

This document is confidential and is proprietary to the American Chemical Society and its authors. Do not copy or disclose without written permission. If you have received this item in error, notify the sender and delete all copies.

Knowledge transfer between small datasets for boosting the predictive performance of machine learning assisted QSAR models on contaminant oxidative reactivity

Journal:	<i>Environmental Science & Technology</i>
Manuscript ID	Draft
Manuscript Type:	Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Zhong, Shifa; Case Western Reserve University, Civil Engineering Zhang, Yanping; Hebei University of Technology Zhang, Huichun; Case Western Reserve University Case School of Engineering, Civil and Environmental Engineering

SCHOLARONE™
Manuscripts

1 **Knowledge transfer between small datasets for boosting the predictive performance
2 of machine learning assisted QSAR models on contaminant oxidative reactivity**

3 Shifa Zhong¹, Yanping Zhang^{2*} and Huichun Zhang^{1*}

4 ¹ Department of Civil and Environmental Engineering, Case Western Reserve University,

5 2104 Adelbert Road, Cleveland, OH 44106-7201, United States

6 ² School of Civil Engineering and Transportation, Hebei University of Technology,

7 Tianjin 300401, China

8 ***Corresponding Authors**

9 E-mail: hjz13@case.edu, zypfit@hebut.edu.cn

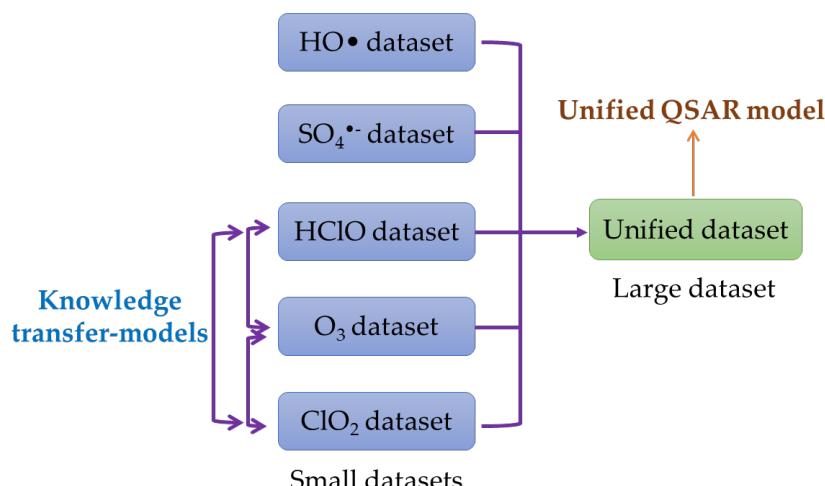
10 **Abstract:** Using machine learning (ML) to develop quantitative structure–activity
11 relationship (QSAR) models for contaminant reactivity has emerged as a promising
12 approach because it can effectively handle non-linear relationships. However, ML is often
13 data-demanding, whereas data scarcity is common in QSAR model development. Here,
14 we proposed two approaches to address this issue: combining small datasets and
15 transferring knowledge between them. First, we compiled four individual datasets for
16 four oxidants, i.e., $\text{SO}_4^{\cdot-}$, HClO , O_3 and ClO_2 , each dataset containing a different number
17 of contaminants with their corresponding rate constants and reaction conditions (pH
18 and/or temperature). We then used molecular fingerprints (MF) or molecular descriptors
19 (MD) to represent the contaminants; combined them with ML algorithms to develop
20 individual QSAR models for these four datasets; and interpreted the models by the
21 Shapley Additive exPlantion (SHAP) method. The results showed that both the optimal
22 contaminant representation and the best ML algorithm are dataset dependent. Next, we
23 merged these four datasets and developed a unified model, which showed better

24 predictive performance on the datasets of HClO , O_3 and ClO_2 because the model
25 'corrected' some wrongly learned effects of several atom groups. We further developed
26 knowledge transfer models based on the second approach, the effectiveness of which
27 depends on if there is consistent knowledge shared between the two datasets as well as
28 the predictive performance of the respective single models. This study demonstrated the
29 benefit of combining small similar datasets and transferring knowledge between them,
30 which can be leveraged to boost the predictive performance of ML-assisted QSAR models.

31 **Synopsis:** Two approaches improved the predictive performance of machine learning
32 assisted QSAR models on contaminant oxidative reactivity: combining small datasets for
33 different oxidants and knowledge transfer among them.

34 **Keywords:** QSAR; machine learning; knowledge transfer; contaminant oxidation; water
35 treatment

36



37

38 TOC Art

39

40 1. Introduction

41 Oxidative processes play a vital role in removing organic contaminants during
42 water and wastewater treatment.¹ Various oxidants, from $\bullet\text{OH}$, $\text{SO}_4^{\bullet-}$,²⁻⁴ and ClO_2 to
43 ozone,^{5, 6} can be applied for different organic contaminants, such as personal care
44 products, endocrine disrupting chemicals, pesticides and industrial chemicals. The
45 oxidation rate constant of contaminants is an important parameter for optimizing the
46 treatment process by helping to, for example, estimate the removal efficiency of
47 contaminants or determine the dosage of oxidants or the treatment retention time.
48 Experimentally measuring reaction rate constants is time-consuming and labor-intensive.
49 In comparison, developing quantitative structure—activity relationship (QSAR) models
50 is an effective approach to estimating the rate constants for numerous contaminants, thus
51 receiving increasing attention.⁷⁻¹⁵ Built upon previous experimental results, QSAR models
52 can correlate chemical structures with various chemical activities and be further applied
53 to new query compounds to estimate their corresponding activity.

54 Many QSAR models have been successfully developed to predict the rate
55 constants of various contaminants toward different oxidants, such as $\bullet\text{OH}$, $\text{SO}_4^{\bullet-}$ and O_3 .⁹
56^{11, 16-23} To develop QSAR models, different chemical representations, such as molecular
57 descriptors (MD),¹⁶ molecular fingerprints (MF)¹³ or molecular images,¹⁴ can be combined
58 with different regression methods, including multiple linear regression (MLR)^{19, 20} and
59 machine learning (ML).^{14, 15} With more and more contaminants involved, traditional MLR
60 has limited applicability because non-linear relationships may exist between
61 contaminants and reaction rate constants. To handle non-linear relationships, ML has
62 received increasing attention because of its powerful fitting ability. For example, Huang
63 et al. reported a better performance of a support vector machine (SVM)-based model on
64 predicting the rate constants of contaminants toward O_3 than MLR-based QSAR models.²⁰
65 Our recent study showed that ML-based models can achieve satisfactory predictive
66 performance for a large dataset of $\bullet\text{OH}$ reactivity.¹⁵

ML algorithms, especially deep neural networks, often need a massive amount of data. However, data scarcity is a common issue when developing QSAR models for rate constants toward different oxidants, such as only 85 samples in a dataset of $\text{SO}_4^{\cdot-}$ radicals²¹ or 136 samples in an O_3 dataset.²⁰ It is however impractical to experimentally measure rate constants ($\log k$) for a large number of contaminants toward different oxidants to increase the sample size. We here propose a simple and effective approach—combining small datasets for different oxidants to form a larger dataset. This combined dataset contains samples for five common oxidants, including $\bullet\text{OH}$, $\text{SO}_4^{\cdot-}$, O_3 , ClO_2 and HClO . Previous studies treated these small datasets independently and developed separate QSAR models for each of them.^{7, 16} However, all the involved reactions are oxidation reactions so they should share some common science. For example, for all the oxidants, we know that electron-donating or -withdrawing groups can increase or decrease the rate constant (k) for oxidation reactions, which was indeed correctly learned by our recent QSAR models for $\bullet\text{OH}$ radicals.¹⁵ Ye et al. found that for $\text{SO}_4^{\cdot-}$ electron-donating groups (except for $-\text{N}^{\cdot-}$) exhibit a positive coefficient for k , while electron-withdrawing groups (except for $-\text{S}^-$) exhibit a negative coefficient for k .¹⁹ Lee et al.'s study indicated decreasing k values with increasing Hammett constants for both ClO_2 and HClO ,⁷ which might be attributed to higher bond dissociation energies when electron-withdrawing substituents are present.²⁴ Huang et al. reported that E_{HOMO} (Energy of the Highest Occupied Molecular Orbital) was one of the most important descriptors in their QSAR model for O_3 because, as a measure of the electron-donating ability of a molecule, E_{HOMO} can be used to characterize the affinity of the molecule toward an electrophile.^{20, 25} Compounds with higher E_{HOMO} are oxidized by O_3 with faster rates due to their stronger electron-donating ability. Because the shared science may be transferred from one dataset to another, combining small datasets to form a larger dataset may improve the predictive performance of the obtained model for all the oxidants. To the best of our knowledge,

