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Abstract: Using machine learning (ML) to develop quantitative structure—activity 10 

relationship (QSAR) models for contaminant reactivity has emerged as a promising 11 

approach because it can effectively handle non-linear relationships. However, ML is often 12 

data-demanding, whereas data scarcity is common in QSAR model development. Here, 13 

we proposed two approaches to address this issue: combining small datasets and 14 

transferring knowledge between them. First, we compiled four individual datasets for 15 

four oxidants, i.e., SO4•-, HClO, O3 and ClO2, each dataset containing a different number 16 

of contaminants with their corresponding rate constants and reaction conditions (pH 17 

and/or temperature). We then used molecular fingerprints (MF) or molecular descriptors 18 

(MD) to represent the contaminants; combined them with ML algorithms to develop 19 

individual QSAR models for these four datasets; and interpreted the models by the 20 

Shapley Additive exPlantion (SHAP) method. The results showed that both the optimal 21 

contaminant representation and the best ML algorithm are dataset dependent. Next, we 22 

merged these four datasets and developed a unified model, which showed better 23 
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predictive performance on the datasets of HClO, O3 and ClO2 because the model 24 

‘corrected’ some wrongly learned effects of several atom groups. We further developed 25 

knowledge transfer models based on the second approach, the effectiveness of which 26 

depends on if there is consistent knowledge shared between the two datasets as well as 27 

the predictive performance of the respective single models. This study demonstrated the 28 

benefit of combining small similar datasets and transferring knowledge between them, 29 

which can be leveraged to boost the predictive performance of ML-assisted QSAR models. 30 

Synopsis: Two approaches improved the predictive performance of machine learning 31 

assisted QSAR models on contaminant oxidative reactivity: combining small datasets for 32 

different oxidants and knowledge transfer among them.  33 

Keywords: QSAR; machine learning; knowledge transfer; contaminant oxidation; water 34 

treatment 35 

       36 

 37 
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Oxidative processes play a vital role in removing organic  contaminants  during 41 

water and wastewater treatment.1 Various oxidants, from •OH, SO4•-,2-4 and ClO2 to 42 

ozone,5, 6 can be applied for different organic contaminants, such as personal care 43 

products, endocrine disrupting chemicals, pesticides and industrial chemicals. The 44 

oxidation rate constant of contaminants is an important parameter for optimizing the 45 

treatment process by helping to, for example, estimate the removal efficiency of 46 

contaminants or determine the dosage of oxidants or the treatment retention time. 47 

Experimentally measuring reaction rate constants is time-consuming and labor-intensive. 48 

In comparison, developing quantitative structure—activity relationship (QSAR) models 49 

is an effective approach to estimating the rate constants for numerous contaminants, thus 50 

receiving increasing attention.7-15 Built upon previous experimental results, QSAR models 51 

can correlate chemical structures with various chemical activities and be further applied 52 

to new query compounds to estimate their corresponding activity.     53 

Many QSAR models have been successfully developed to predict the rate 54 

constants of various contaminants toward different oxidants, such as •OH, SO4•- and O3.9, 55 

11, 16-23 To develop QSAR models, different chemical representations, such as molecular 56 

descriptors (MD),16 molecular fingerprints (MF)13 or molecular images,14 can be combined 57 

with different regression methods, including multiple linear regression (MLR)19, 20 and 58 

machine learning (ML).14, 15 With more and more contaminants involved, traditional MLR 59 

has limited applicability because non-linear relationships may exist between 60 

contaminants and reaction rate constants. To handle non-linear relationships, ML has 61 

received increasing attention because of its powerful fitting ability. For example, Huang 62 

et al. reported a better performance of a support vector machine (SVM)-based model on 63 

predicting the rate constants of contaminants toward O3 than MLR-based QSAR models.20 64 

Our recent study showed that ML-based models can achieve satisfactory predictive 65 

performance for a large dataset of •OH reactivity.15  66 
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ML algorithms, especially deep neural networks, often need a massive amount of 67 

data. However, data scarcity is a common issue when developing QSAR models for rate 68 

constants toward different oxidants, such as only 85 samples in a dataset of SO4•-  radicals 69 

21 or 136 samples in an O3 dataset.20 It is however impractical to experimentally measure 70 

rate constants (logk) for a large number of contaminants toward different oxidants to 71 

increase the sample size. We here propose a simple and effective approach—combining 72 

small datasets for different oxidants to form a larger dataset. This combined dataset 73 

contains samples for five common oxidants, including •OH, SO4•-, O3, ClO2 and HClO. 74 

