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Abstract: Using machine learning (ML) to develop quantitative structure—activity
relationship (QSAR) models for contaminant reactivity has emerged as a promising
approach because it can effectively handle non-linear relationships. However, ML is often
data-demanding, whereas data scarcity is common in QSAR model development. Here,
we proposed two approaches to address this issue: combining small datasets and
transferring knowledge between them. First, we compiled four individual datasets for
four oxidants, i.e., SOs*-, HCIO, Os and ClO;, each dataset containing a different number
of contaminants with their corresponding rate constants and reaction conditions (pH
and/or temperature). We then used molecular fingerprints (MF) or molecular descriptors
(MD) to represent the contaminants; combined them with ML algorithms to develop
individual QSAR models for these four datasets; and interpreted the models by the
Shapley Additive exPlantion (SHAP) method. The results showed that both the optimal
contaminant representation and the best ML algorithm are dataset dependent. Next, we

merged these four datasets and developed a unified model, which showed better
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predictive performance on the datasets of HCIO, Os and ClO: because the model
‘corrected” some wrongly learned effects of several atom groups. We further developed
knowledge transfer models based on the second approach, the effectiveness of which
depends on if there is consistent knowledge shared between the two datasets as well as
the predictive performance of the respective single models. This study demonstrated the

benefit of combining small similar datasets and transferring knowledge between them,

which can be leveraged to boost the predictive performance of ML-assisted QSAR models.

Synopsis: Two approaches improved the predictive performance of machine learning
assisted QSAR models on contaminant oxidative reactivity: combining small datasets for

different oxidants and knowledge transfer among them.

Keywords: QSAR; machine learning; knowledge transfer; contaminant oxidation; water

treatment
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Oxidative processes play a vital role in removing organic contaminants during
water and wastewater treatment.! Various oxidants, from ¢OH, SO:*,%>* and ClO: to
ozone,> ® can be applied for different organic contaminants, such as personal care
products, endocrine disrupting chemicals, pesticides and industrial chemicals. The
oxidation rate constant of contaminants is an important parameter for optimizing the
treatment process by helping to, for example, estimate the removal efficiency of
contaminants or determine the dosage of oxidants or the treatment retention time.
Experimentally measuring reaction rate constants is time-consuming and labor-intensive.
In comparison, developing quantitative structure —activity relationship (QSAR) models
is an effective approach to estimating the rate constants for numerous contaminants, thus
receiving increasing attention.”'® Built upon previous experimental results, QSAR models
can correlate chemical structures with various chemical activities and be further applied

to new query compounds to estimate their corresponding activity.

Many QSAR models have been successfully developed to predict the rate
constants of various contaminants toward different oxidants, such as ®OH, SOs*- and Os.*
11162 To develop QSAR models, different chemical representations, such as molecular
descriptors (MD),® molecular fingerprints (MF)!3 or molecular images,'* can be combined
with different regression methods, including multiple linear regression (MLR)" 2° and
machine learning (ML).* 1> With more and more contaminants involved, traditional MLR
has limited applicability because non-linear relationships may exist between
contaminants and reaction rate constants. To handle non-linear relationships, ML has
received increasing attention because of its powerful fitting ability. For example, Huang
et al. reported a better performance of a support vector machine (SVM)-based model on
predicting the rate constants of contaminants toward Os than MLR-based QSAR models.?
Our recent study showed that ML-based models can achieve satisfactory predictive