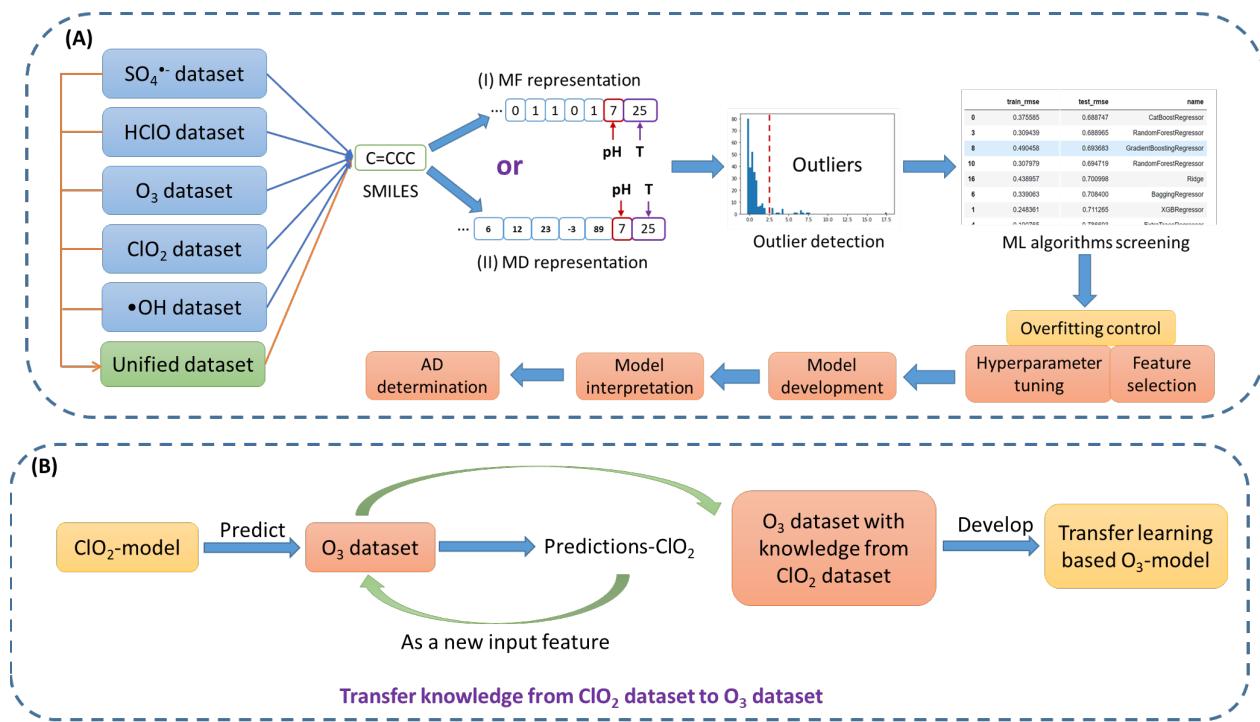
93 this approach—developing a unified QSAR model on this large, unified dataset—has
94 never been investigated before in developing QSAR models for contaminant reactivity.

95 Transfer learning, widely used in computer vision, is another popular approach to
96 solving the data scarcity issue.²⁶ Transfer learning refers to pre-training a model on a large
97 dataset and then tuning this pre-trained model on a smaller but similar dataset. We
98 previously employed this concept when developing QSAR models for predicting rate
99 constants for $\bullet\text{OH}$ radicals and found that, when employing molecular images to
100 represent contaminants and pre-training a convolutional neural network (CNN) model
101 on the ImageNet dataset, it can considerably increase the generalization ability of the
102 QSAR models.¹⁴ The ImageNet dataset is however quite different from the contaminant
103 image dataset.²⁷ This transfer learning approach is also only limited to CNN algorithms.

104 For the datasets of $\bullet\text{OH}$, $\text{SO}_4^{\bullet-}$, HClO , O_3 and ClO_2 , they are similar to each other
105 in terms of contaminant species and certain reaction mechanisms, as examples discussed
106 above. Therefore, it would be interesting and beneficial to investigate whether the shared
107 knowledge between any two datasets is transferable or not. However, how to effectively
108 transfer knowledge among these different datasets without using CNN algorithms is still
109 challenging. We here proposed a knowledge transfer approach for non-CNN algorithms,
110 such as tree-based ML algorithms (Figure 1b). Our results below showed that the
111 predictive performance of a QSAR model for a specific oxidant can be enhanced by
112 learning from another oxidant without increasing the sample size of either oxidant.

113 In this study, we compiled the largest four datasets for four common oxidants,
114 namely $\text{SO}_4^{\bullet-}$, HClO , O_3 , and ClO_2 , by including the reaction conditions, i.e., pH and/or
115 temperature. The reaction conditions were seldom considered in previous studies, but
116 including them can significantly increase the sample size. Two chemical representations,
117 i.e., molecular descriptors (MDs) and molecular fingerprints (MFs), were used to combine
118 with different ML algorithms to develop QSAR models. We first developed single QSAR

119 models for each oxidant. We then combined all of these datasets to form a large dataset
 120 and developed a unified QSAR model. The effect of this operation on the predictive
 121 performance of each dataset was investigated. We next used the knowledge transfer
 122 approach to develop knowledge transfer-based models and compared their predictive
 123 performance with the respective single models. The overall workflow of this study is
 124 summarized in Figure 1.



126 Figure 1. The workflow of this study. (A) The single and unified model development
 127 based on MFs or MDs. (B) An illustration of how knowledge transfer is achieved by an
 128 example of transferring knowledge from the ClO₂ dataset to the O₃ dataset (More details
 129 are in Section 2.4).

130

131 **2. Materials and methods**

132 **2.1 Datasets**

133 The kinetic data for the four oxidants were collected from the published literature,
134 which were mined through Google Scholar (<https://scholar.google.com/>) by using the
135 keywords: "sulfate radical", "HClO", "O₃" or "ClO₂" + "kinetics". As many as possible
136 samples were collected and the attributes included contaminants, their corresponding
137 rate constants (*k*), and reaction conditions (i.e., pH and/or temperature (T)). The number
138 of studies we collected is listed in Table 1, in which the reported datasets for QSAR
139 studies were directly cited without citing the original sources. Reaction conditions were
140 often not included in previous studies. We here included the reaction conditions because
141 reaction rate constants are condition dependent. For example, pH can affect the
142 dissociation of some contaminants while differently charged contaminant species react
143 with these oxidants at different rates.⁶ Moreover, we can increase the sample size by
144 including the reaction conditions. All the *k* values were log-transformed (log*k*) to reduce
145 the range of values. If multiple log*k* values were reported for a contaminant for the same
146 conditions, an average log*k* value was taken. The summary of these four datasets is listed
147 in Table 1 and the details of the datasets are listed in "data.xlsx" in the supporting
148 information (SI).