Previous studies treated these small datasets independently and developed separate 75 

QSAR models for each of them.7, 16 However, all the involved reactions are oxidation 76 

reactions so they should share some common science. For example, for all the oxidants, 77 

we know that electron-donating or -withdrawing groups can increase or decrease the rate 78 

constant (k) for oxidation reactions, which was indeed correctly learned by our recent 79 

QSAR models for •OH radicals.15 Ye et al. found that for SO4•- electron-donating groups 80 

(except for —N<) exhibit a positive coefficient for k, while electron-withdrawing groups 81 

(except for —S—) exhibit a negative coefficient for k.19 Lee et al.’s study indicated 82 

decreasing k values with increasing Hammett constants for both ClO2 and HClO,7 which 83 

might be attributed to higher bond dissociation energies when electron-withdrawing 84 

substituents are present.24 Huang et al. reported that EHOMO (Energy of the Highest 85 

Occupied Molecular Orbital) was one of the most important descriptors in their QSAR 86 

model for O3 because, as a measure of the electron-donating ability of a molecule, EHOMO 87 

can be used to characterize the affinity of the molecule toward an electrophile.20, 25 88 

Compounds with higher EHOMO are oxidized by O3 with faster rates due to their stronger 89 

electron-donating ability. Because the shared science may be transferred from one dataset 90 

to another, combining small datasets to form a larger dataset may improve the predictive 91 

performance of the obtained model for all the oxidants. To the best of our knowledge, 92 
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this approach—developing a unified QSAR model on this large, unified dataset—has 93 

never been investigated before in developing QSAR models for contaminant reactivity.  94 

Transfer learning, widely used in computer vision, is another popular approach to 95 

solving the data scarcity issue.26 Transfer learning refers to pre-training a model on a large 96 

dataset and then tuning this pre-trained model on a smaller but similar dataset. We 97 

previously employed this concept when developing QSAR models for predicting rate 98 

constants for •OH radicals and found that, when employing molecular images to 99 

represent contaminants and pre-training a convolutional neural network (CNN) model 100 

on the ImageNet dataset, it can considerably increase the generalization ability of the 101 

QSAR models.14 The ImageNet dataset is however quite different from the contaminant 102 

image dataset.27 This transfer learning approach is also only limited to CNN algorithms.  103 

For the datasets of •OH, SO4•-, HClO, O3 and ClO2, they are similar to each other 104 

in terms of contaminant species and certain reaction mechanisms, as examples discussed 105 

above. Therefore, it would be interesting and beneficial to investigate whether the shared 106 

knowledge between any two datasets is transferable or not. However, how to effectively 107 

transfer knowledge among these different datasets without using CNN algorithms is still 108 

challenging. We here proposed a knowledge transfer approach for non-CNN algorithms, 109 

such as tree-based ML algorithms (Figure 1b). Our results below showed that the 110 

predictive performance of a QSAR model for a specific oxidant can be enhanced by 111 

learning from another oxidant without increasing the sample size of either oxidant.  112 

In this study, we compiled the largest four datasets for four common oxidants, 113 

namely SO4•- HClO, O3, and ClO2, by including the reaction conditions, i.e., pH and/or 114 

temperature. The reaction conditions were seldom considered in previous studies, but 115 

including them can significantly increase the sample size. Two chemical representations, 116 

i.e., molecular descriptors (MDs) and molecular fingerprints (MFs), were used to combine 117 

with different ML algorithms to develop QSAR models. We first developed single QSAR 118 
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models for each oxidant. We then combined all of these datasets to form a large dataset 119 

and developed a unified QSAR model. The effect of this operation on the predictive 120 

performance of each dataset was investigated. We next used the knowledge transfer 121 

approach to develop knowledge transfer-based models and compared their predictive 122 

performance with the respective single models. The overall workflow of this study is 123 

summarized in Figure 1.  124 

 125 

Figure 1. The workflow of this study. (A) The single and unified model development 126 

based on MFs or MDs. (B) An illustration of how knowledge transfer is achieved by an 127 

example of transferring knowledge from the ClO2 dataset to the O3 dataset (More details 128 

are in Section 2.4).  129 

 130 

2. Materials and methods 131 

2.1 Datasets 132 
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The kinetic data for the four oxidants were collected from the published literature, 133 

which were mined through Google Scholar (https://scholar.google.com/) by using the 134 

keywords: “sulfate radical”, “HClO”, “O3” or “ClO2” + “kinetics”. As many as possible 135 

samples were collected and the attributes included contaminants, their corresponding 136 

