is
more flexible due to the introduction of this hyperparameter.
In practice, we found that in general setting m = 1/γ + c
for some arbitrary small number c > 0 (e.g., c = 1), will
generally yields a very good performance in suppressing
the overshoot of the learning error which was otherwise
very significant in SpeedyQ learning. We will also see later
in the simulation that the proposed algorithm accelerates
the convergence for a number of arbitrarily chosen m that
satisfies m ≥ 1/γ.

Note that the proposed MomentumQ algorithm in (10) con-
tains not only the momentum term T̂kQk−1 in the update,
but also the historical information Qk−1 explicitly. We com-
pare MomentumQ with SpeedyQ [Azar et al., 2011] given
by

Qk+1 =Qk+ak(T̂kQk−Qk)+(1−ak)(T̂kQk−T̂kQk−1).
(11)

Algorithm 1 Synchronous Tabular MomentumQ

Input: Initial action-value function Q0 and Q−1 = Q0,
discount factor γ, parameter m ≥ 1

γ , and iteration number T
for k = 0, 1, 2, · · · , T − 1 do

ak = 1
k+1 , bk = k −m− 1, ck = −k2+(m+1)k+1

k+1 ;
for each (x, u) ∈ X × U(x) do

Generate the next state sample yk ∼ P (·|x, u);

T̂kQk−1(x, u) = R(x, u) + γ max
u∈U(yk)

Qk−1(yk, u);

T̂kQk(x, u) = R(x, u) + γ max
u∈U(yk)

Qk(yk, u);

Sk(x, u) = (1− ak)Qk−1(x, u) + akT̂kQk−1(x, u);

Pk(x, u) = (1− ak)Qk(x, u) + akT̂kQk(x, u);
Qk+1(x, u) = Pk(x, u) + bk (Pk(x, u)− Sk(x, u))

+ck(Qk(x, u)−Qk−1(x, u));
end for

end for
Output: QT

We see from (11) that SpeedyQ contains only the momen-
tum term T̂kQk−1 in the update. In contrast, MomentumQ
additionally incorporates the historical information Qk−1

explicitly. Indeed, the simulation in Section 5 indicates that
MomentumQ effectively smooths out the large overshoots
that are present in SpeedyQ and converges faster by incor-
porating additional historical terms. The finite-time analysis
of MomentumQ is more challenging than SpeedyQ due to
this difference, since the additional Qk−1 term increases
the order of the recursion. We will discuss in more details
later. Furthermore, (11) simply involves T̂kQk−T̂kQk−1 as
the only momentum term, while our algorithm designs this
part more systematically. We directly use two consecutive
outputs of the empirical Bellman operators to update the
Q-function and obtain Sk and Pk. Compared to (11), the
resulted Nesterov’s momentum is potentially a better esti-
mation of the “gradient” for updating the Q function. This
intuition is also verified in our numerical results.

3.2 MOMENTUMQ WITH LINEAR FUNCTION
APPROXIMATION

For the case where the state-action space is considerably
large, we use the linear function approximation to estimate
the Q-function to overcome the curse of dimensionality.

Consider the case where the Q-function is approximated by
a linear parameterized function. We propose MomentumQ
for this case as

θk+1 =θk+(bk+ck)(θk−θk−1)−ak(1+bk)gk+akbkgk−1,
(12)

where

gk :=g(θk;xk, uk, xk+1)



Algorithm 2 MomentumQ with linear approximation

Input: Initial parameters θ−1 = θ0; discount factor γ;
iteration number T .
for k = 0, 1, 2, · · · , T − 1 do

Assign ak, bk, ck;
Sample uk ∼ π, xk+1 ∼ P (·|xk, uk);
Compute gk as (13);
Update θk+1 = θk + (bk + ck)(θk − θk−1)

−ak(1 + bk)gk + akbkgk−1;
end for
Output: θout.

=
(

Φ(xk, uk)T θk − γ max
u′∈U(xk+1)

Φ(xk+1, u
′)T θk

−R(xk, uk)
)

Φ(xk, uk). (13)

We focus on the more practical Markovian sampling model,
in which the data tuples are sequentially drawn from a single
trajectory under an unknown stationary distribution. More
implementation details are referred to Algorithm 2.

4 FINITE-TIME CONVERGENCE
RESULTS

In this section, we present our main results on the finite-time
convergence rate guarantee for MomentumQ. We focus on
linear function class and provide the first finite-time analysis
for momentum-based Q-learning with function approxima-
tion. We also present our study of tabular MomentumQ
in order to make a comparison with the only existing the-
ory baseline for momentum-based Q-learning, which was
established for tabular SpeedyQ.

4.1 MOMENTUMQ WITH LINEAR FUNCTION
APPROXIMATION UNDER MARKOVIAN
SAMPLING

In this section, we characterize the finite-time convergence
guarantee for the proposed MomentumQ algorithm with
linear function approximation under Markovian sampling.
To proceed the convergence analysis, we first define

ḡ(θ) := E
µ

[g(θ;x, u, x′)]

=E
µ

[
Φ(x, u)T θ−R(x, u)−γ max

u′∈U(x′)
Φ(x′, u′)T θ

]
Φ(x, u),

(14)

where the expectation is taken over the stationary distribu-
tion of the sampling tuple (x, u, x′).

We take the following standard assumptions in our analysis.

Assumption 1. The columns of Φ are linearly independent
and ‖Φ‖2 ≤ 1.

Assumption 2. The term ḡ(·) has a unique root denoted as
θ?, i.e., ḡ(θ?) = 0. There exists a constant δ > 0, such that
for any θ ∈ Rd we have

(θ − θ?)T ḡ(θ) ≥ δ ‖θ − θ?‖22 . (15)

Assumption 3. The domain of the approximation param-
eters θ is contained in a ball B centered at θ = 0 with
a bounded diameter Dmax and the optimal parameter
θ? ∈ B. That is, there exists Dmax, such that ‖θ − θ′‖2 ≤
Dmax, ∀θ, θ′ ∈ B, and θ? ∈ B.

Assumption 4. There exist constants σ > 0 and ρ ∈ (0, 1)
such that

sup
x∈X

dTV (P(xk ∈ ·|x0 = x), µ) ≤ σρk ∀k,

where dTV (µ, ν) denotes the total-variation distance be-
tween the probability measures µ and ν.

Assumptions 1 and 2 are standard in the literature on theoret-
ical analysis of Q-learning algorithms with linear function
approximation [Bhandari et al., 2018, Chen et al., 2019,
Zou et al., 2019]. The boundedness condition in Assump-
tion 1 can be justified by normalization and hence does not
lose generalization. Assumption 4 can easily hold for irre-
ducible and aperiodic Markov chains, and is widely adopted
in the literature on theoretical analysis of RL algorithms
under Markovian sampling [Bhandari et al., 2018, Chen
et al., 2019, Zou et al., 2019, Xu and Gu, 2019, Xiong et al.,
2020a]. For Assumption 4, we further define the quantity
of the mixing time τmix(·) as follows, which denotes the
duration of the time for the Markov chain to approach suffi-
ciently close to its steady-state

τ∗ := τmix(κ) := min
{
k = 1, 2, . . . |σρk ≤ κ

}
. (16)

To understand the challenges of analyzing Markovian sam-
pling in MomemtumQ, we first illustrate how a non-zero
bias is introduced if the Markovian sampling is consid-
ered. For simplicity, we denote Ok := (xk, uk, xk+1) as
the data at time step k sampled from a Markov chain. Recall
gk(θ;Ok) in (13), and ḡ(θ) = E[g(θ;Ok)] in (14) where
the expectation is taken over the marginal distribution of
Ok since θ is fixed. However, if θ is random and dependent
on Ok, the equality no longer holds. In particular, since θk
is dependent on the historical tuples {O1, O2, . . . , Ok}, we
have

ḡ(θk) 6= E[g(θk;Ok)|θk].