performance for a large dataset of ® OH reactivity.!®
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ML algorithms, especially deep neural networks, often need a massive amount of
data. However, data scarcity is a common issue when developing QSAR models for rate
constants toward different oxidants, such as only 85 samples in a dataset of SOs*- radicals
21 or 136 samples in an Oz dataset.? It is however impractical to experimentally measure
rate constants (logk) for a large number of contaminants toward different oxidants to
increase the sample size. We here propose a simple and effective approach —combining
small datasets for different oxidants to form a larger dataset. This combined dataset
contains samples for five common oxidants, including ¢OH, SOs*, Os, ClO2 and HCIO.
Previous studies treated these small datasets independently and developed separate
QSAR models for each of them.” ' However, all the involved reactions are oxidation
reactions so they should share some common science. For example, for all the oxidants,
we know that electron-donating or -withdrawing groups can increase or decrease the rate
constant (k) for oxidation reactions, which was indeed correctly learned by our recent
QSAR models for *OH radicals.’”® Ye et al. found that for SOs*- electron-donating groups
(except for —N<) exhibit a positive coefficient for k, while electron-withdrawing groups
(except for —S—) exhibit a negative coefficient for k.1 Lee et al.s study indicated
decreasing k values with increasing Hammett constants for both ClO2 and HCIO,” which
might be attributed to higher bond dissociation energies when electron-withdrawing
substituents are present.?* Huang et al. reported that Exomo (Energy of the Highest
Occupied Molecular Orbital) was one of the most important descriptors in their QSAR
model for Os because, as a measure of the electron-donating ability of a molecule, Exomo
can be used to characterize the affinity of the molecule toward an electrophile.? %
Compounds with higher Eunomo are oxidized by Os with faster rates due to their stronger
electron-donating ability. Because the shared science may be transferred from one dataset
to another, combining small datasets to form a larger dataset may improve the predictive

performance of the obtained model for all the oxidants. To the best of our knowledge,
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this approach—developing a unified QSAR model on this large, unified dataset—has

never been investigated before in developing QSAR models for contaminant reactivity.

Transfer learning, widely used in computer vision, is another popular approach to
solving the data scarcity issue.?® Transfer learning refers to pre-training a model on a large
dataset and then tuning this pre-trained model on a smaller but similar dataset. We
previously employed this concept when developing QSAR models for predicting rate
constants for ®¢OH radicals and found that, when employing molecular images to
represent contaminants and pre-training a convolutional neural network (CNN) model
on the ImageNet dataset, it can considerably increase the generalization ability of the
QSAR models."* The ImageNet dataset is however quite different from the contaminant

image dataset.”” This transfer learning approach is also only limited to CNN algorithms.

For the datasets of *OH, SOs4*-, HCIO, Os and ClO., they are similar to each other
in terms of contaminant species and certain reaction mechanisms, as examples discussed
above. Therefore, it would be interesting and beneficial to investigate whether the shared
knowledge between any two datasets is transferable or not. However, how to effectively
transfer knowledge among these different datasets without using CNN algorithms is still
challenging. We here proposed a knowledge transfer approach for non-CNN algorithms,
such as tree-based ML algorithms (Figure 1b). Our results below showed that the
predictive performance of a QSAR model for a specific oxidant can be enhanced by

learning from another oxidant without increasing the sample size of either oxidant.

In this study, we compiled the largest four datasets for four common oxidants,
namely SOs*- HCIO, Os, and ClO;, by including the reaction conditions, i.e., pH and/or
temperature. The reaction conditions were seldom considered in previous studies, but
including them can significantly increase the sample size. Two chemical representations,
i.e., molecular descriptors (MDs) and molecular fingerprints (MFs), were used to combine

with different ML algorithms to develop QSAR models. We first developed single QSAR
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models for each oxidant. We then combined all of these datasets to form a large dataset
and developed a unified QSAR model. The effect of this operation on the predictive
performance of each dataset was investigated. We next used the knowledge transfer
approach to develop knowledge transfer-based models and compared their predictive
performance with the respective single models. The overall workflow of this study is

summarized in Figure 1.
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Figure 1. The workflow of this study. (A) The single and unified model development
based on MFs or MDs. (B) An illustration of how knowledge transfer is achieved by an
example of transferring knowledge from the ClO: dataset to the Os dataset (More details

are in Section 2.4).