rate constants (k), and reaction conditions (i.e., pH and/or temperature (T)). The number 137 

of studies we collected is listed in Table 1, in which the reported datasets for QSAR 138 

studies were directly cited without citing the original sources. Reaction conditions were 139 

often not included in previous studies. We here included the reaction conditions because 140 

reaction rate constants are condition dependent. For example, pH can affect the 141 

dissociation of some contaminants while differently charged contaminant species react 142 

with these oxidants at different rates.6 Moreover, we can increase the sample size by 143 

including the reaction conditions. All the k values were log-transformed (logk) to reduce 144 

the range of values. If multiple logk values were reported for a contaminant for the same 145 

conditions, an average logk value was taken. The summary of these four datasets is listed 146 

in Table 1 and the details of the datasets are listed in “data.xlsx” in the supporting 147 

information (SI).  148 

Table 1. Summary of the four datasets used in this study 149 

Oxidant Number of 
data points 

Number of 
compounds 

Reaction 
conditions 

Number of 
studies 

HClO 195 188 pH 29 

ClO2 191 143 pH 32 

O3 759 484 pH 142 

SO4•- 557 342 pH, T 33 

 150 

2.2 Molecular descriptors (MDs) and molecular fingerprints (MFs) 151 
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The simplified molecular-input line-entry system (SMILES) of organic 152 

contaminants was obtained by the ChemDraw program. The PaDEL program 28 and the 153 

RDKit package in Python® were employed to convert SMILES to MDs and MFs, 154 

respectively. The MDs of one contaminant include 1444 physicochemical properties and 155 

are represented by a vector with a length of 1444. Each property is one feature or an 156 

independent variable. Hence, for the MD representation, the total number of features was 157 

1445 (with pH) or 1446 (with pH and T). The MF is a binary vector that encodes chemical 158 

structures into 0s and 1s. Readers are referred to our recent papers for more details on 159 

how MFs represent chemicals.15, 29  160 

2.3 Model development and interpretation 161 

Before model development, we conducted data preprocessing, including missing 162 

value imputation, feature scaling, feature selection and/or outlier treatment; and ML 163 

algorithm screening. The details of these procedures can be found in Text S1. For each 164 

dataset and each representation, after obtaining the optimum ML algorithm, we tuned 165 

their hyperparameters by the Bayesian optimization algorithm, which can efficiently 166 

explore a large search space. It will determine the next selection based on the last selection. 167 

We have previously used this approach to optimize the hyperparameters of a deep neural 168 

network and XGBoost.15 The working mechanism of this approach has been well 169 

documented.30, 31 A 10-fold cross-validation was also applied to the training dataset and 170 

the optimum hyperparameters were the ones that achieved the best validation 171 

performance. The root mean squared error (RMSE) and R2 were used as the evaluation 172 

metrics for the predictive performance. Lower RMSE and higher R2 values mean better 173 

predictive performance. After obtaining the optimum hyperparameters, the ML 174 

algorithms were retrained on the whole training dataset to obtain the final model. The 175 

generalization ability of the final model was evaluated on the test dataset, which was 176 

never used during the model development.  177 
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After the models had been well trained and showed satisfactory predictive 178 

performance, we used the SHAP method to interpret the models to check if predictions 179 

made by the models are based on a correct understanding of the feature importance. We 180 

previously used this method to interpret QSAR models for •OH radicals.15 The effects of 181 

pH, T, and atom groups or MDs on the reactivity (logk) were investigated based on the 182 

SHAP interpretation results.   183 

2.4 Unified model and knowledge transfer-based model development 184 

To combine the four datasets to form a large dataset, we added a new feature 185 

called “Oxidant” to indicate the type of oxidant for a given entry. For these four datasets, 186 

their “Oxidant” feature was labeled as “SO4•-”, “HClO”, “O3” or “ClO2”. As this new 187 

categorical feature should be encoded as a numeric feature, we screened eight encoding 188 

methods to select the best one rather than arbitrarily selecting one (Table S1). We then 189 

followed the same procedure as described above to develop a unified model (both MF-190 

based and MD-based) on this large dataset, as shown in Figure 1A. It should be noted 191 

that we chose not to combine the entire four datasets first and then re-split them. Instead, 192 

we combined all the initial training datasets used in developing the single QSAR models 193 

to form a combined training dataset. We did the same thing for the individual test 194 

datasets to form a combined test dataset, so we can ensure that the generalization ability 195 

of the unified model is tested on the same test chemicals as those in the respective single 196 

dataset. Hence, any enhancements would be meaningful because the same test chemicals 197 

