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Figure 1: Suboptimalities supyc,<;0{f:(0(t)) — f:(6(t))} (in log scale) of the approximate so-
lution paths generated by the proposed Newton method (Newton), the second-order Runge-
Kutta method (Runge-Kutta), the Euler method (Euler), and the method of Rosset (2004)
(Rosset) for £3-regularized logistic regression when the data is nonseparable.

suboptimality is small. This could be partially explained by the fact that the coordinate
descent algorithms can usually be viewed as a type of methods that is between “first-order”
and “second-order” method.

In summary, in terms of approximation error and computational efficiency, the Newton
method and the second-order Runge-Kutta method both work quite well when the problem
dimension is not too large or the desired suboptimality is small. For large-scale problems,
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Figure 2: Suboptimalities supyc,<;0{f:(0(t)) — f:(6(t))} (in log scale) of the approximate so-
lution paths generated by the proposed Newton method (Newton), the second-order Runge-
Kutta method (Runge-Kutta), the Euler method (Euler), and the method of Rosset (2004)
(Rosset) for £3-regularized logistic regression when the data is separable.

however, gradient descent method and glmnet seem to be more scalable, although glmnet
produces solution paths with better suboptimality.

Lastly, we investigate how the initial step size of various solution path algorithms would
affect their statistical performances. As we have argued before, the initial step size deter-
mines the approximation error. To assess the accuracy of the approximation to the true
statistical risk, we consider a generative model for logistic regression. Specifically, we first
generate the predictors X,..., X, € RP from normal distribution Ny(0, I}x,). Given pre-
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Figure 4: Approximate risk curve 10g10(R(§(t),9)) of the proposed algorithms applied to
f5-regularized logistic regression when problem dimension is (n,p) = (500, 100). The CVX
(orange) curve denotes the true risk curve log,,(R(6(t),6)) with #(t) computed using the
CVX solver. For algorithms with constant step size (Euler and Runge-Kutta), o denotes
the step size; while @ denotes the initial step size for Newton and gradient descent method.

Note that the statistical risk for the exact solution path 6(t) is R(é(t),8), which we refer
to as the true risk curve (as a function of ¢). Here, we calculate the exact solution path
6(t) using CVX (Grant and Boyd, 2014, 2008). Again, the goal is to see the impact of the
initial step size on how close the approximate risk curve R(6(t),0) is to the true risk curve

R(O(t),0).

Figures 46 plot the approximate risk curve R(ﬁu’(t), ) against the true risk curve (on
a log scale) by varying the initial step sizes for the proposed methods. Note that under
all scenarios, when the initial step size is 0.1 (i.e., a; = 0.1), the approximate risk curves
approximate the true risk curve quite well for all four methods. This seems to suggest that
good approximation error leads to good approximation of the risk curve. As the initial step
size increases, interestingly, we observe that Runge-Kutta continues to provide reasonable
good results, suggesting that they are more tolerant of a large initial step size (see the
results when aj = 2 for Runge-Kutta methods on Figures 4-6). On the other hand, the
Newton method and the gradient descent method requires the initial step sizes to be much
smaller to obtain reasonable risk curve approximation. That says, this does not necessarily
imply that the Newton method is less efficient than the ODE-based methods, because the

25



ZHU AND LIu

Euler Runge—Kutta
02 02
CVxX CVxX
-p=01 =01
0.0- 0.0-
__3_5 ag=2 _3_5 k=2
o o
8 8
_g -0.2 _g -0.2
o o
-0.4 -0.4
0.0 25 50 75 10.0 0.0 25 50 75 10.0
t t
Newton Gradient descent
0.2- 0.2-
VX VX
=3=01 =4=01
0.0- 0.0-
2 -=05 4 -=05
o o
o o
8 8
B-02 B-02
-0.4 -0.4
00 255 50 75 10.0 00 255 50 75 10.0

t t

Figure 5: Approximate risk curve 10g10(R(§(t),9)) of the proposed algorithms applied to
f5-regularized logistic regression when problem dimension is (n,p) = (500, 500). The CVX
(orange) curve denotes the true risk curve log,,(R(6(t),6)) with #(t) computed using the
CVX solver. For algorithms with constant step size (Euler and Runge-Kutta), o denotes
the step size; while @ denotes the initial step size for Newton and gradient descent method.

Newton method will adaptively increase step sizes while the ODE-based methods always
fix their step sizes.

6. Discussion

In this article, we established a formal connection between f>-regularized solution path and
the solution of an ODE. This connection provides an interesting algorithmic view of £5 regu-
larization. In particular, the solution path turns out to be similar to the iterates of a hybrid
algorithm that combines the gradient descent update and the Newton update. Moreover, we
proposed various new path-following algorithms to approximate the f£s-regularized solution
path. Global approximation-error bounds for these methods are also derived, which in turn
suggest some interesting schemes for choosing the grid points. Computational complexities
are also derived using the proposed grid point schemes.

One important aspect we did not touch on is the statistical properties of fs-regularized
solution path, which has been studied extensively in the literature (see, e.g., Dobriban and
Wager, 2018, and references therein). Interestingly, Ali et al. (2019), in the context of least
squares regression, connects the statistical properties of gradient descent iterates to that
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Figure 6: Approximate risk curve 10g10(R(§(t),9)) of the proposed algorithms applied to
f5-regularized logistic regression when problem dimension is (n, p) = (500, 1000). The CVX
(orange) curve denotes the true risk curve log,,(R(6(t),6)) with #(t) computed using the
CVX solver. For algorithms with constant step size (Euler and Runge-Kutta), o denotes
the step size; while @ denotes the initial step size for Newton and gradient descent method.

of ridge regression solution path. In particular, they show that the statistical risk of the
gradient descent path is no more than 1.69 times that of ridge regression, along the entire
path. Motivated by our proposed homotopy method based on damped gradient descent
updates (9), it would be interesting to investigate whether a damped version of gradient
descent algorithm would enjoy a more favorable statistical risk compared to regular gradient
descent. Further investigation is necessary.
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Figure 7: Runtime v.s. suboptimality for the proposed Newton method, gradient descent
method, and glmnet under six different scenarios, when applied to ridge regression.
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