Thus, we have a non-zero bias due to Markovian sampling
to approximate the expectation of gTk (θk − θ?). Namely,

E[gTk (θk−θ?)] =E[ḡ(θk)T(θk−θ?)]
+E[(gk−ḡ(θk))T(θk−θ?)],



where the second term on the right hand side captures the
bias, which is the key challenge of the analysis under this
setting. The following lemma develops an important upper
bound on the bias term, which is a key step in the conver-
gence analysis.

Lemma 1. Suppose that Assumptions 1-4 hold and fix κ >
0 in (16). Let MomentumQ update as (12) by choosing non-
increasing ak, bk, ck and denote βk = bk + ck with βk ∈
(0, 1). Then we have

E[(gk − ḡ(θk))T (θk − θ?)]

≤

{
η1

∑k−1
i=1 βi + η2

∑k−1
i=1 ai, k ≤ τ∗;

4DmaxGmaxκ+η1τ
∗βk−τ∗+η2τ

∗ak−τ∗ , k > τ∗,

where η1 = 2Dmax((1 + γ)Dmax + Gmax), η2 =
6Gmax((1 + γ)Dmax + Gmax) with Gmax = 2Dmax +
Rmax.

With the bias term bounded, we are ready to provide the
convergence result for MomentumQ with linear function
approximation under Markovian sampling.

Theorem 1. (MomentumQ with constant learning rate) Sup-
pose that Assumptions 1-4 hold and fix κ > 0 in (16).
Let ak = α, bk + ck = βλk where β, λ ∈ (0, 1) and
α ∈ (0, 1−λ

2δ ). After running T steps of Algorithm 2 un-
der Markovian sampling, we take the output θout = θT and
have

E ‖θout − θ?‖22 (17)

≤
T−1∏
i=0

(1− 2αδ(1 + bi)) ‖θ0 − θ?‖22

+ β

(
2η1τ

∗

δ
+

C

1− 2αδ − λ

)
(1− 2αδ)T−1−τ∗

+
15G2

maxα

2δ
+

2η2τ
∗α

δ
+

8DmaxGmaxκ

δ
, (18)

where C=5D2
max+2αDmaxGmax+4αη1τ

∗λ withGmax =
2Dmax+Rmax, and η1, η2 are defined in Lemma 1.

Theorem 1 indicates that the convergence behavior is deter-
mined by five terms. The first two terms capture the con-
vergence rate as T changes, indicating that with a constant
learning rate, MomentumQ enjoys an exponential conver-
gence rate to a neighborhood of the global optimum. Since∏T−1
i=0 (1−2αδ(1+bi)) < (1−2αδ)T , the dominant term of

the convergence rate is the second term. The last three terms
capture the convergence error. Since one usually chooses
κ = αk = α, the convergence error can be made as small
as possible by choosing a sufficiently small learning rate.

As a comparison, the convergence of the vanilla Q-learning
under similar assumptions and Markovian sampling is ob-
tained in Chen et al. [2019] as E ‖θout − θ?‖22 ≤ (1 −

2δα)T ‖θ0 − θ?‖22 +αC1 +κC2 for some constants C1, C2.
Clearly, the dominant order in (18) can have a smaller coef-
ficient than that of the vanilla Q-learning by setting a small
β, so that MomentumQ can enjoy a better convergence rate.

In addition, one can also observe that α, β control a set of
tradeoffs. First, while smaller α yields a smaller conver-
gence error, it also slows down the convergence rate. As
for β, although smaller β yields a smaller coefficient in the
dominant term, it can also slow down the convergence rate
because bi in the first term needs to be small.

Next, we seek to remove the convergence error and balance
the tradeoff caused by the choice of ak. To this end, we can
choose a diminishing learning rate and obtain the following
theorem.

Theorem 2. (MomentumQ with diminishing learning rate)
Suppose that Assumptions 1-4 hold and fix κ > 0. Let
ak = α√

k
, bk + ck = βλk with α > 0, β, λ ∈ (0, 1). After

running T steps of Algorithm 2 under Markovian sampling,
we take the output θout = 1

T

∑T
k=1 θk and have

E ‖θout − θ?‖22

≤D
2
max/α+ 30αG2

max + 16τ∗αη2

2δ
√
T

+
8DmaxGmaxκ

δ

+
1

T

[
5βD2

max

2αδ(1− λ)2
+
DmaxGmaxβλ+ 4τ∗η1βλ

δ(1− λ)

]
,

where η1, η2 are defined in Lemma 1.

In Theorem 2, if we choose κ = αk = α/
√
T , then the

mixing time τ∗ = O(log T ). Thus, MomentumQ converges
to the global optimum at a rate of O(log T/

√
T ) under a

diminishing learning rate.

4.2 TABULAR MOMENTUMQ

In this subsection, we provide the finite-time analysis for
tabular MomentumQ as listed in Algorithm 1. As we men-
tion before, MomentumQ combines different types of mo-
mentum terms dynamically. This requires substantial new
technical developments here in the convergence analysis.

We assume that the state space X and the action space U are
finite with cardinalities |X | and |U|, respectively. We denote
n = |X | · |U|. We also need the following assumption in
our analysis.

Assumption 5. The Q-function is uniformly bounded
throughout the learning process. That is, ∃Vmax, such that
‖Qk‖ ≤ Vmax, ∀k ≥ 0.

Note that it is nontrivial to show the boundedness of the
proposed iteration scheme. In fact, it is usually assumed for
proving convergence of many such complicated stochastic



approximation algorithms [Kushner and Yin, 2003]. Alterna-
tively, one can extend the ODE method [Borkar and Meyn,
2000] considerably to show the boundedness, which we
leave for our future work.

To facilitate the analysis, we rewrite (10) in a more compact
form as

Qk+1 =(1−ak)Qk+[bk(1− ak)+ck] (Qk −Qk−1)

+ ak

[
(1 + bk)T̂kQk − bkT̂kQk−1

]
. (19)

Our analysis first bounds the errors of approximating the
exact Bellman operator T with empirical Bellman operators
T̂k. For convenience, we denote the last term in (19) by

Dk [Qk, Qk−1] := (1 + bk)T̂kQk − bkT̂kQk−1, (20)

for all k ≥ 0. Note that Dk is a function of all samples
{y1, y2, · · · , yk} for all state-action pairs (x, u) up to round
k. Let Fk denote the filtration generated by the sequence of
these random variables {y1, y2, · · · , yk}. We see that Dk ∈
Fk and Qk+1 ∈ Fk. Then if we define D [Qk, Qk−1] as the
conditional expectation of Dk [Qk, Qk−1] given Fk−1, we
obtain by the definition of T that

D [Qk, Qk−1] : = EP (Dk [Qk, Qk−1] |Fk−1)

= (1 + bk)T Qk − bkT Qk−1. (21)

Now define the error between Dk and D as follows:

εk := D [Qk, Qk−1]−Dk [Qk, Qk−1] . (22)

Clearly EP (εk|Fk−1) = 0. This shows that ∀(x, u) ∈ X ×
U(x), the sequence of the estimation errors {εk(x, u)}Tk=0

is a martingale difference sequence with respect to the filtra-
tion Fk. In other words, if we denote

Ek(x, u) :=
k∑
j=0

εj(x, u), (23)

then Ek is a martingale sequence with respect to Fk,
∀(x, u) ∈ X × U(x) and ∀k ≥ 0.

