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ABSTRACT. We show that the cohomology ring of a finite-dimensional complex pointed
Hopf algebra with an abelian group of group-like elements is finitely generated. Our
strategy has three major steps. We first reduce the problem to the finite generation
of cohomology of finite dimensional Nichols algebras of diagonal type. For the Nichols
algebras we do a detailed analysis of cohomology via the Anick resolution reducing the
problem further to specific combinatorial properties. Finally, to check these properties
we turn to the classification of Nichols algebras of diagonal type due to Heckenberger.
In this paper we complete the verification of these combinatorial properties for major
parametric families, including Nichols algebras of Cartan and super types and develop
all the theoretical foundations necessary for the case-by-case analysis. The remaining
discrete families are addressed in a separate publication. As an application of the main
theorem we deduce finite generation of cohomology for other classes of finite-dimensional
Hopf algebras, including basic Hopf algebras with abelian groups of characters and finite
quotients of quantum groups at roots of one.

Date: October 14, 2020.
MSC 2020: 16E40;16T20.

N OO U W W W

© 00~~~

10

12
12



2 N. ANDRUSKIEWITSCH, I. ANGIONO, J. PEVTSOVA, S. WITHERSPOON

3.2. Subalgebras, extensions 15
3.3. Evens Lemma 16
3.4. The May spectral sequence 16
4. The Anick resolution 18
4.1. The setup 18
4.2. Application to Nichols algebras 22
4.3. Quantum linear spaces 23
4.4. Cohomology of graded algebras with convex PBW basis 25
5. Cohomology of the Drinfeld double 26
Part II. Permanent cocycles for Nichols algebras of diagonal type 30
6. The strategy 30
6.1. The setup 30
6.2. Degree 2 cocycles 32
6.3. Higher degree cocycles 35
6.4. Summary of the algorithm 39
7. Classical types 40
7.1. Types Ag and A(j|l0—j),0>1,5 EHU’#J 40
7.2. Types By and B(j|0 —j), 0 > 1, j € Ip_ 44
7.3. Type By ; standard, j € Iy_; 47
7.4. Type Cy 47
7.5. Type Dy 49
7.6. Type D(jl0—j),0>1,5€ly 51
8. Exceptional types 54
8.1. Type Ey 54
8.2. Type Fy 55
8.3. Type G5 Cartan 58
8.4. Type G4 standard 60
8.5. Type D(2,1;a) 61
8.6. Type F(4) 62
8.7. Type G(3) 68
9. Parametric modular types 73
9.1. Modular type wk(4) 73
9.2. Modular type br(2) 76
10. Proofs of the Computational Lemmas 77
10.1. 77

References 116



COHOMOLOGY RINGS OF FINITE-DIMENSIONAL HOPF ALGEBRAS 3

1. INTRODUCTION

1.1. Antecedents. A fundamental result in representation theory of a finite group scheme
[F'S, Theorem 1.1] is that its cohomology satisfies the finite generation property. Using
the language of Hopf algebras it can be phrased as follows. Let H be a finite-dimensional
cocommutative Hopf algebra over a field k. Then

(fgc-a) The cohomology ring H(H, k) is finitely generated.
(fge-b) For any finitely generated H-module M, H(H, M) is a finitely generated module
over H(H, k).

Prior to the Friedlander-Suslin theorem, the result was known for group algebras of
finite groups [G, V, Ev]|, restricted enveloping algebras [FP, AJ] and finite dimensional
subalgebras of the Steenrod algebra [Wi]. At the end of the introduction of [FS], the
authors observe that the cohomology ring of a finite-dimensional commutative Hopf algebra
is easily seen to be finitely generated using the structure as in [Wa| and add:

We do not know whether it is reasonable to expect finite generation of the
cohomology of an arbitrary finite-dimensional Hopf algebra.

Slowly, evidence confirming that this is indeed a reasonable question has emerged. In
[GK] the cohomology ring of Lusztig’s small quantum groups u,(g) (in characteristic 0)
under some restrictions on the parameters was identified as the coordinate ring of the
nilpotent cone of the Lie algebra g. The restrictions on the parameters were weakened in
[BNPP]. The finite generation of cohomology was established for the duals of Lusztig’s
small quantum groups (in characteristic 0) [Go], for Lusztig’s small quantum groups in
positive characteristic [Drul], for finite supergroup schemes [Dru2], for finite-dimensional
complex pointed Hopf algebras whose group of grouplike elements is abelian and has order
coprime to 210 [MPSW], for some pointed Hopf algebras of dimension p?> [NWW, EOW]
(in characteristic p > 0), for the bosonizations of the Fomin-Kirillov algebra FK3 with
the group algebra of Sz and its dual [SV], for Drinfeld doubles of some infinitesimal group
schemes [FN]. In all the cases above, the approach is based to a greater or lesser extent
on the knowledge of the structure of the Hopf algebras under consideration.

