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Abstract

We establish an equivalence between the `2-regularized solution path for a convex loss
function, and the solution of an ordinary di�erentiable equation (ODE). Importantly, this
equivalence reveals that the solution path can be viewed as the 
ow of a hybrid of gra-
dient descent and Newton method applying to the empirical loss, which is similar to a
widely used optimization technique called trust region method. This provides an inter-
esting algorithmic view of `2 regularization, and is in contrast to the conventional view
that the `2 regularization solution path is similar to the gradient 
ow of the empirical loss.
New path-following algorithms based on homotopy methods and numerical ODE solvers
are proposed to numerically approximate the solution path. In particular, we consider
respectively Newton method and gradient descent method as the basis algorithm for the
homotopy method, and establish their approximation error rates over the solution path.
Importantly, our theory suggests novel schemes to choose grid points that guarantee an
arbitrarily small suboptimality for the solution path. In terms of computational cost, we
prove that in order to achieve an �-suboptimality for the entire solution path, the num-
ber of Newton steps required for the Newton method is O(�−1/2), while the number of
gradient steps required for the gradient descent method is O

�
�−1 ln(�−1)

�
. Finally, we use

`2-regularized logistic regression as an illustrating example to demonstrate the e�ectiveness
of the proposed path-following algorithms.

Keywords: `2 regularization, path-following algorithms, Newton method, gradient de-
scent method, convergence rate analysis.

1. Introduction

It is of great interest to study statistical procedures from a computational perspective. Many
regularization techniques can be understood as iterative algorithmic procedures, providing
an interesting algorithmic view of regularization. For instance, Friedman and Popescu
(2004) studied variants of gradient descent and showed that they closely correspond to
those induced by commonly used regularization methods. Building on the works by Efron
et al. (2004); Hastie et al. (2007), M. Freund et al. (2017) showed that the classic boosting
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algorithm in linear regression can be viewed as the iterates generated by applying subgra-
dient descent algorithm to the loss function de�ned as the maximum absolute correlation
between the features and residuals.

Tikhonov (or `2) regularization (Tikhonov and Arsenin, 1977) is ubiquitously used in
many modeling procedures, and in the statistical literature it traces back to Hoerl and
Kennard (1970), where it is often referred to as ridge regression. It is natural to seek an
algorithmic view of `2 regularization, that is, what algorithm would produce a sequence
of iterates that is identical to the `2-regularized solutions. Surprisingly, this has not been
formally established for a general convex loss function, with most related works focusing
on least squares error loss. For example, Fleming (1990) showed an equivalence between `2
regularization and the iterates of certain optimization algorithms. More recently, Suggala
et al. (2018) formally studied the connection between `2 regularization path and the iterates
of gradient descent algorithm. They established a pointwise bound between these two paths
and use this to establish the risk bound of the iterates of gradient descent algorithm. Neu
and Rosasco (2018) proposed a weighting scheme for gradient descent iterates so that it is
exactly equal to some `2-regularized solution. Another related work is by Ali et al. (2019),
which compares the risk of gradient 
ow to that of `2-regularized solutions in the context
of least squares regression.

Another line of work has focused on the similarity between algorithmic approaches and
explicit regularization approaches in terms of their statistical performance. Earlier work
includes (Frank and Friedman, 1993), who pointed out a similarity between ridge regression
and partial least squares regression, where the latter has been shown to be equivalent to
conjugate gradient descent with squared-error loss (Wold et al., 1984). More recently, Yao
et al. (2007) considered nonparametric regression in a reproducing kernel Hilbert space
(RKHS) and provided some theoretical justi�cation for early stopping of gradient descent
algorithm. Raskutti et al. (2014) proposed a data-dependent and easily computable stopping
rule for gradient descent, and showed that it can achieve similar risk bounds as that of the
ridge regression.

In this article, we establish an algorithmic view of ridge regression for a general convex
loss function. We �rst establish an equivalence between `2-regularized solution path for
a convex loss function, and the solution of an ODE. This reveals a formal equivalence
between `2 regularization solution path and the iterates produced by a hybrid of gradient
descent and Newton algorithm when the step size tends to 0. This equivalence has been
previously discovered by Suggala et al. (2018) (see proof of Theorem 1 in Suggala et al.
(2018)). However, a rigorous proof was not provided by Suggala et al. (2018).

More formally, denote by Ln(�) some convex empirical loss function, where � 2 Rp
is the parameter. Let C(�) be a di�erentiable increasing function with C(0) = 0 and
limt!1C(t) =1. We consider the solution path of an `2-regularized convex optimization
problem:

�(t) = arg min
�2Rp

�
C(t) � Ln(�) +

1

2
k�k22

�
: (1)

Note that as t varies from 0 to 1, the solution �(t) varies from 0 to a minimizer of Ln(�).
Throughout this article, we focus on `2 regularization, although some of the results in
this article can be easily extended to the case where the regularizer is a general quadratic
function.
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Our �rst main result is that under some smoothness condition on Ln(�), the solution
path de�ned by (1) coincides with the global solution to the following ordinary di�erential
equation (ODE),

�0(t) = �C 0(t)
�
C(t) � r2Ln(�(t)) + I

��1rLn(�(t)); t � 0 ; (2)

with an initial condition �(0) = 0. More speci�cally, under the assumption that Ln(�) is
convex and has continuous Hessian, we show that �(t) is di�erentiable in t and the solution
to the above ODE is also a solution path to the original optimization problem (1).

To better interpret the ODE formulation in (2), we consider a special choice of C(t) =
exp(t)�1 throughout this article. In fact, based on the aforementioned equivalence, it is easy
to see that the choice of C(t) is not essential, because the solution to the ODE can always
be viewed as the solution path to (1) regardless of the choice of C(t). In another words,
di�erent choices of C(t) produce the same path �(t) in Rp|they just \travel" at di�erent
speeds to the minimum `2 norm minimizer of Ln(�) as t varies from 0 to 1. Another
rationale for choosing C(t) = exp(t) � 1 is that this agrees with the common practice of
picking grid points on a log scale for tuning parameter selection.

Plugging C(t) = exp(t)� 1 into (2), the ODE becomes

�0(t) = �
�
(1� e�t) � r2Ln(�(t)) + e�t � I

��1rLn(�(t)); t � 0 with �(0) = 0 : (3)

The left hand side �0(t) can be viewed as the local direction of the solution path at
time t. Interestingly, we can see from (3) that the search direction can be thought of
as certain hybrid of gradient descent search direction �rLn(�(t)) and Newton direction

�
�
r2Ln(�(t))

��1rLn(�(t)). Moreover, the search direction is closer to gradient search
direction when t is small, and closer to Newton direction when t is large. This provides
an interesting algorithmic perspective of `2 regularization, and partially con�rms previous
belief that the `2 regularization path is closely related to the solution path generated by the
gradient descent method. In particular, the ODE update direction (3) resembles to that
of the trust region algorithm or its precursor the Levenberg{Marquardt algorithm (Leven-
berg, 1944; Conn et al., 2000). Both algorithms produce similar types of hybrid of gradient
descent and Newton direction:

�k+1 = �k �
�
r2Ln(�k) + �I

��1rLn(�k) ; (4)

where � > 0 is often adaptively chosen or determined by the size of the trust region. Al-
though these optimization algorithms have very similar update directions, they are designed
with the goal of �nding a minimizer of the unregularized loss Ln(�) reliably and e�ciently.
By contrast, our focus here is to provide an algorithmic interpretation of the `2-regularized
solution path, and to design numerical procedures to approximate the entire solution path
for the regularized problem. A more detailed discussion of this connection is provided in
Section 3.

Aside from providing a conceptual connection between the `2-regularized solution path
and solutions to an ODE, the ODE formulation also opens up avenues for designing al-
gorithms to approximate the entire `2-regularized solution path or the minimum norm
minimizer of Ln(�). In particular, the ODE formulation (2) is known as the initial-value
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problems in the numerical ODE literature (see, e.g., Butcher, 2016). Many e�ective numer-
ical ODE solvers such as the Euler's method and Runge-Kutta method (see Chapter 2 and
3 of Butcher, 2016) can be used to approximately solve the ODE over a discrete set of grid
points.

In addition to ODE solvers, we also propose two new path-following (homotopy) methods
based on Newton method and gradient descent method as their \working horse" algorithms
to approximate the solution path �(t) over a given region [0; tmax), where 0 < tmax � 1.
An approximate solution path ~�(t) is constructed through linearly interpolating the approx-
imate solutions at the selected grid points (see Section 3.1 for its formal de�nition). The-
oretically, we bound the global approximation error of the entire solution path in terms of

sup0�t�tmax

n
ft(~�(t))� ft(�(t))

o
for both the Newton method and gradient descent method

(c.f. Theorem 4 and 8), where ft(�) = (1� e�t)Ln(�) + (e�t=2) � k�k22 is a scaled version of
the regularized objective function. These bounds reveal an important interplay between the
choice of grid points and accuracy of the solutions at the selected grid points. In particular,
they allow us to design novel schemes to select grid points t1; : : : ; tN so that the overall
computations required to achieve a prespeci�ed suboptimality is minimized.

Using the newly proposed grid point selection schemes, we further derive upper bounds
on the total number of steps required to achieve an �-suboptimality, i.e.,

sup
0�t�tmax

n
ft(~�(t))� ft(�(t))

o
. � ; (5)

where � > 0. In particular, the number of Newton steps and gradient steps required to
achieve � suboptimality are at most O(��1=2) and O

�
��1 ln(��1)

�
, respectively. To the

best of our knowledge, these complexity results are new, and parallel to existing complexity
results for the Newton method and gradient descent method when applied to solving a single
optimization problem (i.e., the problem corresponding to t = tmax). Moreover, the new
complexity results also suggest that Newton method, being more expensive at each iteration,
requires less number of iterations as compared with the gradient descent method. Numerical
experiments on a `2-regularized logistic regression corroborate with the theoretical results
in that the Newton method tends to perform better than the gradient descent method for
small to medium scale problems, while the gradient descent method is more e�cient for
large-scale problems.

In optimization, homotopy techniques have been used in many algorithms including
the interior point algorithm (Nesterov and Nemirovskii, 1993). For example, the solution
to a constrained convex optimization problem can be viewed as the limit of the solutions
to a family of unconstrained optimization by introducing a barrier (or penalty) function.
However, the focus of these methods is the recovery of the limit of the path, rather than the
entire solution path. That said, the idea of the warm-start strategy has been well developed,
which consists of the so-called \working horse" algorithm and the policy for updating the
penalty parameter (see, e.g., Chapter 1.3 of Nesterov and Nemirovskii, 1993). Typically,
Newton method is used as the \working horse" for the modern path-following interior point
methods. In statistical learning literature, Osborne (1992) and Osborne et al. (2000) applied
the homotopy technique to generate piecewise linear trajectories in quantile regression and
LASSO, respectively. Later Efron et al. (2004), Hastie et al. (2004), and Rosset and Zhu
(2007) exploited the homotopy path-following methods to generate an entire solution path
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for a family of regularization problems. Subsequent developments include Friedman et al.
(2007); Hoe
ing (2010); Arnold and Tibshirani (2016), among others. These works often
leverage the piecewise linearity of the solution path so that an exact path-following algorithm
can be explicitly derived. For situations where the solution paths are not piecewise linear,
approaches based on ODE solvers were considered in Wu (2011); Zhou and Wu (2014) and
a path-following algorithm based on Newton method was considered in Rosset (2004). In
particular, Rosset (2004) also proposed to use one-step Newton update to generate the
solution path, and is the most relevant to our work. However, it used a constant step size
scheme and only established the pointwise closeness to the solution path. To the best of
our knowledge, our work is the �rst to theoretically analyze the global approximation error
of the entire solution path.

To summarize, our key contributions are that

� we provide an algorithmic view of `2 regularization through establishing a formal
equivalence to the solution of an ODE, which further reveals an interesting connection
to the trust region algorithm and Levenberg-Marquardt algorithm;

� we propose two path-following algorithms based on Newton update and gradient de-
scent update, and establish global approximation-error bounds for the solution paths
generated by both algorithms;

� we also consider various numerical ODE solvers to approximate the `2-regularized
solution path.

The rest of the paper is organized as follows. Section 2 discusses the properties of the
solution path, and provides a proof of the equivalence to the ODE solution. Section 3 intro-
duces the linear interpolation scheme and discusses various approaches to approximate the
regularized solution path. In Section 4, global approximation-error bounds for two path-
following algorithms are established. New grid point selection schemes and the associated
computational complexities are derived. In Section 5, we compare the proposed meth-
ods with some competing methods through a simulated study using `2-regularized logistic
regression. We close with some remarks in Section 6.

2. Properties of the solution path

In this section, we �rst start with an informal derivation of the ODE (2) using the optimality
condition of the `2-regularized solutions. We then rigorously establish the di�erentiability
of �(t), which turns out to be the key ingredient in establishing the equivalence between (1)
and (2). Note that the optimality condition of (1) at time t is

C(t)rLn(�(t)) + �(t) = 0 : (6)

If we assume for now that �(t) is di�erentiable in t, by taking derivative with respect to t,
we obtain that

C 0(t)rLn(�(t)) + C(t)r2Ln(�(t))�0(t) + �0(t) = 0 ;

which implies that

�0(t) = �C 0(t)
�
C(t)r2Ln(�(t)) + I

��1rLn(�(t)) :
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It is easy to see that �(0) = 0. Thus, it follows that the `2-regularized solution path must
be a solution to the ODE (2).

Next, we make the above argument rigorous. The missing piece of the above argument
is the di�erentiability of the solution path �(t) in t. To formally establish this, we impose
convexity and smoothness conditions on Ln(�), and show that the solution path �(t) is
di�erentiable in t. The assumptions needed on the loss function Ln(�) are described below
in Assumption (A0).

Assumption (A0). Suppose that Ln(�) is convex and has continuous second derivative,
with 0 2 domLn, where domLn denotes the domain of Ln(�).

Theorem 1 Assume that C(t) is a strictly increasing and di�erentiable function, with
C(0) = 0 and limt!1C(t) =1. Under Assumption (A0), the solution path �(t) de�ned by
(1) is di�erentiable in t, and it is the unique solution to the ODE (2).

Some remarks are in order. The above result has been informally presented in Suggala
et al. (2018) without rigorously proving the di�erentiability of the regularization path �(t).
The connection to the ODE suggests that the choice of C(t) is not essential. If we choose
C(t) = exp(t)� 1, then it follows from Theorem 1 that the search direction at time t is

�
�
(1� e�t)r2Ln(�(t)) + e�tI

��1rLn(�(t)) ;

which is similar to the search direction of Levenberg-Marquardt algorithm (Levenberg,
1944). Interestingly, the direction is a hybrid of Newton and gradient direction, and it is
close to gradient direction when t is small and close to the Newton direction when t is large.

It is also worth pointing out that Efron et al. (2004) shows that `1-regularized solution
path is piecewise linear. By contrast, here we show that the `2-regularized solution path
is more smooth in the sense that it is di�erentiable everywhere. Moreover, without the
smoothness assumption, the di�erentiability of the solution path can not be established in
general. Examples include `2-regularized quantile regression and support vector machine,
both of which have nonsmooth loss functions and their solution paths were shown to be
nondi�erentiable in t by Osborne (1992) and Hastie et al. (2004), respectively. In this sense,
the smoothness assumption for the loss function is necessary.

Next we present some properties of the `2-regularized solution path, which may be
interesting on their own. In particular, it shows that the `2 norm of the solutions k�(t)k2 is
nondecreasing, while k�(t)k2=C(t) is nonincreasing. Moreover, it is shown that the solution
�(t) converges to the minimum `2 norm minimizer of Ln(�) as t goes to in�nity if it is �nite.

Corollary 1 Assume that C(t) is a strictly increasing and di�erentiable function, with
C(0) = 0 and limt!1C(t) =1. Then

(i) k�(t)k2 is nondecreasing in t and Ln(�(t)) is nonincreasing in t;

(ii) k�(t)k2=C(t) is nonincreasing in t;

(iii) if Ln(�) is a continuous, closed proper convex function and the minimum `2 norm
minimizer of Ln(�), denoted as �?, is �nite, then limt!1 �(t) = �?.

6



An algorithmic view of `2 regularization and some path-following algorithms

We remark that the convergence of �(t) to the minimum `2 norm minimizer has already been
established in Theorem 8 of Suggala et al. (2018). Moreover, the monotonicity property
of the solution path and the loss function is also probably well-known as folklore. We
include them here to make the paper largely self-contained. Also, as pointed in Suggala
et al. (2018), results of similar 
avor have also been obtained recently for various types
of optimization algorithms (see, e.g., Soudry et al., 2017; Gunasekar et al., 2017, 2018).
Moreover, it is noted that the smoothness assumption on the loss function is not necessary
for establishing monotonicity or convergence to the minimum `2 norm solution. As such,
this result is applicable to nonsmooth loss functions such as support vector machine and
quantile regression.

Both Theorem 1 and Corollary 1 can be extended to handle general quadratic regulariz-
ers. More speci�cally, it can be shown that Theorem 1 and Corollary 1 continue to hold if a
general quadratic regularization function 1

2(�� �0)>Q(�� �0) is used, where Q is a positive
de�nite matrix and �0 is some starting point. The corresponding ODE becomes

�0(t) = �C 0(t)
�
C(t) � r2Ln(�(t)) +Q)

��1rLn(�(t)); t � 0 with �(0) = �0 :

For Corollary 1, the limit of �(t) would be the minimizer of Ln(�) that is closest to �0 with
distance induced by k � kQ-norm.

3. Approximation of the solution path

When the solution path �(t) is not piecewise linear, typically only an approximate solu-
tion path can be obtained. There are in general two types of approaches to obtain an
approximate solution path. One is based on the idea of homotopy method (Osborne, 1992;
Nesterov and Nemirovskii, 1993; Rosset, 2004), and the other one is based on numerical
ODE methods (see, e.g., Wu, 2011; Zhou and Wu, 2014). In this section, we study these two
types of approximation schemes. Speci�cally, for homotopy methods, we use Newton up-
date and gradient descent update as the basis, and derive the corresponding path-following
algorithms. We also consider numerical ODE solvers based on the explicit forward Euler
method and the (second-order) Runge-Kutta method (Butcher, 2016).

Note that although the focus of typical homotopy algorithms is to �nd a single solution
at the limit, here we use the idea of homotopy algorithm with the goal of approximating
the entire solution path (see, e.g., Friedman et al., 2007) through linear interpolation. More
speci�cally, given the approximate solutions f�kgNk=1 at a set of prespeci�ed grid points
0 < t1 < � � � < tN < 1, we propose an approximate solution path through linearly
interpolating these solutions. This produces a continuous approximate solution path for
�(t). Throughout this section, we assume that C(t) = exp(t) � 1 and consider (3) instead
of (2), because they generate the same solution path.

3.1 Approximate solution path through linear interpolation

Suppose that the goal is to approximate the solution path �(t) over a given interval [0; tmax)
for some tmax 2 (0;1], where we allow tmax = 1. Given a set of grid points 0 < t1 <
� � � < tN <1, and the approximate solutions f�kgNk=1 at these grid points, a natural way to
produce an approximate solution path over [0; tmax) is by linear interpolation. In particular,
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we de�ne a piecewise linear function ~�(t) as the approximate solution path through linearly
interpolating the solutions at each grid point:

~�(t) =
tk+1 � t
tk+1 � tk

�k +
t� tk

tk+1 � tk
�k+1 for any t 2 [tk; tk+1]; k = 0; 1; : : : ; N � 1 ;

~�(t) = �N for any tN < t � tmax if tN < tmax ;

where t0 = 0 and �0 = 0. This de�nes an approximate solution path ~�(t) for any t 2 [0; tmax).
In view of this de�nition, we may also assume that tN�1 � tmax, because we do not need
~�(t) over t 2 [tN�1; tN ] if tN�1 > tmax. We also remark that the above interpolation scheme
allows two possible approaches to approximating the solution path around tmax. The �rst
approach is to specify all grid points from [0; tmax) and use a constant path ~�(t) = �N to
approximate �(t) when tN < t � tmax. The other approach is to allow tN > tmax but
tN�1 < tmax when tmax <1, and use a linear interpolation of �N�1 and �N to approximate
�(t) when tN�1 < t < tmax.

To obtain the approximate solution path ~�(t) as constructed above, one also needs to
choose the grid points t1; : : : ; tN and a numerical algorithm to generate the approximate
solutions at these grid points, both of which will likely have an impact on how well the
solution path approximates the true path �(t). For the rest of this section, we �rst discuss
some path following algorithms that can produce solutions at a given set of grid points.
Given a path following algorithm, the issue of how to optimally design its grid points to
minimize the overall computations will be investigated later in Section 4.