The following proposition provides the uniform bounds of
Dk and εk.

Proposition 1. Suppose Assumption 5 holds. Consider Mo-
mentumQ as in Algorithm 1. Then the terms Dk [Qk, Qk−1]
defined in (20) and εk in (22) are uniformly bounded for
all k ≥ 0. Specifically, ∃D̄ > 0, s.t. ‖Dk[Qk, Qk−1]‖ ≤
D̄,‖εk‖ ≤ 2D̄, ∀k ≥ 0.

The uniform bounds proved in Proposition 1 are critical in
the derivation of the main theorem below.

Theorem 3. Suppose Assumption 5 holds. Consider Algo-
rithm 1 where m ≥ 1/γ. Then, with probability at least

1− δ, the output of MomentumQ satisfies for T > m:

‖Q?−QT ‖≤
h̃Vmax+D̄

√
8(T − bmc − 1) log 2n

δ

T (1−γ)
,

(24)
where h̃ = 2γ(m+ bmc+ 2) + 2, D̄ is specified in Propo-
sition 1, and bmc denotes the largest integer that does not
exceed m.

Using the Borel–Cantelli lemma, we immediately have the
following corollary.

Corollary 1. Qk converges to Q? almost surely at a rate of

at least Õ(

√
(T−bmc−1) log n

(1−γ)2T ).

This rate is slightly better than Õ(
√

logn

(1−γ)2
√
T

) of SpeedyQ
due to the presence of m > 1. We note that the Generalized
SpeedyQ [John et al., 2020] only slightly improves the con-
stant multipliers over SpeedyQ. In addition, implementation
of Generalized SpeedyQ requires a complicated sampling
procedure, which added extra computational complexity.

5 EXPERIMENTS

We evaluate the performance of the proposed MomentumQ
scheme and compare it with other related Q-learning algo-
rithms over a series of FrozenLake games (see the appendix
for further specifications of the FrozonLake problem). We
present the empirical results for both the tabular Momen-
tumQ and MomentumQ with linear function approximation
which are discussed above.

5.1 EXPERIMENTS ON TABULAR
MOMENTUMQ

We compare MomentumQ with two other existing
momentum-based Q-learning algorithms: SpeedyQ and the
Nesterov stochastic approximation (NeSA) algorithm [De-
vraj et al., 2019]. In addition, we include comparisons with
vanilla Q-learning to demonstrate the advantages of the pro-
posed momentum techniques.

The experimental settings in this section are consistent with
those of MomentumQ in Algorithm 1 and SpeedyQ in Azar
et al. [2011, Algorithm 1]. Thus the numerical results should
be able to give a convincing comparison between two algo-
rithms. It is worth mentioning that the tabular MomentumQ
has an additional hyperparameter m that can take a wide
range of values (recall m ≥ 1/γ). We experiment with
several different m’s. For relatively large m values (e.g.,
when m > 10), the learning rates are shifted to step from
1/(m+ 1), that is, αk = 1/(m+ k+ 1), for k = 0, 1, 2, ....
This is to avoid the large errors accumulated from initial
iterations when bk < 0, which are reflected in the constants



(a) FrozenLake-4× 4 (b) FrozenLake-8× 8

Figure 1: Comparing MomentumQ with NeSA, SpeedQ, and VanillaQ with tabular Q-function.

(a) i.i.d sampling (b) Markovian sampling

Figure 2: Comparison of MomentumQ with VanillaQ in the FrozenLake-128× 128 task with various learning rate schemes
and sampling strategies.

in (24). Note that this shift does not change the obtained
theoretical order of the convergence rate. We observe stable
and consistent improvement in convergence and optimality
across various tests when choosing large m values, which
also aligns with our theoretical analysis.

Considering the randomness embedded in MDP of both
FrozenLake games, we evaluate the performance of each
algorithm with 20 different random seeds and then illustrate
the average loss and standard deviation in Fig. 1a and Fig. 1b.
For evaluation purpose, we have access to the true transition
probability, and can find the ground truth optimal Q-function
Q? using dynamic programming. In both games, the loss at
step k is then defined as ‖Qk −Q?‖. It can be seen from the
plots that MomentumQ with a rather wide choices of m can
all converge faster than vanilla Q-learning and SpeedyQ. It
shows competitive performance against NeSA with smaller
variance presented. Note that the high variance observed in
the NeSA training aligns with the previous reported results
from Devraj et al. [2019] under different tasks.

5.2 EXPERIMENTS WITH FUNCTION
APPROXIMATION

We adopt the FrozenLake-128× 128 as the benchmark task
to evaluate the performance of MomentumQ with linear
function approximation and compare it with the vanilla
Q-learning (referred to as VanillaQ). Both algorithms are
evaluated with different learning rate schemes (constant &

diminishing stepsize), as well as different sampling strate-
gies (i.i.d. and Markovian). We note that SpeedyQ and NeSA
have been proposed in the literature only for the tabular set-
ting and are thus not included here for comparison.

Note that the i.i.d. sampling is an ideal assumption and can-
not be satisfied perfectly in practice. For our implementation,
we perform i.i.d. sampling strategy in a similar fashion to
the experience replay [Mnih et al., 2013] typically used for
DQN training. A data buffer, referred to as the experience, is
accumulated with data points collected across multiple train-
ing steps in the past. At each training step, the training data
is then randomly uniformly sampled from the data buffer. In
contrast, the Markovian sampling takes the training samples
in an “on-policy" manner where the collected data points
are fed in to the Q-learning process right after. At step k,
the performance of the algorithm is evaluated through the
total return of 150 rounds of trials. Similarly to the tabular
setup, we execute each algorithm 20 times with different
random seeds and illustrate the average return and standard
deviation in Fig. 2a with i.i.d. sampling and Fig. 2b with
Markovian sampling.

Overall, the MomentumQ algorithm has exhibited supe-
rior performance than the vanilla Q-learning. In particu-
lar, training with i.i.d. sampling is significantly faster than
the Markovian sampling, which can be also expected from
our theoretical results. Within the same sampling strategy,
MomentumQ is also faster in convergence than the vanilla
Q-learning with the same learning rate scheme.



6 CONCLUSION

We proposed new momentum-based Q-learning algorithms
for both the tabular and linear function approximation cases,
which are respectively applicable to finite and continuous
state-action spaces. We further characterized the conver-
gence rate with empirical evaluation. The proposed algo-
rithms accelerate the convergence in comparison to vanilla
Q-learning on various challenging tasks under both tabular
and parametric Q-learning settings.
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Supplementary Materials

A SPECIFICATIONS OF FROZENLAKE PROBLEM

FrozenLake is a classic benchmark problem for Q-learning, in which an agent controls the movement of a character in an
n× n grid world. Some tiles of the grid are walkable, and others lead to the agent falling into the water. Additionally, the
movement direction of the agent is uncertain and only partially depends on the chosen direction. The agent is rewarded for
finding a feasible path to a goal tile. As shown in Figure 3 with a Frozenlake-8× 8 task, “S" is the safe starting point, “F"
is the safe frozen surface, “H" stands for the hole that terminates the game, and “G" is the target state that comes with an
immediate reward of 1. This forms a problem with the state-space size n2, the action-space size 4 and the reward space
R = {0, 1}. For tabular Q-learning algorithms with finite state-action problems of relatively small dimensions, FrozenLake-
4× 4 and FrozenLake-8× 8 are two typical benchmark tasks. As the grid world becomes large, e.g., FrozenLake-128× 128,
Q-learning with linear function approximation is then adopted to solve the problem.

Figure 3: The FrozenLake-8× 8 task environment.