were used. For comparison, in a typical Kaggle competition (https://www.kaggle.com/), 198 

even subtle enhancement in the prediction accuracy of a model is desirable and 199 

meaningful, which determines if one wins the competition or not, because they are all 200 

required to predict the same test dataset.  201 

Figure 1B shows our proposed knowledge transfer approach to developing 202 

knowledge transfer-based models. Taking the ClO2 and O3 datasets as an example, we 203 
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first used the single model developed on the ClO2 dataset to predict the reactivity of the 204 

contaminants in the O3 dataset toward ClO2. We then added these predictions as a new 205 

input feature to the original O3 dataset. This modified O3 dataset thus likely contains some 206 

structure-reactivity information from the ClO2 model. We then developed another model 207 

for this new O3 dataset—referred to as a ‘knowledge transfer-based model’—and 208 

compared its performance with that of the single model developed on the original O3 209 

dataset. As described above, the test chemicals remained unchanged when evaluating the 210 

performance of the knowledge transfer-based models. Following this approach, we 211 

developed a total of 6 knowledge transfer models for three sets of (O3, ClO2), (ClO2, HClO) 212 

and (O3, HClO). The •OH and SO4•- datasets were not used here because the •OH dataset 213 

did not contain reaction conditions while the SO4•- dataset contains T as a reaction 214 

condition.     215 

2.5 Applicability domain (AD) analysis 216 

Because there are reaction conditions in the input, the reported fingerprint-based 217 

similarity method cannot be directly applied here.15 We thus chose a combination of 218 

fingerprint-based similarity and range-based methods to determine AD. First, any query 219 

chemicals with the reaction conditions (pH and/or T) outside the ranges of pH and/or T 220 

of the training dataset were seen as outside of the AD and were not further investigated. 221 

For query chemicals whose reaction conditions are within the ranges of pH and/or T of 222 

the training dataset, we calculated their similarity to the contaminants in the training 223 

dataset based on the Tanimoto index.32 15 To determine the optimal similarity threshold, 224 

we set the chemicals in the test dataset as query chemicals. Any chemicals that were 225 

outside the AD (i.e., the similarity values below the threshold) were removed from the 226 

test dataset and the RMSEtest was recalculated. The optimal threshold is the one that 227 

achieved the lowest RMSEtest.   228 

3. Results and discussion 229 
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The detailed results of ML algorithm screening, feature selection and 230 

hyperparameter tuning are shown in Text S2. Briefly, different optimum ML algorithms 231 

were selected for different datasets, indicating that the optimum ML algorithm is dataset 232 

dependent. There is also overfitting in all the ML models with their default 233 

hyperparameters, which was alleviated by feature selection and hyperparameter tuning.  234 

3.1 MF versus MD representation and the final individual QSAR models 235 

The statistical comparison between the performances of the two representations 236 

are plotted in Figure 2. For all these four oxidants, the training performance for the MD 237 

representation is always better than that for the MF-based. However, that is not always 238 

the case regarding the generalization ability on the test dataset. For the datasets of SO4•- 239 

and HClO, better predictive performance was achieved on both the training and test 240 

datasets for the MD-based models. Hence, the MD-based models were selected as the 241 

QSAR models for SO4•- and HClO. For the datasets of O3 and ClO2, the MD-based models 242 

showed better predictive performance on the training datasets but worse predictive 243 

performance on the test datasets than the MF-based models. This means that overfitting 244 

was more serious in the MD-based models. Hence, the final QSAR models for O3 and 245 

ClO2 were the MF-based models. This result indicated that the optimum chemical 246 

representation is dataset-dependent. One possible reason is that the calculated MDs by 247 

the commercial PaDEL program might correlate better with the reactivity in the SO4•- and 248 

HClO datasets than with that in the O3 and ClO2 datasets. Therefore, it is recommended 249 

to screen the optimum chemical representation in future modeling rather than arbitrarily 250 

selecting one.  251 

After selecting the appropriate model for each dataset, we compared their 252 

performance with previously published ones (results in Text S3).  Note that the sizes of 253 

our four datasets are much larger. Generally, the predictive performance of a model 254 

becomes worse with increasing data size,15 likely due to the inclusion of more noise 255 
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information. For the SO4•- dataset, our single model showed better predictive 256 

performance than previous studies despite the larger sample size. Worse performance 257 

was observed for the O3 dataset because of its significantly larger data size. For the ClO2 258 

and HClO datasets, we were only able to find one article that reported models for amines5 259 

and no test performance was provided so it is difficult to make a comparison. 260 