3.2 Path following algorithm: Newton

In this subsection, we propose a path following algorithm based on Newton update over a
set of grid points. A special version of this algorithm was considered in Rosset (2004) with
C(t) = 1=t. The Newton method is constructed based on taking one-step Newton steps at
each grid point to obtain an approximate solution at the next grid point. More speci�cally,
we consider an one-step Newton update at tk+1 using �k as the initial solution, which can
be shown to have the following form

�k+1 = �k �
�
(1� e�tk+1)r2Ln(�k) + e�tk+1I

��1 �
(1� e�tk+1)rLn(�k) + e�tk+1�k

�
: (7)

To facilitate a comparison to the update of the Euler's method to be presented later in (11),
we present an alternative updating formula. Let gk = (1 � e�tk)rLn(�k) + e�tk�k denote
the scaled gradient at �k. By substituting �k with etkgk� (etk�1)rLn(�k) in (7), we obtain
an alternative expression for the Newton update,

�k+1 = �k �
�
(1� e�tk+1)r2Ln(�k) + e�tk+1I

��1 �
(1� e��k+1)rLn(�k) + e��k+1gk

�
; (8)

where �k+1 = tk+1 � tk. It will be shown later that the iterates generated by the Newton
method are all \close" to the true solution path �(t) in some sense. (c.f. Theorem 5).
Moreover, it will be theoretically justi�ed later that only one Newton step is needed at each
grid point as the overall approximation error would not improve further if more Newton
steps are taken (c.f. Theorem 4). We also establish that the linearly interpolated solution
path based on Newton algorithm can achieve �-suboptimality after taking at most O(��1=2)
Newton iterations (c.f. Theorem 6).
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3.3 Path following algorithm: gradient descent

In this subsection, we consider the gradient descent algorithm as the basis algorithm for the
path following scheme. More speci�cally, at time tk+1, we perform nk+1 gradient descent
steps to minimize ftk+1

(�) = (1 � e�tk+1)Ln(�) + (e�tk+1=2) � k�k22 starting from �k. The
update can be written down explicitly as

�k+1 = �nk+1(I � �k+1rftk+1
)�k ; (9)

where �k+1 is the gradient step size chosen at step k+ 1, and �lh denotes l function compo-
sitions of h. In practice, a varying gradient step size can be implemented using a line search.
As suggested by subsequent theoretical analysis (see Theorem 7), multiple gradient descent
steps are needed to ensure a small approximation error and convergence. This is in contrast
to the Newton method, for which one step is su�cient to achieve good approximation and
convergence. Moreover, the search direction at each step can be thought of as a \damped"
gradient descent search direction as we have that

rftk(�) = (1� e�tk)rLn(�) + e�tk� ; (10)

which becomes closer and closer to the gradient search direction rLn(�) as tk increases.
In practice, the gradient descent method has the advantage that it is typically cheaper

to compute as compared to the Newton method, although multiple steps need to be taken
in order for it to enjoy a good approximation-error bound (c.f. Theorem 7 and 8). We also
establish that the linearly interpolated solution path using the gradient descent iterates can
achieve �-suboptimality after taking at most O(��1 ln(��1)) gradient descent iterations (c.f.
Theorem 10).

3.4 Numerical ODE methods

In view of Theorem 1, the solution path of (1) is also the unique solution of the ODE
(3). Hence, any numerical methods that approximately solve (3) with initial condition
�(0) = 0 would also produce an approximate solution path for (1). In the numerical ODE
literature, the ODE (3) is often referred to as the initial value problem and standard solvers
are available to �nd an approximate solution. In this subsection, we consider two popular
approaches: the explicit forward Euler method and the second-order Runge-Kutta method
(Butcher, 2016).

The explicit forward Euler method leads to the following updating scheme:

�k+1 = �k � �k+1

�
(1� e�tk) � r2Ln(�k) + e�tkI

��1rLn(�k) : (11)

Note that if we choose a constant step size �k = �, then tk = k�. Again this update is
similar to the Levenberg{Marquardt algorithm. The di�erence here is that the iterates are
close to the true path as �! 0, while in the Levenberg-Marquardt algorithm, the goal is to
recover the unregularized solution as k !1. Euler's method has been known to have bad
approximation error, and is referred to as �rst-order method as the approximation error
k�k � �(tk)k is typically of order O(�) when �k = � for all k � 1.

Higher order approximation can be achieved using more sophisticated approximation
schemes. Runge-Kutta method is such a scheme whose global approximation error is
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k�k � �(tk)k = O(�m) with m � 2 when �k = � for all k � 1 (see Chapter 3 of Butcher,
2016). Although it can achieve higher-order approximation accuracy compared to the Eu-
ler's method, it does require higher computational cost at each step. For example, the
second-order Runge-Kutta method considers the following update

�k+1 = �k +
�k+1

2
(J(�k; tk) + J (�k + �k+1J(�k; tk); tk+1)) ; (12)

where J(�; t) = �
�
(1� e�t)r2Ln(�(t)) + e�tI

��1rLn(�(t)). It can be immediately seen
that, compared to the Euler's method and the Newton method, it requires solving two lin-
ear systems as opposed to just one for the Euler method and Newton method. Therefore,
there is an apparent trade-o� between approximation error and per-iteration cost here. An-
other popular choice is the fourth-order Runge-Kutta method, which achieves a fourth-order
approximation accuracy, but again requires solving four linear systems at each iteration.
Empirically, it will be demonstrated in Section 5 that the �rst-order ODE method gener-
ally performs much worse than the Newton method, while the second-order ODE method
performs slightly worse than the Newton method.

3.5 Discussion and connections

The two types of updates are derived from two di�erent perspectives. The numerical ODE
approach tries to approximate the solutions to the corresponding ODE, while the homotopy
methods are based on applying path-following optimization algorithms with warm-start.
Moreover, it is worth pointing out that the updating formulas of the Euler's method and
Newton method, are very similar. In fact, the only di�erence is the presence of an extra
gradient term in the Newton update (8). If we ignore the gradient term in the Newton
update (8), we have that

�k+1 = �k � (1� e��k+1)
�
(1� e�tk+1)r2Ln(�k) + e�tk+1I

��1rLn(�k)

� �k � �k+1

�
(1� e�tk) � r2Ln(�k) + e�tkI

��1rLn(�k) ;

where the right hand side is the Euler's update (11). In practice, however, we will show that
the Newton method work much better than the Euler method in terms of approximation
accuracy.

In terms of computational cost and ease of implementation, the gradient descent update
has the smallest per-iteration cost, but it requires running more steps at each grid point,
especially when tk is large (c.f. Theorem 9). By contrast, the Newton method and the
ODE solver have higher per-iteration cost, but only requires one update at each grid point.
We also remark that other optimization algorithms could also be used in the path following
algorithm. For example, glmnet (Friedman et al., 2010) uses coordinate descent algorithm
in the path following algorithm to get an approximate solution path. Other viable choices
include accelerated gradient descent or conjugate gradient descent algorithm. Hybrid ap-
proaches that mix two types of algorithms can also be considered. We shall investigate
these alternative approaches in the future.

10



An algorithmic view of `2 regularization and some path-following algorithms

4. Solution path approximation-error bounds

In this section, we derive approximation-error bounds for the solution path over [0; tmax)
generated by the Newton method and gradient descent method. The bounds for the ODE
solvers have been extensively studied in the numerical ODE literature, but are less satis-
factory in that most results are proved for generic ODE problems. We present one such
version in Appendix B.

We aim to bound the function-value suboptimality of an approximate solution path ~�(t)
measured by sup0�t�tmax

fft(~�(t)) � ft(�(t))g, where ft(�) := (1 � e�t)Ln(�) + (e�t=2)k�k22
is a scaled version of the objective function. Given the de�nition of �(t), this is a natural
performance metric that captures the accuracy of the approximate solution path. In what
follows, we call sup0�t�tmax

fft(~�(t)) � ft(�(t))g the global approximation error for ~�(t).
Our analysis proceeds in two steps: (i) we �rst relate the global approximation error to
approximation errors at the selected grid points measured by the size of the gradients
kgkk2, where gk := rftk(�k) = (1 � e�tk)rLn(�k) + e�tk�k; (ii) we then bound kgkk2 for
the Newton method and gradient descent method proposed in Section 3.

For step (i), we have the following result.

Theorem 2 For any 0 < t1 < t2 < � � � < tN <1, we have that

sup
t2[0;t1]

n
ft(~�(t))� ft(�(t))

o
� max

�
et1kg1k22; k�1k22

�
+
et1(1� e�t1)2

2
krLn(0)k22 ; (13)

sup
t2[tk;tk+1]

n
ft(~�(t))� ft(�(t))

o
� etk+1 max

(�
1� e�tk+1

1� e�tk

�2

kgkk22; kgk+1k22

)

+ (e�tk � e�tk+1)2 max

�
etk+1k�kk22
(1� e�tk)2

;
etkk�k+1k22

(1� e�tk+1)2

�
(14)

for any k = 1; : : : ; N � 1. If we further assume that k�(tmax)k2 <1, then we have that

sup
tN<t�tmax

n
ft(~�(t))� ft(�(t))

o
� etN (1� e�tmax)

1� e�tN
kgNk22 +

3

2(etN � 1)
k�(tmax)k22 (15)

when tN < tmax.

We can see that the upper bounds consist of two parts, with the �rst part (depending on gk)
being algorithm-speci�c and the other part stemming from interpolation over the selected
grid points. We call them optimization error and interpolation error, respectively. Note
that the optimization error depends on the size of the gradient at time tk and is roughly
of order etkkgkk22, while the interpolation error is essentially independent of the choice of
optimization algorithm as it only depends on how �nely we choose the grid points and the
norm of the solutions along the solution path (typically k�kk2 = O(k�(tk)k2), c.f., Lemma 2).
In other words, given a speci�c set of grid points, the interpolation error is irreducible for any
optimization algorithms. The optimization error, however, does depend on the optimization
algorithms, and can be pushed to be arbitrarily small if we run the algorithm long enough at
the selected grid points. In this sense, if the goal is to approximate the solution path, then
both the grid points and the optimization algorithm should be designed carefully to strike a

11
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balance between these two types of errors to save the overall computation. For instance, it
would be wasteful to have the optimization error much smaller than the interpolation error,
because the additional computations would not improve the overall approximation error in
terms of order.

We next derive bounds on kgkk2 for the Newton method and gradient descent method to
obtain an overall approximation-error bound for sup0�t�tmax

fft(~�(t))� ft(�(t))g. Using the
bounds on kgkk2, we then investigate how many Newton steps or gradient steps are needed
so that the optimization error can be dominated by the interpolation error. Moreover, novel
grid point schemes will be constructed to control both the overall approximation error and
amount of computation. This allows us to derive upper bounds on the total number of
iterations to achieve a prespeci�ed suboptimality over the entire path for both methods.

4.1 Newton method

In this subsection, we show that by taking only one Newton step at each grid point, the
optimization error is comparable to the interpolation error, under some conditions on the
grid points. To show this, we �rst bound kgkk2 for the Newton method. The following local
Lipschitz Hessian condition on Ln(�) is assumed.

Assumption (A1). Assume that Ln(�) is a proper, closed, convex function, and there
exists constants � > 0, 0 � 
1 < 2, and 0 � 
2 < 2 such that the second-order derivative of
Ln(�) exists and satis�es a local Lipschitz condition

krLn(� + �)�rLn(�)�r2Ln(�)�k2 � ��>
�
r2Ln(�)

�
1 � (16)

for any � 2 domLn and � satisfying � + � 2 domLn and

�>[r2Ln(�)]
2� � ��2 : (17)

Assumption (A1) can be thought of as a local version of Lipschitz Hessian condition, and is
similar to the (generalized) self-concordant condition imposed for the convergence analysis
of second-order method (see, e.g., Nesterov and Nemirovskii, 1993; Sun and Tran-Dinh,
2017). This avoids making the assumption that Ln(�) is strongly convex. It will later be
veri�ed that many commonly used loss functions satisfy Assumption (A1) (see Table 1).
The following result provides bound on kgkk2 under Assumption (A1) and some conditions
on the step sizes f�kg1k=1.

Theorem 3 Suppose that Assumption (A1) holds for some constants � > 0, 0 � 
1 < 2,
and 0 � 
2 < 2. We further assume that the step sizes f�kg1k=1 satisfy

C1�(e�1 � 1)min(2�
1;1�
2=2)krLn(0)k2 � 1; �k < ln(2); 2�1�k � �k+1 � 2�k; (18a)

C2�e
tk+1 max

�
(etk+1 � 1)�
1 ; (etk+1 � 1)�1�
2=2

�
(e�k+1 � 1)k�kk2 � 1 (18b)

for any k � 1, where C1 = 15I(
1 � 1) + 15 min
�
�
1�1; �
1e��1(1� e��1)

�
I(
1 > 1),

C2 = 442, and � denotes the maximum eigenvalue of r2Ln(0). Then, the scaled gradients
gk evaluated at the iterates �k generated by the Newton method in (7) satisfy

kgkk2 �
k�(tk)k2

2(etk � 1)
(1� e��k) for every k � 1 : (19)

12
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Some remarks are in order. First, �xing tk, the upper bound for kgkk2 decreases as the
step size �k decreases. In other words, smaller step size generally leads to a small upper
bound. Moreover, the �rst term in the upper bound decreases as k increases, because
k�(tk)k2=(etk � 1) is a nonincreasing function of tk (c.f. part (ii) of Corollary 1). Second,
the existence of step sizes that satisfy (18) is not obvious. A novel step size scheme will
be proposed later so that it satis�es (18) and at the same time leads to fast exploration of
the solution path. Finally, we remark that the dependence of C1 on the largest eigenvalue
of r2Ln(0) is to ensure that the bound (19) holds for kg1k2, and such dependence can be
eliminated if multiple Newton steps are taken at t = t1 to ensure (19) for kg1k2.

To facilitate a comparison to the theoretical analysis of Rosset (2004) and second-order
Runge-Kutta method, an alternative bound on kgkk2 is presented below, which can be
derived using some partial results obtained in the proof of Theorem 3.

Corollary 2 Under the assumptions in Theorem 3, we have that the gradients gk evaluated
at the iterates �k generated by the Newton method in (7) satisfy

kg1k2 �
C1

15
�krLn(0)k22(e�1 � 1)max(2;3�
1) ; (20a)

kgkk2 � 30� (k�(tk�1)k2 + krLn(0)k2)2 e
�
1tk(e�k � 1)2

(1� e�tk)
1�1
(20b)

for any k � 2.

The above corollary can be viewed as an extension of Theorem 1 in Rosset (2004), which
established that k�k � �(tk)k2 . �2 when tk = t0 + k� is equally spaced over a bounded
interval [t0; tmax] with C(t) = 1=t. In particular, we can see from (20) that kgkk2 . �2

k when

1 � 1 or tk = O(1). In other words, when 
1 � 1, we have kgkk2 . �2

k for all k � 1; and
when 
1 > 1, we have kgkk2 . �2

k when tk is large enough. This suggests that the precision
at the selected grid points for the Newton method is often of order O(�2

k). This rate is
comparable to that derived in Rosset (2004) and that of the second-order Runge-Kutta
method (see Chapter 3 of Butcher, 2016) if a constant step size scheme is taken �k = �.

Combining the bounds for kgkk2 in Theorem 3 with Theorem 2, we show that for the
Newton method, the optimization error is comparable to the interpolation error. Moreover,
we can also obtain an approximation-error bound for the Newton solution path in terms of
function-value suboptimality. This is summarized below.

Theorem 4 Under the assumptions in Theorem 2 and 3, we have that the approximate
solution path ~�(t) generated by the Newton method satis�es

sup
0�t�tmax

n
ft(~�(t))� ft(�(t))

o
� 8 max

(
(e�1 � 1)2krLn(0)k22; max

1�k�N
e�tk

�
e�k+1 � 1

1� e�tk

�2

k�kk22

)
(21)

13
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when tN�1 � tmax < tN for some N � 1; and

sup
0�t�tmax

n
ft(~�(t))� ft(�(t))

o
� max

(
8(e�1 � 1)2krLn(0)k22;

8 max
1�k�N�1

e�tk
�
e�k+1 � 1

1� e�tk

�2

k�kk22 ;
2 max(k�(tmax)k22; k�Nk22)

(etN � 1)

)
(22)

when 0 < tN < tmax for some N � 2 and k�(tmax)k2 <1.

In the proof of the above theorem, it is shown that taking just one Newton step at each
grid point can ensure that the optimization error is comparable to the interpolation error.
Speci�cally, it is shown in the proof of Theorem 4 that for all k � 1,

etk+1 max

(�
1� e�tk+1

1� e�tk

�2

kgkk22; kgk+1k22

)
| {z }

optimization error

. (e�tk � e�tk+1)2 max

�
etk+1k�kk22
(1� e�tk)2

;
etkk�k+1k22

(1� e�tk+1)2

�
| {z }

interpolation error

; (23)

where the LHS is the optimization error and the RHS is the interpolation error in the
bounds in Theorem 2. In this sense, it is wasteful to take more than one Newton step at
each grid point.

Another important consequence of Theorem 3 and 4 is that a principled scheme of choos-
ing the step sizes (or equivalently the grid points) can be designed to ensure any prespeci�ed
level of suboptimality while minimizing the overall computations. More speci�cally, for any
� > 0 and tmax > 0, suppose that our goal is to design a step size scheme that satis�es all the

conditions in (18) and at the same time ensures that sup0�t�tmax

n
ft(~�(t))� ft(�(t))

o
. �.

In view of (22) in Theorem 4, this amounts to running the Newton method by choosing a
sequence of step sizes f�kg satisfying both (18) and

(e�1 � 1)2krLn(0)k22 . � ; e�tk
�
e�k+1 � 1

1� e�tk

�2

k�kk22 . (e�1 � 1)2krLn(0)k22 ; (24)

and terminating the Newton method at k + 1 = N when

tN > tmax or
2k�Nk22

(etN � 1)
� (e�1 � 1)2krLn(0)k22 : (25)

If such a sequence of step sizes f�kg exists, then by its construction and (22) of Theorem
4, we have that

sup
0�t�tmax

n
ft(~�(t))� ft(�(t))

o
. (e�1 � 1)2krLn(0)k22 . � : (26)

Therefore, it remains to prove the existence of such a sequence satisfying all the conditions
in (18) and (24) for any � > 0, and that the Newton method must terminate within �nite
steps. This is shown in the theorem below.
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Theorem 5 Suppose that k�(tmax)k2 < 1 with tmax 2 (0;1]. For any � > 0 and 0 <
�max � 10�1, using the step sizes de�ned below

�1 � min

(
�max; ln

�
1 +

p
�

krLn(0)k2

�
;

ln
�

1 + (max(C1;
p

2C2)�krLn(0)k2)�min(2�
1;1�
2=2)
�)

and (27)

�k+1 = min

(
�max; 2�k; ln

 
1 +

etk=2(e�1 � 1)krLn(0)k2(1� e�tk)

k�kk2

!
;

ln

�
1 +

�
C2�e

tk max
�

(etk � 1)�
1 ; (etk � 1)�1�
2=2
�
k�kk2

��1
�)

; k � 1 (28)

and the termination criterion in (25), the Newton method terminates after a �nite number
of iterations, and when terminated, the generated solution path ~�(t) satis�es

sup
0�t�tmax

n
ft(~�(t))� ft(�(t))

o
. � : (29)

This result con�rms the existence of a step size sequence that ensures any prespeci�ed
suboptimality for the solution path generated by the Newton method. The step size choices
in (27) and (28) are motivated by (24). Moreover, as we can see from (27) and (29), the
suboptimality � is controlled by the initial step size �1. Indeed, for small enough �, we can
see that � = (e�1 � 1)2krLn(0)k22, which implies that

sup
0�t�tmax

n
ft(~�(t))� ft(�(t))

o
. (e�1 � 1)2krLn(0)k22 : (30)

Importantly, the above result suggests that even when tmax =1, we can achieve arbitrarily
small suboptimality for the entire path using a �nite number of grid points. To the best of
our knowledge, this type of theoretical analysis is new in the literature for path following
algorithms.

We next investigate how fast the Newton method explores the solution path by deriving
its computational complexity. As we can see from the step size scheme in Theorem 5, both
the value of 
1 and the speed that k�(t)k2 grows as a function of t will likely have a big
impact on how aggressively we can choose the step sizes �k. In particular, if 
1 � 1 and
k�kk2 is bounded (e.g., when �? is �nite), then the last term in the min function of (28) is
at least of order O(1), while the third term in the min function is increasing. Therefore,
aggressive step sizes can be taken in this case until it reaches O(1), which will likely lead
to a fast exploration of the solution path. On the other hand, if 
1 < 1 or k�kk2 grows
quite quickly to in�nity as k increases, then the last term in the min function goes to zero
as k ! 1. This means that the step sizes need to decrease to zero eventually, leading to
a slower exploration of the solution path. The following result gives an upper bound on
the number of Newton steps needed for the Newton method when 
1 � 1 and k�(tmax)k2 is
treated as a �nite constant.
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Theorem 6 Suppose that k�(tmax)k2 <1 and 
1 � 1. For any � > 0, using the step sizes
de�ned in (27) and (28), and the termination criterion in (25), the number of Newton steps
required to achieve �-suboptimality (29) is at most O(��1=2).

We remark the above result holds even when tmax = 1. Moreover, it is rather di�cult
to theoretically bound the number of Newton steps when 
1 < 1. Fortunately, for many
commonly used loss functions, Assumption (A1) holds with some 
1 � 1, as demonstrated
by the following proposition.