B PROOF OF LEMMA 1

We bound the expectation of bias via constructing a new Markov chain and applying some techniques from information
theory. Before deriving the bound, we first introduce some technical lemmas.

Lemma 2. Suppose Assumptions 1 and 3 hold. Then for gk defined in (12), we have ‖gk‖2 ≤ Gmax for all k, where
Gmax = 2Dmax +Rmax.

Proof. Following from the definition of gk and the assumptions that ‖Φ(x, u)‖2 ≤ 1, ‖θ‖2 ≤ Dmax, and ‖R(x, u)‖2 ≤
Rmax, we have

‖gk‖2 =

∥∥∥∥(Φ(xk, uk)T θk −R(xk, uk)− γ max
u′∈U(xk+1)

Φ(xk+1, u
′)T θk)Φ(xk, uk)

∥∥∥∥
2

≤
∥∥Φ(xk, uk)T θk

∥∥
2

+ ‖R(xk, uk)‖2 + max
u′∈U(xk+1)

∥∥Φ(xk+1, u
′)T θk

∥∥
2

≤2Dmax +Rmax,

where we use Cauchy-Schwartz inequality and the triangle inequality.

For notational simplicity, throughout this section we use O = (x, u, x′) to denote the sample tuple and Ok = (xk, uk, xk+1)
to denote the sample tuple at time k.

Lemma 3. Let ξ(θ;O) := (g(θ;O)− ḡ(θ))T (θ − θ?). Then ξ(θ;O) is uniformly bounded by

|ξ(θ;O)| ≤ 2DmaxGmax, ∀θ ∈ B,

and it is Lipschitz continuous with

|ξ(θ;O)− ξ(θ′;O)| ≤ 2((1 + γ)Dmax +Gmax) ‖θ − θ′‖2 , ∀θ, θ′ ∈ B.



Proof. The first statement is straightforward based on Assumption 3 and Lemma 2. That is,

|ξ(θ;O)| ≤ ‖g(θ;O)− ḡ(θ)‖2 ‖θ − θ
?‖2 ≤ 2DmaxGmax.

Next to prove the Lipschitz condition, we first prove the Lipschitz condition of g(θ;Ok) with respect to θ.

‖g(θ;O)− g(θ′;O)‖2
(i)
≤|Φ(x, u)T (θ − θ′) + γ max

u′∈U(x′)
Φ(x′, u′)T θ′ − γ max

u′∈U(x′)
Φ(x′, u′)T θ|

(ii)
≤|Φ(x, u)T (θ − θ′)|+ |γ max

u′∈U(x′)
Φ(x′, u′)T θ′ − γ max

u′∈U(x′)
Φ(x′, u′)T θ|,

where (i) follows from Cauchy-Schwartz inequality and the assumption ‖Φ‖2 ≤ 1, and (ii) follows from the triangle
inequality.

Now we consider two cases. If the item in the second norm of (ii) is non-negative, we let u? = arg max
u′∈U(x′)

Φ(x′, u′)T θ′. Then

max
u′∈U(x′)

Φ(x′, u′)T θ ≥ Φ(x′, u?)T θ. Thus, we continue to bound the above inequality as

‖g(θ;O)− g(θ′;O)‖2 ≤|Φ(x, u)T (θ − θ′)|+ γΦ(x′, u?)T (θ′ − θ)
|Φ(x, u)T (θ − θ′)|+ γ|Φ(x′, u?)T (θ − θ′)| (25)

Similarly, if this item is negative, we let u? = arg max
u′∈U(x′)

Φ(x′, u′)T θ. Then max
u′∈U(x′)

Φ(x′, u′)T θ′ ≥ Φ(x′, u?)T θ′. Thus, we

have

‖g(θ;O)− g(θ′;O)‖2 ≤|Φ(x, u)T (θ − θ′)|+ γΦ(x′, u?)T (θ − θ′)
|Φ(x, u)T (θ − θ′)|+ γ|Φ(x′, u?)T (θ − θ′)| (26)

Then it follows from (25) and (26) that

‖g(θ;O)− g(θ′;O)‖2 ≤ (1 + γ) ‖θ − θ′‖ .

Similarly, we obtain the same result for ḡ(θ) as follows.

‖ḡ(θ)− ḡ(θ′)‖2 ≤ E
µ
‖gk(θ)− gk(θ′)‖2 ≤ (1 + γ) ‖θ − θ′‖2 .

Then we focus on obtaining the second statement,

|ξ(θ;O)− ξ(θ′;O)|
= |(g(θ;O)− ḡ(θ))T (θ − θ?)− (g(θ′;O)− ḡ(θ′))T (θ′ − θ?)|
≤ ‖g(θ;O)− ḡ(θ)‖2 ‖θ − θ

′‖2 + ‖θ′ − θ?‖2 ‖(g(θ;O)− ḡ(θ))− (g(θ′;O)− ḡ(θ′))‖2
(i)
≤ 2Gmax ‖θ − θ′‖2 +Dmax ‖(g(θ;O)− g(θ′;O))− (ḡ(θ)− ḡ(θ′))‖2
(ii)
≤ 2Gmax ‖θ − θ′‖2 + 2Dmax(1 + γ) ‖θ − θ′‖2
= 2((1 + γ)Dmax +Gmax) ‖θ − θ′‖2 ,

where (i) follows from Assumption 3 and Lemma 2, and (ii) follows from triangle inequality and (25).

We use X → Z → Y to indicate that the random variable X and Y are independent conditioned on Z.

Lemma 4. [Bhandari et al., 2018, Lemma 9] Consider two random variables X and Y such that

X → xk → xk+τ → Y, (27)

for fixed k and τ > 0. Suppose Assumption 4 holds. LetX ′, Y ′ are independent copies drawn from the marginal distributions
of X and Y , that is P(X ′ = ·, Y ′ = ·) = P(X = ·)P(Y = ·). Then, for any bounded v, we have

|E[v(X,Y )]− E[v(X ′, Y ′)]| ≤ 2 ‖v‖∞ (σρτ ).



We continue the proof of Lemma 1. We first develop the connection between ξ(θk;Ok) and ξ(θk−τ ;Ok) via Lemma 3. To
do so, we first observe that

‖θi+1 − θi‖2 = ‖βi(θi − θi−1) + ai(1 + bi)gi + aibigi−1‖2
(i)
≤‖βi(θi − θi−1)‖2 + ‖ai(1 + bi)gi‖2 + ‖aibigi−1‖2
(ii)
≤Dmaxβi + 3Gmaxai,

where (i) follows from the triangle inequality and (ii) from the Assumptions 3 and 2 and the fact bi < 1. Then we have

‖θk − θk−τ‖2 ≤
k−1∑
i=k−τ

‖θi+1 − θi‖2 ≤ Dmax

k−1∑
i=k−τ

βi + 3Gmax

k−1∑
i=k−τ

ai.

Thus, we can relate ξ(θk;Ok) and ξ(θk−τ ;Ok) by using the Lipschitz property established in Lemma 3 as follows:

ξ(θk;Ok)− ξ(θk−τ ;Ok) ≤|ξ(θk;Ok)− ξ(θk−τ ;Ok)|
≤2((1 + γ)Dmax +Gmax) ‖θk − θk−τ‖2

≤2((1 + γ)Dmax +Gmax)

(
Dmax

k−1∑
i=k−τ

βi + 3Gmax

k−1∑
i=k−τ

ai

)
. (28)

Next, we bound E[ξ(θk−τ ;Ok)] using Lemma 4. Observe that given any deterministic θ ∈ B, we have

E[ξ(θ;Ok)] = (E[g(θ;Ok)]− ḡ(θ))T (θ − θ?) = 0.