2. Materials and methods

2.1 Datasets
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The kinetic data for the four oxidants were collected from the published literature,

which were mined through Google Scholar (https://scholar.google.com/) by using the

keywords: “sulfate radical”, “HCIO”, “Os” or “ClO.” + “kinetics”. As many as possible
samples were collected and the attributes included contaminants, their corresponding
rate constants (k), and reaction conditions (i.e., pH and/or temperature (T)). The number
of studies we collected is listed in Table 1, in which the reported datasets for QSAR
studies were directly cited without citing the original sources. Reaction conditions were
often not included in previous studies. We here included the reaction conditions because
reaction rate constants are condition dependent. For example, pH can affect the
dissociation of some contaminants while differently charged contaminant species react
with these oxidants at different rates.® Moreover, we can increase the sample size by
including the reaction conditions. All the k values were log-transformed (logk) to reduce
the range of values. If multiple logk values were reported for a contaminant for the same
conditions, an average logk value was taken. The summary of these four datasets is listed
in Table 1 and the details of the datasets are listed in “data.xIsx” in the supporting

information (SI).

Table 1. Summary of the four datasets used in this study

, Number of Number of Reaction Number of
Oxidant . e :
data points compounds conditions studies
HCIO 195 188 pH 29
ClO: 191 143 pH 32
Os 759 484 pH 142
SOs* 557 342 pH, T 33

2.2 Molecular descriptors (MDs) and molecular fingerprints (MFs)
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The simplified molecular-input line-entry system (SMILES) of organic
contaminants was obtained by the ChemDraw program. The PaDEL program 2 and the
RDKit package in Python® were employed to convert SMILES to MDs and MFs,
respectively. The MDs of one contaminant include 1444 physicochemical properties and
are represented by a vector with a length of 1444. Each property is one feature or an
independent variable. Hence, for the MD representation, the total number of features was
1445 (with pH) or 1446 (with pH and T). The MF is a binary vector that encodes chemical
structures into Os and 1s. Readers are referred to our recent papers for more details on

how MFs represent chemicals.!> %
2.3 Model development and interpretation

Before model development, we conducted data preprocessing, including missing
value imputation, feature scaling, feature selection and/or outlier treatment; and ML
algorithm screening. The details of these procedures can be found in Text S1. For each
dataset and each representation, after obtaining the optimum ML algorithm, we tuned

their hyperparameters by the Bayesian optimization algorithm, which can efficiently

explore a large search space. It will determine the next selection based on the last selection.

We have previously used this approach to optimize the hyperparameters of a deep neural
network and XGBoost.”> The working mechanism of this approach has been well
documented.?* 3! A 10-fold cross-validation was also applied to the training dataset and
the optimum hyperparameters were the ones that achieved the best validation
performance. The root mean squared error (RMSE) and R? were used as the evaluation
metrics for the predictive performance. Lower RMSE and higher R? values mean better
predictive performance. After obtaining the optimum hyperparameters, the ML
algorithms were retrained on the whole training dataset to obtain the final model. The
generalization ability of the final model was evaluated on the test dataset, which was

never used during the model development.
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After the models had been well trained and showed satisfactory predictive
performance, we used the SHAP method to interpret the models to check if predictions
made by the models are based on a correct understanding of the feature importance. We
previously used this method to interpret QSAR models for *OH radicals.’® The effects of
pH, T, and atom groups or MDs on the reactivity (logk) were investigated based on the

SHAP interpretation results.
2.4 Unified model and knowledge transfer-based model development

To combine the four datasets to form a large dataset, we added a new feature
called “Oxidant” to indicate the type of oxidant for a given entry. For these four datasets,
their “Oxidant” feature was labeled as “SOs*”, “HCIO”, “Os” or “ClO2”. As this new
categorical feature should be encoded as a numeric feature, we screened eight encoding
methods to select the best one rather than arbitrarily selecting one (Table S1). We then
followed the same procedure as described above to develop a unified model (both ME-
based and MD-based) on this large dataset, as shown in Figure 1A. It should be noted
that we chose not to combine the entire four datasets first and then re-split them. Instead,
we combined all the initial training datasets used in developing the single QSAR models
to form a combined training dataset. We did the same thing for the individual test
datasets to form a combined test dataset, so we can ensure that the generalization ability
of the unified model is tested on the same test chemicals as those in the respective single
dataset. Hence, any enhancements would be meaningful because the same test chemicals
were used. For comparison, in a typical Kaggle competition (https://www .kaggle.com/),
even subtle enhancement in the prediction accuracy of a model is desirable and
meaningful, which determines if one wins the competition or not, because they are all

required to predict the same test dataset.