 261 

 262 

Figure 2. Comparison of the two representations in terms of the predictive performance 263 

on the training or the test dataset for the four oxidants.  264 

3.2 Interpretation of the single QSAR models 265 

We interpreted all the single QSAR models to verify (1) if they made predictions 266 

based on the correct science and (2) if there are common features used among these 267 

models. The latter information may be useful to validate the knowledge transfer strategy. 268 

SO4·-
_tr

ain

SO4·-
_te

st

HClO
_tr

ain

HClO
_te

st

O3_
tra

in

O3_
tes

t

ClO
2_

tra
in

ClO
2_

tes
t

0.0

0.5

1.0

1.5

2.0

2.5

R
M

SE
te

st

 MF
 MD

Page 12 of 27

ACS Paragon Plus Environment

Environmental Science & Technology



Figure 3 shows the SHAP interpretation of the MF-based single QSAR models with the 269 

top 10 features shown (9 atom groups + pH). The interpretations for the pH effects and 270 

the pattern distribution are illustrated in Text S4. The results suggest that all the pH 271 

effects were correctly learned, and that different pattern distributions resulted from the 272 

employed different ML algorithms. Figure 4 shows the effect of the top 9 atom groups 273 

identified in Figure 3 on the logk. As shown, the four models share several common atom 274 

groups. For example, the 3rd atom group (aromatic carbon) in the SO4•- model is the same 275 

as the 8th atom group in the O3 model. The number of shared atom groups among these 276 

four oxidants is summarized in Table S2. Surprisingly, the learned contributions of some 277 

of these atom groups toward logk differ significantly among the four datasets. For 278 

example, aromatic carbons in the SO4•- model (3rd) contributed positively to the logk while 279 

those in the HClO (8th), O3 (3rd), or ClO2 (5th) model contributed negatively. The –NH2 280 

group increased the logk in the O3 model (7th) but decreased the logk in the ClO2 model 281 

(3rd). However, both aromatic carbons and –NH2 are known electron-donating groups 282 

whose presence should lead to higher logk values. Therefore, only the SO4•- model 283 

seemed to ‘correctly’ learn these relationships (thus showing better predictive 284 

performance) whereas the HClO, O3 and ClO2 models seemed to ‘incorrectly’ learn some 285 

of them (thus showing worse predictive performance).      286 
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 287 

Figure 3. The SHAP interpretation of the MF-based single QSAR models for the four 288 

oxidants. The x-axes are the SHAP values and the y-axes are the identified top 10 most 289 

influential features. The numbered features, such as 318, 261 and 1702, represent the 290 

feature positions in the MFs, with each position representing a certain atom group (see 291 

below). MFs are vectors of 1s and 0s; the red color represents 1s in those positions—the 292 

presence of an atom group—while blue means 0s—no atom groups in those positions. 293 

pH values are continuous values from the minimum to the maximum for different 294 

datasets so they are colored from blue to red. A feature with a positive SHAP value means 295 

that it can increase the logk value; whereas a feature with a negative SHAP value means 296 

that it can decrease the logk value. The pattern for each feature is composed of the SHAP 297 

values for all the chemicals in the dataset that contain that feature. All other SHAP plots 298 

in this work follow the same interpretation.  299 
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Figure 4. The effect of the top 9 atom groups shown in Figure 3 on the logk values, in 301 

which the up and down arrows mean increasing and decreasing the logk values, 302 

respectively. The same atom groups in different datasets are marked by squares and 303 

connected by dotted lines. The –NH2 and carbonyl groups are overlapped at the 3rd 304 

position for the ClO2 dataset. Note that the length of the MFs has been optimized by the 305 

Bayesian algorithm to achieve the best predictive performance, but the overlap still 306 

happened, indicating the intrinsic limitation associated with the MFs. The blue dots 307 

represent the center atoms; the black solid lines represent the bonds in the feature; the 308 

grey lines represent the neighboring bonds not in the feature; the dotted lines represent 309 

conjugated structures, e.g., aromatic; and the yellow color represents an aromatic atom 310 

in the feature. All heavy atoms except for C, such as O and Cl, are shown. 311 

For the –NH2 group in the ClO2 dataset, its negative effect on logk resulted from 312 

its overlap with the electron-withdrawing carbonyl group in the MFs, that is, the position 313 

of 689 in the MFs (Figure 3D) is assigned to two atom groups (—NH2 and carbonyl) while 314 

carbonyl is a strong electron-withdrawing group that decreases the logk. To understand 315 

the reason for the observed negative effect of aromatic carbons, we plotted the 316 

distribution of experimental logk values for the compounds with or without aromatic 317 

carbons. Figure S1 shows that the average logk value for the compounds containing 318 

aromatic carbons in the SO4•- dataset is greater than that for the compounds not 319 

containing aromatic carbons in the same dataset, whereas this trend is reversed in the 320 

datasets of HClO, O3 and ClO2. This explains why the developed models learned different 321 

effects of aromatic carbons on the logk. This finding suggests that the average effect of a 322 

specific atom group on the chemical reactivity is dataset-dependent, which is expected. 323 