Finite tensor categories were introduced in [EO], where it was also conjectured that
finite generation holds in this more general context. A systematic study of this question
was started in [NP].

1.2. The main result and applications. In the present paper we work over an alge-
braically closed field k of characteristic 0. For brevity we shall say that an augmented
algebra H has finitely generated cohomology (abbreviated as fgc) when both (fge-a) and
(fge-b) hold. Our main result is the following:

Theorem 1.2.1. Let H be a finite-dimensional pointed Hopf algebra whose group of group-
like elements is abelian. Then H has finitely generated cohomology.

The class of finite-dimensional pointed Hopf algebras is the best understood and the
subclass of those with abelian group of group-like elements is the only one whose classifica-
tion is essentially complete. Theorem 1.2.1 goes beyond the situation treated in [MPSW]
but uses the same approach to the classification of pointed Hopf algebras proposed in
[AS1, AS2]. Let us mention the main differences between the setting of [MPSW], that
invoked the classification result [AS3], and the present work. In the former, the associated
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braided vector space V' (described below) was of Cartan type and the deformations of the
defining relations in the liftings took values in the group algebras. These restrictions, in
the terminology introduced in [NPe], guaranteed that the Nichols algebra Z(V) had a
smooth integration @ — (V') by an algebra of finite global dimension. That property,
though not stated as explicitly, was crucial for the techniques in [MPSW]. When the re-
striction on the order of the group of group-like elements G(H) is dropped, V' belongs to
the list in the celebrated classification of [H2] but is not necessarily of Cartan type. The
defining relations of the Nichols algebras and their deformations are more involved, see
[Anl, An2, AAG, AnG, GalJ, He] and conceptually different resulting in the absence of the
crucial smooth integration property. In particular, as our results demonstrate, generating
classes of the cohomology ring of a general Nichols of diagonal type can lie in arbitrary
large degrees - though we do have control over these degrees - whereas in the context of
[MPSW] and whenever the algebra is smoothly integrable, generating classes lie in degree
2. Hence, handling this more general case of all Nichols algebras of diagonal type calls for
development of new techniques which we present in this work.

We state two direct applications of Theorem 1.2.1 extending further the number of types
of finite-dimensional Hopf algebras with finitely generated cohomology. We also observe
that Theorem 3.1.7 provides another class of Hopf algebras satisfying fgc.

Theorem 1.2.2. Let H be a finite-dimensional basic Hopf algebra whose group of char-
acters is abelian. Then H has finitely generated cohomology.

Basic Hopf algebras with abelian group of characters are just the duals of the Hopf
algebras in Theorem 1.2.1; thus Theorem 1.2.2, that generalizes [Go], follows from Theorem
1.2.1, Lemma 2.1.1, Corollary 3.2.3 and Theorem 5.0.6.

Theorem 1.2.3. Let H be a finite-dimensional Hopf algebra that fits into an extension
k - K — H — L — Kk, where K is semisimple and L is either pointed with abelian group
of group-like elements or else basic with abelian group of characters. Then H has fgc.

Theorem 1.2.3 follows from Lemma 3.2.5 and one of the previous two theorems. Quo-
tients of algebras of functions on quantum groups at roots of one (of various kinds) were
classified in [AG, Ga, GaG]. In particular, these results provide families of Hopf algebras
H that fit into an extension k — kl¢! - H — L — k where G is a finite group and L
is a finite-dimensional basic Hopf algebra with abelian group of characters; thus Theorem
1.2.3 applies to them.

1.3. Scheme of the proof of Theorem 1.2.1. Let H be a finite-dimensional pointed
Hopf algebra with abelian group of group-like elements I' := G(H) so that the coradical
of H is Hy ~ kI'. Let D(H) be the the Drinfeld double of H, let gr H be the graded
Hopf algebra associated to the coradical filtration and let V' be the infinitesimal braiding
of H, see §2.2. We know that gr H ~ A(V)#kI' [An2]. Then the Nichols algebra Z(V)
is finite-dimensional. We shall use V# = Homy(V, k) to denote the k-linear dual. The key
point in the proof of Theorem 1.2.1 is the following.