Proposition 1 The Assumption (A1) holds for

� log-barrier function Ln(�) = � ln(�) with 
1 = 3
2 and 
2 = 1;

� entropy-barrier function Ln(�) = � ln(�)� ln(�) with 
1 = 3
2 and 
2 = 1;

� logistic function Ln(�) = ln(1 + e��) with 
1 = 1 and 
2 = 0;

� exponential function Ln(�) = e�� with 
1 = 1 and 
2 = 0.

� square function Ln(�) = �2 with any 
1 2 [0; 2) and 
2 2 [0; 2).

We summarize these results in Table 1. A detailed proof is provided in the Appendix.

Function form of Ln(�) dom(Ln) 
1 
2 Application

Log-barrier � ln(�) R++ 3
2 1 Poisson regression

Entropy-barrier � ln(�)� ln(�) R++ 3
2 1 Interior-point

Logistic ln(1 + e��) R 1 0 Logistic regression
Exponential e�� R 1 0 Boosting
Square �2 R [0,2) [0,2) Least square regression

Table 1: Some commonly used loss functions that satisfy Assumption (A1).

As such, Theorem 6 applies to all losses listed in Table 1 since Assumption (A1) is
satis�ed with 
1 � 1 for all losses. Thus the total number of Newton steps required to
ensure (29) is at most O(��1=2) for these loss functions.

Finally, we note that our theoretical results for the Newton method are widely applicable
to a large class of functions. It can even include loss functions that are not self-concordant,
which is a typical condition imposed to establish complexity bound for the classical New-
ton method (see, e.g., Nesterov and Nemirovskii, 1993) without making strong convexity
assumptions. For example, among the losses in Table 1, the logistic regression loss function
log(1+e��) and the exponential loss e�� are not self-concordant. Indeed, a separate rate of
convergence analysis is needed for the Newton method when applied to logistic regression
problems (see, e.g., Bach et al., 2010). On the other hand, the generality of our analysis
likely will lead to conservative rates and step size choices for problems with better condi-
tioning. For instance, we expect that some of the above results can be improved and a
better step size scheme can be constructed if we assume that the loss function Ln(�) is
strongly convex or \locally" strongly convex along the solution path �(t). Due to space
limit, we leave this for future investigation.
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4.2 Gradient descent method

We next bound kgkk2 for the gradient descent method proposed in Section 3. We then use
the bound to derive conditions on the number of gradient steps needed to ensure that the
optimization error is comparable to the interpolation error. For gradient descent method,
we impose the following Lipschitz gradient assumption on Ln(�).

Assumption (A2). Assume that Ln(�) has L-Lipschitz continuous gradient:

krLn(�1)�rLn(�2)k2 � Lk�1 � �2k2 : (31)

Theorem 7 Let mk = m(1 � e�tk) + e�tk , Lk = L(1 � e�tk) + e�tk , where m � 0 is the
strong convexity parameter for Ln(�). Under Assumption (A2) and the condition that

n1 �
log(10m1)

� log
�

1� 2m1L1
m1+L1

�1

� ; nk+1 �
log(24)

� log
�

1� 2mk+1Lk+1

mk+1+Lk+1
�k+1

� and �k �
2

mk + Lk
(32)

for any k � 1, the iterates generated by the gradient descent method (de�ned by (9)) satis�es

kgkk2 �
2Lk
mk�1

�
1� 2mkLk

mk + Lk
�k

�nk (e�k � 1)k�(tk)k2
(etk � 1)

(33)

for any k � 1 and step sizes �k � ln(2) satisfying 2�1�k � �k+1 � 2�k; k � 1.

As we can see from the condition on nk in (32), the number of gradient steps needed at each
grid point is likely to be more than one to ensure (33). This is in contrast to the Newton
method, for which only one Newton step is taken at each iteration. It will be shown later
that taking multiple gradient steps is necessary to ensure that the optimization error is
comparable to the interpolation error. Moreover, we can see that when m > 0, that is,
when Ln(�) is m-strongly convex with m > 0, then the lower bound on nk behaves like a
constant. When m = 0, however, then mk = e�tk and the number of gradient steps nk
scales as O

�
etk
�

in the worst case, suggesting that the number of gradient steps needed
should increase as k increases.

Interestingly, unlike the Newton method, the optimization error bound for gradient
descent method may not be dominated by the interpolation error. In order for the opti-
mization error to be comparable to the interpolation error, more gradient steps need to
be taken beyond what is required in (32). The following theorem derives conditions on
nk under which the the optimization error is dominated by the interpolation error, and
establishes an approximation-error bound for the solution path generated by the gradient
descent method building on Theorem 2 and 7.

Theorem 8 Under the assumptions in Theorem 7 with (32) replaced by

n1 �
log(10m1L1)

� log
�

1� 2m1L1
m1+L1

�1

� ; nk+1 �
log(24) + max(0; log(Lk+1=mk))

� log
�

1� 2mk+1Lk+1

mk+1+Lk+1
�k+1

� ; �k �
2

mk + Lk
(34)
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for k � 1, the approximate solution path ~�(t) generated by the gradient descent method
satis�es

sup
0�t�tmax

n
ft(~�(t))� ft(�(t))

o
� 2 max

 
(e�1 � 1)2krLn(0)k22 ; max

1�k�N�1
e�tk

�
e�k+1 � 1

1� e�tk

�2

k�kk22

!
: (35)

when tN � tmax for some N ; and

sup
0�t�tmax

n
ft(~�(t))� ft(�(t))

o
� 2 max

 
(e�1 � 1)2krLn(0)k22 ;

max
1�k�N�1

e�tk
�
e�k+1 � 1

1� e�tk

�2

k�kk22 ;
k�(tmax)k22
(etN � 1)

!
(36)

when tN � tmax and k�(tmax)k2 <1.

Compared to Theorem 7, the conditions (34) on nk in the above theorem are stronger than
the conditions (32), which is to ensure that the optimization error is dominated by the
interpolation error. Moreover, it is unnecessary to run more than those required by the
conditions in (34), as taking beyond this many gradient steps would not improve the overall
approximation error for the entire path (at least in terms of order).

Similar to the Newton method, a novel step size scheme can be designed to ensure that
the approximation error is small for all k � 1. In particular, we choose

�1 � min

(
�max; ln

 
1 +

�1=2

krLn(0)k2

!)
and (37)

�k+1 = min

(
�max; 2�k; ln

 
1 +

�1=2etk=2(1� e�tk)

k�kk2

!)
; k � 1 ; (38)

where �max = ln(2), and terminate the algorithm at k + 1 = N when

tN > tmax or
2k�Nk22

(etN � 1)
� � : (39)

Similar to the Newton method, we show that the solution path generated by the gradi-
ent descent method using the above step size scheme and termination criterion achieves
�-suboptimality (up to a multiplicative constant). This is summarized in the following
theorem.

Theorem 9 Suppose that k�(tmax)k2 < 1 with tmax 2 (0;1], and (34) in Theorem 8 is
satis�ed. For any � > 0, using the step sizes and the termination criterion speci�ed above
in (37), (38), and (39), the gradient descent method terminates after a �nite number of
iterations, and when terminated, the generated solution path ~�(t) satis�es

sup
0�t�tmax

n
ft(~�(t))� ft(�(t))

o
. � : (40)
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Next, we derive the computational complexity of the gradient descent method. To make
it directly comparable to the Newton method, we consider the case m = 0. In this case,
in order for the optimization error to be comparable to the interpolation error, nk+1 must
satisfy (34), which can be shown to be equivalent to nk+1 � O(etk(tk+1)). Building on this,
an upper bound on the number of gradient steps needed can be derived when k�(tmax)k2 is
treated as a �nite constant. This is summarized in the following theorem.

Theorem 10 Suppose that k�(tmax)k2 < 1, and the assumptions in Theorem 8 are met
with m = 0. Using �k = O(min(1; L�1)), the step sizes de�ned in (37) and (38), and the ter-
mination criterion in (39), the number of gradient steps required to achieve �-suboptimality
(40) is at most O

�
��1 ln(��1)

�
.

Compared with the Newton method that requires O(��1=2) number of Newton steps, gradi-
ent descent method requires substantially more updates. Of course, since the per-iteration
cost of the gradient descent method is much lower than that of Newton method, an over-
all computational-complexity comparison depends on how problem dimension scales with
suboptimality �. In general, we expect that the Newton method may be more suitable for
small to medium scale problems or when a small suboptimality is desired, whereas gradient
descent method may be more suitable for large scale problems with medium accuracy. This
will also be con�rmed through some numerical experiments in Section 5. As a side remark,
a hybrid approach combining the gradient descent method and the Newton method is likely
to work better than either one. Due to space limit, we choose to investigate this strategy
in the future.

Moreover, for the unregularized problem, it is well-known that the number of gradient
steps required for the regular gradient descent method to achieve an �-suboptimality (i.e.,
Ln(�k) � Ln(�?) < �) is O(��1) when m = 0. In view of this and the above result, one
can essentially claim that for the gradient descent method starting from �0 = 0, computing
the entire solution path for the `2-regularized problem requires roughly the same amount of
computation as compared to computing a single unregularized solution (up to a logarithm
term ln(��1)).

The implementation of the gradient descent method requires the speci�cation of nk and
�k, both of which depend on unknown problem-speci�c parameters m and L (see (34)). In
practice, we implement the gradient method using a backtracking line search (Boyd and
Vandenberghe, 2004) and terminates the gradient descent method at tk when

kgkk2 �
e�k � 1

C0(etk � 1)
k�kk2 ; (41)

for some absolute constant C0. In the proof of Theorem 8, it is shown that if nk and �k
satisfy the conditions in (34), then (41) holds for C0 = 12. Here if we use (41) directly
as a termination criterion for the gradient descent method at tk, we can still establish the
approximation-error bound in Theorem 8 and 9.

Corollary 3 Suppose that k�(tmax)k2 < 1 with tmax 2 (0;1]. Moreover, we assume that
at each tk, we run the gradient descent method with backtracking line search until (41)
is satis�ed for some absolute constant C0. Then for any � > 0, using the step sizes and
the termination criterion speci�ed in (37), (38), and (39), the gradient descent method
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terminates after a �nite number of iterations, and when terminated, the generated solution
path ~�(t) satis�es

sup
0�t�tmax

n
ft(~�(t))� ft(�(t))

o
. � : (42)

Again, the advantage of using the backtracking line search and the termination criterion
(41) for the gradient descent is that it avoids having to specify nk and �k, both of which
may depend on unknown problem-speci�c parameters m and L.

5. Numerical studies

In this section, we use `2-regularized logistic regression as an illustrating example to study
the operating characteristics of the various proposed methods. Let X = (X1; : : : ; Xn)> and
Y = (Y1; : : : ; Yn)> denote the design matrix and the binary response vector, where Xi 2 Rp
and Yi 2 f+1;�1g; i = 1; : : : ; n. The empirical loss function for logistic regression is

Ln(�) =
1

n

nX
i=1

log(1 + e�YiX
>
i �) : (43)

We �rst verify that the above loss function satis�es Assumption (A1).

Proposition 2 The logistic regression loss function Ln(�) de�ned in (43) satis�es Assump-
tion (A1) with 
1 = 1; 
2 = 0, and � = 2 max1�i�n kXik2.

In view of the above results, Theorem 6 can be applied to logistic regression if k�(tmax)k2 <
1. We note that for logistic regression, the MLE could be at the \in�nity" i.e., k�?k2 =1,
when the two classes are separable (see, e.g., Geyer, 2009).

In our numerical experiments, we consider six methods: Euler method, second-order
Runge-Kutta method, Newton method, the method proposed by Rosset (2004), gradient
descent method, and glmnet (Friedman et al., 2010). The �rst four methods are \second-
order" algorithms in the sense that they all involve solving linear systems. Gradient descent
method only requires gradient evaluations, and glmnet uses warm start strategies and cycli-
cal coordinate descent method to compute an approximate solution path. We implement all
methods in R using Rcpp (Eddelbuettel et al., 2011; Eddelbuettel, 2013), except for glmnet
for which we use the R package glmnet. We remark that the method of Rosset (2004) is
also a path-following algorithm based on Newton updates. Compared with our proposed
Newton method, it considers equally-spaced grid points using C(t) = 1=t and starts with
an initial solution �(tmax) at tmax. As will be demonstrated later, this makes it less e�cient
compared with the proposed Newton method. Finally, we point out that the proposed
Newton method and gradient descent method can be applied to the case tmax = 1 for
the nonseparable case, while all the other four methods can be only applied to the case
tmax < 1. Throughout, we use tmax = 10 in all of the numerical experiments. Increasing
tmax further will make the proposed methods even more competitive in the comparisons.

We �rst compare all methods in terms of runtime and suboptimality. Two scenarios
will be considered depending on whether the two classes are separable or not. For the non-
separable case, we sample the components of the response vector Y 2 Rn from a Bernoulli
distribution, where P(Yi = +1) = 1=2 and P(Yi = �1) = 1=2 for i = 1; 2; : : : ; n. Conditioned
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on Yi, we generate Xi's independently from Np(Yi�; �
2Ip�p), where � 2 Rp and �2 > 0. Note

that � and �2 controls the Bayes risk, which is �(�k�k2=�) under the 0/1 loss, where �(�) is
the cumulative distribution function of a standard normal random variable. Here we choose
� = (1=

p
p; : : : ; 1=

p
p) and �2 = 1 so that the Bayes risk is �(�1) � 0:15. For the separable

case, we generate Xi's independently from Np(Yi�; Ip�p) where � = (1=
p
p; : : : ; 1=

p
p) until

Yi�
>Xi > 1, which makes the two classes linearly separable. In fact, the two classes can be

separated by the hyperplane �>Xi = 0. For both scenarios, three choices of problem dimen-
sions are considered: (n; p) = (1000; 500), (n; p) = (1000; 1000), and (n; p) = (1000; 2000).

To assess the accuracy for the approximate solution path ~�(t) generated by each method,
we use the global approximation error sup0�t�tmax

fft(~�(t)) � ft(�(t))g, where ~�(t) is the
linear interpolation of the iterates �k generated by each method. To approximate the
global approximation error, we sample N points s1; : : : ; sN uniformly from (0; tmax) and use
max1�i�Nffsi(~�(si)) � fsi(�(si))g as an approximation of sup0�t�tmax

fft(~�(t)) � ft(�(t))g.
Here the exact solutions �(si) at si's are calculated using the CVX solver (Grant and Boyd,
2014, 2008). In all simulations, we use N = 100.

We �rst compare the four \second-order" methods: Newton, Euler, Runge-Kutta, and
the method of Rosset (2004) as they all involve solving linear systems. In order to make a
fair comparison among these four methods, we design our experiments so that their runtime
are about the same. This can be achieved by controlling the step sizes in these methods to
ensure that they all take the same number of Newton steps. Speci�cally, for any particular
choice of initial step size, we �rst run the proposed Newton method, record the number
of Newton steps taken (denoted as NNewton), and de�ne � = tmax=NNewton. Then, for the
Euler method and the second-order Runge-Kutta method, we use a constant step scheme
with �k = � and �k = 2�. For the method of Rosset (2004), we choose the NNewton grid
points equally spaced with C(t) = 1=t. This is to ensure that all four methods have identical
computational complexity. We also consider two initial step sizes: �1 = 0:01; 0:1 for the
Newton method to see the impact of �1 on the suboptimality.

Figure 1 and 2 present the global approximation errors (on a log scale) of the aforemen-
tioned four second-order methods for nonseparable and separable cases, respectively. Note
that two initial step sizes �1 = :01; :01 are used for the proposed Newton method, and the
other methods use the corresponding initial step sizes so that the overall computations are
comparable to that of the Newton method. Among the four methods, the proposed Newton
method performs the best, followed by the second-order Runge-Kutta method, the Euler
method, and the method of Rosset (2004). The method of Rosset (2004) is much worse
compared to other methods due to the way it chooses the grid points.

Next we compare the Newton method and gradient descent method against glmnet in
terms of both runtime and approximation error. In this case, it is di�cult to control the
initial step sizes so that they have similar runtime. As such, we choose to look at the trade-
o� curve of runtime and approximation error for these three methods. Figure 3 presents
plots of runtime versus approximation error based on 100 simulations, as we vary the initial
step size for each method. We can see from Figure 3 that the proposed Newton method
runs the fastest when the desired suboptimality is small (high precision), especially when
the problem dimension is small. Also, as expected, the gradient method runs the slowest
when the desired suboptimality is small. Interestingly, the glmnet performs better than the
gradient descent method in most cases, but worse than the Newton method when the desired
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Fi g ur e 1: S u b o pti m aliti e s s u p 0 ≤ t≤ 1 0 { f t ( θ̃ ( t)) − f t (θ (t))} (i n l o g s c al e) of t h e a p pr o xi m at e s o-
l uti o n p at h s g e n er at e d b y t h e pr o p o s e d N e wt o n m et h o d ( N e wt o n), t h e s e c o n d- or d er R u n g e-
K utt a m et h o d ( R u n g e- K utt a), t h e E ul er m et h o d ( E ul er), a n d t h e m et h o d of R o s s et ( 2 0 0 4)
( R o s s et) f or 2 -r e g ul ari z e d l o gi sti c r e gr e s si o n w h e n t h e d at a i s n o n s e p ar a bl e.

s u b o pti m alit y i s s m all. T hi s c o ul d b e p arti all y e x pl ai n e d b y t h e f a ct t h at t h e c o or di n at e
d e s c e nt al g orit h m s c a n u s u all y b e vi e w e d a s a t y p e of m et h o d s t h at i s b et w e e n “ fir st- or d er ”
a n d “ s e c o n d- or d er ” m et h o d.

I n s u m m ar y, i n t er m s of a p pr o xi m ati o n err or a n d c o m p ut ati o n al e ffi ci e n c y, t h e N e wt o n
m et h o d a n d t h e s e c o n d- or d er R u n g e- K utt a m et h o d b ot h w or k q uit e w ell w h e n t h e pr o bl e m
di m e n si o n i s n ot t o o l ar g e or t h e d e sir e d s u b o pti m alit y i s s m all. F or l ar g e- s c al e pr o bl e m s,
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Fi g ur e 2: S u b o pti m aliti e s s u p 0 ≤ t≤ 1 0 { f t ( θ̃ ( t)) − f t (θ (t))} (i n l o g s c al e) of t h e a p pr o xi m at e s o-
l uti o n p at h s g e n er at e d b y t h e pr o p o s e d N e wt o n m et h o d ( N e wt o n), t h e s e c o n d- or d er R u n g e-
K utt a m et h o d ( R u n g e- K utt a), t h e E ul er m et h o d ( E ul er), a n d t h e m et h o d of R o s s et ( 2 0 0 4)
( R o s s et) f or 2 -r e g ul ari z e d l o gi sti c r e gr e s si o n w h e n t h e d at a i s s e p ar a bl e.

h o w e v er, gr a di e nt d e s c e nt m et h o d a n d gl m n et s e e m t o b e m or e s c al a bl e, alt h o u g h gl m n et
pr o d u c e s s ol uti o n p at h s wit h b ett er s u b o pti m alit y.

L a stl y, w e i n v e sti g at e h o w t h e i niti al st e p si z e of v ari o u s s ol uti o n p at h al g orit h m s w o ul d
a ff e ct t h eir st ati sti c al p erf or m a n c e s. A s w e h a v e ar g u e d b ef or e, t h e i niti al st e p si z e d et er-
mi n e s t h e a p pr o xi m ati o n err or. T o a s s e s s t h e a c c ur a c y of t h e a p pr o xi m ati o n t o t h e tr u e
st ati sti c al ri s k, w e c o n si d er a g e n er ati v e m o d el f or l o gi sti c r e gr e s si o n. S p e ci fi c all y, w e fir st
g e n er at e t h e pr e di ct or s X 1 , . . . , Xn ∈ R p fr o m n or m al di stri b uti o n N p ( 0, Ip × p ). Gi v e n pr e-
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Figure 3: Runtime v.s. suboptimality for the proposed Newton method, gradient descent
method, and glmnet under six di�erent scenarios, when applied to `2-regularized logistic
regression.

dictor Xi, we draw the binary response Yi 2 f�1;+1g from Bernoulli distributions with
P�(Yi = +1) = exp(X>i �)=(1 + exp(X>i �)) for i = 1; 2 : : : ; n, where the true regression
coe�cient � 2 Rp is drawn from Np(0; (16=p) � Ip�p). Three choices of problem dimensions
(n; p) = (500; 100), (n; p) = (500; 500), and (n; p) = (500; 1000) will be considered. The
statistical risk of an approximate solution path ~�(t) is quanti�ed by the Kullback{Leibler
divergence:

R(~�(t); �) = E� log(1 + exp(�Y X>~�(t)))� E� log(1 + exp(�Y X>�)) :
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Fi g ur e 4: A p pr o xi m at e ri s k c ur v e l o g 1 0 (R ( θ̃ ( t), θ)) of t h e pr o p o s e d al g orit h m s a p pli e d t o

2 -r e g ul ari z e d l o gi sti c r e gr e s si o n w h e n pr o bl e m di m e n si o n i s ( n, p ) = ( 5 0 0 , 1 0 0). T h e C V X
( or a n g e) c ur v e d e n ot e s t h e tr u e ri s k c ur v e l o g 1 0 (R (θ (t), θ)) wit h θ (t) c o m p ut e d u si n g t h e
C V X s ol v er. F or al g orit h m s wit h c o n st a nt st e p si z e ( E ul er a n d R u n g e- K utt a), α k d e n ot e s
t h e st e p si z e; w hil e α 1 d e n ot e s t h e i niti al st e p si z e f or N e wt o n a n d gr a di e nt d e s c e nt m et h o d.