Since θ0 is a fixed constant, we have E[ξ(θ0, Ok)] = 0. Now we are ready to bound E[ξ(θk−τ , Ok)] via Lemma 4 by
constructing a random process satisfying (27). To do so, consider random variables θ′k−τ and O′k drawn independently
from the marginal distribution of θk−τ and Ok, so that P(θ′k−τ = ·, O′k = ·) = P(θk−τ = ·)P(Ok = ·). We further obtain
E[ξ(θ′k−τ , O

′
k)] = E[E[ξ(θ′k−τ , O

′
k)|θ′k−τ ]] = 0 since θ′k−τ and O′k are independent. Combining Lemmas 3 and 4, we have

E[ξ(θk−τ , Ok)] ≤ 2(2DmaxGmax)(σρτ ). (29)

Finally, we are ready to bound the bias. We first take expectation for both sides of (28) and obtain

E[ξ(θk;Ok)] ≤ E[ξ(θk−τ ;Ok)] + 2((1 + γ)Dmax +Gmax)

(
Dmax

k−1∑
i=k−τ

βi + 3Gmax

k−1∑
i=k−τ

ai

)
.

When k ≤ τmix(κ), we choose τ = k and have

E[ξ(θk;Ok)] ≤E[ξ(θ0;Ok)] + 2((1 + γ)Dmax +Gmax)

(
Dmax

k−1∑
i=0

βi + 3Gmax

k−1∑
i=0

ai

)

=2((1 + γ)Dmax +Gmax)

(
Dmax

k−1∑
i=0

βi + 3Gmax

k−1∑
i=0

ai

)
.

When k > τmix(κ), we choose τ = τ∗ := τmix(κ) and have

E[ξ(θk;Ok)]

≤ E[ξ(θk−τ∗ ;Ok)] + 2((1 + γ)Dmax +Gmax)

(
Dmax

k−1∑
i=k−τ∗

βi + 3Gmax

k−1∑
i=k−τ∗

ai

)
(i)
≤ 4DmaxGmax(σρτ

∗
) + 2((1 + γ)Dmax +Gmax)

(
Dmax

k−1∑
i=k−τ∗

βi + 3Gmax

k−1∑
i=k−τ∗

ai

)
(ii)
≤ 4DmaxGmaxκ+ 2((1 + γ)Dmax +Gmax)

(
Dmax

k−1∑
i=k−τ∗

βi + 3Gmax

k−1∑
i=k−τ∗

ai

)
(iii)
≤ 4DmaxGmaxκ+ 2((1 + γ)Dmax +Gmax) (Dmaxτ

∗βk−τ∗ + 3Gmaxτ
∗ak−τ∗) ,



where (i) follows from (29), (ii) follows due to the definition of the mixing time, and (iii) follows because ak, βk are
non-increasing.

C PROOF OF THEOREM 1

Recall that MomentumQ with linear function approximation updates as (12). Given the unique fixed point θ? and denoting
bk + ck = βk, we have

‖θk+1 − θ?‖22 = ‖θk − θ? + βk(θk − θk−1)− ak(1 + bk)gk + akbkgk−1‖22
= ‖θk − θ?‖22 + ‖βk(θk − θk−1)− ak(1 + bk)gk + akbkgk−1‖22

+ 2〈θk − θ?, βk(θk − θk−1)− ak(1 + bk)gk + akbkgk−1〉

= ‖θk − θ?‖22 + ‖βk(θk − θk−1)− ak(1 + bk)gk + akbkgk−1‖22
+ 2〈θk − θ?, βk(θk − θk−1) + akbkgk−1〉 − 2ak(1 + bk)〈θk − θ?, gk〉.

Next, taking the expectation over all the randomness up to time step k on both sides, we have

E ‖θk+1 − θ?‖22
=E ‖θk − θ?‖22 + E ‖βk(θk − θk−1)− ak(1 + bk)gk + akbkgk−1‖22

+ 2E〈θk − θ?, βk(θk − θk−1) + akbkgk−1〉 − 2ak(1 + bk)E〈θk − θ?, gk〉
(i)
≤E ‖θk − θ?‖22 + E ‖βk(θk − θk−1)− ak(1 + bk)gk + akbkgk−1‖22

+ 2βkE ‖θk − θ?‖2 ‖θk − θk−1‖2 + 2akbkE ‖θk − θ?‖2 ‖gk−1‖2 − 2ak(1 + bk)E〈θk − θ?, gk〉
(ii)
≤E ‖θk − θ?‖22 + 3β2

kE ‖θk − θk−1‖22 + 3a2
k(1 + bk)2E ‖gk‖22 + 3a2

kb
2
kE ‖gk−1‖22

+ 2βkE ‖θk − θ?‖2 ‖θk − θk−1‖2 + 2akbkE ‖θk − θ?‖2 ‖gk−1‖2 − 2ak(1 + bk)E〈θk − θ?, gk〉
(iii)
≤E ‖θk − θ?‖22 + 3β2

kD
2
max + 3a2

k(1 + bk)2G2
max + 3a2

kb
2
kG

2
max

+ 2βkD
2
max + 2akbkDmaxGmax − 2ak(1 + bk)E〈θk − θ?, gk〉

(iv)
≤E ‖θk − θ?‖22 + 5βkD

2
max + 15a2

kG
2
max + 2akbkDmaxGmax − 2ak(1 + bk)E〈θk − θ?, gk〉, (30)

where (i) follows from Cauchy-Schwartz inequality, (ii) holds due to the fact (x+ y + z)2 ≤ 3x2 + 3y2 + 3z2, (iii) holds
because of the boundedness of the parameter domain in Assumption 3 and because of Lemma 2, and (iv) follows since
bk ≤ βk < 1.

Since the samples are generated in a non-i.i.d. manner, we have

E
[
(θk − θ?)T gk

]
= E

[
(θk − θ?)T ḡ(θk)

]
+ E

[
(θk − θ?)T (gk − ḡ(θk))

]
= E

[
(θk − θ?)T ḡ(θk)

]
+ E[ξ(θk;Ok)]. (31)

Then, we continue to bound (30) and obtain

E ‖θk+1 − θ?‖22
≤ E ‖θk − θ?‖22 + 5βkD

2
max + 15a2

kG
2
max + 2akbkDmaxGmax − 2ak(1 + bk)E〈θk − θ?, gk〉

= E ‖θk − θ?‖22 + 5βkD
2
max + 15a2

kG
2
max + 2akbkDmaxGmax

− 2ak(1 + bk)E〈θk − θ?, ḡ(θk)〉 − 2ak(1 + bk)E[ξ(θk;Ok)]

≤ E ‖θk − θ?‖22 + 5βkD
2
max + 15a2

kG
2
max + 2akbkDmaxGmax − 2ak(1 + bk)δE ‖θk − θ?‖22

− 2ak(1 + bk)E[ξ(θk;Ok)]

= (1− 2akδ(1 + bk))E ‖θk − θ?‖22 + 5βkD
2
max + 15a2

kG
2
max + 2akbkDmaxGmax

− 2ak(1 + bk)E[ξ(θk;Ok)], (32)

where the last inequality follows from Assumption 2.



We consider a constant stepsize αk = α. For notational simplicity, we denote fk = 5βkD
2
max + 15a2

kG
2
max +

2akbkDmaxGmax, and ζk = −2ak(1 + bk)E[ξ(θk;Ok)]. Then for k > τ∗ we have

E ‖θk+1 − θ?‖22
≤ (1− 2αδ(1 + bk))E ‖θk − θ?‖22 + fk + ζk

≤ . . .