Theorem 1.3.1. Let U be a braided vector space of diagonal type such that the Nichols
algebra B(U) has finite dimension. Then HB(U) has fgc.



COHOMOLOGY RINGS OF FINITE-DIMENSIONAL HOPF ALGEBRAS 5

This Theorem being proved, the rest of the proof proceeds in the following steps:

Theorem 1.3.1 =——= %(V), B(V#) have fac Jheorem 3.1.6,. gr H, (gr H)” have fgc

Theorem 5.0.6

Theorem 3.2.1 D(gr H) has fgc

Theorem 2.2.4

H has fgc D(H) has fgc
Remark 1.3.2. Let H be a finite-dimensional Hopf algebra whose coradical Hy is a Hopf
subalgebra, beyond the setting of Theorem 1.2.1, for instance H pointed but with non-
abelian group of group-like elements G(H). Let V be the infinitesimal braiding of H.
Then gr H ~ R#H, where R is a connected graded Hopf algebra in ggyp and B(V) is
a graded Hopf subalgebra of R. To prove that H has fgc following the scheme above we
would need to address these problems:

(i) Prove that (V) and Z(V#) have fgc.

(ii)) Is R = A(V)? (in all known examples in characteristic 0 the answer is positive). If
not, prove that R and R* have fgc.

(iii) Prove Lemma 3.1.4 for any semisimple Hopf algebra (and not just for group algebras
and their duals). Together with (ii) this would give that gr H, (gr H)* have fgc.

(iv) Extend Theorem 5.0.6 to prove that D(gr H) has fgc. Even in the pointed case, we
would need Lemma 3.1.4 for D(kG(H)) to prove this conjectural extension.

(v) Is H a cocycle deformation of gr H or at least Morita equivalent to gr H as in §2.17
(in all known examples in characteristic 0 the answer is positive). This would imply
that D(H), and a fortiori H, have fgc since Theorem 3.2.1 holds in general.

We also notice that a large part of this approach could be used in positive characteristic
under approppriate assumptions, e.g. the coradical Hy needs to be a semisimple Hopf
subalgebra.

1.4. Finite-generation of cohomology for Nichols algebras. We next outline the
proof of Theorem 1.3.1 referring to §2.3 for unexplained terminology.

1.4.1. Reduction to the connected case. By Theorem 5.0.1, we conclude that Theorem 1.3.1
holds for U if and only if it holds for U; for every connected component J € X.
We assume for the rest of this Subsection that the Dynkin diagram of U is connected.

1.4.2. The Anick resolution. The Nichols algebra Z(U) has a convex PBW-basis, hence
a suitable filtration. Its associated graded ring gr #(U) is a quantum linear space. The
cohomology ring of gr #(U) is well-known, but we provide a computation using the Anick
resolution [Ani| specifically in order to relate it to permanent cycles in a suitable spectral
sequence. See §4.3.

Since the Anick resolution is compatible with the mentioned filtration on Z(U), we
may use a spectral sequence argument based on Evens Lemma 3.3.2 to reduce the finite
generation of H(Z(U),k) to the verification of the following statement.

Condition 1.4.1. For every positive root v € AJUF, there exists L, € N such that the

cochain (X{’) is a cocycle in the Anick resolution, that is, represents an element in

H(B(U),k).
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If Condition 1.4.1 holds, then Theorem 4.4.3 implies that Z(U) has fgc.

1.4.3. Reduction to Weyl-equivalence. In practice, given U we shall prove that Condition
1.4.1 holds for any braided vector space with the same Dynkin diagram as U, particularly
for U#. Let G be any finite abelian group such that U is realized in ]ﬁ;gyl?. By Theorem
3.1.6 and Theorem 5.0.6 we see that D(A(U)#kG) has fgc.

We apply this last claim as follows: let U’ be a braided vector space of diagonal type
which is Weyl-equivalent to U. This implies that U’ is realized as Yetter-Drinfeld module
over G and there is an algebra isomorphism

D(B(U)#kG) ~ D(B(U"#kG).
By Corollary 3.2.2 #(U’) has fgc.

1.4.4. Verification of Condition 1.4.1. We argue case-by-case using the list of [H2]; by the
preceding discussion we just need to consider one representative in each Weyl-equivalence
class—and we could choose the most convenient for our purpose. We also argue recursively
on dimU. All in all, we reduce the verification to claims on Nichols algebras of diagonal
type, see §6.2 and we deal with them using information on the PBW-basis from [AA].