Figure 1B shows our proposed knowledge transfer approach to developing

knowledge transfer-based models. Taking the ClO2 and Os datasets as an example, we
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tirst used the single model developed on the ClO: dataset to predict the reactivity of the
contaminants in the Os dataset toward ClO2. We then added these predictions as a new
input feature to the original Os dataset. This modified Os dataset thus likely contains some
structure-reactivity information from the ClO: model. We then developed another model
for this new Os dataset—referred to as a ‘knowledge transfer-based model’—and
compared its performance with that of the single model developed on the original Os
dataset. As described above, the test chemicals remained unchanged when evaluating the
performance of the knowledge transfer-based models. Following this approach, we
developed a total of 6 knowledge transfer models for three sets of (Os, C1Oz), (C102, HCIO)
and (O3, HCIO). The *OH and SOs*- datasets were not used here because the *OH dataset
did not contain reaction conditions while the SOs*- dataset contains T as a reaction

condition.
2.5 Applicability domain (AD) analysis

Because there are reaction conditions in the input, the reported fingerprint-based
similarity method cannot be directly applied here.’> We thus chose a combination of
fingerprint-based similarity and range-based methods to determine AD. First, any query
chemicals with the reaction conditions (pH and/or T) outside the ranges of pH and/or T
of the training dataset were seen as outside of the AD and were not further investigated.
For query chemicals whose reaction conditions are within the ranges of pH and/or T of
the training dataset, we calculated their similarity to the contaminants in the training
dataset based on the Tanimoto index.?? * To determine the optimal similarity threshold,
we set the chemicals in the test dataset as query chemicals. Any chemicals that were
outside the AD (i.e., the similarity values below the threshold) were removed from the
test dataset and the RMSEwst was recalculated. The optimal threshold is the one that

achieved the lowest RMSE:est.

3. Results and discussion
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The detailed results of ML algorithm screening, feature selection and
hyperparameter tuning are shown in Text S2. Briefly, different optimum ML algorithms
were selected for different datasets, indicating that the optimum ML algorithm is dataset
dependent. There is also overfitting in all the ML models with their default

hyperparameters, which was alleviated by feature selection and hyperparameter tuning.
3.1 MF versus MD representation and the final individual QSAR models

The statistical comparison between the performances of the two representations
are plotted in Figure 2. For all these four oxidants, the training performance for the MD
representation is always better than that for the MF-based. However, that is not always
the case regarding the generalization ability on the test dataset. For the datasets of SO4*
and HCIO, better predictive performance was achieved on both the training and test
datasets for the MD-based models. Hence, the MD-based models were selected as the
QSAR models for SOs*- and HCIO. For the datasets of Oz and ClO:, the MD-based models
showed better predictive performance on the training datasets but worse predictive
performance on the test datasets than the MF-based models. This means that overfitting
was more serious in the MD-based models. Hence, the final QSAR models for Os and
ClO: were the MF-based models. This result indicated that the optimum chemical
representation is dataset-dependent. One possible reason is that the calculated MDs by
the commercial PaDEL program might correlate better with the reactivity in the SO4*- and
HCIO datasets than with that in the O3 and ClO: datasets. Therefore, it is recommended
to screen the optimum chemical representation in future modeling rather than arbitrarily

selecting one.

After selecting the appropriate model for each dataset, we compared their
performance with previously published ones (results in Text S3). Note that the sizes of
our four datasets are much larger. Generally, the predictive performance of a model

becomes worse with increasing data size,' likely due to the inclusion of more noise
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information. For the SOs*- dataset, our single model showed better predictive
performance than previous studies despite the larger sample size. Worse performance
was observed for the Os dataset because of its significantly larger data size. For the ClO2
and HCIO datasets, we were only able to find one article that reported models for amines®

and no test performance was provided so it is difficult to make a comparison.