149 Table 1. Summary of the four datasets used in this study

Oxidant	Number of data points	Number of compounds	Reaction conditions	Number of studies
HClO	195	188	pH	29
ClO ₂	191	143	pH	32
O ₃	759	484	pH	142
SO ₄ ^{•-}	557	342	pH, T	33

150

151 2.2 Molecular descriptors (MDs) and molecular fingerprints (MFs)

152 The simplified molecular-input line-entry system (SMILES) of organic
153 contaminants was obtained by the ChemDraw program. The PaDEL program²⁸ and the
154 RDKit package in Python® were employed to convert SMILES to MDs and MFs,
155 respectively. The MDs of one contaminant include 1444 physicochemical properties and
156 are represented by a vector with a length of 1444. Each property is one feature or an
157 independent variable. Hence, for the MD representation, the total number of features was
158 1445 (with pH) or 1446 (with pH and T). The MF is a binary vector that encodes chemical
159 structures into 0s and 1s. Readers are referred to our recent papers for more details on
160 how MFs represent chemicals.^{15, 29}

161 2.3 Model development and interpretation

162 Before model development, we conducted data preprocessing, including missing
163 value imputation, feature scaling, feature selection and/or outlier treatment; and ML
164 algorithm screening. The details of these procedures can be found in Text S1. For each
165 dataset and each representation, after obtaining the optimum ML algorithm, we tuned
166 their hyperparameters by the Bayesian optimization algorithm, which can efficiently
167 explore a large search space. It will determine the next selection based on the last selection.
168 We have previously used this approach to optimize the hyperparameters of a deep neural
169 network and XGBoost.¹⁵ The working mechanism of this approach has been well
170 documented.^{30, 31} A 10-fold cross-validation was also applied to the training dataset and
171 the optimum hyperparameters were the ones that achieved the best validation
172 performance. The root mean squared error (RMSE) and R² were used as the evaluation
173 metrics for the predictive performance. Lower RMSE and higher R² values mean better
174 predictive performance. After obtaining the optimum hyperparameters, the ML
175 algorithms were retrained on the whole training dataset to obtain the final model. The
176 generalization ability of the final model was evaluated on the test dataset, which was
177 never used during the model development.

178 After the models had been well trained and showed satisfactory predictive
179 performance, we used the SHAP method to interpret the models to check if predictions
180 made by the models are based on a correct understanding of the feature importance. We
181 previously used this method to interpret QSAR models for $\bullet\text{OH}$ radicals.¹⁵ The effects of
182 pH, T, and atom groups or MDs on the reactivity ($\log k$) were investigated based on the
183 SHAP interpretation results.

184 2.4 Unified model and knowledge transfer-based model development

185 To combine the four datasets to form a large dataset, we added a new feature
186 called "Oxidant" to indicate the type of oxidant for a given entry. For these four datasets,
187 their "Oxidant" feature was labeled as " $\text{SO}_4^{\bullet-}$ ", "HClO", " O_3 " or " ClO_2 ". As this new
188 categorical feature should be encoded as a numeric feature, we screened eight encoding
189 methods to select the best one rather than arbitrarily selecting one (Table S1). We then
190 followed the same procedure as described above to develop a unified model (both MF-
191 based and MD-based) on this large dataset, as shown in Figure 1A. It should be noted
192 that we chose not to combine the entire four datasets first and then re-split them. Instead,
193 we combined all the initial training datasets used in developing the single QSAR models
194 to form a combined training dataset. We did the same thing for the individual test
195 datasets to form a combined test dataset, so we can ensure that the generalization ability
196 of the unified model is tested on the same test chemicals as those in the respective single
197 dataset. Hence, any enhancements would be meaningful because the same test chemicals
198 were used. For comparison, in a typical Kaggle competition (<https://www.kaggle.com/>),
199 even subtle enhancement in the prediction accuracy of a model is desirable and
200 meaningful, which determines if one wins the competition or not, because they are all
201 required to predict the same test dataset.

202 Figure 1B shows our proposed knowledge transfer approach to developing
203 knowledge transfer-based models. Taking the ClO_2 and O_3 datasets as an example, we

204 first used the single model developed on the ClO₂ dataset to predict the reactivity of the
205 contaminants in the O₃ dataset toward ClO₂. We then added these predictions as a new
206 input feature to the original O₃ dataset. This modified O₃ dataset thus likely contains some
207 structure-reactivity information from the ClO₂ model. We then developed another model
208 for this new O₃ dataset—referred to as a ‘knowledge transfer-based model’—and
209 compared its performance with that of the single model developed on the original O₃
210 dataset. As described above, the test chemicals remained unchanged when evaluating the
211 performance of the knowledge transfer-based models. Following this approach, we
212 developed a total of 6 knowledge transfer models for three sets of (O₃, ClO₂), (ClO₂, HClO)
213 and (O₃, HClO). The •OH and SO₄²⁻ datasets were not used here because the •OH dataset
214 did not contain reaction conditions while the SO₄²⁻ dataset contains T as a reaction
215 condition.

216 2.5 Applicability domain (AD) analysis

217 Because there are reaction conditions in the input, the reported fingerprint-based
218 similarity method cannot be directly applied here.¹⁵ We thus chose a combination of
219 fingerprint-based similarity and range-based methods to determine AD. First, any query
220 chemicals with the reaction conditions (pH and/or T) outside the ranges of pH and/or T
221 of the training dataset were seen as outside of the AD and were not further investigated.
222 For query chemicals whose reaction conditions are within the ranges of pH and/or T of
223 the training dataset, we calculated their similarity to the contaminants in the training
224 dataset based on the Tanimoto index.^{32 15} To determine the optimal similarity threshold,
225 we set the chemicals in the test dataset as query chemicals. Any chemicals that were
226 outside the AD (i.e., the similarity values below the threshold) were removed from the
227 test dataset and the RMSE_{test} was recalculated. The optimal threshold is the one that
228 achieved the lowest RMSE_{test}.

229 3. Results and discussion

230 The detailed results of ML algorithm screening, feature selection and
231 hyperparameter tuning are shown in Text S2. Briefly, different optimum ML algorithms
232 were selected for different datasets, indicating that the optimum ML algorithm is dataset
233 dependent. There is also overfitting in all the ML models with their default
234 hyperparameters, which was alleviated by feature selection and hyperparameter tuning.

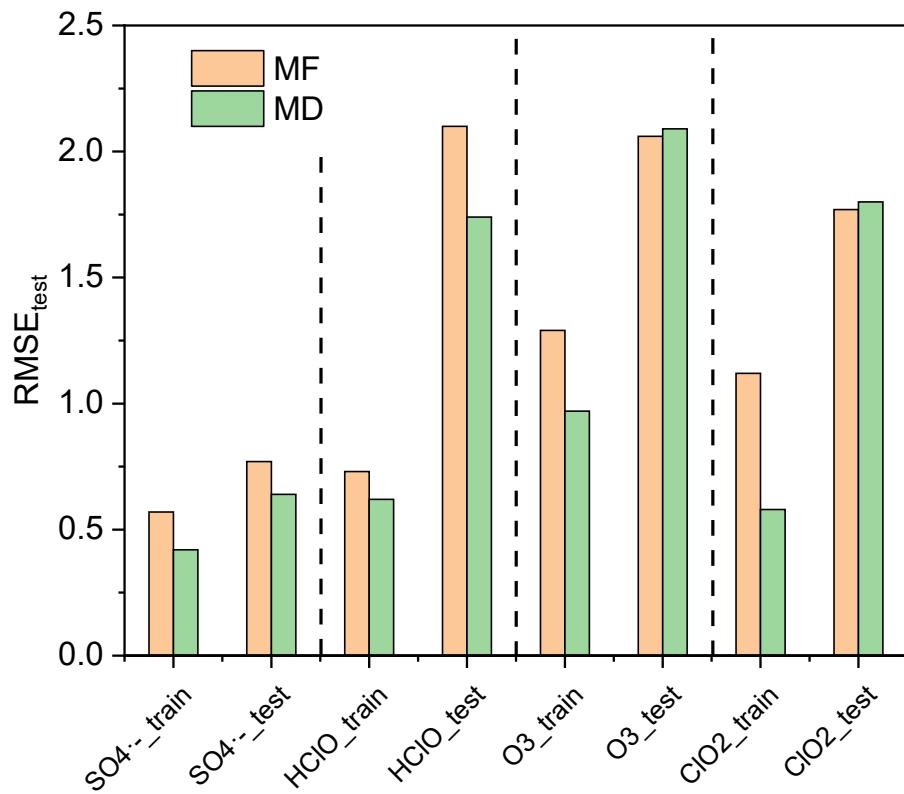
235 3.1 MF versus MD representation and the final individual QSAR models

236 The statistical comparison between the performances of the two representations
237 are plotted in Figure 2. For all these four oxidants, the training performance for the MD
238 representation is always better than that for the MF-based. However, that is not always
239 the case regarding the generalization ability on the test dataset. For the datasets of $\text{SO}_4^{\cdot-}$
240 and HClO , better predictive performance was achieved on both the training and test
241 datasets for the MD-based models. Hence, the MD-based models were selected as the
242 QSAR models for $\text{SO}_4^{\cdot-}$ and HClO . For the datasets of O_3 and ClO_2 , the MD-based models
243 showed better predictive performance on the training datasets but worse predictive
244 performance on the test datasets than the MF-based models. This means that overfitting
245 was more serious in the MD-based models. Hence, the final QSAR models for O_3 and
246 ClO_2 were the MF-based models. This result indicated that the optimum chemical
247 representation is dataset-dependent. One possible reason is that the calculated MDs by
248 the commercial PaDEL program might correlate better with the reactivity in the $\text{SO}_4^{\cdot-}$ and
249 HClO datasets than with that in the O_3 and ClO_2 datasets. Therefore, it is recommended
250 to screen the optimum chemical representation in future modeling rather than arbitrarily
251 selecting one.