For example, when ClO2 reacts with aliphatic amines, the logk value decreases in the 324 

following order: tertiary amine > secondary amine > primary amine.6 If an ML-based 325 

QSAR model is developed based on this dataset, a primary amine will be ‘learned’ to be 326 
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an atom group that decreases logk because the average experimental logk for primary 327 

amines is smaller than that for all amines in the dataset, although –NH2 is a well-known 328 

electron-donating group. In other words, the types of chemicals involved in a dataset 329 

affects the model-derived positive or negative contribution of an atom group to logk. To 330 

illustrate the above idea for our datasets, we took the ClO2 dataset as an example, where 331 

it has 36 chemicals containing aromatic carbons (5th atom group for ClO2 in Figure 4). 332 

Among these 36 chemicals, 28 of them (77%) contain electron-donating groups, such as –333 

O–, —NH2, or —OH (Table S3), that are stronger in their electron-donating effects than 334 

aromatic carbons. As a result, aromatic carbons in the ClO2 dataset were ‘learned’ to have 335 

negative effects on logk. The same explanation can be applied to the HClO and O3 datasets. 336 

We believe that if a dataset is large enough and contains a diverse range of chemical 337 

structures, the corresponding ML model should be able to learn the correct effects of 338 

various atom groups that match the known chemistry. In other words, the quality of a 339 

dataset determines the quality of the corresponding ML model, which is similar to that 340 

of traditional QSAR models.  341 

Figure S2 shows the SHAP interpretation of the MD-based single QSAR models. 342 

Detailed explanation for them was provided in Text S5. Compared with the MF-based 343 

models, fewer MDs (only 1 – 2) were shared among these four models. It is not easy to 344 

examine how some of these MDs affected the logk because their physicochemical 345 

meanings are not readily interpretable.  346 

3.3 Unified models based on the MFs or MDs 347 

To improve the model performance, we combined the four datasets to form a large 348 

unified dataset and developed a MF-based unified model (refer to as “MF-UN-1”), 349 

following the same procedure as for the single MF-based models. Figure 5A shows better 350 

predictive performance of MF-UN-1 on the test dataset (R2test = 0.76) than all the single 351 

models (Text S3) (the RMSE values depend on the ranges of the logk values, so they were 352 
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not used for comparison), indicating the effectiveness of the unified approach. We then 353 

examined its predictive performance on the four single datasets, as shown in Figure 5B. 354 

Except for the SO4•- dataset, the performance of MF-UN-1 is better than that of the 355 

respective single models for the other three datasets. Figure 5C plots the distribution of 356 

the logk values in the four datasets, demonstrating the range of logk values for the SO4•- 357 

dataset deviating substantially from that for the other three datasets. This may be the 358 

reason that the performance of MF-UN-1 on the SO4•- dataset was worse.  359 

Figure 5D shows the SHAP interpretation of this unified model and the identified 360 

top 6 atom groups (among the top 10 features in Figure 5D, only 6 of them are atom 361 

groups). Table S4 shows these atom groups as well as their effects on the logk, in which 362 

all of these effects were correctly learned. Although aromatic carbons were not among 363 

the top 6 atom groups, we still examined them here because their effects in the HClO, 364 

ClO2 and O3 datasets, as well as the effect of the –NH2 group in the ClO2 dataset, were 365 

previously learned to decrease the logk. For MF-UN-1, interestingly, the effect of -NH2 366 

was ‘learned’ to be increasing the logk, although the aromatic carbons still decreased the 367 

logk in this unified dataset. For the SO4•- dataset, the effect of aromatic carbons changed 368 

from increasing the logk in the individual model to decreasing the logk in MF-UN-1, 369 

which should be the reason for the worse predictive performance of the unified model 370 

on the SO4•- dataset. In contrast, the effect of the -NH2 group in the ClO2 dataset changed 371 

from decreasing the logk in the individual model to increasing the logk in MF-UN-1, so 372 

the predictive performance improved (Figure 5B). The effects of these two groups on the 373 

logk are the same for HClO and O3 datasets before and after combining the datasets, but 374 

the predictive performance became better, which may be due to some unknown 375 

synergetic effects or similar “correction” effects of atom groups that are not among top 9. 376 
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 377 