N ot e t h at t h e st ati sti c al ri s k f or t h e e x a ct s ol uti o n p at h θ (t) i s R (θ (t), θ), w hi c h w e r ef er
t o a s t h e tr u e ri s k c ur v e ( a s a f u n cti o n of t). H er e, w e c al c ul at e t h e e x a ct s ol uti o n p at h
θ (t) u si n g C V X ( Gr a nt a n d B o y d, 2 0 1 4, 2 0 0 8). A g ai n, t h e g o al i s t o s e e t h e i m p a ct of t h e
i niti al st e p si z e o n h o w cl o s e t h e a p pr o xi m at e ri s k c ur v e R ( θ̃ ( t), θ) i s t o t h e tr u e ri s k c ur v e
R (θ (t), θ).

Fi g ur e s 4 – 6 pl ot t h e a p pr o xi m at e ri s k c ur v e R ( θ̃ ( t), θ) a g ai n st t h e tr u e ri s k c ur v e ( o n
a l o g s c al e) b y v ar yi n g t h e i niti al st e p si z e s f or t h e pr o p o s e d m et h o d s. N ot e t h at u n d er
all s c e n ari o s, w h e n t h e i niti al st e p si z e i s 0 .1 (i. e., α 1 = 0 .1), t h e a p pr o xi m at e ri s k c ur v e s
a p pr o xi m at e t h e tr u e ri s k c ur v e q uit e w ell f or all f o ur m et h o d s. T hi s s e e m s t o s u g g e st t h at
g o o d a p pr o xi m ati o n err or l e a d s t o g o o d a p pr o xi m ati o n of t h e ri s k c ur v e. A s t h e i niti al st e p
si z e i n cr e a s e s, i nt er e sti n gl y, w e o b s er v e t h at R u n g e- K utt a c o nti n u e s t o pr o vi d e r e a s o n a bl e
g o o d r e s ult s, s u g g e sti n g t h at t h e y ar e m or e t ol er a nt of a l ar g e i niti al st e p si z e ( s e e t h e
r e s ult s w h e n α k = 2 f or R u n g e- K utt a m et h o d s o n Fi g ur e s 4 – 6). O n t h e ot h e r h a n d, t h e
N e wt o n m et h o d a n d t h e gr a di e nt d e s c e nt m et h o d r e q uir e s t h e i niti al st e p si z e s t o b e m u c h
s m all er t o o bt ai n r e a s o n a bl e ri s k c ur v e a p pr o xi m ati o n. T h at s a y s, t hi s d o e s n ot n e c e s s aril y
i m pl y t h at t h e N e wt o n m et h o d i s l e s s e ffi ci e nt t h a n t h e O D E- b a s e d m et h o d s, b e c a u s e t h e
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Fi g ur e 5: A p pr o xi m at e ri s k c ur v e l o g 1 0 (R ( θ̃ ( t), θ)) of t h e pr o p o s e d al g orit h m s a p pli e d t o

2 -r e g ul ari z e d l o gi sti c r e gr e s si o n w h e n pr o bl e m di m e n si o n i s ( n, p ) = ( 5 0 0 , 5 0 0). T h e C V X
( or a n g e) c ur v e d e n ot e s t h e tr u e ri s k c ur v e l o g 1 0 (R (θ (t), θ)) wit h θ (t) c o m p ut e d u si n g t h e
C V X s ol v er. F or al g orit h m s wit h c o n st a nt st e p si z e ( E ul er a n d R u n g e- K utt a), α k d e n ot e s
t h e st e p si z e; w hil e α 1 d e n ot e s t h e i niti al st e p si z e f or N e wt o n a n d gr a di e nt d e s c e nt m et h o d.

N e wt o n m et h o d will a d a pti v el y i n cr e a s e st e p si z e s w hil e t h e O D E- b a s e d m et h o d s al w a y s
fi x t h eir st e p si z e s.

6. Di s c u s si o n

I n t hi s arti cl e, w e e st a bli s h e d a f or m al c o n n e cti o n b et w e e n 2 -r e g ul ari z e d s ol uti o n p at h a n d
t h e s ol uti o n of a n O D E. T hi s c o n n e cti o n pr o vi d e s a n i nt er e sti n g al g orit h mi c vi e w of 2 r e g u-
l ari z ati o n. I n p arti c ul ar, t h e s ol uti o n p at h t ur n s o ut t o b e si mil ar t o t h e it er at e s of a h y bri d
al g orit h m t h at c o m bi n e s t h e gr a di e nt d e s c e nt u p d at e a n d t h e N e wt o n u p d at e. M or e o v er, w e
pr o p o s e d v ari o u s n e w p at h-f oll o wi n g al g orit h m s t o a p pr o xi m at e t h e 2 -r e g ul ari z e d s ol uti o n
p at h. Gl o b al a p pr o xi m ati o n- err or b o u n d s f or t h e s e m et h o d s ar e al s o d e ri v e d, w hi c h i n t ur n
s u g g e st s o m e i nt er e sti n g s c h e m e s f or c h o o si n g t h e gri d p oi nt s. C o m p ut ati o n al c o m pl e xiti e s
ar e al s o d eri v e d u si n g t h e pr o p o s e d gri d p oi nt s c h e m e s.

O n e i m p ort a nt a s p e ct w e di d n ot t o u c h o n i s t h e st ati sti c al pr o p erti e s of 2 -r e g ul ari z e d
s ol uti o n p at h, w hi c h h a s b e e n st u di e d e xt e n si v el y i n t h e lit er at ur e ( s e e, e. g., D o bri b a n a n d
W a g er, 2 0 1 8, a n d r ef er e n c e s t h er ei n). I nt er e sti n gl y, Ali et al. ( 2 0 1 9), i n t h e c o nt e xt of l e a st
s q u ar e s r e gr e s si o n, c o n n e ct s t h e st ati sti c al pr o p erti e s of gr a di e nt d e s c e nt it er at e s t o t h at
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Fi g ur e 6: A p pr o xi m at e ri s k c ur v e l o g 1 0 (R ( θ̃ ( t), θ)) of t h e pr o p o s e d al g orit h m s a p pli e d t o

2 -r e g ul ari z e d l o gi sti c r e gr e s si o n w h e n pr o bl e m di m e n si o n i s ( n, p ) = ( 5 0 0 , 1 0 0 0). T h e C V X
( or a n g e) c ur v e d e n ot e s t h e tr u e ri s k c ur v e l o g 1 0 (R (θ (t), θ)) wit h θ (t) c o m p ut e d u si n g t h e
C V X s ol v er. F or al g orit h m s wit h c o n st a nt st e p si z e ( E ul er a n d R u n g e- K utt a), α k d e n ot e s
t h e st e p si z e; w hil e α 1 d e n ot e s t h e i niti al st e p si z e f or N e wt o n a n d gr a di e nt d e s c e nt m et h o d.

of ri d g e r e gr e s si o n s ol uti o n p at h. I n p arti c ul ar, t h e y s h o w t h at t h e st ati sti c al ri s k of t h e
gr a di e nt d e s c e nt p at h i s n o m or e t h a n 1 .6 9 ti m e s t h at of ri d g e r e gr e s si o n, al o n g t h e e ntir e
p at h. M oti v at e d b y o ur pr o p o s e d h o m ot o p y m et h o d b a s e d o n d a m p e d gr a di e nt d e s c e nt
u p d at e s ( 9), it w o ul d b e i nt er e sti n g t o i n v e sti g at e w h et h er a d a m p e d v er si o n of gr a di e nt
d e s c e nt al g orit h m w o ul d e nj o y a m or e f a v or a bl e st ati sti c al ri s k c o m p ar e d t o r e g ul ar gr a di e nt
d e s c e nt. F urt h er i n v e sti g ati o n i s n e c e s s ar y.

A c k n o wl e d g m e n t s

We w o ul d li k e t o t h a n k t h e A s s o ci at e E dit or a n d r e vi e w er s f or t h eir i n si g htf ul c o m m e nt s
a n d e n c o ur a g e m e nt t o r e vi s e o ur p a p er. T h e f e e d b a c k s u b st a nti all y i m pr o v e d t h e p a p er. We
w o ul d al s o li k e t o a c k n o wl e d g e s u p p ort f or t hi s pr oj e ct fr o m t h e N ati o n al S ci e n c e F o u n d ati o n
( D M S- 1 7- 1 2 5 8 0, D M S- 1 7- 2 1 4 4 5 a n d D M S- 2 0- 1 5 4 9 0).
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Appendix A. Proofs of main results

This section collects the proofs of Theorem 1{9, Corollary 1{3, and Proposition 1 and 2.
Throughout this section, some standard results for m-strongly convex functions will be
repeatedly used in the proofs, which are stated below. We omit their proofs as all of them
can be found in standard convex analysis textbooks (see, e.g., Boyd and Vandenberghe,
2004).

Suppose that f(�) is a m-strongly convex function with minimizer x?. Then for any x
and y,

mkx� yk22 � hrf(x)�rf(y) ; x� yi � 1

m
krf(x)�rf(y)k22 ; (44)

m

2
kx� x?k22 � f(x)� f(x?) � 1

2m
krf(x)k22 and kx� x?k2 �

1

m
krf(x)k2 : (45)

Proof of Theorem 1. We �rst show di�erentiability of �(t) at t = 0. By the optimality
of �(t) and strong convexity of the objective function, we have that for any t � 0,

k�(t)� 0k22 � (�(t)� 0)> (0� C(t)rLn(0)) � C(t)k�(t)k2 krLn(0)k2 ;

where we have used (44). This implies that k�(t)k2 � C(t) krLn(0)k2. Thus �(t) is contin-
uous at t = 0 since limt!0C(t) = C(0) = 0 and 0 2 domLn. Moreover,

�(t)

t
= �C(t)

t
rLn(�(t))! �C 0(0)rLn(0) as t! 0 ; (46)

where we have used the continuity of rLn(�) and �(t) at � = 0 and t = 0, respectively.
Therefore, �(t) is di�erentiable at t = 0.

Next we show the di�erentiability of �(t) for t > 0. Denote by ft(�) = C(t)Ln(�)+ 1
2k�k

2
2.

Since ft(�) is 1-strongly convex for all t � 0, by using (44) and the fact that rft0(�(t0)) =
rft(�(t)) = 0, we have that for any t > 0

k�(t0)� �(t)k22 � hrft0(�(t0))�rft0(�(t)) ; �(t0)� �(t)i = �hrft0(�(t)) ; �(t0)� �(t)i
= �hC(t0)rLn(�(t)) + �(t) ; �(t0)� �(t)i
= �h�C(t0)�(t)=C(t) + �(t) ; �(t0)� �(t)i (47)

� jC(t0)� C(t)j
C(t)

k�(t)k2k�(t0)� �(t)k2 ;

which implies that

k�(t0)� �(t)k2 �
jC(t0)� C(t)j

C(t)
k�(t)k2 ; (48)

when t > 0. This gives a bound on how fast can �(t) can vary as t increases. Next, we use
this to establish di�erentiability of �(t). Note that for any t; t0 � 0

C(t)rLn(�(t)) + �(t) = 0 and C(t0)rLn(�(t0)) + �(t0) = 0 : (49)

Taking the di�erence, we obtain that

�(t0)� �(t) = �(C(t0)� C(t))rLn(�(t))� C(t0)r2Ln(�(t))(�(t0)� �(t))� C(t0)� ; (50)
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where � = rLn(�(t0)) � rLn(�(t)) � r2Ln(�(t))(�(t0) � �(t)). Rearranging and dividing
both sides by t0 � t, we obtain that

�(t0)� �(t)
t0 � t

= �
�
C(t0)r2Ln(�(t)) + I

��1
�
C(t0)� C(t)

t0 � t
rLn(�(t)) + C(t0)

�

t0 � t

�
; (51)

where the matrix C(t0)r2Ln(�(t)) + I is invertible because r2Ln(�(t)) � 0. Since C(t) is
di�erentiable, it remains to show that kC(t0) �

t0�tk2 ! 0 as t0 ! t. By Assumption (A0) and
(48), we obtain that



C(t0)

�

t0 � t






2

� C(t0)

jt0 � tj

Z 1

0



�r2Ln(�(t) + �(�(t0)� �(t)))�r2Ln(�(t))
�

(�(t0)� �(t))




2
d�

� C(t0)

jt0 � tj
sup

0���1

��� �r2Ln(�(t) + �(�(t0)� �(t)))�r2Ln(�(t))
��� k�(t0)� �(t)k2

� C(t0)

C(t)

jC(t0)� C(t)j
jt0 � tj

k�(t)k2 sup
0���1

��� �r2Ln(�(t) + �(�(t0)� �(t)))�r2Ln(�(t))
���! 0

as t0 ! t, where �(A) denotes the spectral norm of a matrix A, and we have used the fact
that

sup
0���1

��� �r2Ln(�(t) + �(�(t0)� �(t)))�r2Ln(�(t))
���! 0 as t0 ! t (52)

by Assumption (A0) and C(t0)�C(t)
t0�t ! C 0(t) as t0 ! t since C(t) is di�erentiable. Combining

this with (51), it follows that

�0(t) = lim
t0!t

�(t0)� �(t)
t0 � t

= �C 0(t)
�
C(t)r2Ln(�(t)) + I

��1rLn(�(t)) :

This completes the proof of Theorem 1.

Proof of Corollary 1. To prove (i), rearranging terms in (47), we obtain that

(C(t0)� C(t))
�
k�(t0)k22 � k�(t)k22

�
� (C(t) + C(t0))k�(t)� �(t0)k22 � 0 ;

which implies that k�(t)k2 is nondecreasing in t. For nonincreasingness of Ln(�(t)), note
that

C(t0)Ln(�(t0)) +
1

2
k�(t0)k22 � C(t0)Ln(�(t)) +

1

2
k�(t)k22

� (C(t0)� C(t))Ln(�(t)) + C(t)Ln(�(t0)) +
1

2
k�(t0)k22 ;

which implies that (C(t0)�C(t))(Ln(�(t0))�Ln(�(t))) � 0. Hence, if C(t0)�C(t) > 0 then
Ln(�(t0)) � Ln(�(t)), which proves that Ln(�(t)) is nonincreasing in t.

To prove (ii), we modify the proof of (48) to accommodate the case where Ln(�) might
not be di�erentiable. Note that for any t > 0 and any gt0 2 @Ln(�(t0)) and gt 2 @Ln(�(t)),
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we have hgt0 � gt ; �(t0) � �(t)i � 0, where @Ln(�) denotes the subdi�erential of Ln(�) at �.
Hence, for any ht0 2 @ft0(�(t0)); ht 2 @ft0(�(t))

hht0 � ht ; �(t0)� �(t)i � k�(t0)� �(t)k22 (53)

Since 0 2 @ft0(�(t0)) and �C(t0)�(t)=C(t) + �(t) 2 @ft0(�(t)), substituting ht0 with 0 and ht
with �C(t0)�(t)=C(t) + �(t), we obtain that

hC(t0)�(t)=C(t)� �(t) ; �(t0)� �(t)i � k�(t0)� �(t)k22 ; (54)

which implies that

k�(t0)��(t)k22 � hC(t0)�(t)=C(t)��(t) ; �(t0)��(t)i � jC(t0)=C(t)�1jk�(t)k2k�(t0)��(t)k2 ;

which proves (48) when Ln(�) might not be di�erentiable. Using this, we have that for any
t > t0 and �(t) 6= �(t0),

k�(t)k2 � k�(t0)k2 � k�(t0)� �(t)k2 � (C(t)� C(t0))k�(t)k2=C(t) ; (55)

which implies that
k�(t)k2=C(t) � k�(t0)k2=C(t0) : (56)

This also holds when �(t) = �(t0) because C(t) is an increasing function. This proves that
part (ii).

Lastly, we prove part (iii). Denote by �? the minimum `2 norm minimizer of Ln(�).
Next, we show that �(t) converges to �? as t ! 1 if �? is �nite. Note that 0 2 @Ln(�?)
and 0 2 C(t)@Ln(�(t)) + �(t). As a result,

0 2 C(t) (@Ln(�(t))� @Ln(�?)) + �(t) ;

where A�B denotes the set fa� b : a 2 A and b 2 Bg. Multiplying �(t)��? on both sides,
we obtain that

(�(t)� �?)>�(t) 2 �C(t)(�(t)� �?)> (@Ln(�(t))� @Ln(�?)) ;

which implies that (�(t) � �?)>�(t) � 0. Therefore, k�(t)k22 � (�?)>�(t) � k�?k2k�(t)k2,
which implies that k�(t)k2 � k�?k2 < 1 for any t � 0. Denote by �� the limit of any
converging subsequence �(tk), that is, �� = limk!1 �(tk) for some tk ! 1. Then, k��k2 =
limk!1 k�(tk)k2 � k�?k2. Next, we show that �� must also be a minimizer of Ln(�). To this
end, note that Ln(��) = limk!1 Ln(�(tk)) by using the continuity of Ln(�) in �. Moreover,
by optimality of �(tk),

Ln(�(tk)) � Ln(�(tk)) +
1

2C(tk)
k�(tk)k22 � Ln(�?) +

1

2C(tk)
k�?k22 : (57)

By letting k ! 1 and using the fact that Ln(��) = limk!1 Ln(�(tk)) due to continuity of
Ln(�), we have that

Ln(��) = lim
k!1

Ln(�(tk)) � lim
k!1

�
Ln(�?) +

1

2C(tk)
k�?k22

�
= Ln(�?) ;
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where the last step uses the assumption that k�?k2 < 1. This proves that �� must also be
a minimizer of Ln(�).

Now if �� 6= �?, then their convex combination 1
2(�� + �?) must also be a minimizer of

Ln(�) due to the convexity of Ln(�). On the other hand, the convex combination has
strictly smaller norm than that of �?, because k1

2(��+ �?)k2 < 1
2(k��k+ k�?k2) � k�?k2. This

contradicts with the de�nition of �?. Hence, we must have limk!1 �(tk) = �� = �? for every
converging subsequence �(tk). Consequently, the sequence �(t) must converge to �?. This
completes the proof of Corollary 1.

Proof of Theorem 2. For any t 2 [tk; tk+1], we let wk =
tk+1�t
tk+1�tk , for k = 0; 1; : : : ; N � 1.