252 After selecting the appropriate model for each dataset, we compared their
253 performance with previously published ones (results in Text S3). Note that the sizes of
254 our four datasets are much larger. Generally, the predictive performance of a model
255 becomes worse with increasing data size,¹⁵ likely due to the inclusion of more noise

256 information. For the SO_4^{2-} dataset, our single model showed better predictive
257 performance than previous studies despite the larger sample size. Worse performance
258 was observed for the O_3 dataset because of its significantly larger data size. For the ClO_2
259 and HClO datasets, we were only able to find one article that reported models for amines⁵
260 and no test performance was provided so it is difficult to make a comparison.

261



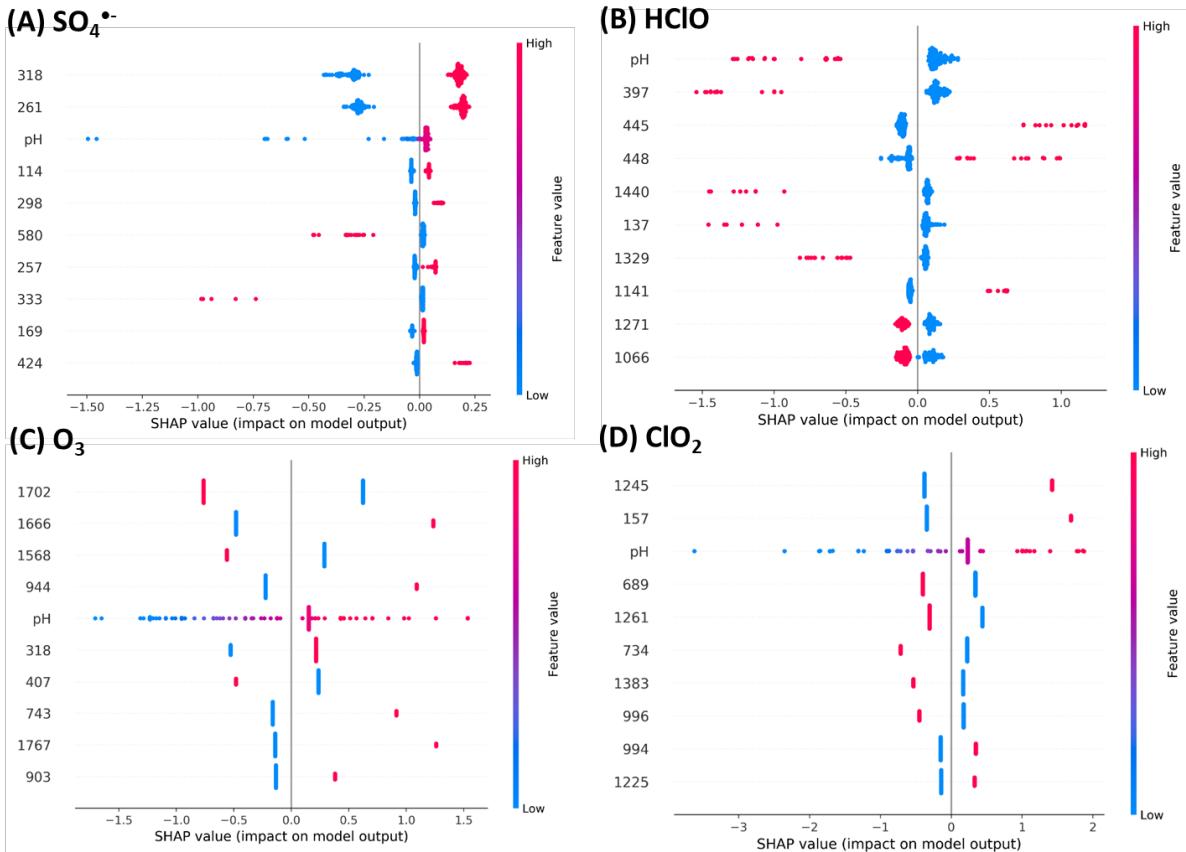
262

263 Figure 2. Comparison of the two representations in terms of the predictive performance
264 on the training or the test dataset for the four oxidants.

265 3.2 Interpretation of the single QSAR models

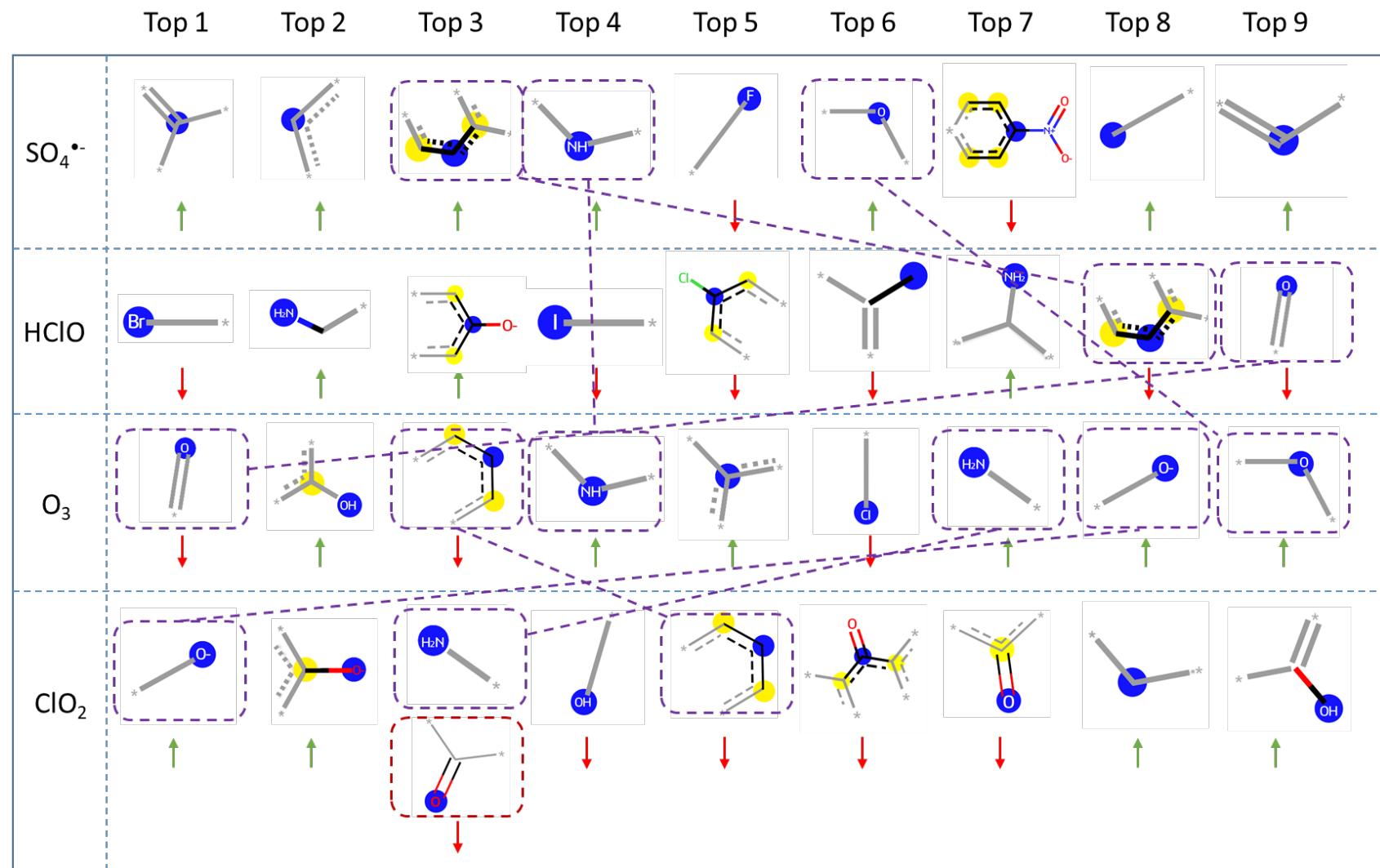
266 We interpreted all the single QSAR models to verify (1) if they made predictions
267 based on the correct science and (2) if there are common features used among these
268 models. The latter information may be useful to validate the knowledge transfer strategy.