2.5

=<
O

2.0 1

1.5+

RMSE,

0.5 1

-
o
1

0.0

Figure 2. Comparison of the two representations in terms of the predictive performance

on the training or the test dataset for the four oxidants.
3.2 Interpretation of the single QSAR models

We interpreted all the single QSAR models to verify (1) if they made predictions
based on the correct science and (2) if there are common features used among these

models. The latter information may be useful to validate the knowledge transfer strategy.
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Figure 3 shows the SHAP interpretation of the MF-based single QSAR models with the
top 10 features shown (9 atom groups + pH). The interpretations for the pH effects and
the pattern distribution are illustrated in Text S4. The results suggest that all the pH
effects were correctly learned, and that different pattern distributions resulted from the
employed different ML algorithms. Figure 4 shows the effect of the top 9 atom groups
identified in Figure 3 on the logk. As shown, the four models share several common atom
groups. For example, the 3rd atom group (aromatic carbon) in the SOs*- model is the same
as the 8th atom group in the Os model. The number of shared atom groups among these
four oxidants is summarized in Table S2. Surprisingly, the learned contributions of some
of these atom groups toward logk differ significantly among the four datasets. For
example, aromatic carbons in the SOs*- model (3') contributed positively to the logk while
those in the HCIO (8t%), Os (34), or ClO2 (5%) model contributed negatively. The -NH:
group increased the logk in the Os model (7%) but decreased the logk in the ClO: model
(3). However, both aromatic carbons and -NH: are known electron-donating groups
whose presence should lead to higher logk values. Therefore, only the SOs*- model
seemed to ‘correctly’ learn these relationships (thus showing better predictive
performance) whereas the HCIO, Os and ClO2 models seemed to “incorrectly’ learn some

of them (thus showing worse predictive performance).
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288  Figure 3. The SHAP interpretation of the MF-based single QSAR models for the four
289  oxidants. The x-axes are the SHAP values and the y-axes are the identified top 10 most
290 influential features. The numbered features, such as 318, 261 and 1702, represent the
291 feature positions in the MFs, with each position representing a certain atom group (see
292 below). MFs are vectors of 1s and Os; the red color represents 1s in those positions—the
293  presence of an atom group—while blue means 0s—no atom groups in those positions.
294  pH values are continuous values from the minimum to the maximum for different
295  datasets so they are colored from blue to red. A feature with a positive SHAP value means
296  that it can increase the logk value; whereas a feature with a negative SHAP value means
297  thatit can decrease the logk value. The pattern for each feature is composed of the SHAP
298  values for all the chemicals in the dataset that contain that feature. All other SHAP plots

299  in this work follow the same interpretation.
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Figure 4. The effect of the top 9 atom groups shown in Figure 3 on the logk values, in
which the up and down arrows mean increasing and decreasing the logk values,
respectively. The same atom groups in different datasets are marked by squares and
connected by dotted lines. The -NH: and carbonyl groups are overlapped at the 3+
position for the ClO: dataset. Note that the length of the MFs has been optimized by the
Bayesian algorithm to achieve the best predictive performance, but the overlap still
happened, indicating the intrinsic limitation associated with the MFs. The blue dots
represent the center atoms; the black solid lines represent the bonds in the feature; the
grey lines represent the neighboring bonds not in the feature; the dotted lines represent
conjugated structures, e.g., aromatic; and the yellow color represents an aromatic atom

in the feature. All heavy atoms except for C, such as O and Cl, are shown.

For the -NH: group in the ClO: dataset, its negative effect on logk resulted from
its overlap with the electron-withdrawing carbonyl group in the MFs, that is, the position
of 689 in the MFs (Figure 3D) is assigned to two atom groups (—NH: and carbonyl) while
carbonyl is a strong electron-withdrawing group that decreases the logk. To understand
the reason for the observed negative effect of aromatic carbons, we plotted the
distribution of experimental logk values for the compounds with or without aromatic
carbons. Figure S1 shows that the average logk value for the compounds containing
aromatic carbons in the SOs* dataset is greater than that for the compounds not
containing aromatic carbons in the same dataset, whereas this trend is reversed in the
datasets of HCIO, Os and ClO2. This explains why the developed models learned different
effects of aromatic carbons on the logk. This finding suggests that the average effect of a
specific atom group on the chemical reactivity is dataset-dependent, which is expected.
For example, when ClO: reacts with aliphatic amines, the logk value decreases in the
following order: tertiary amine > secondary amine > primary amine.® If an ML-based