Then ~�(t) = wk�k + (1�wk)�k+1. By convexity of ft(�), we have ft(~�(t)) � wkft(�k) + (1�
wk)ft(�k+1). Thus,

ft(~�(t))� ft(�(t)) �wk(ft(�k)� ft(�(t))) + (1� wk)(ft(�k+1)� ft(�(t))) : (58)

For any k = 1; : : : ; N � 1, the term ft(�k)� ft(�(t)) in (58) can be bounded as follows:

ft(�k)� ft(�(t)) �
1

2e�t
krft(�k)k22 =

et

2





 1� e�t

1� e�tk
rftk(�k) +

e�t � e�tk
1� e�tk

�k





2

2

� et
�

1� e�t

1� e�tk

�2

krftk(�k)k22 + et
�
e�t � e�tk
1� e�tk

�2

k�kk22

= et
�

1� e�t

1� e�tk

�2

kgkk22 + et
�
e�t � e�tk
1� e�tk

�2

k�kk22 ;

where the �rst inequality uses the fact that ft(�) is e�t-strongly convex and (45). Similarly,
we can bound the term ft(�k+1)� ft(�(t)) by

et
�

1� e�t

1� e�tk+1

�2

kgk+1k22 + et
�
e�t � e�tk+1

1� e�tk+1

�2

k�k+1k22

for any k = 0; 1; : : : ; N � 1. Combining these two bounds, we have that

wk(ft(�k)� ft(�(t))) + (1� wk)(ft(�k+1)� ft(�(t)))

� etk+1 max

(�
1� e�tk+1

1� e�tk

�2

kgkk22; kgk+1k22

)

+ (e�tk � e�tk+1)2 max

�
etk+1k�kk22
(1� e�tk)2

;
etkk�k+1k22

(1� e�tk+1)2

�
;

for any k = 1; : : : ; N � 1. This proves (14).
When k = 0, the term ft(�k)� ft(�(t)) in (58) can be bounded as follows

ft(�0)� ft(�(t)) = ft(0)� ft(�(t)) �
1

2e�t
krft(0)k22 =

et(1� e�t)2

2
krLn(0)k22

for any 0 � t < t1, where we have used (45) in the above inequality. Following a similar
argument as before, we obtain that

w0(ft(�0)� ft(�(t))) + (1� w0)(ft(�1)� ft(�(t)))

� et1(1� e�t1)2

2
krLn(0)k22 + max

�
et1kg1k22; k�1k22

�
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for any t 2 [0; t1]. This proves (13).
Now we bound ft(~�(t))� ft(�(t)) when tN < t � tmax. Toward this end, notice that

ft(~�(t))� ft(�(t)) = ft(�N )� ft(�(t))

=
1� e�t

1� e�tN
(ftN (�N )� ftN (�(tN ))) +

e�tN � e�t

2(1� e�tN )
(k�(tN )k22 � k�Nk22) + ft(�(tN ))� ft(�(t)) :

Next, we bound these three terms separately. For the �rst term, by using (45), we have
that ftN (�N )� ftN (�(tN )) � 2�1etN kgNk22. Using this, we obtain that

1� e�t

1� e�tN
(ftN (�N )� ftN (�(tN ))) � (1� e�t)etN

2(1� e�tN )
kgNk22 : (59)

For the second term, note that

k�(tN )k22 � k�Nk22 = 2(�(tN )� �N )>�(tN )� k�(tN )� �Nk22
� (2k�(tN )k2 � k�(tN )� �Nk2)k�(tN )� �Nk2 � 2k�(tN )k2k�(tN )� �Nk2
� 2k�(tN )k2etN kgNk2 = 2etN k�(tN )k2kgNk2 :

Thus, the second term can be bounded by 1�e�(t�tN )

1�e�tN k�(tN )k2kgNk2, which can be further
bounded using the Cauchy{Schwarz inequality:

1� e�(t�tN )

1� e�tN
k�(tN )k2kgNk2 �

1

2

 
(1� e�t)etN

1� e�tN
kgNk22 +

(1� e�(t�tN ))2

(1� e�tN )(1� e�t)etN
k�(tN )k22

!
:

To bound the third term, by optimality of �(tN ), we have ftN (�(tN )) � ftN (�(t)), which
in turn implies that Ln(�(tN ))�Ln(�(t)) � :5(etN � 1)�1

�
k�(t)k22 � k�(tN )k22

�
. Using this,

the third term can be bounded as follows

ft(�(tN ))� ft(�(t)) = (1� e�t)(Ln(�(tN ))� Ln(�(t))) +
e�t

2

�
k�(tN )k22 � k�(t)k22

�
� 1� e�t

2(etN � 1)

�
k�(t)k22 � k�(tN )k22

�
+
e�t

2

�
k�(tN )k22 � k�(t)k22

�
=

1� e�(t�tN )

2(etN � 1)

�
k�(t)k22 � k�(tN )k22

�
:

Combining the three bounds and using the fact that

1� e�(t�tN )

2(etN � 1)
=

(1� e�(t�tN ))2

2(1� e�tN )(1� e�t)etN
+

1� e�(t�tN )

2(et � 1)
;

we obtain that

sup
tN<t�tmax

n
ft(~�(t))� ft(�(t))

o
� sup

tN<t�tmax

(
(1� e�t)etN

1� e�tN
kgNk22 +

1� e�(t�tN )

2(etN � 1)
k�(t)k22

)

� etN (1� e�tmax)

1� e�tN
kgNk22 + sup

tN<t�tmax

(1� e�(t�tN ))2

2(1� e�tN )(1� e�t)etN
k�(t)k22

+ sup
tN<t�tmax

1� e�(t�tN )

2(et � 1)

�
k�(t)k22 � k�(tN )k22

�
:
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Moreover, by (48), we have that

k�(t)k22 � k�(tN )k22 � k�(t)� �(tN )k2(k�(t)k2 + k�(tN )k2)

� et � etN
et � 1

k�(t)k2(k�(t)k2 + k�(tN )k2) � 2
et � etN
et � 1

k�(t)k22

Combining the above two inequalities and using the fact that

sup
tN<t�tmax

(1� e�(t�tN ))2

1� e�t
=

(1� e�(tmax�tN ))2

1� e�tmax
;

we obtain that

sup
tN<t�tmax

n
ft(~�(t))� ft(�(t))

o
� etN (1� e�tmax)

1� e�tN
kgNk22 +

3(1� e�(tmax�tN ))2

2(etN � 1)(1� e�tmax)
k�(tmax)k22 ;

which implies (15). This completes the proof of Theorem 2.

Next, we present a supporting lemma for the proof of Theorem 3.

Lemma 1 Under Assumption (A0), we have that

k�(t)k2 � (et � 1)krLn(0)k2 and k�(t)k2 � (1� e�t)
�
krLn(0)k2 + k�(t0)k2

�
(60)

for any t0 � t > 0.

Proof of Lemma 1. Since ft(�) is e�t strongly convex, using (45), we have

k�(t)� 0k2 � etkrft(0)k2 = (et � 1)krLn(0)k2 ;

which proves the �rst inequality k�(t)k2 � (et�1)krLn(0)k2. Combining this with the fact
that k�(t)k2 � k�(t0)k2, we have that

k�(t)k2 � min
�
(et � 1)krLn(0)k2; k�(t0)k2

�
� (1� e�t)

�
krLn(0)k2 + k�(t0)k2

�
;

which proves the second inequality in (60). This completes the proof of Lemma 1.

Proof of Theorem 3. Note that

gk+1 = (1� e�tk+1)rLn(�k+1) + e�tk+1�k+1

= (1� e�tk+1)
�
rLn(�k+1)�rLn(�k)�r2Ln(�k)(�k+1 � �k)

�| {z }
Part I

+

(1� e�tk+1)
�
rLn(�k) +r2Ln(�k)(�k+1 � �k)

�
+ e�tk+1�k+1| {z }

Part II

:

Moreover, based on the de�nition of �k+1, we have that�
(1� e�tk+1)r2Ln(�k) + e�tk+1I

�
(�k+1� �k) + (1� e��k+1)rLn(�k) + e��k+1gk = 0 : (61)
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Combining this with the fact that gk = (1� e�tk)rLn(�k) + e�tk�k, we obtain that

Part II =
�
(1� e�tk+1)r2Ln(�k) + e�tk+1I

�
(�k+1 � �k) + (1� e�tk+1)rLn(�k) + e�tk+1�k

= (1� e�tk+1)rLn(�k) + e�tk+1�k � (1� e��k+1)rLn(�k)� e��k+1gk

= e��k+1
�
(1� e�tk)rLn(�k) + e�tk�k � gk

�
= 0 :

Hence, we have that

kgk+1k2 = (1� e�tk+1)


rLn(�k+1)�rLn(�k)�r2Ln(�k)(�k+1 � �k)




2

� �(1� e�tk+1)(�k+1 � �k)>
�
r2Ln(�k)

�
1 (�k+1 � �k) ; (62)

where the last inequality uses (16) in Assumption (A1), provided that

(�k+1 � �k)>[r2Ln(�k)]

2(�k+1 � �k) � ��2 ;

which is to be veri�ed later by induction. Next, we de�ne

Hk+1 = (1� e�tk+1)r2Ln(�k) + e�tk+1I and Jk+1 = H�1
k+1

�
r2Ln(�k)

�
1 H�1
k+1 : (63)

Notice that �k+1 � �k = �H�1
k+1 ((1� e��k+1)rLn(�k) + e��k+1gk). Combining this with

gk = (1� e�tk)rLn(�k) + e�tk�k, we obtain that,

�1 = �(1� e��1)H�1
1 rLn(0); (64)

�k+1 � �k = �H�1
k+1

�
(1� e��k+1)rLn(�k) + e��k+1gk

�
= �H�1

k+1

�
1� e�tk+1

1� e�tk
gk �

e�tk � e�tk+1

1� e�tk
�k

�
for any k � 1 : (65)

Combining (62) and (65), and using the fact that ka+ bk22 � 2(kak22 + kbk22) for any vectors
a and b, we have that

kg1k2 � �(1� e��1)�>1 [r2Ln(0)]
1�1 (66)

kgk+1k2 � 2��max(Jk+1)(1� e�tk+1)

�
(1� e�tk+1)2

(1� e�tk)2
kgkk22 +

(e�tk � e�tk+1)2

(1� e�tk)2
k�kk22

�
(67)

for any k � 1. Using (67) and the fact that

�max(Jk+1) � sup
�:��0

�
1

((1� e�tk+1)�+ e�tk+1)2
=

e(2�
1)tk+1

4(1� e�tk+1)
1
(2� 
1)2�
1

11 (68)

for any 0 � 
1 � 2 and k � 0, we obtain that for any k � 1,

kgk+1k2 �
�h(
1)e(2�
1)tk+1

2(1� e�tk+1)
1�1

(
(1� e�tk+1)2

(1� e�tk)2
kgkk22 +

(e�tk � e�tk+1)2

(1� e�tk)2
k�kk22

)
; (69)

where h(
1) = (2 � 
1)2�
1

11 . Throughout the proof, we shall treat h(
) as an absolute
constant as 1 � h(
) � 4 for 0 � 
 � 2. We then use induction to show that

kgk+1k2 �
c0�h(
1)e(2�
1)tk+1

2(1� e�tk+1)
1�1

(e�tk � e�tk+1)2

(1� e�tk)2
k�kk22 (70)
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for any k � 1 and c0 = 26=25. To this end, in view of (69), we only need to show that

1� e�tk+1

1� e�tk
kgkk2 � (c0 � 1)1=2 (e�tk � e�tk+1)

(1� e�tk)
k�kk2 ;

or equivalently,

kgkk2 � (c0 � 1)1=2 (e�tk � e�tk+1)

(1� e�tk+1)
k�kk2 (71)

for any k � 1. To verify this, our plan is to show that (i) inequality (71) holds for k = 1
using the bound in (66) for kg1k2; and (ii) inequality (71) holds for kgkk2 if the bound (70)
holds for kgkk2 and inequality (71) holds for kgk�1k2.

When k = 1, we note that

[r2Ln(0)]
1�1




2

= (1� e��1)


[r2Ln(0)]
1H�1

1 rLn(0)




2

= (1� e��1)

q
[rLn(0)]>H�1

1 [r2Ln(0)]2
1H�1
1 rLn(0)

�

(
2�1
p
h(2
1)e(1�
1)�1(1� e��1)1�
1krLn(0)k2 if 
1 � 1;

min
�
�
1�1; �
1e��1(1� e��1)

�
krLn(0)k2 if 
1 > 1 :

where � denotes the largest eigenvalue of r2Ln(0), and we have used (68).

Combining this with (66), we obtain that

kg1k2 � �(1� e��1)�>1 [r2Ln(0)]
1�1 � �(1� e��1)


[r2Ln(0)]
1�1




2
k�1k2

�

(
�e(1�
1)�1(1� e��1)2�
1krLn(0)k2k�1k2 if 
1 � 1;

�min
�
�
1�1; �
1e��1(1� e��1)

�
(1� e��1)krLn(0)k2k�1k2 if 
1 > 1

=
C1

15
�e��1(e�1 � 1)max(2�
1;1)krLn(0)k2k�1k2 ; (72)

which can be upper bounded by

(c0 � 1)1=2 (e�t1 � e�t2)

(1� e�t2)
k�1k2 =

(e�t1 � e�t2)

5(1� e�t2)
k�1k2 ; (73)

if we choose c0 = 26=25, because (18a), where we have used the fact that et1(e�t1�e�t2)(1�
e�t2)�1 � 3�1.

When k � 2, we next verify (71) when the bound in (70) holds for kgkk2 and inequality
(71) holds for kgk�1k2. First using (65), we have that

k�k�1k2 � k�kk2 +
1� e�tk

1� e�tk�1

�
e�tk +

e�tk�1 � e�tk
1� e�tk�1

��1

kgk�1k2

� k�kk2 +
1� e�tk

1� e�tk�1

�
e�tk +

e�tk�1 � e�tk
1� e�tk�1

��1

(c0 � 1)1=2 (e�tk�1 � e�tk)

(1� e�tk)
k�k�1k2

= k�kk2 + (c0 � 1)1=2 1� e��k
1� e�tk

k�k�1k2 ;
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which implies that

k�k�1k2 �
k�kk2

1� (c0 � 1)1=2 1�e��k
1�e�tk

: (74)

Using this, we have that

kgkk2 �
c0�h(
1)e(2�
1)tk

2(1� e�tk)
1�1

(e�tk�1 � e�tk)2

(1� e�tk�1)2
k�k�1k22

� c0�h(
1)e(2�
1)tk

2(1� e�tk)
1�1

(e�tk�1 � e�tk)2

(1� e�tk�1)2
k�k�1k2

k�kk2
1� (c0 � 1)1=2 1�e��k

1�e�tk

� (c0 � 1)1=2 (e�tk � e�tk+1)

(1� e�tk+1)
k�kk2 ;

provided that

12
p

2�h(
1)
c0(c0 � 1)�1=2

1� (c0 � 1)1=2 1�e��k
1�e�tk

etk(e�k � 1)

(etk � 1)
1
k�k�1k2 � 1 (75)

for any k � 2, where we have used the fact that

(1� e�tk+1)(1� e�tk)(e�k � 1)

(1� e�tk�1)2(1� e��k+1)
� 24

p
2 ;

because �k+1 � �k=2, �k � 2�k�1, and �k�1 � ln(2) for any k � 1 by assumption. Note
that (75) can be ensured by the second inequality in (18) if we choose c0 = 26=25.

It remains to check Assumption (A1) through bounding (�k+1��k)>[r2Ln(�)]
2(�k+1�
�k), which can be achieved through similar arguments used in the derivations of (69) ignoring
the term �(1� e�tk+1). Recall that for any 0 � 
2 � 2

�max(H�1
k+1[r2Ln(�k)]


2H�1
k+1) � sup

�:��0

�
2

((1� e�tk+1)�+ e�tk+1)2
=
h(
2)e(2�
2)tk+1

4(1� e�tk+1)
2
: (76)

Then replacing �max(Jk+1) in (69) with the above bound, we obtain that for any k � 1

(�k+1 � �k)>[r2Ln(�k)]

2(�k+1 � �k)

� h(
2)e(2�
2)tk+1

2(1� e�tk+1)
2

�
(1� e�tk+1)2

(1� e�tk)2
kgkk22 +

(e�tk � e�tk+1)2

(1� e�tk)2
k�kk22

�
� h(
2)e(2�
2)tk+1

(1� e�tk+1)
2
c0(1� e��k+1)2k�kk22

(etk � 1)2
� h(
2)

4�2h2(
1)
� 1

�2
;

provided that

6
p
c0�h(
1)

etk+1(e�k+1 � 1)

(etk+1 � 1)1+
2=2
k�kk2 � 1 (77)

for any k � 1, which can be ensured by the second inequality in (18). Here we have used
the fact that (1� e�tk+1)=(1� e�tk) � 3 if �k+1 � 2�k; k � 2.
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Moreover, when k = 1, using the �rst equation in (65) and the eigenvalue bound in (76),
we obtain that

(�k+1 � �k)>[r2Ln(�k)]

2(�k+1 � �k) = �>1 [r2Ln(0)]
2�1

= (1� e��1)2(rLn(0))>H�1
1 [r2Ln(0)]
2H�1

1 rLn(0) � h(
2)e(2�
2)�1

4(1� e��1)
2
(1� e��1)2krLn(0)k22

= 4�1h(
2)(e�1 � 1)2�
2krLn(0)k22 �
1

�2
;

provided that �(e�1 � 1)1�
2=2krLn(0)k2 � 1, which can be ensured by the �rst condition
in (18). This completes the proof of (70). Finally, the bound in (19) follows from (71) and
Lemma 2,

kgkk2 � (c0 � 1)1=2 (e�tk � e�tk+1)

(1� e�tk)
k�kk2 �

e�tk � e�tk�2�k

5(1� e�tk)
k�kk2 �

2(1� e��k)

5(etk � 1)
k�kk2

� (1� e��k)

2(etk � 1)
k�(tk)k2 ;

where we have used the fact that �k+1 � 2�k; k � 1. This completes the proof of Theorem
3.

Proof of Corollary 2. By using (64), we have that k�1k2 = (1� e��1)kH�1
1 rLn(0)k2 �

(e�1 � 1)krLn(0)k2. Using this and (72), it follows that,

kg1k2 �
C1

15
�e��1(e�1 � 1)max(1;2�
1)krLn(0)k2k�1k2 �

C1

15
�(e�1 � 1)max(2;3�
1)krLn(0)k22 ;

which proves the �rst bound in (20).
Next, we turn to the proof of the second bound in (20). Using (70) with c0 = 26=25,

(82) in Lemma 2, and the fact that (1 � e�tk+1)=(1 � e�tk) � 3 when �k+1 � 2�k; k � 1,
we obtain that

kgk+1k2 �
c0�h(
1)e(2�
1)tk+1

2(1� e�tk+1)
1�1

(e�tk � e�tk+1)2

(1� e�tk)2
k�kk22

� 52�e(2�
1)tk+1

25(1� e�tk+1)
1�1

32(e�tk � e�tk+1)2

(1� e�tk+1)2

�
5

4

�2

k�(tk)k22

� 30�e�
1tk+1(e�k+1 � 1)2

(1� e�tk+1)
1�1

k�(tk)k22
(1� e�tk+1)2

� 30�e�
1tk+1(e�k+1 � 1)2

(1� e�tk+1)
1�1
(k�(tk)k2 + krLn(0)k2)2

for any k � 1, where the last inequality uses Lemma 1. This proves the second bound in
(20). This completes the proof of Corollary 2.

Proof of Theorem 4. Using (13) and (71), we have that

sup
t2[0;t1]

n
ft(~�(t))� ft(�(t))

o
� max

�
(e�1 � 1)2krLn(0)k22; k�1k22

�
: (78)
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Using (71), we have that

etk+1

�
1� e�tk+1

1� e�tk

�2

kgkk22 � etk+1

�
1� e�tk+1

1� e�tk

�2�
(c0 � 1)1=2 (e�tk � e�tk+1)

(1� e�tk+1)
k�kk2

�2

� (e�tk � e�tk+1)2 e
tk+1k�kk22

(1� e�tk)2

and

etk+1kgk+1k22 � etk+1

�
(c0 � 1)1=2 (e�tk+1 � e�tk+2)

(1� e�tk+2)
k�k+1k2

�2

� 4�1 (e�k+2 � 1)2

(e�k+1 � 1)2
e�2�k+2+�k+1(e�tk � e�tk+1)2 etkk�k+1k22

(1� e�tk+1)2

� (e�tk � e�tk+1)2 etkk�k+1k22
(1� e�tk+1)2

;

where we have used the fact that �k+2 � 2�k+1 and

(e�k+2 � 1)2

(e�k+1 � 1)2
e�2�k+2+�k+1 � (e�k+1 + 1)2e�3�k+1 � 4 :

Combining, we obtain that

etk+1 max

(�
1� e�tk+1

1� e�tk

�2

kgkk22; kgk+1k22

)
� (e�tk�e�tk+1)2 max

�
etk+1k�kk22
(1� e�tk)2

;
etkk�k+1k22

(1� e�tk+1)2

�
Combining this with (14) in Theorem 2, it follows that

sup
t2[tk;tk+1]

n
ft(~�(t))� ft(�(t))

o
� 2(e�tk � e�tk+1)2 max

�
etk+1k�kk22
(1� e�tk)2

;
etkk�k+1k22

(1� e�tk+1)2

�
:

Therefore,

max
1�k�N�1

sup
t2[tk;tk+1]

n
ft(~�(t))� ft(�(t))

o
� max

1�k�N�1
2(e�tk � e�tk+1)2 max

�
etk+1k�kk22
(1� e�tk)2

;
etkk�k+1k22

(1� e�tk+1)2

�
� 2 max

1�k�N

�
e�tkk�kk22

(1� e�tk)2
max

�
e��k+1(e�k+1 � 1)2; e��k(e�k � 1)2

��
� 8 max

1�k�N

�
e�tk(e�k+1 � 1)2k�kk22

(1� e�tk)2

�
: (79)

Combining this with (78), we have that

sup
0�t�tmax

n
ft(~�(t))� ft(�(t))

o
� sup

0�t�tN

n
ft(~�(t))� ft(�(t))

o
� 8 max

�
(e�1 � 1)2krLn(0)k22; max

1�k�N

�
e�tk(e�k+1 � 1)2k�kk22

(1� e�tk)2

��
;
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if tN�1 � tmax � tN for some N � 1. This proves (21).
Lastly, when 0 < tN � tmax, using (71), we obtain that

etN kgNk22
1� e�tN

� etN

1� e�tN

�
(c0 � 1)1=2 (e�tN � e�tN+1)

(1� e�tN+1)
k�Nk2

�2

� (1� e��N+1)2

4(1� e�tN+1)2(etN � 1)
k�Nk22 �

k�Nk22
4(etN � 1)

:

Combining this with (15) in Theorem 2, we obtain that when tN � tmax,

sup
tN<t�tmax

n
ft(~�(t))� ft(�(t))

o
� k�Nk22

4(etN � 1)
+

3k�(tmax)k22
2(etN � 1)

: (80)

Combining (79) and (80), we obtain that when tmax =1

sup
0�t�tmax

n
ft(~�(t))� ft(�(t))

o
� max

(
8(e�1 � 1)2krLn(0)k22;

8 max
1�k�N�1

e�tk
�
e�k+1 � 1

1� e�tk

�2

k�kk22;
2 max(k�(tmax)k22; k�Nk22)

(etN � 1)

)
;

which implies (22). This completes the proof of Theorem 4.