269 Figure 3 shows the SHAP interpretation of the MF-based single QSAR models with the
270 top 10 features shown (9 atom groups + pH). The interpretations for the pH effects and
271 the pattern distribution are illustrated in Text S4. The results suggest that all the pH
272 effects were correctly learned, and that different pattern distributions resulted from the
273 employed different ML algorithms. Figure 4 shows the effect of the top 9 atom groups
274 identified in Figure 3 on the $\log k$. As shown, the four models share several common atom
275 groups. For example, the 3rd atom group (aromatic carbon) in the $\text{SO}_4^{\cdot-}$ model is the same
276 as the 8th atom group in the O_3 model. The number of shared atom groups among these
277 four oxidants is summarized in Table S2. Surprisingly, the learned contributions of some
278 of these atom groups toward $\log k$ differ significantly among the four datasets. For
279 example, aromatic carbons in the $\text{SO}_4^{\cdot-}$ model (3rd) contributed positively to the $\log k$ while
280 those in the HClO (8th), O_3 (3rd), or ClO_2 (5th) model contributed negatively. The $-\text{NH}_2$
281 group increased the $\log k$ in the O_3 model (7th) but decreased the $\log k$ in the ClO_2 model
282 (3rd). However, both aromatic carbons and $-\text{NH}_2$ are known electron-donating groups
283 whose presence should lead to higher $\log k$ values. Therefore, only the $\text{SO}_4^{\cdot-}$ model
284 seemed to 'correctly' learn these relationships (thus showing better predictive
285 performance) whereas the HClO , O_3 and ClO_2 models seemed to 'incorrectly' learn some
286 of them (thus showing worse predictive performance).



287

288 Figure 3. The SHAP interpretation of the MF-based single QSAR models for the four
 289 oxidants. The x-axes are the SHAP values and the y-axes are the identified top 10 most
 290 influential features. The numbered features, such as 318, 261 and 1702, represent the
 291 feature positions in the MFs, with each position representing a certain atom group (see
 292 below). MFs are vectors of 1s and 0s; the red color represents 1s in those positions—the
 293 presence of an atom group—while blue means 0s—no atom groups in those positions.
 294 pH values are continuous values from the minimum to the maximum for different
 295 datasets so they are colored from blue to red. A feature with a positive SHAP value means
 296 that it can increase the $\log k$ value; whereas a feature with a negative SHAP value means
 297 that it can decrease the $\log k$ value. The pattern for each feature is composed of the SHAP
 298 values for all the chemicals in the dataset that contain that feature. All other SHAP plots
 299 in this work follow the same interpretation.



301 Figure 4. The effect of the top 9 atom groups shown in Figure 3 on the $\log k$ values, in
302 which the up and down arrows mean increasing and decreasing the $\log k$ values,
303 respectively. The same atom groups in different datasets are marked by squares and
304 connected by dotted lines. The $-\text{NH}_2$ and carbonyl groups are overlapped at the 3rd
305 position for the ClO_2 dataset. Note that the length of the MFs has been optimized by the
306 Bayesian algorithm to achieve the best predictive performance, but the overlap still
307 happened, indicating the intrinsic limitation associated with the MFs. The blue dots
308 represent the center atoms; the black solid lines represent the bonds in the feature; the
309 grey lines represent the neighboring bonds not in the feature; the dotted lines represent
310 conjugated structures, e.g., aromatic; and the yellow color represents an aromatic atom
311 in the feature. All heavy atoms except for C, such as O and Cl, are shown.

312 For the $-\text{NH}_2$ group in the ClO_2 dataset, its negative effect on $\log k$ resulted from
313 its overlap with the electron-withdrawing carbonyl group in the MFs, that is, the position
314 of 689 in the MFs (Figure 3D) is assigned to two atom groups ($-\text{NH}_2$ and carbonyl) while
315 carbonyl is a strong electron-withdrawing group that decreases the $\log k$. To understand
316 the reason for the observed negative effect of aromatic carbons, we plotted the
317 distribution of experimental $\log k$ values for the compounds with or without aromatic
318 carbons. Figure S1 shows that the average $\log k$ value for the compounds containing
319 aromatic carbons in the SO_4^{2-} dataset is greater than that for the compounds not
320 containing aromatic carbons in the same dataset, whereas this trend is reversed in the
321 datasets of HClO , O_3 and ClO_2 . This explains why the developed models learned different
322 effects of aromatic carbons on the $\log k$. This finding suggests that the average effect of a
323 specific atom group on the chemical reactivity is dataset-dependent, which is expected.
324 For example, when ClO_2 reacts with aliphatic amines, the $\log k$ value decreases in the
325 following order: tertiary amine > secondary amine > primary amine.⁶ If an ML-based
326 QSAR model is developed based on this dataset, a primary amine will be 'learned' to be

327 an atom group that decreases $\log k$ because the average experimental $\log k$ for primary
328 amines is smaller than that for all amines in the dataset, although $-\text{NH}_2$ is a well-known
329 electron-donating group. In other words, the types of chemicals involved in a dataset
330 affects the model-derived positive or negative contribution of an atom group to $\log k$. To
331 illustrate the above idea for our datasets, we took the ClO_2 dataset as an example, where
332 it has 36 chemicals containing aromatic carbons (5th atom group for ClO_2 in Figure 4).
333 Among these 36 chemicals, 28 of them (77%) contain electron-donating groups, such as $-\text{O}^-$,
334 $-\text{NH}_2$, or $-\text{OH}$ (Table S3), that are stronger in their electron-donating effects than
335 aromatic carbons. As a result, aromatic carbons in the ClO_2 dataset were 'learned' to have
336 negative effects on $\log k$. The same explanation can be applied to the HClO and O_3 datasets.
337 We believe that if a dataset is large enough and contains a diverse range of chemical
338 structures, the corresponding ML model should be able to learn the correct effects of
339 various atom groups that match the known chemistry. In other words, the quality of a
340 dataset determines the quality of the corresponding ML model, which is similar to that
341 of traditional QSAR models.