1.5. Organization of the paper. Part I starts with a recollection of facts on Hopf and
Nichols algebras in Section 2. Section 3 contains several preliminary results on cohomology
including the passage from the cohomology of (V) to the cohomology of Z(V)#kI' and
versions of the Evens Lemma and the May spectral sequence crucial for our arguments.
Section 4 presents the Anick resolution and the reduction to Condition 1.4.1. In the last
Section 5 of this Part it is shown that the Drinfeld double of Z(V)#kI" has fgc provided
that 2 (V') has via considerations of cohomology for twisted tensor products.

Parts 11 is devoted to the proof of Condition 1.4.1. Section 6 presents the strategy of the
verification with proofs of technical Lemmas postponed to Section 10. We verify Condition
1.4.1 for finite-dimensional Nichols algebras of diagonal type belonging to families with
continuous parameter. We proceed case by case in Sections 7, 8 and 9 corresponding
respectively to classical (Cartan, standard and super) types, exceptional (Cartan, standard
and super) types, and Nichols algebras with the same root systems as the modular Lie
algebras wk(4) and br(2). The remaining Nichols algebras of diagonal type are dealt with
in a separate publication [AAPPW] of more computational nature.

1.6. Conventions. For ¢ < 6 € Ny, we set Ijg = {¢,£+1,...,0}, I =1, 4. Let Gy be
the group of roots of unity of order N in k and G’y the subset of primitive roots of order

N; Goo = Uyen Gy and Gy, = Goo — {1}. If L € N and g € k¥, then (L), := >575 ¢/.
All vector spaces, algebras and tensor products are over k. We use V# to denote the
linear dual to a vector space V, V# = Homg(V, k).
By abuse of notation, (a; : i € I) denotes either the group, the subgroup or the vector
subspace generated by all a; for ¢ in an indexing set I, the meaning being clear from the
context. Instead, the subalgebra generated by all a; for i € I is denoted by k(a; : i € I).

If A is an associative augmented algebra and M is an A-module, then we set

H™(A, M) = Ext"(k, M), H(A, M) = ®pen, H(A, M).
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In particular H"(4,k) = Ext} (k, k) ~ Ext’jo 400 (4, k). Thus H(A, k) = ®pen, H" (4, k) is
isomorphic to the Hochschild cohomology HH(A, k) = ©pen, Ext’ig 400 (4, k).

Let P.(A) be the normalized bar resolution of k in the category of left A-modules and
let ©*(A) = Homa(P.(A),k), in particular Q"(A) = Homy (A", k).
Let I' = Hom,y, (I', k™) be the character group of an abelian group I'.
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Part I. From cohomology of Nichols algebras to cohomology of Hopf algebras
2. FINITE-DIMENSIONAL HOPF ALGEBRAS

2.1. Morita equivalence of Hopf algebras. In this subsection, no restrictions on the
the field k are needed. Let H be a finite-dimensional Hopf algebra. We refer to [R] for
the definitions of the Drinfeld double D(H) of H and of the (braided tensor) category
ZyD of Yetter-Drinfeld modules over H. It is well-known that ZyD is the Drinfeld center
of the category of H-modules and that it is braided tensor equivalent to the category of
D(H)-modules.

Let H' be another finite-dimensional Hopf algebra. Borrowing terminology from [Mu,
ENO], we say that H and H' are Morita equivalent, denoted H ~\jor H', if there is an
isomorphism of quasitriangular Hopf algebras D(H) ~ D(H’). This is not the same as
Morita equivalent as algebras!

Lemma 2.1.1. H is Morita equivalent to H' in the following cases:

(a) H' ~ H¥, the dual Hopf algebra.

(b) H' ~ HY is a twist of H [Dr, Re], i.e. there exists F € H ® H invertible such that
HY = H as algebra and has the comultiplication A¥ = FAF~L,

(¢c) H ~ H, is a cocycle deformation of H [DoT], i.e. there exists an invertible 2-cocycle
oc:H®H — k such that H, = H as coalgebra and has the multiplication x -5 y =

o(z) @ Y1) T2y H(zE) @ ysE))-
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Proof. (a) is folklore; (b) follows since the categories of H and H'-modules are tensor
equivalent [Dr, p. 1422]. Finally (c) is a consequence of the preceding, as (H,)# ~ (H#)F
where F = ¢ in H* @ H?. O

2.2. The role of Nichols algebras. The notion of a Nichols algebra originated in inde-
pendent work of Nichols and Woronowicz. Here we give a brief account of its importance
in the structure of finite-dimensional Hopf algebras and refer to the surveys [AS2, A] for
the precise definitions and details. Recall that k is algebraically closed of characteristic 0.