Next, we present a supporting lemma to be used in the proof of Theorem 5.

Lemma 2 Under the assumptions in Theorem 3, we have that

k�1k2 � (e�1 � 1)krLn(0)k2 and (81)

1

1 + (c0 � 1)1=2
� k�kk2
k�(tk)k2

� 1

1� (c0 � 1)1=2
; (82)

where c0 = 26=25.

Proof of Lemma 2. For the �rst inequality, using (64), we have that

k�1k2 = k(1� e��1)H�1
1 rLn(0)k2 � �max(H�1

1 )(1� e��1)krLn(0)k2
� e�1(1� e��1)krLn(0)k2 = (e�1 � 1)krLn(0)k2;

which proves (81).
We next prove (82). Using (71) and (45), we have that k�k � �(tk)k2 � etkkgkk2 and

k�kk2 � k�(tk)k2 + k�(tk)� �kk2 � k�(tk)k2 + etkkgkk2

� k�(tk)k2 + (c0 � 1)1=2 (1� e��k+1)

(1� e�tk+1)
k�kk2 ;

which implies that

k�kk2 �
k�(tk)k2

1� (c0 � 1)1=2 (1�e��k+1 )

(1�e�tk+1 )

:
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Similarly, we also have

k�(tk)k2 � k�kk2 + k�(tk)� �kk2 � k�kk2 + (c0 � 1)1=2 (1� e��k+1)

(1� e�tk+1)
k�kk2 :

Combining, we obtain that

1

1 + (c0 � 1)1=2 (1�e��k+1 )

(1�e�tk+1 )

� k�kk2
k�(tk)k2

� 1

1� (c0 � 1)1=2 (1�e��k+1 )

(1�e�tk+1 )

;

which implies (82). This completes the proof of Lemma 2.

Proof of Theorem 5. We �rst verify �1 and �k+1 satisfy the conditions in (18). By the
de�nitions of �1 and �k+1, we only need to prove that �k+1 � �k=2.

If �k+1 = �max = 1=10 or 2�k, then trivially �k+1 � �k=2. Hence, we only need to
consider the case �k+1 = Ak or Bk, where

Ak := ln

 
1 +

etk=2(e�1 � 1)krLn(0)k2(1� e�tk)

k�kk2

!
;

Bk := ln

�
1 +

�
C2�e

tk max
�

(etk � 1)�
1 ; (etk � 1)�1�
2=2
�
k�kk2

��1
�
:

It is easy to check that Ak � Bk if and only if

C2�krLn(0)k2(e�1 � 1)etk=2 max
�

(etk � 1)1�
1 ; (etk � 1)�
2=2
�
� 1 : (83)

We �rst show that Ak � Bk when etk � 2. Equivalently, we need to show that the above
inequality (83) holds if etk � 2. To this end, we consider two cases: (i) 
1 � 1; and (ii)

1 < 1. It is easy to see that for any s � 0, function x=(x2 � 1)s with e�1=2 � x �

p
2

achieves its maximum at the two boundary points, that is,

x=(x2 � 1)s � max
�p

2; e�1=2=(e�1 � 1)s
�
: (84)

For case (i), note that when etk � 2,

etk=2 max
�

(etk � 1)1�
1 ; (etk � 1)�
2=2
�

=
etk=2

(etk � 1)max(
1�1;
2=2)

� max
�p

2; e�1=2=(e�1 � 1)max(
1�1;
2=2)
�

where we have used (84). Hence, inequality (83) holds if

C2e
�1=2�krLn(0)k2(e�1 � 1)min(2�
1;1�
2=2) � 1 and

p
2C2�krLn(0)k2(e�1 � 1) � 1 ;

both of which can be ensured by (27).
Similarly, for case (ii), note that when etk � 2,

etk=2 max
�

(etk � 1)1�
1 ; (etk � 1)�
2=2
�

=
etk=2

(etk � 1)
2=2
� max

�p
2; e�1=2=(e�1 � 1)
2=2

�
;
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where we have used (84). Hence, inequality (83) holds if

C2e
�1=2�krLn(0)k2(e�1 � 1)1�
2=2 � 1 and

p
2C2�krLn(0)k2(e�1 � 1) � 1 ;

both of which can be ensured by (27). This completes the proof that Ak � Bk when etk � 2.
Since e�1 � 2, we only need to consider the case �2 = A1 when k = 1. To show that

e�2 � 1 � e�1=2, we note that

e�2 � 1

e�1=2 � 1
=

eA1 � 1

e�1=2 � 1
=
et1=2(e�1 � 1)krLn(0)k2(1� e�t1)

k�1k2(e�1=2 � 1)

� e�1=2(e�1 � 1)krLn(0)k2(1� e�t1)

(e�1 � 1)krLn(0)k2(e�1=2 � 1)
= e��1=2(e�1=2 + 1) > 1 ;

where we have used (81) in Lemma 2. This proves that �2 � �1=2.
For k � 2, we consider two cases (i) �k+1 = Ak; and (ii) �k+1 = Bk. For case (i), using

the fact that �k � Ak�1, we have

e�k+1 � 1

e�k=2 � 1
= (e�k=2 + 1)

e�k+1 � 1

e�k � 1
� (e�k=2 + 1)

eAk � 1

eAk�1 � 1
(85)

= (e�k=2 + 1)e�k=2
(e�1 � 1)krLn(0)k2(1� e�tk)

k�kk2
k�k�1k2

(e�1 � 1)krLn(0)k2(1� e�tk�1)

= (e��k=2 + 1)
(etk � 1)k�k�1k2
(etk�1 � 1)k�kk2

: (86)

Applying Lemma 2, we have that

(etk � 1)k�k�1k2
(etk�1 � 1)k�kk2

� (etk � 1)k�(tk�1)k2
(etk�1 � 1)k�(tk)k2

1� (c0 � 1)1=2 (1�e��k+1 )

(1�e�tk+1 )

1 + (c0 � 1)1=2 (1�e��k+1 )

(1�e�tk+1 )

�
1� (c0 � 1)1=2 (1�e��k+1 )

(1�e�tk+1 )

1 + (c0 � 1)1=2 (1�e��k+1 )

(1�e�tk+1 )

� 1� (c0 � 1)1=2

1 + (c0 � 1)1=2
; (87)

where the last inequality uses part (ii) of Corollary 1. Combining this with (86), we obtain
that

e�k+1 � 1

e�k=2 � 1
� (e��k=2 + 1)

1� (c0 � 1)1=2

1 + (c0 � 1)1=2
� 1 ; (88)

because �k � 10�1 and c0 = 26=25. This proves case (i).
For case (ii), we have �k+1 = Bk and �k � Bk�1. Since we have shown that �k+1 = Ak

when etk > 2, we must have that etk � 2 and etk�1 > 2e��k . Using these, we have that

e�k+1 � 1

e�k=2 � 1
= (e�k=2 + 1)

e�k+1 � 1

e�k � 1
� (e�k=2 + 1)

eBk � 1

eBk�1 � 1

= (e�k=2 + 1)
etk�1 max

�
(etk�1 � 1)�
1 ; (etk�1 � 1)�1�
2=2

�
k�k�1k2

etk max
�
(etk � 1)�
1 ; (etk � 1)�1�
2=2

�
k�kk2

� (e�k=2 + 1)
max

�
(etk�1 � 1)1�
1 ; (etk�1 � 1)�
2=2

�
e�k max

�
(etk � 1)1�
1 ; (etk � 1)�
2=2

� 1� (c0 � 1)1=2

1 + (c0 � 1)1=2
:
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where we have used (87). Now if etk�1 � 2, then

e�k+1 � 1

e�k=2 � 1
� (e�k=2 + 1)

(etk�1 � 1)max(1�
1;�
2=2)

e�k(etk � 1)max(1�
1;�
2=2)

1� (c0 � 1)1=2

1 + (c0 � 1)1=2

� (e�k=2 + 1)
(etk�1 � 1)

e�k(etk � 1)

1� (c0 � 1)1=2

1 + (c0 � 1)1=2

� (e�k=2 + 1)e��k

e�k + (e�k � 1)=(etk�1 � 1)

1� (c0 � 1)1=2

1 + (c0 � 1)1=2

� (e�k=2 + 1)e��k

2e�k � 1

1� (c0 � 1)1=2

1 + (c0 � 1)1=2
� 1 ;

where we have used the fact that the last inequality holds when �k � 10�1 and c0 = 26=25.
If etk�1 < 2, we have etk < 2e�k and

e�k+1 � 1

e�k=2 � 1
� (e�k=2 + 1)

(etk�1 � 1)min(1�
1;�
2=2)

e�k(etk � 1)max(1�
1;�
2=2)

1� (c0 � 1)1=2

1 + (c0 � 1)1=2

� (e�k=2 + 1)
(2e��k � 1)

e�k(2e�k � 1)

1� (c0 � 1)1=2

1 + (c0 � 1)1=2
� 1 ;

where we have used the fact that the last inequality holds when �k � 10�1 and c0 = 26=25.
This completes the proof of �k+1 � �k=2.

Next, we show that the algorithm terminates after a �nite number of steps. We �rst
show that tk diverges. To this end, using (60) and (82), we have

etk=2(e�1 � 1)krLn(0)k2(1� e�tk)

k�kk2
� etk=2(e�1 � 1)krLn(0)k2(1� e�tk)

k�(tk)k2=(1� (c0 � 1)1=2)

� etk=2(e�1 � 1)krLn(0)k2(1� e�tk)(1� (c0 � 1)1=2)

(etk � 1)krLn(0)k2
� 2�1(e�1 � 1)e�tk=2 ;

which implies that

Ak � ln(1 + 2�1(e�1 � 1)e�tk=2) � (e�1 � 1)e�tk=2

2 + (e�1 � 1)e�tk=2
=

(e�1 � 1)

2etk=2 + (e�1 � 1)
: (89)

Moreover, Bk � Ak when etk < 2, and when etk � 2, we have

etk max
�

(etk � 1)�
1 ; (etk � 1)�1�
2=2
�
k�kk2

� 2etk max
�

(etk � 1)1�
1 ; (etk � 1)�
2=2
�
krLn(0)k2

� 2e2tkkrLn(0)k2 ;

which implies that when etk � 2

Bk � ln(1 + (C1�e
2tkkrLn(0)k2)�1) � (2C1�e

2tkkrLn(0)k2)�1

1 + (2C1�e2tkkrLn(0)k2)�1

=
1

1 + (2C1�e2tkkrLn(0)k2)
:
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Thus,

Bk � min

�
(e�1 � 1)

2etk=2 + (e�1 � 1)
;

1

1 + (2C1�e2tkkrLn(0)k2)

�
:

Combining we have that

�k+1 � min

�
�max; 2�k;

(e�1 � 1)

2etk=2 + (e�1 � 1)
;

1

1 + 2C1�e2tkkrLn(0)k2

�
: (90)

Now we prove the divergence of tk by contradiction. Suppose that tk does not diverge.
Then there must exist a constant T such that tk < T for all k. However, now we have

�k+1 � min

�
�max; 2�k;

(e�1 � 1)

2eT=2 + (e�1 � 1)
;

1

1 + 2C1�e2T krLn(0)k2

�
;

which implies that �k is lower bounded by a positive constant when k is large enough,
implying that tk should diverge. This is a contradiction. Hence, tk diverges.

Now we are ready to show that the algorithm must terminate after a �nite number
of iterations. If tmax < 1, then tk � tmax must hold for large enough k as tk diverges.
If tmax = 1, then we have that �(tmax) = �? is �nite by assumption. Therefore, the
termination criterion in (25) should also be met when N is large enough, because tN diverges
and

max(k�(tmax)k22; k�Nk22)

(etN � 1)
� 2 max(k�(tmax)k22; k�(tN )k22)

(etN � 1)
� 2k�?k22

(etN � 1)
! 0 as N !1 :

Finally, we are ready to prove (29) after the algorithm is terminated. Upon termination
when k + 1 = N , we have one of the two conditions in (25) must hold. If tN > tmax, it
is easy to see that the step sizes de�ned in (27) and (28) satisfy all the assumptions in
Theorem 4, by using (21) in Theorem 4 and the de�nition of �k, we have that

sup
0�t�tmax

n
ft(~�(t))� ft(�(t))

o
. (e�1 � 1)2krLn(0)k22 � � :

If the second inequality in (25) holds, then

2 max(k�(tmax)k22; k�Nk22)

(etN � 1)
� 2k�(tmax)k22

(etN � 1)
� 2k�Nk22

(etN � 1)

k�(tmax)k22
k�Nk22

� 2k�(tmax)k22
k�(tN )k22

(e�1 � 1)2krLn(0)k22 :

Combining this with (22) in Theorem 4, we obtain that

sup
0�t�tmax

n
ft(~�(t))� ft(�(t))

o
.
k�(tmax)k22
k�(tN )k22

(e�1 � 1)2krLn(0)k22 � � :

This completes the proof of Theorem 5.

We next present a supporting lemma for the proof of Theorem 6 and 10.
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Lemma 3 For any � 2 (0; 1], let (e�1�1)2 = c2
1� and �k+1 = ln(1+c2e

tk=2(e�1�1)), where
c1; c2 > 0 are constants and tk =

Pk
i=1 �i. De�ne k? := maxfk : tk � ln(��1)g. Then,

k? <
1 + c1c2 +

p
1 + c1c2

c1c2
p
�
p

1 + c1
p
�
;

k?X
k=1

etk(tk + 1) � (1 + 2c1c2 +
p

1 + c1c2)(1 + ln(��1))

c1c2�
: (91)

Proof of Lemma 3. It is easy to see that �k is strictly increasing for k � 2 and by
de�nition of k?, we have that

�k+1 � ln(1 + c1c2) for any 1 � k � k? ; (92)

which implies that e�k+1=2 � (1 + c1c2)1=2 for any 1 � k � k?. Moreover, since e�k+1 =
1 + c1c2

p
�etk=2, we have that

e�tk=2 � e�tk+1=2 =
e�k+1=2 � 1

etk+1=2
=
e�tk+1=2(e�k+1 � 1)

e�k+1=2 + 1
=
e��k+1=2c1c2

p
�

e�k+1=2 + 1
=

c1c2
p
�

e�k+1 + e�k+1=2

for any k � 1. Therefore, for any 1 � k � k?,

e�t1=2 � e�tk?+1=2 =

k?X
i=1

�
e�ti=2 � e�ti+1=2

�
=

k?X
i=1

c1c2
p
�

e�i+1 + e�i+1=2
� k?c1c2

p
�

1 + c1c2 +
p

1 + c1c2
;

e�tk=2 � e�tk?=2 =
k?�1X
i=k

�
e�ti=2 � e�ti+1=2

�
=

k?�1X
i=k

c1c2
p
�

e�i+1 + e�i+1=2
� (k? � k)c1c2

p
�

1 + c1c2 +
p

1 + c1c2
;

which implies the �rst inequality in (91) and

e�tk=2 � e�tk?=2 +
(k? � k)c1c2

p
�

1 + c1c2 +
p

1 + c1c2
�
p
�+

c1c2
p
�

1 + c1c2 +
p

1 + c1c2
(k? � k) (93)

by using the fact that tk? � ln(��1). Therefore, for any 1 � k � k?,

etk � ��1

(1 + C(k? � k))2
; (94)

where C = c1c2
1+c1c2+

p
1+c1c2

< 1. Now we are ready to prove the second inequality in (91).

By (94) and the fact that tk? � ln(��1), it follows that

k?X
k=1

etktk � etk? tk? +

k?�1X
k=1

��1 1

(1 + C(k? � k))2
ln

�
��1 1

(1 + C(k? � k))2

�

� ��1 ln(��1) +

Z k?

1
��1 1

(1 + C(k? � x))2
ln

�
��1 1

(1 + C(k? � x))2

�
dx

= ��1 ln(��1) +
1

2C
p
�

Z b

a
tet=2dt = ��1 ln(��1) +

1

C
p
�
((b� 2)eb=2 � (a� 2)ea=2)
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where a = ln(��1) � 2 ln(1 + C(k? � 1)) and b = ln(��1). Using (94) with k = 1 and the
fact that function (t� 2)et=2 is increasing over t � 0, we have that

a = ln(��1)� 2 ln(1 + C(k? � 1)) � t1 > 0 and (a� 2)ea=2 � �2 :

Hence,

(b� 2)eb=2 � (a� 2)ea=2

C
p
�

� (b� 2)eb=2

C
p
�

+
2

C
p
�

=
��1(ln(��1)� 2)

C
+

2

C
p
�
� ��1 ln(��1)

C
;

provided that � < 1. Combining, we obtain that

k?X
k=1

etktk � ��1 ln(��1) +
��1 ln(��1)

C
=

(C + 1)��1 ln(��1)

C
:

Similarly, by using (94), we have that

k?X
k=1

etk � ��1 +

k?�1X
k=1

��1 1

(1 + C(k? � k))2
� ��1 +

Z k?

1

��1

(1 + C(k? � x))2
dx

= ��1 +
��1

C

�
1� 1

1 + C(k? � 1)

�
� (C + 1)��1

C
:

Consequently, we have that

k?X
k=1

etk(tk + 1) � (C + 1)��1(1 + ln(��1))

C
=

(1 + 2c1c2 +
p

1 + c1c2)��1(1 + ln(��1))

c1c2
:

This completes the proof of Lemma 3.

Proof of Theorem 6. We �rst consider the case where tmax =1 and 
1 � 1. In view of
the termination criterion (25), the algorithm will be terminated when tk = O(ln(��1)). We
de�ne N = maxfk : tk � ln(��1)g. By applying Lemma 1 and 2 with c0 = 26=25, we have

k�kk2
1� e�tk

� 5

4

k�(tk)k2
1� e�tk

� 5

4
(k�(tmax)k2 + krLn(0)k2) : (95)

Therefore,

eAk � 1 =
etk=2(e�1 � 1)krLn(0)k2(1� e�tk)

k�kk2
� 4etk=2(e�1 � 1)krLn(0)k2

5(k�(tmax)k2 + krLn(0)k2)
;

eBk � 1 =
�
C2�e

tk max
�

(etk � 1)�
1 ; (etk � 1)�1�
2=2
�
k�kk2

��1

�
�
C2�max

�
(etk � 1)1�
1 ; (etk � 1)�
2=2

�
(k�(tmax)k2 + krLn(0)k2)

��1

� (C2�(k�(tmax)k2 + krLn(0)k2))�1 ;

which implies that,
�k+1 � ln(1 + �1e

tk=2(e�1 � 1))
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when �k+1 � min(�max; ln(1 + �2)), where we treat

�1 =
4krLn(0)k2

5(k�(tmax)k2 + krLn(0)k2)
and �2 = (C2�(k�(tmax)k2 + krLn(0)k2))�1

as problem-dependent constants. Then, applying Lemma 3, we have that

N � O
�
��1=2 + ln(��1)=min(�max; ln(1 + �2))

�
= O

�
��1=2

�
;

if we treat �, k�(tmax)k2, and krLn(0)k2 as constants. When tmax < 1 and 
1 � 1,
the algorithm terminates at N if tN > tmax. Since �k is increasing, it follows that N �
tmax=�1 = O

�
��1=2

�
. This completes the proof of Theorem 6.

Proof of Theorem 7. It is easy to verify that ftk(�) is mk-strongly convex with Lk-
Lipschitz gradient, where mk = m(1�e�tk)+e�tk and Lk = L(1�e�tk)+e�tk . By standard
analysis of gradient descent for strongly convex and smooth functions (see, e.g., Theorem
2.1.14 of Nesterov, 1998), we have that

k�k+1 � �(tk+1)k2 �
�

1� 2mk+1Lk+1

mk+1 + Lk+1
�k+1

�nk+1

k�k � �(tk+1)k2 ; (96)

where �k+1 � 2
mk+1+Lk+1

. Similar to the derivation of (48), we obtain that

k�(t0)� �(t)k2 �
jC(t0)� C(t)j

C(t) +mC(t)C(t0)
k�(t)k2 ; (97)

for any t0 < t, because C(t0)Ln(�) + 1
2k�k

2
2 is (1 +C(t0)m)-strongly convex. Using this with

t0 = tk; t = tk+1, and applying the triangular inequality, we obtain that

k�k � �(tk+1)k2 � k�k � �(tk)k2 + k�(tk)� �(tk+1)k2

= k�k � �(tk)k2 +
(etk+1 � etk)

(etk+1 � 1)(1 +m(etk � 1))
k�(tk+1)k2

� k�k � �(tk)k2 +
(e�k+1 � 1)

(etk+1 � 1)mk
k�(tk+1)k2 :

Combining this with (96), we get

k�k+1 � �(tk+1)k2 �
�

1� 2mk+1Lk+1

mk+1 + Lk+1
�k+1

�nk+1

�
k�k � �(tk)k2 +

(e�k+1 � 1)k�(tk+1)k2
(etk+1 � 1)mk

�
: (98)

Next we use induction to show that

k�k � �(tk)k2 � 2

�
1� 2mkLk

mk + Lk
�k

�nk (e�k � 1)k�(tk)k2
(etk � 1)mk�1

: (99)

Suppose that (99) holds for �k, then using (98) and (99), it follows that (99) holds for �k+1

if

2

�
1� 2mkLk

mk + Lk
�k

�nk (e�k � 1)k�(tk)k2
(etk � 1)mk�1

� (e�k+1 � 1)k�(tk+1)k2
(etk+1 � 1)mk

(100)
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for any k � 1. Next we show that (100) can be ensured by the conditions in (32). First,
using the fact that

mk

mk�1
=

m(1� e�tk) + e�tk

m(1� e�tk�1) + e�tk�1
�

(
m1 when k = 1

1�e�tk
1�e�tk�1

for any k � 2 ;
(101)

and

(etk+1 � 1)(e�k � 1)(1� e�tk)

(etk � 1)(e�k+1 � 1)(1� e�tk�1)
� 12 for any k � 2;

(et2 � 1)(e�1 � 1)

(et1 � 1)(e�2 � 1)
� 5 ;

when �k � 2�k�1, �k+1 � �k=2, and �k � ln(2) for k � 1, it follows that a su�cient
condition for (100) is

n1 �
log(10m1)

� log
�

1� 2m1L1
m1+L1

�1

� and nk �
log(24)

� log
�

1� 2mkLk
mk+Lk

�k

�
for any k � 2.