≤
k∏
i=0

(1− 2αδ(1 + bi)) ‖θ0 − θ?‖22 +
k∑
i=0

fi

k∏
j=i+1

(1− 2αδ(1 + bj))

+
k∑

i=τ∗+1

ζi

k∏
j=i+1

(1− 2αδ(1 + bj)) +
τ∗∑
i=0

ζi

k∏
j=i+1

(1− 2αδ(1 + bj))

≤
k∏
i=0

(1− 2αδ(1 + bi)) ‖θ0 − θ?‖22 +
k∑
i=0

fi(1− 2αδ)k−i

+
k∑

i=τ∗+1

ζi(1− 2αδ)k−i +
τ∗∑
i=0

ζi(1− 2αδ)k−i,

where the last inequality follows because bk > 0, ∀k. Further, we bound the term
∑k
i=0(1− 2αδ)k−ifi as

k∑
i=0

(1− 2δα)k−ifi

= 5D2
max

k∑
i=0

(1− 2δα)k−iβi + 15α2G2
max

k∑
i=0

(1− 2δα)k−i + 2αDmaxGmax

k∑
i=0

(1− 2δα)k−ibi

≤ 15α2G2
max

k∑
i=0

(1− 2δα)k−i + (5D2
max + 2αDmaxGmax)

k∑
i=0

(1− 2δα)k−iβi

≤ 15αG2
max

2δ
+ (5D2

max + 2αDmaxGmax)β(1− 2δα)k
k∑
i=0

(
λ

1− 2δα

)i
(i)
≤ 15αG2

max

2δ
+ (5D2

max + 2αDmaxGmax)β(1− 2δα)k
1

1− 2δα− λ
, (33)

where (i) follows from α < 1−λ
2δ . It remains to bound the last two tail terms. From Lemma 1, we obtain

ζi =


2α(1 + bi)

(
η1

k−1∑
i=1

βi + η2

k−1∑
i=1

ai

)
≤ 4α (η1τ

∗β + η2τ
∗α) , i ≤ τ∗;

4α (4DmaxGmaxκ+ η1τ
∗βi−τ∗ + η2τ

∗α) , i > τ∗,

where η1 = 2Dmax((1 + γ)Dmax +Gmax), η2 = 6Gmax((1 + γ)Dmax +Gmax). Then we obtain

k∑
i=τ∗+1

ζi(1− 2αδ)k−i +
τ∗∑
i=0

ζi(1− 2αδ)k−i

≤ 4η2τ
∗α2

k∑
i=0

(1− 2αδ)k−i + 4αη1τ
∗β

τ∗∑
i=0

(1− 2αδ)k−i

+ 16DmaxGmaxκα

k∑
i=τ∗+1

(1− 2αδ)k−i + 4αη1τ
∗

k∑
i=τ∗+1

βi−τ∗(1− 2αδ)k−i

≤ 2η2τ
∗α

δ
+

2η1τ
∗β

δ
(1− 2αδ)k−τ

∗
+

8DmaxGmaxκ

δ
+ 4αβη1τ

∗
k∑

i=τ∗+1

λi−τ
∗
(1− 2αδ)k−i



=
2η2τ

∗α

δ
+

2η1τ
∗β

δ
(1− 2αδ)k−τ

∗
+

8DmaxGmaxκ

δ

+ 4αβη1τ
∗(1− 2αδ)k−τ

∗
k∑

i=τ∗+1

(
λ

1− 2αδ

)i−τ∗
≤ 2η2τ

∗α

δ
+

2η1τ
∗β

δ
(1− 2αδ)k−τ

∗
+

8DmaxGmaxκ

δ
+

4αβη1τ
∗λ

1− 2αδ − λ
(1− 2αδ)k−τ

∗
,

where the last inequality follows due to the fact that α < 1−λ
2δ . Thus, we can conclude that

E ‖θk+1 − θ?‖22

≤
k∏
i=0

(1− 2αδ(1 + bi)) ‖θ0 − θ?‖22 +
k∑
i=0

fi(1− 2αδ)k−i

+
k∑

i=τ∗+1

ζi(1− 2αδ)k−i +
τ∗∑
i=0

ζi(1− 2αδ)k−i

≤
k∏
i=0

(1− 2αδ(1 + bi)) ‖θ0 − θ?‖22 +
15αG2

max

2δ
+
β(5D2

max + 2αDmaxGmax)(1− 2δα)k

1− 2δα− λ

+
2η2τ

∗α

δ
+

2η1τ
∗β

δ
(1− 2αδ)k−τ

∗
+

8DmaxGmaxκ

δ
+

4αβη1τ
∗λ

1− 2αδ − λ
(1− 2αδ)k−τ

∗

≤
k∏
i=0

(1− 2αδ(1 + bi)) ‖θ0 − θ?‖22 +
15αG2

max

2δ
+

2η2τ
∗α

δ
+

8DmaxGmaxκ

δ

+ β

(
2η1τ

∗

δ
+

5D2
max + 2αDmaxGmax + 4αη1τ

∗λ

1− 2δα− λ

)
(1− 2δα)k−τ

∗
.

D PROOF OF THEOREM 2

Before proving this theorem, we introduce two lemmas of series sum that will help to streamline the presentation.

Lemma 5. Let ak = α√
k

and βk = βλk with α > 0, β, λ ∈ (0, 1) for k = 1, 2, . . . . Then

T∑
k=1

βk
ak
≤ β

α(1− λ)2
. (34)

Proof. The proof is based on taking the standard sum of geometric sequences as follows:

T∑
k=1

βk
ak

=
T∑
k=1

βλk
√
k

α
≤

T∑
k=1

βλkk

α
=

β

α(1− λ)

(
T∑
k=1

λk − TλT
)
≤ β

α(1− λ)2
.

Lemma 6. Let ak = α√
k

. Then
T∑
k=1

ak ≤ 2α
√
T . (35)

Proof. We use the comparison principle to bound the series sum as follows:

T∑
k=1

ak =
T∑
k=1

α√
k
≤
∫ T+1

1

α√
t− 1

dt = 2α
√
t− 1|T+1

1 = 2α
√
T .



The proof of Theorem 2 is partially similar to that of Theorem 1. The steps are the same until (32), where we have

E ‖θk+1 − θ?‖22
≤ E ‖θk − θ?‖22 + 5βkD

2
max + 15a2

kG
2
max + 2akbkDmaxGmax − 2ak(1 + bk)δE ‖θk − θ?‖22

− 2ak(1 + bk)E[ξ(θk;Ok)].

Then we continue the proof with rearranging the previous inequality:

2δE ‖θk − θ?‖22
≤ 2(1 + bk)δE ‖θk − θ?‖22

≤
E ‖θk − θ?‖22 − E ‖θk+1 − θ?‖22

ak
+

5βk
ak

D2
max+15akG

2
max+2bkDmaxGmax+4|E[ξ(θk;Ok)]|.