Figure 5. The predictive performance of the unified model on the training and test 378 

datasets for the unified dataset (A) and the single datasets (B); (C) the ranges of logk 379 

values for the single datasets; and (D) the SHAP interpretation of the unified model, in 380 

which the x-axis is the SHAP value and the y-axis is the features. The features of 381 

‘Oxidant_1’, ‘Oxidant_2’, and ‘Oxidant_3’ are the encoded features for these four 382 

oxidants and they can take only values of 0 or 1. Their different combinations (i.e., 383 

[‘Oxidant_1’, ‘Oxidant_2’, ‘Oxidant_3’]) represent different oxidants, such as [0, 0, 1] for 384 

HClO or [0, 1, 0] for O3. Other features represent atom groups and are listed in Table S4 385 

Figure S3 shows the performance of the unified model based on the MD 386 

representation. This unified model was developed following the same procedure as for 387 

the single MD-based models. The RMSEtest (1.67, Figure S3A) is slightly higher than that 388 
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of MF-UN-1 (1.62); the predictions made by the MD-based unified model marginally 389 

improved for O3 and ClO2, but marginally decreased for SO4•- and HClO (Figure S3B). 390 

This improvement was less than by MF-UN-1 (Figure 3B) and the overfitting trend was 391 

more obvious, as suggested by the larger difference in the RMSE values between the 392 

training and test datasets (Figure S3C). The SHAP patterns in Figure S5D are similar to 393 

those of the single MDs-based models (Figure S2). Overall, the MD representation did 394 

not perform as well as the MF representation when developing the unified model, so we 395 

only focus on the MF representation below.  396 

As mentioned above, the range of logk values for SO4•- is quite different from those 397 

of the other three datasets (Figure 3C), which may be one reason that the predictive 398 

performance of MF-UN-1 did not improve for SO4•-. To test this idea, we combined the 399 

SO4•- dataset with a reported OH• dataset to form a large dataset because their logk values 400 

fall in the same range (Figure S4C). The OH• dataset contains 1086 chemicals and was 401 

previously used successfully to develop ML-based QSAR models.14, 15 We then developed 402 

another MF-based unified model (refers to as “MF-UN-2”) on this dataset and Figure S4A 403 

shows the R2test = 0.68. Figure S4B suggests that the predictive performance of MF-UN-2 404 

for SO4•- became much better than the single model while that for OH• became worse. As 405 

the SHAP interpretation of MF-UN-2 shown in Figure S4D, the effect of the identified top 406 

8 atom groups on the logk were all correctly learned (only 8 of the top 10 features are 407 

atom groups) (Table S5). This worse performance for •OH was probably because the 408 

additional fixed T (25 oC) and pH (7) conditions were added into the •OH dataset to 409 

combine with the SO4•- dataset, which might have introduced noise information to the 410 

model, although future work is needed to understand the exact reason. For prediction 411 

purposes, MF-UN-2 can be used for SO4•- while the reported MF-based single model is 412 

still recommended for •OH. 413 
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Finally, we combined all of these five datasets to form the largest dataset to 414 

develop another MF-based unified model (refers to as “MF-UN-3”). Figure S5A shows 415 

that the R2test reached 0.82. While the predictions for SO4•-, HClO and ClO2 became better, 416 

those for •OH and O3 became slightly worse (Figure S5B). Table S6 shows the effects of 417 

the identified top 8 atom groups (only 8 of the top 10 features are atom groups) based on 418 

the SHAP plot of Figure S5C, and all of them were correctly learned. The marginally 419 

worse predictive performance for the •OH dataset is explained above, but the marginally 420 

worse predictive performance than MF-UN-1 for the O3 dataset is unexpected. We do not 421 

have a good explanation for this yet. These results suggested that it is not always better 422 

to combine datasets to achieve better predictive performance.  423 

 424 

3.4 Knowledge transfer models 425 

Figure 6 shows the predictive performance of different knowledge transfer models 426 

that were developed based on our proposed approach shown in Figure 1B. The SO4•- 427 

dataset was not used because it contains not only pH but also T, while other three datasets 428 

only contain pH. The models developed based on these three datasets cannot make 429 

predictions for contaminants under different T.  430 
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 431 