QSAR model is developed based on this dataset, a primary amine will be ‘learned’ to be
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an atom group that decreases logk because the average experimental logk for primary
amines is smaller than that for all amines in the dataset, although -NH-: is a well-known
electron-donating group. In other words, the types of chemicals involved in a dataset
affects the model-derived positive or negative contribution of an atom group to logk. To
illustrate the above idea for our datasets, we took the ClO: dataset as an example, where
it has 36 chemicals containing aromatic carbons (5% atom group for ClO: in Figure 4).
Among these 36 chemicals, 28 of them (77%) contain electron-donating groups, such as —
O, —NHz, or —OH (Table S3), that are stronger in their electron-donating effects than
aromatic carbons. As a result, aromatic carbons in the ClO: dataset were ‘learned’ to have
negative effects on logk. The same explanation can be applied to the HCIO and Os datasets.
We believe that if a dataset is large enough and contains a diverse range of chemical
structures, the corresponding ML model should be able to learn the correct effects of
various atom groups that match the known chemistry. In other words, the quality of a
dataset determines the quality of the corresponding ML model, which is similar to that

of traditional QSAR models.

Figure 52 shows the SHAP interpretation of the MD-based single QSAR models.
Detailed explanation for them was provided in Text S5. Compared with the MF-based
models, fewer MDs (only 1 — 2) were shared among these four models. It is not easy to
examine how some of these MDs affected the logk because their physicochemical

meanings are not readily interpretable.
3.3 Unified models based on the MFs or MDs

To improve the model performance, we combined the four datasets to form a large
unified dataset and developed a MF-based unified model (refer to as “MF-UN-17"),
following the same procedure as for the single MF-based models. Figure 5A shows better
predictive performance of MF-UN-1 on the test dataset (R%est = 0.76) than all the single

models (Text S3) (the RMSE values depend on the ranges of the logk values, so they were
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not used for comparison), indicating the effectiveness of the unified approach. We then
examined its predictive performance on the four single datasets, as shown in Figure 5B.
Except for the SOs*- dataset, the performance of MF-UN-1 is better than that of the
respective single models for the other three datasets. Figure 5C plots the distribution of
the logk values in the four datasets, demonstrating the range of logk values for the SOa*-
dataset deviating substantially from that for the other three datasets. This may be the

reason that the performance of MF-UN-1 on the SOs*- dataset was worse.

Figure 5D shows the SHAP interpretation of this unified model and the identified
top 6 atom groups (among the top 10 features in Figure 5D, only 6 of them are atom
groups). Table S4 shows these atom groups as well as their effects on the logk, in which
all of these effects were correctly learned. Although aromatic carbons were not among
the top 6 atom groups, we still examined them here because their effects in the HCIO,
ClO:2 and Os datasets, as well as the effect of the -NH: group in the ClO: dataset, were
previously learned to decrease the logk. For MF-UN-1, interestingly, the effect of -NH-
was ‘learned’ to be increasing the logk, although the aromatic carbons still decreased the
logk in this unified dataset. For the SOs*- dataset, the effect of aromatic carbons changed
from increasing the logk in the individual model to decreasing the logk in MF-UN-1,
which should be the reason for the worse predictive performance of the unified model
on the SO4*- dataset. In contrast, the effect of the -NH-: group in the ClO: dataset changed
from decreasing the logk in the individual model to increasing the logk in MF-UN-1, so
the predictive performance improved (Figure 5B). The effects of these two groups on the
logk are the same for HCIO and Os datasets before and after combining the datasets, but
the predictive performance became better, which may be due to some unknown

synergetic effects or similar “correction” effects of atom groups that are not among top 9.
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Figure 5. The predictive performance of the unified model on the training and test
datasets for the unified dataset (A) and the single datasets (B); (C) the ranges of logk
values for the single datasets; and (D) the SHAP interpretation of the unified model, in
which the x-axis is the SHAP value and the y-axis is the features. The features of
‘Oxidant_1’, ‘Oxidant_2’, and ‘Oxidant_3’ are the encoded features for these four
oxidants and they can take only values of 0 or 1. Their different combinations (i.e.,
[‘Oxidant_1’, “Oxidant_2’, “‘Oxidant_3]) represent different oxidants, such as [0, 0, 1] for