Then we sum over time step k from 1 to T (T > τ∗) and obtain

2δ
T∑
k=1

E ‖θk − θ?‖22

≤
T∑
k=1

E ‖θk − θ?‖22 − E ‖θk+1 − θ?‖22
ak

+ 4
τ∗∑
k=1

|E[ξ(θk;Ok)]|+ 4
T∑

k=τ∗+1

|E[ξ(θk;Ok)]|

+ 5D2
max

T∑
k=1

βk
ak

+ 15G2
max

T∑
k=1

ak + 2DmaxGmax

T∑
k=1

bk

=
‖θ1 − θ?‖22

a1
+

T∑
k=2

E ‖θk − θ?‖22

(
1

ak
− 1

ak−1

)
−

E ‖θT+1 − θ?‖22
aT+1

+ 5D2
max

T∑
k=1

βk
ak

+ 15G2
max

T∑
k=1

ak + 2DmaxGmax

T∑
k=1

bk

+ 4
τ∗∑
k=1

|E[ξ(θk;Ok)]|+ 4
T∑

k=τ∗+1

|E[ξ(θk;Ok)]|

(i)
≤
‖θ1 − θ?‖22

a1
+D2

max

T∑
k=2

(
1

ak
− 1

ak−1

)

+ 5D2
max

T∑
k=1

βk
ak

+ 15G2
max

T∑
k=1

ak + 2DmaxGmax

T∑
k=1

bk

+ 4
τ∗∑
k=1

|E[ξ(θk;Ok)]|+ 4

T∑
k=τ∗+1

|E[ξ(θk;Ok)]|

(ii)
≤D

2
max

αT
+ 5D2

max

T∑
k=1

βk
ak

+ 15G2
max

T∑
k=1

ak + 2DmaxGmax

T∑
k=1

βk

+ 4
τ∗∑
k=1

|E[ξ(θk;Ok)]|+ 4
T∑

k=τ∗+1

|E[ξ(θk;Ok)]|

(iii)
≤ D

2
max

√
T

α
+

5βD2
max

α(1− λ)2
+ 30αG2

max

√
T +

2DmaxGmaxβλ

1− λ

+ 4
τ∗∑
k=1

|E[ξ(θk;Ok)]|+ 4
T∑

k=τ∗+1

|E[ξ(θk;Ok)]|,

where (i) follows from Assumption 3 and the fact that αk < αk−1, and E ‖θT+1 − θ?‖2 /aT+1 > 0, (ii) holds due to
Assumption 3, and (iii) follows from Lemmas 2, 5, and 6.



It remains to bound 4
∑τ∗

k=1 |E[ξ(θk;Ok)]|+ 4
∑T
k=τ∗+1 |E[ξ(θk;Ok)]|. We bound the tail term by using Lemma 1.

For simplicity, in the following we denote

η1 = 2Dmax((1 + γ)Dmax +Gmax), η2 = 6Gmax((1 + γ)Dmax +Gmax).

Following from Lemma 1, we have
τ∗∑
k=1

|E[ξ(θk;Ok)]| ≤
τ∗∑
k=1

η1

k−1∑
i=1

βi +
τ∗∑
k=1

η2

k−1∑
i=1

ai

≤τ∗η1

T∑
k=1

βk + τ∗η2

T∑
k=1

ak

≤τ
∗η1βλ

1− λ
+ 2τ∗η2α

√
T .

Similarly, we obtain
T∑

k=τ∗+1

|E[ξ(θk;Ok)]| ≤
T∑

k=τ∗+1

(4DmaxGmaxκ+ η1τ
∗βk−τ∗ + η2τ

∗ak−τ∗)

≤4DmaxGmaxκT + τ∗η1

T−τ∗∑
k=1

βk + τ∗η2

T−τ∗∑
k=1

ak

≤4DmaxGmaxκT +
τ∗η1βλ

1− λ
+ 2τ∗η2α

√
T .

Thus, we have

2δ

T∑
k=1

E ‖θk − θ?‖22

≤D
2
max

√
T

α
+

5βD2
max

α(1− λ)2
+ 30αG2

max

√
T +

2DmaxGmaxβλ

1− λ

+ 4
τ∗∑
k=1

|E[ξ(θk;Ok)]|+ 4
T∑

k=τ∗+1

|E[ξ(θk;Ok)]|

≤D
2
max

√
T

α
+

5βD2
max

α(1− λ)2
+ 30αG2

max

√
T +

2DmaxGmaxβλ

1− λ

+ 16DmaxGmaxκT +
8τ∗η1βλ

1− λ
+ 16τ∗η2α

√
T .

Finally, we apply Jensen’s inequality and complete the proof as

E ‖θout − θ?‖22 =E

∥∥∥∥∥ 1

T

T∑
k=1

θk − θ?
∥∥∥∥∥

2

2

≤ 1

T

T∑
k=1

E ‖θk − θ?‖22

≤D
2
max/α+ 30αG2

max + 16τ∗αη2

2δ
√
T

+
8DmaxGmaxκ

δ

+
1

T

[
5βD2

max

2αδ(1− λ)2
+
DmaxGmaxβλ+ 4τ∗η1βλ

δ(1− λ)

]
.

E PROOF OF PROPOSITION 1

Proof. For convenience, we denoteMQk(yk) := maxu∈U(yk)Qk(yk, u), then T̂kQk = R +MQk(yk) and T̂kQk−1 =
R+MQk−1(yk). If k = 0, we have from (20) that

‖D0 [Q0, Q−1]‖ =
∥∥∥T̂0Q0

∥∥∥ ≤ ‖R‖+ γ ‖MQ0(y0)‖

≤Rmax + γVmax.



Now, considering k ≥ 1 we have

‖Dk [Qk, Qk−1]‖
(i)
≤ ‖R‖+ γ‖(1 + bk)MQk − bkMQk−1‖
≤ Rmax + γ‖(1 + bk)M

(
Qk−1 − αk−1Qk−2 + αk−1Dk−1 [Qk−1, Qk−2]

)
− bkMQk−1‖

(ii)
≤ Rmax + γ ‖Qk−1‖+ γ|1 + bk|ak−1 ‖Qk−2‖+ γ|1 + bk|αk−1 ‖Dk−1 [Qk−1, Qk−2]‖ , (36)

where (i) follows from the triangle inequality and (ii) follows from the definition of the infinity norm.

To proceed to bound (36), we consider two cases. If k < m
2 , there are at most a finite number of Dk’s, which are obviously

bounded. If k ≥ m
2 , we have |1 + bk|ak−1 = |k−m|

k ≤ 1. It follows from (36) that

‖Dk [Qk, Qk−1]‖
≤ Rmax + γ ‖Qk−1‖+ γ ‖Qk−2‖+ γ ‖Dk−1 [Qk−1, Qk−2]‖
(i)
≤ Rmax + 2γVmax + γ ‖Dk−1 [Qk−1, Qk−2]‖

(ii)
≤ Rmax

k−bm/2c∑
i=0

γi + 2Vmax

k−bm/2c∑
i=1

γi + γk−bm/2c
∥∥Dbm/2c [Qbm/2c, Qbm/2c−1

]∥∥ (37)

where bxc denotes the largest integer that is no larger than x. Note that (i) follows from the boundedness of Qk (Assump-
tion 5), and (ii) follows from applying (i) to Dt for t = k − 1, k − 2, . . . , bm/2c+ 1 iteratively. Since γ < 1, the first two
items in (ii) are bounded. Obviously, the third item is also bounded. Therefore, there exists some constant D̄, such that
‖Dk‖ ≤ D̄, ∀k ≥ 0.

The bound on εk follows directly from its definition as

‖εk‖ = ‖EP (Dk [Qk, Qk−1] (x, u)|Fk−1)−Dk [Qk, Qk−1]‖
≤ 2 ‖Dk [Qk, Qk−1]‖ ≤ 2D̄.

Thus we conclude our proof.

F PROOF OF THEOREM 3

We first prove two lemmas that will be useful for establishing the main results. The first lemma derives the dynamics of Qk
in terms of Ek.