Figure 6. The predictive performance of different ML models before and after knowledge 432 

transfer (KT)  433 

There are three distinct scenarios for these knowledge transfer models. For 434 

O3/HClO, both of the knowledge transfer models show better predictive performance 435 

than the original models before the transfer. There is one shared atom group (carbonyl) 436 

among the top 9 atom groups between O3 and HClO (Figure 4) and the effect of this atom 437 

group was consistent (i.e., decreasing the logk) between the two datasets. Moreover, the 438 

predictive performance of the single models for O3 and HClO was similar (RMSEtest 2.06 439 

for O3 and 2.10 for HClO). Both of these two factors should have contributed to the 440 

effectiveness of knowledge transfer. For O3/ClO2, the knowledge transfer model for O3 441 

became better after receiving knowledge from the ClO2 model, while the knowledge 442 

transfer model for ClO2 became worse. There are 3 atom groups shared between O3 and 443 

ClO2, but the effects of –NH2 in these two datasets are opposite (Figure 4). Moreover, the 444 

predictive performance of the single model for ClO2 (RMSEtest 1.77) is better than that for 445 
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O3 (RMSEtest 2.06), so the information transferred from O3 to ClO2 has more uncertainties, 446 

which should have led to the worse performance. For ClO2/HClO, no change in the 447 

predictive performance was observed for both oxidants. This is expected because there 448 

are no shared atom groups between these two datasets (Figure 4). These results indicated 449 

that the effectiveness of our knowledge transfer approach is determined by if there is 450 

consistent knowledge shared by the single models as well as their respective predictive 451 

performance.    452 

 453 

3.5 The final QSAR models and their AD determination 454 

For the four oxidants, we ranked all the developed models in terms of the 455 

predictive performance and finally obtained the optimal QSAR models, shown in Table 456 

2. Both the unified models and transfer learning models outperformed all the individual 457 

models and were selected as the final models, validating the effectiveness of our 458 

proposed two approaches. We next determined their ADs, as shown in Table 2. For each 459 

model, with increasing threshold value, more contaminants were identified as outside 460 

AD and the recalculated RMSEtest first decreased and then increased. The optimal 461 

threshold values for these four datasets are bolded in Table 2. For a query compound, if 462 

its similarity to the contaminants in the training dataset is above the threshold value, the 463 

models can provide a reliable prediction for its reactivity toward one of these four 464 

oxidants.   465 

 466 

Table 2. The final selected models for each dataset and their AD determination  467 

Dataset Best Model 
Best 

RMSEtest 
Threshold 

value 

# of 
contaminants 
outside AD 

Recalculated 
RMSEtest 

SO4•- MF-UN-2 0.703 0.50 0 0.703 
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0.60 1 0.699 
0.70 2 0.700 

HClO 

Knowledge 
Transfer 

model (O3-
HClO) 

1.982 

0.28 0 1.982 
0.30 1 1.955 
0.42 2 1.895 
0.43 3 1.906 

O3 MF-UN-1 1.942 

0.50 0 1.942 
0.55 1 1.909 
0.56 3 1.906 
0.62 4 1.912 

ClO2 MF-UN-3 1.465 
0.66 0 1.465 
0.67 1 1.468 
0.83 2 1.486 

 468 

4. Environmental significance 469 

In this study, we investigated QSAR models for datasets that are different but 470 

share some similarities (i.e., oxidation reactions). Previous studies viewed these datasets 471 

independently, whereas we tried to obtain relationships among them to enhance the 472 

predictive performance of the QSAR models. We proposed two approaches—combining 473 

individual datasets to form a large, unified dataset and transferring knowledge between 474 

individual datasets. When developing single ML models using these single datasets, we 475 

found that (1) the optimal ML algorithm is dataset dependent. Screening ML algorithms 476 

from several candidate algorithms is recommended and simpler ML algorithms are 477 

preferred if they show similar predictive performance as complex ones; and (2) the 478 

optimal representation for contaminants is also dataset-dependent because some 479 

representations may not capture the key features of the dataset. Combining similar 480 

datasets to form a large dataset and developing a unified model can generally improve 481 

the predictive performance on the individual datasets, because some ‘wrongly’ learned 482 

knowledge based on a smaller dataset (e.g., bias of the dataset) may be corrected this way. 483 

In other words, data bias can be mitigated by increasing the sample size. Knowledge 484 
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transfer is effective when there is consistent knowledge shared between the two datasets 485 

and when the single models themselves have good predictive performance. Overall, this 486 

study provided new insights into developing ML-based QSAR models for small datasets. 487 

We demonstrated that there are synergistic effects among similar datasets, which can be 488 

leveraged to boost the predictive performance of QSAR models.   489 
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