Next, using the fact that ftk(�) has Lk-Lipschitz gradient, we have

kgkk2 � Lkk�k � �(tk)k2 � 2Lk

�
1� 2mkLk

mk + Lk
�k

�nk (e�k � 1)k�(tk)k2
(etk � 1)mk�1

:

This completes the proof of Theorem 7.

Proof of Theorem 8. Since C(t)Ln(�) + 1
2k�k

2
2 is (1 + C(t)m)-strongly convex, using

(45), we have that

k�(t)� 0k2 �
kC(t)rLn(0)k2

1 + C(t)m
; (102)

which implies that,

k�(tk)k2 �
1� e�tk
mk

krLn(0)k2 : (103)

By Theorem 7, since

nk �
log(24) + max(0; log(Lk=mk�1))

� log
�

1� 2mkLk
mk+Lk

�k

� ; (104)

it follows that

kgkk2 � 2

�
1� 2mkLk

mk + Lk
�k

�nk (e�k � 1)k�(tk)k2
(etk � 1)mk�1

� (12)�1 (e�k � 1)k�(tk)k2
(etk � 1)

: (105)

Similar to (82), we can show that

1

1 + (12)�1
� k�kk2
k�(tk)k2

� 1

1� (12)�1
: (106)
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Using this, Lemma 1, and (13), we have that

sup
t2[0;t1]

n
ft(~�(t))� ft(�(t))

o
� max

�
et1kg1k22; k�1k22

�
+
et1(1� e�t1)2

2
krLn(0)k22

� et1(1� e�t1)2

2
krLn(0)k22 + (3=2)k�(t1)k22 � 2(e�1 � 1)2krLn(0)k22 :

Moreover, using (105), (106), and Corollary 1, we obtain that

etk+1

�
1� e�tk+1

1� e�tk

�2

kgkk22 �
etk+1

144

�
1� e�tk+1

1� e�tk

�2�
(e�k � 1)k�(tk)k2

(etk � 1)

�2

� e�k+1

144

(e�k � 1)2(1� e�tk+1)2

(e�k+1 � 1)2(1� e�tk)2
e�tk

�
e�k+1 � 1

1� e�tk

�2

k�(tk)k22 � (20)�1e�tk
�
e�k+1 � 1

1� e�tk

�2

k�kk22

etk+1kgk+1k22 �
etk+1

144

�
(e�k+1 � 1)k�(tk+1)k2

(etk+1 � 1)

�2

� e�k+1

144
e�tk

�
e�k+1 � 1

1� e�tk

�2

k�(tk)k22

� (50)�1e�tk
�
e�k+1 � 1

1� e�tk

�2

k�kk22 ;

and

(e�tk � e�tk+1)2 max

�
etk+1k�kk22
(1� e�tk)2

;
etkk�k+1k22

(1� e�tk+1)2

�
�
�
1� (12)�1

��2
(e�tk � e�tk+1)2 max

�
etk+1k�(tk)k22
(1� e�tk)2

;
etkk�(tk+1)k22
(1� e�tk+1)2

�
�
�
1� (12)�1

��2
e�tk

�
e�k+1 � 1

1� e�tk

�2

k�(tk)k22

�
�
1� (12)�1

��2 �
1 + (12)�1

�2
e�tk

�
e�k+1 � 1

1� e�tk

�2

k�kk22 ;

where we have used the fact that e�k+1(e�k�1)(1�e�tk+1)=(e�k+1�1)(1�e�tk) � (
p

2+1)2.
Combining these with (14), we have that

sup
t2[tk;tk+1]

n
ft(~�(t))� ft(�(t))

o
� etk+1 max

(�
1� e�tk+1

1� e�tk

�2

kgkk22; kgk+1k22

)

+ (e�tk � e�tk+1)2 max

�
etk+1k�kk22
(1� e�tk)2

;
etkk�k+1k22

(1� e�tk+1)2

�
�
�
(20)�1 + (1� (12)�1)�2(1 + (12)�1)2

�
e�tk

�
e�k+1 � 1

1� e�tk

�2

k�kk22

� 2e�tk
�
etk+1�tk � 1

1� e�tk

�2

k�kk22

for any k � 1.
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Lastly, using (15), (105), (80), and part (ii) of Corollary 1, we have

sup
tN<t�tmax

n
ft(~�(t))� ft(�(t))

o
� etN (1� e�tmax)

1� e�tN
kgNk22 +

3

2(etN � 1)
k�(tmax)k22

� etN (1� e�tmax)

144(1� e�tN )

�
e�N � 1

etN � 1

�2

k�(tN )k22 +
3

2(etN � 1)
k�(tmax)k22

� 2k�(tmax)k22
etN � 1

:

Combining the three bounds, we obtain that when tN � tmax,

sup
0�t�tmax

n
ft(~�(t))� ft(�(t))

o
� 2 max

 
(e�1 � 1)2krLn(0)k22 ;

max
1�k�N�1

e�tk
(e�k+1 � 1)2

(1� e�tk)2
k�kk22 ;

k�(tmax)k22
etN � 1

!
;

and when tN�1 � tmax < tN for some N � 1.

sup
0�t�tmax

n
ft(~�(t))� ft(�(t))

o
� sup

0�t�tN

n
ft(~�(t))� ft(�(t))

o
� 2 max

 
(e�1 � 1)2krLn(0)k22 ; max

1�k�N�1
e�tk

(e�k+1 � 1)2

(1� e�tk)2
k�kk22

!
:

This completes the proof of Theorem 8.

Proof of Theorem 9. We �rst show that �k+1 � �k=2. If �k+1 = 5�1 or 2�k, then
trivially �k+1 � �k=2. Now we assume that �k+1 = Ak, where

Ak := ln

 
1 +

�1=2etk=2(1� e�tk)

k�kk2

!
:

First, using (105), (106), and the fact that k�k � �(tk)k2 � etkkgkk2, we obtain that

k�kk2 � k�(tk)k2 + k�(tk)� �kk2 � k�(tk)k2 + etkkgkk2 � k�(tk)k2 + etk
(e�k � 1)

12(etk � 1)
k�(tk)k2 ;

which implies that

k�kk2 � k�(tk)k2
�

1 +
(e�k � 1)

12(1� e�tk)

�
: (107)

When k = 1, using (107) and the fact that e�1 � 1 �
p
�=krLn(0)k2, we obtain that

e�2 � 1

e�1=2 � 1
= (e�1=2 + 1)

e�2 � 1

e�1 � 1
� (e�1=2 + 1)

eA1 � 1

e�1 � 1
= (e�1=2 + 1)e�1=2

p
�(1� e�t1)

k�1k2(e�1 � 1)

� (e�1=2 + 1)e�1=2

p
�(1� e�t1)

k�(t1)k2(e�1 � 1)

�
1 +

(e�1 � 1)

12(1� e�t1)

��1

� (e��1=2 + 1)
p
�

krLn(0)k2(e�1 � 1)
(1 + e�1=12)�1 � 3

4
(e��1=2 + 1)(1 + e�1=12)�1 � 1 ;

49



Zhu and Liu

provided that �1 � ln(2). This implies that �2 � �1=2.
When k � 2, note that �k � Ak�1 and

e�k+1 � 1

e�k=2 � 1
= (e�k=2 + 1)

e�k+1 � 1

e�k � 1
� (e�k=2 + 1)

eAk � 1

eAk�1 � 1

= (e�k=2 + 1)e�k=2
�1=2(1� e�tk)

k�kk2
k�k�1k2

�1=2(1� e�tk�1)

� (e��k=2 + 1)
(etk � 1)k�k�1k2
(etk�1 � 1)k�kk2

: (108)

Now similar to (107), we obtain that

k�(tk)k2 � k�kk2 + k�(tk)� �kk2 � k�kk2 + etkkgkk2 � k�kk2 +
(e�k � 1)

12(1� e�tk)
k�(tk)k2 ;

we have that �
1� (e�k � 1)

12(1� e�tk)

�
� k�kk2
k�(tk)k2

�
�

1 +
(e�k � 1)

12(1� e�tk)

�
: (109)

Hence,

(etk � 1)k�k�1k2
(etk�1 � 1)k�kk2

� (etk � 1)k�(tk�1)k2
(etk�1 � 1)k�(tk)k2

1� (e�k�1)

12(1�e�tk )

1 + (e�k�1)

12(1�e�tk )

�
1� (e�k�1)

12(1�e�tk )

1 + (e�k�1)

12(1�e�tk )

where the last inequality uses part (ii) of Corollary 1. Combining this with (108), we obtain
that

e�k+1 � 1

e�k=2 � 1
� (e��k=2 + 1)

1� (e�k�1)

12(1�e�tk )

1 + (e�k�1)

12(1�e�tk )

: (110)

Therefore, to prove �k+1 � �k=2, it su�ces to show that the RHS of the above inequality
is no smaller than 1. To this end, using the fact that �k � ln(2) for all k � 1, we have

(e�k � 1)

(1� e�tk)
=
e�k(1� e��k)

1� e�tk
� e�k � 2

for any k � 1. Combining this with (110), we have that

e�k+1 � 1

e�k=2 � 1
� (e��k=2 + 1)

1� (e�k�1)

12(1�e�tk )

1 + (e�k�1)

12(1�e�tk )

� (1=
p

2 + 1)
1� 6�1

1 + 6�1
> 1 ;

which proves that �k+1 � �k=2. Hence, �k satisfy all the conditions in Theorem 8.
Next, we show that the algorithm will terminate in �nite steps. We �rst show that tk

diverges. To this end, using (60) and (106), we have

�1=2etk=2(1� e�tk)

k�kk2
� etk=2(e�1 � 1)krLn(0)k2(1� e�tk)

k�(tk)k2=(1� (12)�1)

� etk=2(e�1 � 1)krLn(0)k2(1� e�tk)

2(etk � 1)krLn(0)k2
� 2�1(e�1 � 1)e�tk=2 ;
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which implies that

Ak � ln(1 + 2�1(e�1 � 1)e�tk=2) � (e�1 � 1)e�tk=2

2 + (e�1 � 1)e�tk=2
=

(e�1 � 1)

2etk=2 + (e�1 � 1)
: (111)

Thus,

�k+1 � min

�
�max; 2�k;

(e�1 � 1)

2etk=2 + (e�1 � 1)

�
: (112)

Now we prove the divergence of tk by contradiction. Suppose that tk does not diverge.
Then there must exist a constant T such that tk < T for all k. However, now we have

�k+1 � min

�
�max; 2�k;

(e�1 � 1)

2eT=2 + (e�1 � 1)

�
;

which implies that �k is lower bounded by a positive constant when k is large enough,
implying that tk should diverge. This is a contradiction. Hence, tk diverges.

Now we are ready to show that the algorithm must terminate after a �nite number
of iterations. If tmax < 1, then tk � tmax must hold for large enough k as tk diverges.
If tmax = 1, then we have that �(tmax) = �? is �nite by assumption. Therefore, the
termination criterion in (25) should also be met when N is large enough, because tN diverges
and

max(k�(tmax)k22; k�Nk22)

(etN � 1)
� 2 max(k�(tmax)k22; k�(tN )k22)

(etN � 1)
� 2k�?k22

(etN � 1)
! 0 as N !1 :

Finally, we are ready to prove (40) upon termination. Using (35) and (36) in Theorem
8, and the de�nition of �1 and �k+1, we have that

e�tk
�
e�k+1 � 1

1� e�tk

�2

k�kk22 � (e�1 � 1)2krLn(0)k22 � � and

k�(tmax)k22
(etN � 1)

� 2k�Nk22
(etN � 1)

k�(tmax)k22
2k�Nk22

� �k�(tmax)k22
k�(tN )k22

:

for any k � 1 when the algorithm is terminated, and after termination,

sup
0�t�tmax

n
ft(~�(t))� ft(�(t))

o
�

(
2k�(tmax)k22
k�(tN )k22

� when tmax � tN
2� when tmax < tN

;

which implies (40). This completes the proof of Theorem 9.

Proof of Theorem 10. We �rst bound the number of gradient steps at each itera-
tion. Since m = 0, we have that mk = e�tk . By assumption, we have that �k = � =
O(min(1; L�1)). Then the upper bounds on n1 and nk+1 in (34) can be bounded further as
follows

log(24) + max(0; log(Lk+1=mk))

� log
�

1� 2mk+1Lk+1

mk+1+Lk+1
�k+1

� � log(24) + max(0; log(Lk+1=mk))
2mk+1Lk+1

mk+1+Lk+1
�k+1

� log(24) + max(0; log(Lk+1=mk))

mk+1�
� log(24) + tk + log(Lk+1)

mk+1�
= O

�
etk+1(tk+1 + 1)

�
;
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where we have used Lk � mk for any k � 1. Similarly, we also we have

log(10m1L1)

� log
�

1� 2m1L1
m1+L1

�1

� . et1 ;

where we have used the fact that � log(1 � x) � x, Lk � max(L; 1), and treated L as a
constant.

Next, By applying Lemma 1 and (109), we have

k�kk2
1� e�tk

� 7

6

k�(tk)k2
1� e�tk

� 7

6
(k�(tmax)k2 + krLn(0)k2) : (113)

Therefore, when �k+1 � ln(2), we have that

e�k+1 � 1 =
etk=2(e�1 � 1)krLn(0)k2(1� e�tk)

k�kk2
� 6etk=2(e�1 � 1)krLn(0)k2

7(k�(tmax)k2 + krLn(0)k2)
;

which implies that

�k+1 � ln(1 + �1e
tk=2(e�1 � 1))

when �k+1 � ln(2), where we treat

�1 =
6krLn(0)k2

7(k�(tmax)k2 + krLn(0)k2)

as problem-dependent constants.

Now we are ready to derive the bound for the number of gradient steps. When tmax =1,
in view of the termination criterion (39), the algorithm will be terminated when tk =
O
�
ln(��1)

�
. Therefore, the total number of gradient steps can be bounded as

k?X
k=1

nk .
k?X
k=1

etk(tk + 1) . ��1(1 + ln(��1)) ;

where k? = maxfk : tk � ln(��1)g and we have used Lemma 3. Hence, the total number of
gradient steps is at most O

�
��1 ln(��1)

�
.

When tmax < 1, then in view of the termination criterion (39), the algorithm will be
terminated when tk > tmax. Therefore, the total number of gradient steps can be bounded
as

k?X
k=1

nk + max(0; tmax � tk?)= ln(1 + �1) .
k?X
k=1

etk(tk + 1) + 1= ln(1 + �1) . ��1(1 + ln(��1)) ;

where again we have used Lemma 3. In this case, the total number of gradient steps is also
at most O

�
��1 ln(��1)

�
. This completes the proof of Theorem 10.

Proof of Corollary 3. We �rst show that the bounds in Theorem 8 continue to hold.
The proof is similar to that of Theorem 8 with some slight modi�cations. In particular,
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upon termination of the gradient descent method at tk, we have (41). Replacing the bound
(105) in the proof of Theorem 8 by (41), and following a similar argument, we obtain that

sup
0�t�tmax

n
ft(~�(t))� ft(�(t))

o
. max

 
(e�1 � 1)2krLn(0)k22 ; max

1�k�N�1
e�tk

�
e�k+1 � 1

1� e�tk

�2

k�kk22

!
:

when tN � tmax for some N ; and

sup
0�t�tmax

n
ft(~�(t))� ft(�(t))

o
. max

 
(e�1 � 1)2krLn(0)k22 ;

max
1�k�N�1

e�tk
�
e�k+1 � 1

1� e�tk

�2

k�kk22 ;
k�(tmax)k22
(etN � 1)

!
when tN � tmax and k�(tmax)k2 < 1. Then the bound (42) follows from these bounds,
following the proof of Theorem 9. This completes the proof of Corollary 3.

Proof of Proposition 1. We verify condition (16) for the functions in Table 1 separately.

Log-barrier function. Note that L0n(�) = ���1 and L00n(�) = ��2. Consider 
1 = 3=2,

2 = 1 and � � 2. Then (17) reduces to j�j � ���1. It is easy to see the right hand side of
(16) reduces to ��2��3. Under the condition j�j � ���1, the left hand side of (16) can be
bounded as follows����� 1

� + �
+ ��1 � �

�2

���� =
�2

�2

���� 1

� + �

���� =
�2

�3

���� 1

1 + ���1

���� � �2

�3

�

� � 1
� � �

2

�3
:

Thus, � ln(�) satis�es the condition with 
1 = 3
2 and 
2 = 1.

Entropy-barrier function. Note that the �rst and second derivatives are L0n(�) =
ln(�) + 1 � ��1 and L00n(�) = ��1 + ��2, respectively. Consider 
1 = 3

2 , 
2 = 1 and any �

satisfying �
(��1)2

� 1. Then (17) reduces to j�j � ���1. The right hand side of (16) can be

bounded as

��2(��1 + ��2)3=2 = �
�2

�2

(1 + �)3=2

�
� � �

2

�2
(��1 + 3=2) :

By Taylor's expansion, there exists s 2 (0; 1) such that����ln(� + �)� 1

� + �
� ln(�) + ��1 � (��1 + ��2)�

����
=

����ln(1 +
�

�
) +

�

�(� + �)
� �

�
(1 + ��1)

���� =

����� �2

2�2(1 + s���1)2
� �

�2
+

�

�(� + �)

����
=

�2

�2

�
1

�(1 + ���1)
+

1

2(1 + s���1)2

�
� �2

�2

�
��1 1

1� ��1
+

1

2(1� ��1)2

�
=

�2

�2
(

�

� � 1
)2

�
��1(1� 1

�
) +

1

2

�
� � �

2

�2
(��1 + 3=2)

�

(� � 1)2

� �
�2

�2
(��1 + 3=2) � ��2(��1 + ��2)3=2 ;
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which implies that � ln(�)� ln(�) satis�es (16) with 
1 = 3=2 and 
2 = 1.

Logistic function. Note that L0n(�) = � 1
1+e�

and L00n(�) = e�

(1+e�)2
. Consider 
1 = 1,


2 = 0 and any � satisfying e1=� � 2� (e.g., � = 2). Then (17) reduces to j�j � ��1. The
right hand side of (16) is ��2e�(1 + e�)�2. By Taylor's expansion, there exists s 2 (0; 1)
such that����� 1

1 + e�+�
+

1

1 + e�
� e�

(1 + e�)2
�

���� =
�2

2

����e�+s� � 1

e�+s� + 1

���� e�+s�

(e�+s� + 1)2
� �2

2

e�+s�

(e�+s� + 1)2
:

Let q = es�. Since j�j � ��1, s 2 (0; 1), we have q 2 (e
� 1
� ; e

1
� ). Therefore,

qe�

(qe� + 1)2
= q

�
qe� + 1

e� + 1

��2
e�

(e� + 1)2
= q

�
q +

1� q
e� + 1

��2 e�

(e� + 1)2

� max(q; q�1)
e�

(e� + 1)2
� e

1
�

e�

(e� + 1)2
:

Consequently, for any j�j � 1=� with � satisfying e1=� � 2�, we have

�2

2

e�+s�

(e�+s� + 1)2
� �2

2
e

1
�

e�

(e� + 1)2
� ��2 e�

(1 + e�)2
;

which implies that ln(1 + e��) satis�es (16) with 
1 = 1 and 
2 = 0.

Exponential function. Note that L0n(�) = �e� and L00n(�) = e��. Consider 
1 = 1,

2 = 0, and � � 1

2 . Then (17) reduces to j�j � ��1. It is easy to see the right hand side of
inequality (16) is �e���2. Note that ex � 1 + x and ex � 1� x� �x2 � 0 for any � � 1=2.
Thus under the condition that j�j � ��1, the left hand side of inequality (16) satis�es����e�(�+�) + e�� � e���

��� = e�(e�� � 1 + �) � e���2 ;

which implies that e� satis�es the condition with 
1 = 1 and 
2 = 0.