HCIO or [0, 1, 0] for Os. Other features represent atom groups and are listed in Table 54

Figure S3 shows the performance of the unified model based on the MD
representation. This unified model was developed following the same procedure as for

the single MD-based models. The RMSEcest (1.67, Figure S3A) is slightly higher than that
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of MF-UN-1 (1.62); the predictions made by the MD-based unified model marginally
improved for Os and CIO, but marginally decreased for SOs*- and HCIO (Figure S3B).
This improvement was less than by MF-UN-1 (Figure 3B) and the overfitting trend was
more obvious, as suggested by the larger difference in the RMSE values between the
training and test datasets (Figure S3C). The SHAP patterns in Figure S5D are similar to
those of the single MDs-based models (Figure S2). Overall, the MD representation did
not perform as well as the MF representation when developing the unified model, so we

only focus on the MF representation below.

As mentioned above, the range of logk values for SOs*- is quite different from those
of the other three datasets (Figure 3C), which may be one reason that the predictive
performance of MF-UN-1 did not improve for SOs". To test this idea, we combined the
SOs*- dataset with a reported OH* dataset to form a large dataset because their logk values
fall in the same range (Figure 54C). The OH"* dataset contains 1086 chemicals and was
previously used successfully to develop ML-based QSAR models.!* !> We then developed
another MF-based unified model (refers to as “MF-UN-2") on this dataset and Figure S4A
shows the R%est = 0.68. Figure S4B suggests that the predictive performance of MF-UN-2
for SOs*- became much better than the single model while that for OH* became worse. As
the SHAP interpretation of MF-UN-2 shown in Figure S4D, the effect of the identified top
8 atom groups on the logk were all correctly learned (only 8 of the top 10 features are
atom groups) (Table S5). This worse performance for ®OH was probably because the
additional fixed T (25 °C) and pH (7) conditions were added into the *OH dataset to
combine with the SOs*- dataset, which might have introduced noise information to the
model, although future work is needed to understand the exact reason. For prediction
purposes, MF-UN-2 can be used for SOs*- while the reported MF-based single model is

still recommended for ¢OH.
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Finally, we combined all of these five datasets to form the largest dataset to
develop another MF-based unified model (refers to as “MF-UN-3"). Figure S5A shows
that the R%.st reached 0.82. While the predictions for SOs*, HCIO and ClO: became better,
those for *OH and Os became slightly worse (Figure S5B). Table S6 shows the effects of
the identified top 8 atom groups (only 8 of the top 10 features are atom groups) based on
the SHAP plot of Figure S5C, and all of them were correctly learned. The marginally
worse predictive performance for the  OH dataset is explained above, but the marginally
worse predictive performance than MF-UN-1 for the Os dataset is unexpected. We do not
have a good explanation for this yet. These results suggested that it is not always better

to combine datasets to achieve better predictive performance.

3.4 Knowledge transfer models

Figure 6 shows the predictive performance of different knowledge transfer models
that were developed based on our proposed approach shown in Figure 1B. The SOs*
dataset was not used because it contains not only pH but also T, while other three datasets
only contain pH. The models developed based on these three datasets cannot make

predictions for contaminants under different T.
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Figure 6. The predictive performance of different ML models before and after knowledge

transfer (KT)