Lemma 7. Consider MomentumQ as in Algorithm 1. For any k ≥ 1, we have

Qk =
1

k
(Qk−1 −Q0 + (k −m− 1)T Qk−1) +

1

k
((m+ 1)T Q0 − Ek−1). (38)

Proof. We prove the lemma by substituting the learning rates ak, bk, ck in Algorithm 1 and using induction. From (19), we
see that Q1 = T̂1Q0 = T Q0 − E0, Thus (38) holds when k = 1. Now assume (38) holds for a certain integer k > 1 we
prove it also holds for k + 1. To see this, we rewrite (19) as

Qk+1 =
1

k + 1
Qk −

1

k + 1
Qk−1 +

k

k + 1
Qk +

1

k + 1

[
(k −m)T̂kQk − (k −m− 1)T̂kQk−1

]
=

1

k + 1
Qk −

1

k + 1
Qk−1 +

1

k + 1
(Qk−1 −Q0 + (k −m− 1)T Qk−1

+ (m+ 1)T Q0 − Ek−1) +
1

k + 1

[
(k −m)T̂kQk − (k −m− 1)T̂kQk−1

]
=

1

k + 1
Qk −

1

k + 1
Qk−1 +

1

k + 1
(Qk−1 −Q0 + (k −m− 1)T Qk−1

+ (m+ 1)T Q0 − Ek−1) +
1

k + 1
[(k −m)T Qk − (k −m− 1)T Qk−1 − εk]

=
1

k + 1
(Qk −Q0 + (k −m)T Qk + (m+ 1)T Q0 − Ek),



which shows that (38) holds for k + 1. Therefore, by induction (38) holds for all k ≥ 1.

The second lemma derives the propagation of the approximation errors εk in the process of Q-function iteration, which can
be proved conveniently using Lemma 7.

Lemma 8. Suppose Assumption 5 holds and m ≥ 1
γ as in Algorithm 1. Then for all k ≥ m+ 1, we have

‖Q?−Qk‖ ≤
h̃Vmax

k(1− γ)
+

1

k

k−bmc−2∑
i=0

γi‖Ek−i‖, (39)

where h̃ = 2γ(m+ bmc+ 2) + 2.

Proof. For k ≥ m+ 1, expand Qk using (38) in Lemma 7 iteratively, yielding

‖Q? −Qk‖ =
1

k
‖Q0 −Qk−1 + (k −m− 1)(T Q? − T Qk−1) + (m+ 1)(T Q? − T Q0) + Ek‖

(i)
≤γ(k −m− 1) + 1

k
‖Q? −Qk−1‖+

γ(m+ 1) + 1

k
‖Q? −Q0‖+

‖Ek‖
k

(ii)
≤ γ(k − 1)

k
‖Q? −Qk−1‖+

2h

k
Vmax +

‖Ek‖
k

(iii)
≤ γ

k−bmc−1

k
(bmc+ 1)‖Q? −Qbmc+1‖+

2hVmax

k

k−bmc−2∑
i=0

γi +

k−bmc−2∑
i=0

γi

k
‖Ek−i‖

≤2
γ(bmc+ 1) + h

k(1− γ)
Vmax +

1

k

k−bmc−2∑
i=0

γi‖Ek−i‖,

where (i) follows from the triangle inequality and the contraction property (3), (ii) follows from Assumption 5 and because
m ≥ 1

γ , h = γ(m+ 1) + 1, and (iii) follows from applying (ii) to ‖Q? −Qt‖ for t = k− 1, k− 2, . . . , bmc+ 2 iteratively.

Then (39) follows from the definition of h̃.

Lemma 9. (Maximal Hoeffding-Azuma Inequality) [Alon and Spencer, 2008, Chapter 7]
Let {M1,M2, . . . ,MT } be a martingale difference sequence with respect to a sequence of random variables
{X1, X2, . . . , XT } (i.e. E(Mk+1|X1, X2, . . . , Xk) = 0, ∀1 ≤ k ≤ T ) and uniformly bounded by M̄ > 0 almost surely. If
we define Sk =

∑k
i=1Mi, then for any ε > 0, we have

P
(

max
1≤k≤T

Sk > ε

)
≤ exp

(
−ε2

2TM̄2

)
.

Now we are ready to prove the main results of Theorem 3.

Proof of Theorem 3. The proof applies Lemma 8 and the Maximal Hoeffding-Azuma Inequality (Lemma 9).

Applying Lemma 8 with k = T , we obtain

‖Q? −QT ‖ ≤
h̃Vmax

T (1− γ)
+

1

T

T−bmc−2∑
i=0

γi‖ET−i‖.

It suffices to bound the second term. For convenience, we denote K = T − bmc − 2. Observe that

1

T

K∑
i=0

γi‖ET−i‖ ≤
1

T

K∑
i=0

γi max
0≤i≤K

‖ET−i‖ ≤
max0≤i≤K ‖ET−i‖

(1− γ)T
. (40)



In remains to bound max
0≤i≤K

‖ET−i‖. Notice that max
0≤i≤K

‖ET−i‖ = max
(x,u)

max
0≤i≤K

|ET−i(x, u)|. For a given (x, u) and ε > 0,

we have

P
(

max
0≤i≤K

|ET−i(x, u)| > ε

)
= P

({
max

0≤i≤K
(ET−i(x, u)) > ε

}⋃{
max

0≤i≤K
(−ET−i(x, u)) > ε

})
= P

(
max

0≤i≤K
(ET−i(x, u)) > ε

)
+ P

(
max

0≤i≤K
(−ET−i(x, u)) > ε

)
, (41)

where D̄ is specified in Proposition 1. Since {εk(x, u)}k≥0 is a martingale difference sequence with respect to the filtration
Fk as defined previously, we apply the Maximal Hoeffding-Azuma inequality (see Lemma 9) and obtain

P
(

max
0≤i≤K

(ET−i(x, u)) > ε

)
≤ exp

(
−ε2

8(K + 1)D̄2

)
,

and

P
(

max
0≤i≤K

(−ET−i(x, u)) > ε

)
≤ exp

(
−ε2

8(K + 1)D̄2

)
.

Then we further bound (41) as

P
(

max
0≤i≤K

|ET−i(x, u)| > ε

)
≤ 2 exp

(
−ε2

8(K + 1)D̄2

)
.

Since we consider a finite state-action space where the number of state-action pairs is defined by n, we use the union bound
to obtain

P
(

max
0≤i≤K

‖ET−i‖ > ε

)
≤ 2n exp

(
−ε2

8(K + 1)D̄2

)
.

Letting δ = 2n exp
(

−ε2
8(K+1)D̄2

)
, and we have

P

(
max

0≤i≤K
‖ET−i‖ ≤ D̄

√
8(K + 1) log

2n

δ

)
≥ 1− δ,

where K = T − bmc − 2. By substituting the above bound into (40) yields the desired result.

G PROOF OF COROLLARY 1

In Theorem 3, take δ = 1
T 2 , and denote by AT the event “inequality (24) holds". Then the conclusion of Theorem 3

becomes P[AT ] ≥ 1 − 1
T 2 , or equivalently, P[AcT ] ≤ 1

T 2 , for all T > m, where the superscript c meaning taking the
set complement. It follows that

∑∞
T=m+1 P[AcT ] ≤

∑∞
T=m+1

1
T 2 < ∞. By the Borel–Cantelli lemma (see, for example,

Chapter 2.3, Theorem 2.3.1 of [Durrett, 2019]), this implies P[AcT i.o.] = 0, where i.o. stands for infinitely often. This is

equivalent to the statement that QT converges to Q∗ almost surely at a rate of at least O(

√
(T−bmc−1) log nT

(1−γ)2T ), where note

that in (24) the constant D̄ is proportional to 1
1−γ . Using the Õ notation which ignores the log T factor, the order of the

convergence rate can be written as Õ(

√
(T−bmc−1) log n

(1−γ)2T ). Thus it completes the proof.
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