Square function. Note that L0n(�) = 2� and L00n(�) = 2. Since for any � 2 R, the left
hand side of inequality (16) satis�es��L0n(� + �)� L0n(�)� L00n(�)�

�� = 0

we conclude that �2 satis�es inequality (16) with any 0 � 
1 < 2, and 0 � 
2 < 2. This
completes of the proof of Proposition 1.

Proof of Proposition 2. We �rst prove two claims to be used later in the proof.

Claim 1 Suppose that function f : R 7! R satis�es Assumption 1 with 
1 = 1, 
2 = 0 and
�. Then for any p-dimensional vector a and any scalar b, the function g(x) := f(a>x+ b)
also satis�es Assumption 1 with 
1 = 1, 
2 = 0, and �kak2.

54



An algorithmic view of `2 regularization and some path-following algorithms

Proof of Claim 1. Suppose that Assumption (A1) holds for f(�) with 
1 = 1, 
2 = 0, and
�. Then, for any d 2 Rp with kdk2 � (�kak2)�1, we have that ja>dj2 � kak22kdk22 � ��2.
By Assumption (A1), we have, for any s 2 R, that���f 0(s+ a>d)� f 0(s)� f 00(s)a>d

��� � �f 00(s)(a>d)2 :

Moreover, note that rg(x) = f 0(a>x + b)a and r2g(x) = f 00(a>x + b)aa>. Consequently,
for any x 2 Rp, we have that

krg(x+ d)�rg(x)�r2g(x)dk2
= k(f 0(a>x+ b+ a>d)� f 0(a>x+ b)� f 00(a>x+ b)a>d)ak2

=
���f 0(a>x+ b+ a>d)� f 0(a>x+ b)� f 00(a>x+ b)a>d

��� � kak2
� �f 00(a>x+ b)(a>d)2kak2 = �kak2d>r2g(x)d ;

which implies that g(�) satis�es Assumption 1 with 
1 = 1, 
2 = 0, and �kak2.

Claim 2 Suppose that functions fi with fi : Rp 7! R satis�es Assumption (A1) with 
1 = 1,

2 = 0, and � = �i; i = 1; : : : ; n. Then �1f1 + �2f2 : : : + �nfn also satis�es Assumption
(A1) with 
1 = 1, 
2 = 0, and � = max1�i�n �i, where �1; : : : ; �n � 0.

Proof of Claim 2. For any d satisfying kdk � 1=�, we have kdk � 1=�i for all i = 1; : : : ; n.
By Assumption (A1), this implies

rfi(s+ d)�rfi(s)�r2fi(s)d




2
� �id>r2fi(s)d � �d>r2fi(s)d; (114)

for any vector s 2 Rp and i = 1; : : : ; n. Thus,





nX
i=1

�irfi(s+ d)�
nX
i=1

�irfi(s)�
nX
i=1

�ir2fi(s)d







2

�
nX
i=1

�i


rfi(s+ d)�rfi(s)�r2fi(s)d




2

�
nX
i=1

�i�d
>r2fi(s)d = �d>

 
nX
i=1

�ir2fi(s)

!
d :

Consequently, the function
Pn

i=1 �ifi also satis�es Assumption (A1) with 
1 = 1, 
2 = 0,
and � = max1�i�n �i.

Now we are ready to prove the main result. It has been shown in Proposition 1 that the
logistic regression loss function satis�es Assumption (A1) with 
1 = 1, 
2 = 0 and � = 2. By

using Claim 1, it follows that log(1 + e�YiX
>
i �) also satis�es Assumption (A1) with 
1 = 1,


2 = 0 and � = 2 max1�i�n kXik2 for i = 1; : : : ; n. Moreover, it follows from Claim 2 that

the logistic regression empirical loss n�1
Pn

i=1 log(1 + e�YiX
>
i �) satis�es Assumption (A1)

with 
1 = 1, 
2 = 0, and � = 2 max1�i�n kXik2. This completes the proof of Proposition 2.
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Appendix B. Approximation-error bounds for the ODE methods

In this section, we follow the classical global approximation error analysis of ordinary di�er-
ential equation, which studies the ODE �0(t) = F (t; �(t)). In particular, we focus on Euler's
method and second-order Runge-Kutta method, which have been studied extensively in the
numerical ODE literature (Hairer et al., 2008; Butcher, 2016). Both methods belong to the
more general class of the so-called one-step method (Hairer et al., 2008), for which Lipschitz
continuity of function F (t; �) plays an important role in quantifying the approximation er-
ror. Here we present a result which is a direct application of Theorem 3.4 of Hairer et al.
(2008).

Theorem 11 (Theorem 3.4 of Hairer et al. (2008)) Assume that Ln(�) is M -Lipschitz
continuous and m-strongly convex. Moreover, assume that the gradient of Ln(�) is L-
Lipschitz continuous and the Hessian of Ln(�) is S-Lipschitz continuous. We have that

k�k � �(tk)k2 �
C�p

L?
(eL

?tk � 1) ; (115)

where � is the step size, tk = k�, C is an absolute constant, and L? = MS
minfm;1g2 + L

minfm;1g .

Note that the approximation error is a power function of the step size �. The power p is
often referred to as the order the corresponding approximation method. As we can see from
the above Theorem, Euler's method de�ned in (11) and the special case of Runge-Kutta
method de�ned in (12) are �rst-order method and second-order method, respectively. In
both cases, we can control global error in �nite interval by adjusting step size �.

We also point out that the upper bound in (115) gets worse as k ! 1, which is
less desirable compared with the approximation error bounds derived for the other two
path-following methods. This is likely due to the generality of problem class considered in
Theorem 3.4 of Hairer et al. (2008). Indeed, some preliminary empirical studies suggest that
the second-order Runge-Kutta is practically comparable to the Newton method in terms of
approximation error. A more re�ned theoretical upper bound may hold for the particular
ODE we consider here, although we choose not to pursue this due to space limit.

Proof of Theorem 11. Applying Theorem 3.4 of Hairer et al. (2008), it su�ces to show
that F (t; �(t)) is Lipschitz continuous with respect to �(t), based on which we could bound
the global error directly. For any t > 0, �1 and �2, let �F = F (t; �1)� F (t; �2). Note that

k�Fk2 =


[(1� e�t)r2Ln(�1) + e�tI]�1rLn(�1)� [(1� e�t)r2Ln(�2) + e�tI]�1rLn(�2)




2

�


�((1� e�t)r2Ln(�1) + e�tI)�1 � ((1� e�t)r2Ln(�2) + e�tI)�1

�
rLn(�2)




2| {z }

Part I

+



((1� e�t)r2Ln(�1) + e�tI)�1(rLn(�1)�rLn(�2))




2| {z }
Part II

:

Since Ln(�) is m-strongly convex and rLn(�) is L-Lipschitz continuous, we have that for
any �, r2ft(�) = (1� e�t)r2Ln(�) + e�tI satis�es that

[(1� e�t) � L+ e�t]�1I � [r2ft(�)]
�1 � [(1� e�t)m+ e�t]�1I :
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Therefore,

k(r2ft(�1))�1 � (r2ft(�2))�1k2 = k(r2ft(�1))�1(r2ft(�2)�r2ft(�1))(r2ft(�2))�1k2
� k(r2ft(�1))�1k2kr2ft(�2)�r2ft(�1)k2k(r2ft(�2))�1k2
� [(1� e�t)m+ e�t]�2(1� e�t)kr2Ln(�1)�r2Ln(�1)k2
� [(1� e�t)m+ e�t]�2(1� e�t)Sk�1 � �2k2 :

Moreover, since Ln(�) is M -Lipschitz continuous and convex, we have that

krLn(�)k22 � jLn(� +rLn(�))� Ln(�)j �MkrLn(�)k2 ; (116)

which implies that krLn(�)k2 �M . Consequently, we can bound Part I as follows

Part I � k[r2ft(�1)]�1 � [r2ft(�2)]�1k2krLn(�2)k2
� Mk[r2ft(�1)]�1 � [r2ft(�2)]�1k2
� M [(1� e�t)m+ e�t]�2(1� e�t)Sk�1 � �2k2 :

For part II, we have that

Part II � k[(1� e�t)r2Ln(�1) + e�tI]�1k2krLn(�1)�rLn(�2)k2
� [(1� e�t)m+ e�t]�1Lk�1 � �2k2 :

Combining the above two bounds, it follows that

k�Fk2 �
�
M [(1� e�t)m+ e�t]�2(1� e�t)S + [(1� e�t)m+ e�t]�1L

�
k�1 � �2k2 :

Let S� = M [(1� e�t)m+ e�t]�2(1� e�t)S + [(1� e�t)m+ e�t]�1L. It can be shown that

S� � L? :=
MS

minfm; 1g2
+

L

minfm; 1g
:

Hence, we have that k�Fk2 � L?k�1 � �2k2 for any m > 0, which implies that F (t; �) is
L?-Lipschitz continuous with respect to �. This completes the proof of Theorem 11.

Appendix C. Additional experiments

In this section, we provide some additional simulation results for ridge regression. In par-
ticular, we compare the proposed methods based on Newton and gradient descent updates
against glmnet in terms of both runtime and approximation error, under the setting of
ridge regression. In our simulation, the data f(Xi; Yi)gni=1 are generated from the usual
linear regression model Yi = X>i �

? + ~�, where ~� � N(0; �2), �? = (1=
p
p; : : : ; 1=

p
p)>, and

X1; : : : ; Xn are IID samples from Np(0; Ip�p). We consider two di�erent scenarios with
�2 = 1=4 and �2 = 4. Moreover, for each scenario, we consider three di�erent problem
dimensions: (n; p) = (1000; 500), (n; p) = (1000; 1000), and (n; p) = (1000; 2000).

Again, we use the global approximation error sup0�t�tmax
fft(~�(t))� ft(�(t))g to assess

the accuracy for the approximate solution path ~�(t), where ~�(t) is the linear interpolation
of the iterates �k generated by each method. Moreover, we sample N points s1; : : : ; sN
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uniformly from (0; tmax) and use max1�i�Nffsi(~�(si))� fsi(�(si))g as an approximation of
sup0�t�tmax

fft(~�(t))� ft(�(t))g. Here �(si) is the exact solution at si and can be computed
explicitly. In our simulations, we use N = 100 and tmax = 10.

Figure 7 plots runtime versus approximation error based on 100 simulations. Similar to
Figure 3, we can see from Figure 7 that in all scenarios the proposed Newton method runs
the fastest when the required accuracy is high (small suboptimality). Moreover, glmnet
is no better than Newton method for smaller problems (p = 500 and 1000); while glmnet
outperforms both Newton method and the gradient method when low accuracy solution
is su�cient and problem dimension is large (p = 2000). Lastly, in all cases the gradient
method runs faster than Newton method when the desired accuracy is low.

58



A n a l g o ri t h mi c vi e w o f 2 r e g u l a ri z a ti o n a n d s o m e p a t h- f o l l o wi n g a l g o ri t h m s

− 7. 5

− 5. 0

− 2. 5

0. 0 1 0. 1 0 1. 0 0 1 0. 0 0
R u nti m e (i n s e c o n d s)

S
u
b
o
pti

m
ali

ty

gl m n et

Gr a di e nt d e s c e nt

N e wt o n

p = 5 0 0, σ 2 = 0. 2 5

− 1 0. 0

− 7. 5

− 5. 0

− 2. 5

0. 0

0. 0 1 0. 1 0 1. 0 0 1 0. 0 0
R u nti m e (i n s e c o n d s)

S
u
b
o
pti

m
ali

ty

gl m n et

Gr a di e nt d e s c e nt

N e wt o n

p = 5 0 0, σ 2 = 4

− 7. 5

− 5. 0

− 2. 5

0. 1 0 1. 0 0 1 0. 0 0 1 0 0. 0 0 1 0 0 0. 0 0
R u nti m e (i n s e c o n d s)

S
u
b
o
pti

m
ali

ty

gl m n et

Gr a di e nt d e s c e nt

N e wt o n

p = 1 0 0 0, σ 2 = 0. 2 5

− 6

− 4

− 2

0

0. 1 0 1. 0 0 1 0. 0 0 1 0 0. 0 0 1 0 0 0. 0 0
R u nti m e (i n s e c o n d s)

S
u
b
o
pti

m
ali

ty

gl m n et

Gr a di e nt d e s c e nt

N e wt o n

p = 1 0 0 0, σ 2 = 4

− 1 0. 0

− 7. 5

− 5. 0

− 2. 5

1. 0 0 1 0. 0 0 1 0 0. 0 0
R u nti m e (i n s e c o n d s)

S
u
b
o
pti

m
ali

ty

gl m n et

Gr a di e nt d e s c e nt

N e wt o n

p = 2 0 0 0, σ 2 = 0. 2 5

− 7. 5

− 5. 0

− 2. 5

0. 0

1. 0 0 1 0. 0 0 1 0 0. 0 0
R u nti m e (i n s e c o n d s)

S
u
b
o
pti

m
ali

ty

gl m n et

Gr a di e nt d e s c e nt

N e wt o n

p = 2 0 0 0, σ 2 = 4

Fi g ur e 7: R u nti m e v. s. s u b o pti m alit y f or t h e pr o p o s e d N e wt o n m et h o d, gr a di e nt d e s c e nt
m et h o d, a n d gl m n et u n d er si x di ff er e nt s c e n ari o s, w h e n a p pli e d t o ri d g e r e gr e s si o n.

5 9



Zhu and Liu

References

Alnur Ali, J Zico Kolter, and Ryan J Tibshirani. A continuous-time view of early stopping
for least squares. In International Conference on Arti�cial Intelligence and Statistics,
volume 22, 2019.

Taylor B. Arnold and Ryan J. Tibshirani. E�cient implementations of the generalized
lasso dual path algorithm. Journal of Computational and Graphical Statistics, 25(1):
1{27, 2016. doi: 10.1080/10618600.2015.1008638.

Francis Bach et al. Self-concordant analysis for logistic regression. Electronic Journal of
Statistics, 4:384{414, 2010.

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press,
2004.

John Charles Butcher. Numerical methods for ordinary di�erential equations. John Wiley
& Sons, 2016.

Andrew R Conn, Nicholas IM Gould, and Ph L Toint. Trust region methods, volume 1.
Siam, 2000.

Edgar Dobriban and Stefan Wager. High-dimensional asymptotics of prediction: Ridge
regression and classi�cation. Ann. Statist., 46(1):247{279, 02 2018. doi: 10.1214/
17-AOS1549.

Dirk Eddelbuettel. Seamless R and C++ integration with Rcpp. Springer, 2013.

Dirk Eddelbuettel, Romain Fran�cois, J Allaire, Kevin Ushey, Qiang Kou, N Russel, John
Chambers, and D Bates. Rcpp: Seamless r and c++ integration. Journal of Statistical
Software, 40(8):1{18, 2011.

B. Efron, T. Hastie, I. Johnstone, and R. Tishirani. Least angle regression. The Annals of
Statistics, 32(2):407 { 499, 2004.

Henry E Fleming. Equivalence of regularization and truncated iteration in the solution of ill-
posed image reconstruction problems. Linear Algebra and its applications, 130:133{150,
1990.

Ildiko E. Frank and Jerome H. Friedman. A statistical view of some chemometrics regression
tools. Technometrics, 35(2):109{135, 1993. ISSN 00401706.

Jerome Friedman and Bogdan Popescu. Gradient directed regularization for linear regres-
sion and classi�ocation. Technical Report, March 2004.

Jerome Friedman, Trevor Hastie, Holger Ho
ing, and Robert Tibshirani. Pathwise coordi-
nate optimization. The Annals of Applied Statistics, 1(2):302{332, 2007.

Jerome Friedman, Trevor Hastie, and Rob Tibshirani. Regularization paths for generalized
linear models via coordinate descent. Journal of statistical software, 33(1):1, 2010.

60



An algorithmic view of `2 regularization and some path-following algorithms

Charles J. Geyer. Likelihood inference in exponential families and directions of recession.
Electron. J. Statist., 3:259{289, 2009. doi: 10.1214/08-EJS349.

Michael Grant and Stephen Boyd. Cvx: Matlab software for disciplined convex program-
ming, version 2.1, 2014.

Michael C Grant and Stephen P Boyd. Graph implementations for nonsmooth convex
programs. In Recent advances in learning and control, pages 95{110. Springer, 2008.

Suriya Gunasekar, Blake E Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur, and
Nati Srebro. Implicit regularization in matrix factorization. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances
in Neural Information Processing Systems 30, pages 6151{6159. Curran Associates, Inc.,
2017.

Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan Srebro. Characterizing implicit
bias in terms of optimization geometry. In Jennifer Dy and Andreas Krause, editors,
Proceedings of the 35th International Conference on Machine Learning, volume 80 of
Proceedings of Machine Learning Research, pages 1832{1841, Stockholmsm�assan, Stock-
holm Sweden, 10{15 Jul 2018. PMLR.

Ernst Hairer, Syvert P N�rsett, and Gerhard Wanner. Solving ordinary di�erential equations
I: nonsti� problems, volume 8. Springer Science & Business Media, 2008.

T. Hastie, S. Rosset, R. Tishirani, and J. Zhu. The entire regularization path for the support
vector machine. Journal of Machine Learning Research, 5:1391 { 1415, 2004.

Trevor Hastie, Jonathan Taylor, Robert Tibshirani, Guenther Walther, et al. Forward
stagewise regression and the monotone lasso. Electronic Journal of Statistics, 1:1{29,
2007.

Holger Hoe
ing. A path algorithm for the fused lasso signal approximator. Journal of
Computational and Graphical Statistics, 19(4):984{1006, 2010. doi: 10.1198/jcgs.2010.
09208.

Arthur E Hoerl and Robert W Kennard. Ridge regression: Biased estimation for nonorthog-
onal problems. Technometrics, 12(1):55{67, 1970.

K. Levenberg. A method for the solution of certain non-linear problems in least squares.
Quarterly of Applied Mathematics, pages 164{168, 1944.

Robert M. Freund, Paul Grigas, and Rahul Mazumder. A new perspective on boosting in
linear regression via subgradient optimization and relatives. Ann. Statist., 45(6):2328{
2364, 2017. doi: 10.1214/16-AOS1505.

Yu. Nesterov. Introductory Lectures on Convex Programming Volume I: Basic course. 1998.

Yu. E. Nesterov and A. S. Nemirovskii. Interior Point Polynomial Methods in Convex
Programming: Theory and Algorithms. SIAM Publications, 1993.

61



Zhu and Liu

Gergely Neu and Lorenzo Rosasco. Iterate averaging as regularization for stochastic gradient
descent. In COLT, 2018.

MR Osborne. An e�ective method for computing regression quantiles. IMA Journal of
Numerical Analysis, 12:151 { 166, 1992.

MR Osborne, B Presnell, and BA Turlach. A new approach to variable selection in least
squares problems. IMA Journal of Numerical Analysis, 20(3):389 { 403, 2000.

Garvesh Raskutti, Martin J Wainwright, and Bin Yu. Early stopping and non-parametric
regression: an optimal data-dependent stopping rule. The Journal of Machine Learning
Research, 15(1):335{366, 2014.

Saharon Rosset. Following curved regularized optimization solution paths. Advances in
Neural Information Processing Systems, 17:1153{1160, 2004.

Saharon Rosset and Ji Zhu. Piecewise linear regularized solution paths. Ann. Statist., 35
(3):1012{1030, 2007. doi: 10.1214/009053606000001370.

Daniel Soudry, Elad Ho�er, and Nathan Srebro. The implicit bias of gradient descent on
separable data. arXiv preprint arXiv:1710.10345, 2017.

Arun Suggala, Adarsh Prasad, and Pradeep K Ravikumar. Connecting optimization and
regularization paths. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems
31, pages 10631{10641. Curran Associates, Inc., 2018.

Tianxiao Sun and Quoc Tran-Dinh. Generalized self-concordant functions: a recipe for
newton-type methods. Mathematical Programming, pages 1{69, 2017.

A. N. Tikhonov and V. Y. Arsenin. Solutions of ill-Posed Problems. Wiley, New York,
1977.

S. Wold, A. Ruhe, H. Wold, and W. J. Dunn, III. The collinearity problem in linear
regression. the partial least squares (pls) approach to generalized inverses. SIAM J. Sci.
Stat. Comput., 5(3):735{743, September 1984. ISSN 0196-5204. doi: 10.1137/0905052.

Yichao Wu. An ordinary di�erential equation based solution path algorithm. Journal of
Nonparametric Statistics, 23(1):185{199, 2011.

Yuan Yao, Lorenzo Rosasco, and Andrea Caponnetto. On early stopping in gradient
descent learning. Constructive Approximation, 26(2):289{315, 2007. doi: 10.1007/
s00365-006-0663-2.

Hua Zhou and Yichao Wu. A generic path algorithm for regularized statistical estimation.
Journal of the American Statistical Association, 109:686{699, 2014.

62


	Introduction
	Properties of the solution path
	Approximation of the solution path
	Approximate solution path through linear interpolation
	Path following algorithm: Newton
	Path following algorithm: gradient descent
	Numerical ODE methods
	Discussion and connections

	Solution path approximation-error bounds
	Newton method
	Gradient descent method

	Numerical studies
	Discussion
	Proofs of main results
	Approximation-error bounds for the ODE methods
	Additional experiments