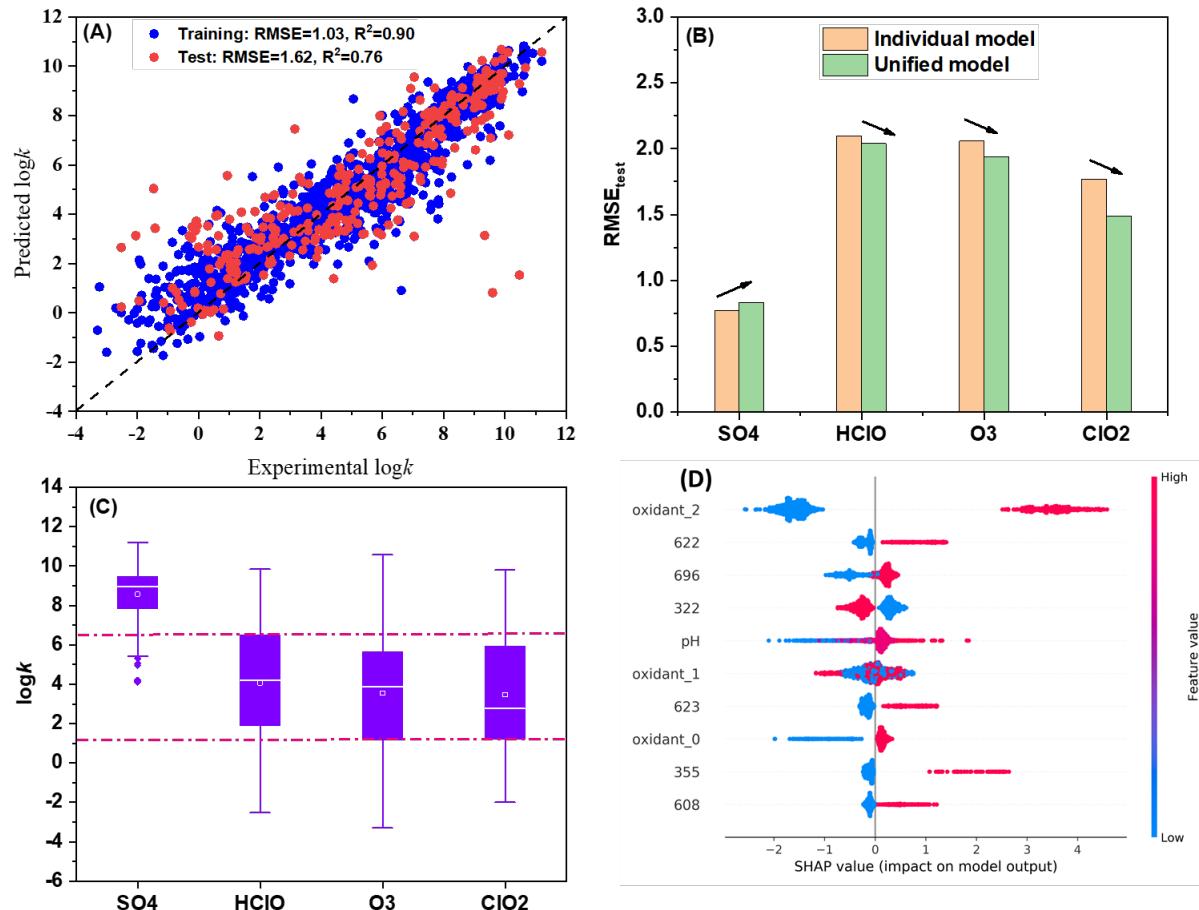
342 Figure S2 shows the SHAP interpretation of the MD-based single QSAR models.
343 Detailed explanation for them was provided in Text S5. Compared with the MF-based
344 models, fewer MDs (only 1 – 2) were shared among these four models. It is not easy to
345 examine how some of these MDs affected the $\log k$ because their physicochemical
346 meanings are not readily interpretable.

347 3.3 Unified models based on the MFs or MDs

348 To improve the model performance, we combined the four datasets to form a large
349 unified dataset and developed a MF-based unified model (refer to as "MF-UN-1"),
350 following the same procedure as for the single MF-based models. Figure 5A shows better
351 predictive performance of MF-UN-1 on the test dataset ($R^2_{\text{test}} = 0.76$) than all the single
352 models (Text S3) (the RMSE values depend on the ranges of the $\log k$ values, so they were

353 not used for comparison), indicating the effectiveness of the unified approach. We then
354 examined its predictive performance on the four single datasets, as shown in Figure 5B.
355 Except for the SO_4^{2-} dataset, the performance of MF-UN-1 is better than that of the
356 respective single models for the other three datasets. Figure 5C plots the distribution of
357 the $\log k$ values in the four datasets, demonstrating the range of $\log k$ values for the SO_4^{2-}
358 dataset deviating substantially from that for the other three datasets. This may be the
359 reason that the performance of MF-UN-1 on the SO_4^{2-} dataset was worse.

360 Figure 5D shows the SHAP interpretation of this unified model and the identified
361 top 6 atom groups (among the top 10 features in Figure 5D, only 6 of them are atom
362 groups). Table S4 shows these atom groups as well as their effects on the $\log k$, in which
363 all of these effects were correctly learned. Although aromatic carbons were not among
364 the top 6 atom groups, we still examined them here because their effects in the HClO ,
365 ClO_2 and O_3 datasets, as well as the effect of the $-\text{NH}_2$ group in the ClO_2 dataset, were
366 previously learned to decrease the $\log k$. For MF-UN-1, interestingly, the effect of $-\text{NH}_2$
367 was 'learned' to be increasing the $\log k$, although the aromatic carbons still decreased the
368 $\log k$ in this unified dataset. For the SO_4^{2-} dataset, the effect of aromatic carbons changed
369 from increasing the $\log k$ in the individual model to decreasing the $\log k$ in MF-UN-1,
370 which should be the reason for the worse predictive performance of the unified model
371 on the SO_4^{2-} dataset. In contrast, the effect of the $-\text{NH}_2$ group in the ClO_2 dataset changed
372 from decreasing the $\log k$ in the individual model to increasing the $\log k$ in MF-UN-1, so
373 the predictive performance improved (Figure 5B). The effects of these two groups on the
374 $\log k$ are the same for HClO and O_3 datasets before and after combining the datasets, but
375 the predictive performance became better, which may be due to some unknown
376 synergetic effects or similar "correction" effects of atom groups that are not among top 9.



377

378 Figure 5. The predictive performance of the unified model on the training and test
 379 datasets for the unified dataset (A) and the single datasets (B); (C) the ranges of $\log k$
 380 values for the single datasets; and (D) the SHAP interpretation of the unified model, in
 381 which the x-axis is the SHAP value and the y-axis is the features. The features of
 382 'Oxidant_1', 'Oxidant_2', and 'Oxidant_3' are the encoded features for these four
 383 oxidants and they can take only values of 0 or 1. Their different combinations (i.e.,
 384 ['Oxidant_1', 'Oxidant_2', 'Oxidant_3']) represent different oxidants, such as [0, 0, 1] for
 385 HClO or [0, 1, 0] for O_3 . Other features represent atom groups and are listed in Table S4

386 Figure S3 shows the performance of the unified model based on the MD
 387 representation. This unified model was developed following the same procedure as for
 388 the single MD-based models. The $\text{RMSE}_{\text{test}}$ (1.67, Figure S3A) is slightly higher than that

389 of MF-UN-1 (1.62); the predictions made by the MD-based unified model marginally
390 improved for O_3 and ClO_2 , but marginally decreased for SO_4^{2-} and $HClO$ (Figure S3B).
391 This improvement was less than by MF-UN-1 (Figure 3B) and the overfitting trend was
392 more obvious, as suggested by the larger difference in the RMSE values between the
393 training and test datasets (Figure S3C). The SHAP patterns in Figure S5D are similar to
394 those of the single MDs-based models (Figure S2). Overall, the MD representation did
395 not perform as well as the MF representation when developing the unified model, so we
396 only focus on the MF representation below.

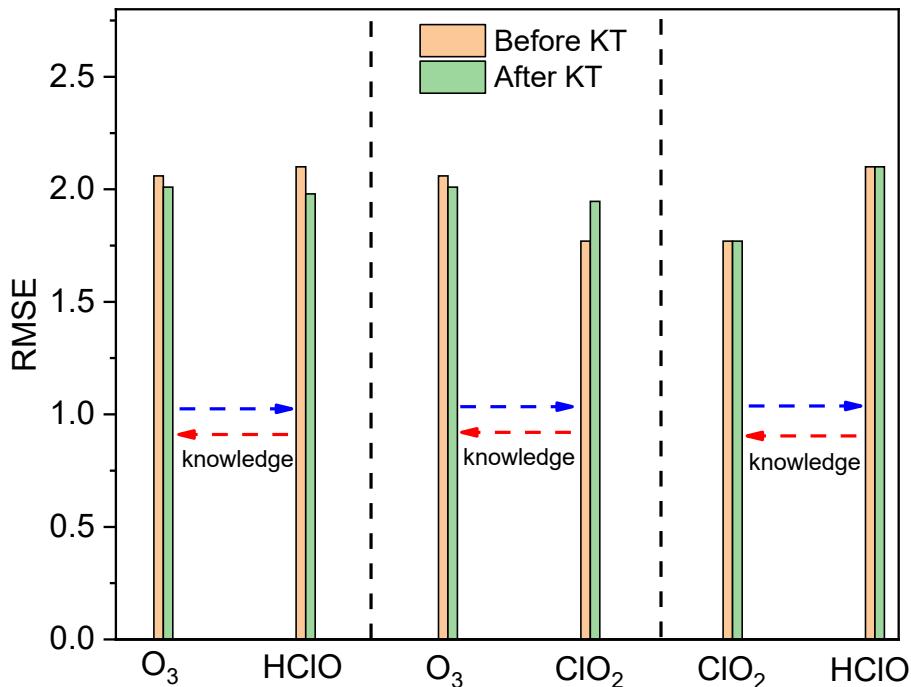
397 As mentioned above, the range of $\log k$ values for SO_4^{2-} is quite different from those
398 of the other three datasets (Figure 3C), which may be one reason that the predictive
399 performance of MF-UN-1 did not improve for SO_4^{2-} . To test this idea, we combined the
400 SO_4^{2-} dataset with a reported OH^{\bullet} dataset to form a large dataset because their $\log k$ values
401 fall in the same range (Figure S4C). The OH^{\bullet} dataset contains 1086 chemicals and was
402 previously used successfully to develop ML-based QSAR models.^{14, 15} We then developed
403 another MF-based unified model (refers to as “MF-UN-2”) on this dataset and Figure S4A
404 shows the $R^2_{test} = 0.68$. Figure S4B suggests that the predictive performance of MF-UN-2
405 for SO_4^{2-} became much better than the single model while that for OH^{\bullet} became worse. As
406 the SHAP interpretation of MF-UN-2 shown in Figure S4D, the effect of the identified top
407 8 atom groups on the $\log k$ were all correctly learned (only 8 of the top 10 features are
408 atom groups) (Table S5). This worse performance for $•OH$ was probably because the
409 additional fixed T (25 °C) and pH (7) conditions were added into the $•OH$ dataset to
410 combine with the SO_4^{2-} dataset, which might have introduced noise information to the
411 model, although future work is needed to understand the exact reason. For prediction
412 purposes, MF-UN-2 can be used for SO_4^{2-} while the reported MF-based single model is
413 still recommended for $•OH$.