There are three distinct scenarios for these knowledge transfer models. For
Os/HCIO, both of the knowledge transfer models show better predictive performance
than the original models before the transfer. There is one shared atom group (carbonyl)
among the top 9 atom groups between Os and HCIO (Figure 4) and the effect of this atom
group was consistent (i.e., decreasing the logk) between the two datasets. Moreover, the
predictive performance of the single models for Os and HCIO was similar (RMSEtest 2.06
for Os and 2.10 for HCIO). Both of these two factors should have contributed to the
effectiveness of knowledge transfer. For Os/ClO2, the knowledge transfer model for Os
became better after receiving knowledge from the ClO: model, while the knowledge
transfer model for ClO: became worse. There are 3 atom groups shared between Os and
ClOg, but the effects of -NH: in these two datasets are opposite (Figure 4). Moreover, the

predictive performance of the single model for ClO2 (RMSEtest 1.77) is better than that for

ACS Paragon Plus Environment

Page 22 of 27



Page 23 of 27

446
447
448
449
450
451

452

453

454

455
456
457
458
459
460
461
462
463
464

465

466

467

Environmental Science & Technology

Os (RMSEtest 2.06), so the information transferred from Os to ClO2 has more uncertainties,
which should have led to the worse performance. For ClIO:/HCIO, no change in the
predictive performance was observed for both oxidants. This is expected because there
are no shared atom groups between these two datasets (Figure 4). These results indicated
that the effectiveness of our knowledge transfer approach is determined by if there is
consistent knowledge shared by the single models as well as their respective predictive

performance.

3.5 The final QSAR models and their AD determination

For the four oxidants, we ranked all the developed models in terms of the
predictive performance and finally obtained the optimal QSAR models, shown in Table
2. Both the unified models and transfer learning models outperformed all the individual
models and were selected as the final models, validating the effectiveness of our
proposed two approaches. We next determined their ADs, as shown in Table 2. For each
model, with increasing threshold value, more contaminants were identified as outside
AD and the recalculated RMSEs: first decreased and then increased. The optimal
threshold values for these four datasets are bolded in Table 2. For a query compound, if
its similarity to the contaminants in the training dataset is above the threshold value, the
models can provide a reliable prediction for its reactivity toward one of these four

oxidants.

Table 2. The final selected models for each dataset and their AD determination

Dataset Best Model Best Threshold t# O,f ¢ Recalculated
atase et MIOdel RMSEues value CONEATINANS o\ 16 F eur
outside AD
SOs*- MEF-UN-2 0.703 0.50 0 0.703
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0.60 1 0.699

0.70 2 0.700

Knowledge 0.28 0 1.982

HCIO Transfer 1980 0.30 1 1.955
model (Os- 0.42 2 1.895

HCIO) 0.43 3 1.906

0.50 0 1.942

0.55 1 1.909

Os ME-UN-1 1.942 0.56 3 1.906
0.62 4 1.912

0.66 0 1.465

ClO: ME-UN-3 1.465 0.67 1 1.468
0.83 2 1.486

4. Environmental significance

In this study, we investigated QSAR models for datasets that are different but
share some similarities (i.e., oxidation reactions). Previous studies viewed these datasets
independently, whereas we tried to obtain relationships among them to enhance the
predictive performance of the QSAR models. We proposed two approaches—combining
individual datasets to form a large, unified dataset and transferring knowledge between
individual datasets. When developing single ML models using these single datasets, we
found that (1) the optimal ML algorithm is dataset dependent. Screening ML algorithms
from several candidate algorithms is recommended and simpler ML algorithms are
preferred if they show similar predictive performance as complex ones; and (2) the
optimal representation for contaminants is also dataset-dependent because some
representations may not capture the key features of the dataset. Combining similar
datasets to form a large dataset and developing a unified model can generally improve
the predictive performance on the individual datasets, because some ‘wrongly” learned
knowledge based on a smaller dataset (e.g., bias of the dataset) may be corrected this way.

In other words, data bias can be mitigated by increasing the sample size. Knowledge
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transfer is effective when there is consistent knowledge shared between the two datasets
and when the single models themselves have good predictive performance. Overall, this
study provided new insights into developing ML-based QSAR models for small datasets.
We demonstrated that there are synergistic effects among similar datasets, which can be

leveraged to boost the predictive performance of QSAR models.
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