414 Finally, we combined all of these five datasets to form the largest dataset to
415 develop another MF-based unified model (refers to as "MF-UN-3"). Figure S5A shows
416 that the R^2_{test} reached 0.82. While the predictions for SO_4^{2-} , HClO and ClO_2 became better,
417 those for $\bullet\text{OH}$ and O_3 became slightly worse (Figure S5B). Table S6 shows the effects of
418 the identified top 8 atom groups (only 8 of the top 10 features are atom groups) based on
419 the SHAP plot of Figure S5C, and all of them were correctly learned. The marginally
420 worse predictive performance for the $\bullet\text{OH}$ dataset is explained above, but the marginally
421 worse predictive performance than MF-UN-1 for the O_3 dataset is unexpected. We do not
422 have a good explanation for this yet. These results suggested that it is not always better
423 to combine datasets to achieve better predictive performance.

424

425 3.4 Knowledge transfer models

426 Figure 6 shows the predictive performance of different knowledge transfer models
427 that were developed based on our proposed approach shown in Figure 1B. The SO_4^{2-}
428 dataset was not used because it contains not only pH but also T, while other three datasets
429 only contain pH. The models developed based on these three datasets cannot make
430 predictions for contaminants under different T.



431

432 Figure 6. The predictive performance of different ML models before and after knowledge
433 transfer (KT)

434 There are three distinct scenarios for these knowledge transfer models. For
435 O₃/HClO, both of the knowledge transfer models show better predictive performance
436 than the original models before the transfer. There is one shared atom group (carbonyl)
437 among the top 9 atom groups between O₃ and HClO (Figure 4) and the effect of this atom
438 group was consistent (i.e., decreasing the logk) between the two datasets. Moreover, the
439 predictive performance of the single models for O₃ and HClO was similar (RMSE_{test} 2.06
440 for O₃ and 2.10 for HClO). Both of these two factors should have contributed to the
441 effectiveness of knowledge transfer. For O₃/ClO₂, the knowledge transfer model for O₃
442 became better after receiving knowledge from the ClO₂ model, while the knowledge
443 transfer model for ClO₂ became worse. There are 3 atom groups shared between O₃ and
444 ClO₂, but the effects of -NH₂ in these two datasets are opposite (Figure 4). Moreover, the
445 predictive performance of the single model for ClO₂ (RMSE_{test} 1.77) is better than that for

446 O_3 ($RMSE_{test}$ 2.06), so the information transferred from O_3 to ClO_2 has more uncertainties,
447 which should have led to the worse performance. For $ClO_2/HClO$, no change in the
448 predictive performance was observed for both oxidants. This is expected because there
449 are no shared atom groups between these two datasets (Figure 4). These results indicated
450 that the effectiveness of our knowledge transfer approach is determined by if there is
451 consistent knowledge shared by the single models as well as their respective predictive
452 performance.

453

454 3.5 The final QSAR models and their AD determination

455 For the four oxidants, we ranked all the developed models in terms of the
456 predictive performance and finally obtained the optimal QSAR models, shown in Table
457 2. Both the unified models and transfer learning models outperformed all the individual
458 models and were selected as the final models, validating the effectiveness of our
459 proposed two approaches. We next determined their ADs, as shown in Table 2. For each
460 model, with increasing threshold value, more contaminants were identified as outside
461 AD and the recalculated $RMSE_{test}$ first decreased and then increased. The optimal
462 threshold values for these four datasets are bolded in Table 2. For a query compound, if
463 its similarity to the contaminants in the training dataset is above the threshold value, the
464 models can provide a reliable prediction for its reactivity toward one of these four
465 oxidants.

466

467 Table 2. The final selected models for each dataset and their AD determination

Dataset	Best Model	Best $RMSE_{test}$	Threshold value	# of contaminants outside AD	Recalculated $RMSE_{test}$
SO_4^{2-}	MF-UN-2	0.703	0.50	0	0.703

			0.60	1	0.699
			0.70	2	0.700
HClO	Knowledge Transfer model (O ₃ -HClO)	1.982	0.28	0	1.982
			0.30	1	1.955
			0.42	2	1.895
			0.43	3	1.906
O ₃	MF-UN-1	1.942	0.50	0	1.942
			0.55	1	1.909
			0.56	3	1.906
			0.62	4	1.912
ClO ₂	MF-UN-3	1.465	0.66	0	1.465
			0.67	1	1.468
			0.83	2	1.486

468

469 4. Environmental significance

470 In this study, we investigated QSAR models for datasets that are different but
471 share some similarities (i.e., oxidation reactions). Previous studies viewed these datasets
472 independently, whereas we tried to obtain relationships among them to enhance the
473 predictive performance of the QSAR models. We proposed two approaches—combining
474 individual datasets to form a large, unified dataset and transferring knowledge between
475 individual datasets. When developing single ML models using these single datasets, we
476 found that (1) the optimal ML algorithm is dataset dependent. Screening ML algorithms
477 from several candidate algorithms is recommended and simpler ML algorithms are
478 preferred if they show similar predictive performance as complex ones; and (2) the
479 optimal representation for contaminants is also dataset-dependent because some
480 representations may not capture the key features of the dataset. Combining similar
481 datasets to form a large dataset and developing a unified model can generally improve
482 the predictive performance on the individual datasets, because some ‘wrongly’ learned
483 knowledge based on a smaller dataset (e.g., bias of the dataset) may be corrected this way.
484 In other words, data bias can be mitigated by increasing the sample size. Knowledge

485 transfer is effective when there is consistent knowledge shared between the two datasets
486 and when the single models themselves have good predictive performance. Overall, this
487 study provided new insights into developing ML-based QSAR models for small datasets.
488 We demonstrated that there are synergistic effects among similar datasets, which can be
489 leveraged to boost the predictive performance of QSAR models.

490 Acknowledgement

491 This material is based upon work supported by the National Science Foundation under
492 Grant #CHEM-1808406.

493 Supporting Information Available

494 The Supporting Information includes the data preprocessing, 5 candidate scaler methods,
495 8 encoding methods, 7 outlier detection methods and 16 ML algorithms, the working
496 mechanism of recursive feature selection, the screening results for scaler, encoding and
497 ML algorithms, the overfitting control, the specific number of MDs used and their names,
498 the correlation plots of single QSAR models, the comparison of the single QSAR models
499 with previously published ones, and other related tables and figures for model
500 interpretations, which is available free of charge online.

501

502 References

- 503 1. von Gunten, U., Oxidation Processes in Water Treatment: Are We on Track? *Environmental
504 Science & Technology* **2018**, 52, (9), 5062-5075.
- 505 2. Deng, Y.; Ezyske, C. M., Sulfate radical-advanced oxidation process (SR-AOP) for simultaneous
506 removal of refractory organic contaminants and ammonia in landfill leachate. *Water research* **2011**, 45,
507 (18), 6189-6194.
- 508 3. Acero, J. L.; Stemmler, K.; Von Gunten, U., Degradation kinetics of atrazine and its degradation
509 products with ozone and OH radicals: a predictive tool for drinking water treatment. *Environmental
510 science & technology* **2000**, 34, (4), 591-597.
- 511 4. Kwon, M.; Kim, S.; Jung, Y.; Hwang, T.-M.; Stefan, M. I.; Kang, J.-W., The impact of natural variation
512 of OH radical demand of drinking water sources on the optimum operation of the UV/H₂O₂ process.
513 *Environmental science & technology* **2019**, 53, (6), 3177-3186.
- 514 5. Chin, A.; Bérubé, P., Removal of disinfection by-product precursors with ozone-UV advanced
515 oxidation process. *Water research* **2005**, 39, (10), 2136-2144.

516 6. Gan, W.; Ge, Y.; Zhong, Y.; Yang, X., The reactions of chlorine dioxide with inorganic and organic
517 compounds in water treatment: kinetics and mechanisms. *Environmental Science: Water Research &*
518 *Technology* **2020**, *6*, (9), 2287-2312.

519 7. Lee, Y.; von Gunten, U., Quantitative structure-activity relationships (QSARs) for the
520 transformation of organic micropollutants during oxidative water treatment. *Water Research* **2012**, *46*,
521 (19), 6177-6195.

522 8. Su, H.; Yu, C.; Zhou, Y.; Gong, L.; Li, Q.; Alvarez, P.; Long, M., Quantitative structure-activity
523 relationship for the oxidation of aromatic organic contaminants in water by TAML/H₂O₂. *Water Research*
524 **2018**, *140*, 354-363.

525 9. Cheng, Z.; Yang, B.; Chen, Q.; Gao, X.; Tan, Y.; Ma, Y.; Shen, Z., A Quantitative-Structure-Activity-
526 Relationship (QSAR) model for the reaction rate constants of organic compounds during the ozonation
527 process at different temperatures. *Chemical Engineering Journal* **2018**, *353*, 288-296.

528 10. Luo, S.; Wei, Z.; Spinney, R.; Villamena, F. A.; Dionysiou, D. D.; Chen, D.; Tang, C.-J.; Chai, L.; Xiao,
529 R., Quantitative structure-activity relationships for reactivities of sulfate and hydroxyl radicals with
530 aromatic contaminants through single-electron transfer pathway. *Journal of Hazardous Materials* **2018**,
531 *344*, 1165-1173.

532 11. Xiao, R.; Ye, T.; Wei, Z.; Luo, S.; Yang, Z.; Spinney, R., Quantitative structure-activity relationship
533 (QSAR) for the oxidation of trace organic contaminants by sulfate radical. *Environmental science &*
534 *technology* **2015**, *49*, (22), 13394-13402.

535 12. Li, C.; Wei, G.; Chen, J.; Zhao, Y.; Zhang, Y.-N.; Su, L.; Qin, W., Aqueous OH Radical Reaction Rate
536 Constants for Organophosphorus Flame Retardants and Plasticizers: Experimental and Modeling Studies.
537 *Environmental Science & Technology* **2018**, *52*, 2790-2799.

538 13. Zhong, S.; Hu, J.; Fan, X.; Yu, X.; Zhang, H., A deep neural network combined with molecular
539 fingerprints (DNN-MF) to develop predictive models for hydroxyl radical rate constants of water
540 contaminants. *Journal of hazardous materials* **2020**, *383*, 121141.

541 14. Zhong, S.; Hu, J.; Yu, X.; Zhang, H., Molecular image-convolutional neural network (CNN) assisted
542 QSAR models for predicting contaminant reactivity toward OH radicals: Transfer learning, data
543 augmentation and model interpretation. *Chemical Engineering Journal* **2021**, *408*, 127998.

544 15. Zhong, S.; Zhang, K.; Wang, D.; Zhang, H., Shedding Light On “Black Box” Machine Learning Models
545 for Predicting the Reactivity of HO• Radicals toward Organic Compounds. *Chemical Engineering Journal*
546 **2020**, *126627*.

547 16. Borhani, T.; Saniedanesh, M.; Bagheri, M.; Lim, J., QSPR prediction of the hydroxyl radical rate
548 constant of water contaminants. *Water Research* **2016**, *98*, 344-353.

549 17. Cheng, Z.; Yang, B.; Chen, Q.; Shen, Z.; Yuan, T., Quantitative relationships between molecular
550 parameters and reaction rate of organic chemicals in Fenton process in temperature range of 15.8 °C -
551 60 °C. *Chemical Engineering Journal* **2017**, *350*, 534-540.

552 18. Sudhakaran, S.; Amy, G. L., QSAR models for oxidation of organic micropollutants in water based
553 on ozone and hydroxyl radical rate constants and their chemical classification. *Water Research* **2013**, *47*,
554 (3), 1111-1122.

555 19. Ye, T.; Wei, Z.; Spinney, R.; Tang, C.-J.; Luo, S.; Xiao, R.; Dionysiou, D. D., Chemical structure-based
556 predictive model for the oxidation of trace organic contaminants by sulfate radical. *Water Research* **2017**,
557 *116*, 106-115.

558 20. Huang, Y.; Li, T.; Zheng, S.; Fan, L.; Su, L.; Zhao, Y.; Xie, H.-B.; Li, C., QSAR modeling for the
559 ozonation of diverse organic compounds in water. *Science of The Total Environment* **2020**, *715*, 136816.

560 21. Gupta, S.; Basant, N., Modeling the reactivity of ozone and sulphate radicals towards organic
561 chemicals in water using machine learning approaches. *RSC advances* **2016**, *6*, (110), 108448-108457.

562 22. Gerrity, D.; Gamage, S.; Jones, D.; Korshin, G. V.; Lee, Y.; Pisarenko, A.; Trenholm, R. A.; Von
563 Gunten, U.; Wert, E. C.; Snyder, S. A., Development of surrogate correlation models to predict trace

564 organic contaminant oxidation and microbial inactivation during ozonation. *Water Research* **2012**, *46*, (19),
565 6257-6272.

566 23. Lee, Y.; Kovalova, L.; McArdell, C. S.; von Gunten, U., Prediction of micropollutant elimination
567 during ozonation of a hospital wastewater effluent. *Water research* **2014**, *64*, 134-148.

568 24. dos Santos, D. J. V. A.; Newton, A. S.; Bernardino, R.; Guedes, R. C., Substituent effects on O-H
569 and S-H bond dissociation enthalpies of disubstituted phenols and thiophenols. *Int. J. Quantum Chem*
570 **2008**, *108*, (4), 754-761.

571 25. Karelson, M.; Lobanov, V. S.; Katritzky, A. R., Quantum-Chemical Descriptors in QSAR/QSPR
572 Studies. *Chemical Reviews* **1996**, *96*, (3), 1027-1044.

573 26. Hutchinson, M. L.; Antono, E.; Gibbons, B. M.; Paradiso, S.; Ling, J.; Meredig, B., Overcoming data
574 scarcity with transfer learning. *arXiv preprint arXiv:1711.05099* **2017**.

575 27. Krizhevsky, A.; Sutskever, I.; Hinton, G. E. In *Imagenet classification with deep convolutional neural*
576 *networks*, Advances in neural information processing systems, 2012; 2012; pp 1097-1105.

577 28. Yap, C. W., PaDEL-descriptor: an open source software to calculate molecular descriptors and
578 fingerprints. *J. Comput. Chem.* **2011**, *32*, (7), 1466-74.

579 29. Rogers, D.; Hahn, M., Extended-Connectivity Fingerprints. *Journal of Chemical Information and*
580 *Modeling* **2010**, *50*, (5), 742-754.

581 30. Shields, B. J.; Stevens, J.; Li, J.; Parasram, M.; Damani, F.; Alvarado, J. I. M.; Janey, J. M.; Adams, R.
582 P.; Doyle, A. G., Bayesian reaction optimization as a tool for chemical synthesis. *Nature* **2021**, *590*, (7844),
583 89-96.

584 31. Dewancker, I.; McCourt, M.; Clark, S., Bayesian Optimization for Machine Learning: A Practical
585 Guidebook. *arXiv preprint arXiv:1612.04858* **2016**.

586 32. Bajusz, D.; Rácz, A.; Héberger, K., Why is Tanimoto index an appropriate choice for fingerprint-
587 based similarity calculations? *Journal of cheminformatics* **2015**, *7*, (1), 1-13.

588