The classification of finite-dimensional Hopf algebras can be organized in four classes.
Let H be a Hopf algebra, Hy its coradical [R] and Hjg) = k(Ho) its Hopf coradical, a Hopf
subalgebra of H [AC]. The classes are:

(a) H = Hy, i.e. H is cosemisimple. (c) H # Hy = Ho.
(b) H = Hyg) # Ho. (d) H # Hyy # Ho.

Hopf algebras in class (a) are semisimple by a theorem of Larson and Radford. Albeit
families of examples and some classification results in low dimension are known, no sys-
tematic approach to the classification is available. Similarly for class (b). Nichols algebras
are relevant to the study of classes (c) and (d).

Let H be in class (c) i.e. Hy is a proper Hopf subalgebra. Let gr H be the graded Hopf
algebra associated to the coradical filtration of H; then

(2.2.1) gr H ~ R#H,

where R = ®pen, R" is a connected graded Hopf algebra in the braided monoidal category
ggyp, called the diagram of H. We also say that H is a lifting of R, or of R#Hy. Then
R is coradically graded, hence its subalgebra generated by V := R! is isomorphic to the

Nichols algebra Z(V); see [AS2] for details. The braided vector space V' is an important
invariant of H called its infinitesimal braiding. It is expected that

(2.2.2) R~ B(V),
(2.2.3) Jo:gr H ® gr H — k such that (gr H), ~ H.

Assume that (2.2.2) and (2.2.3) hold. By (a conjectural generalization of) Theorem
3.1.7 and Corollary 3.2.3, we see that the core of the question is to verify fgc for B(V)
and for the Drinfeld double D(gr H).

Assume that Hy is a group algebra kI', in which case H is called pointed, with I" abelian
(then V' is of diagonal type). Then (2.2.2) holds by [An2, Theorem 2], see also [AS3,
Theorem 5.5]; notice that the proof uses the classification in [H2] and the main result
on convex orders from [Anl|. Moreover (2.2.3) also holds [AnG, Theorem 1.1], based on
previous studies of the lifting question and the explicit relations from [An2, Theorem 3.1],
that again uses [H2, Anl]. Summarizing,

Theorem 2.2.4. Let H be a finite-dimensional pointed Hopf algebra such that G(H) is
abelian. Then H is a cocycle deformation of the bosonization of a Nichols algebra of
diagonal type: H ~ (B(V)#kG(H)),. Hence H ~ o gr H. d

We also point out that (2.2.2) and (2.2.3) have been verified in most known examples
in class (c) beyond pointed Hopf algebras with abelian group of group-like elements.
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Finally, let H be in class (d). Then one considers the graded Hopf algebra gr H associ-
ated to the standard filtration of H [AC]; again

(2.2.5) ng ~ R#H[O]
where R = @,en,R" is a connected graded Hopf algebra in the braided monoidal category

H
Hg YD. But it is not known whether R is coradically graded, or its subalgebra R’ generated

by V := R! is isomorphic to the Nichols algebra %(V). Nevertheless (V) is a quotient
of R/ but the present approach does not allow to reduce the question of finitely generated
cohomology for H to the analogous question for Z(V).

2.3. Nichols algebras of diagonal type. Since finite-dimensional Nichols algebras of
diagonal type are central in this paper, we present here the features more relevant for
our goals and refer to [AA] for an exposition. The input is a matrix of non-zero scalars
q = (¢ij)ijer where I = Iy, # € N. To this datum we attach a braided vector space of
diagonal type V with a basis (z;);er and braiding ¢ € GL(V ® V') given by

Cq(ﬂfi X Ij) = qijT; Q T4, 1,7 € L.
The corresponding Nichols algebra is a graded connected algebra with strong properties

denoted here mostly as %, instead of Z(V'). For these Nichols algebras substantial infor-
mation is available.

2.3.1. Dynkin diagrams and positive roots. We codify as usual the matrix q in a (gener-
alized) Dynkin diagram D with vertices numbered by I and labelled with g;;, while two
different vertices ¢ and j are joined by an edge only if ¢;; := ¢;j¢;; # 1 in which case the
edge is labelled with g¢;;:

(2.3.1) W 2 9

i J
Two different matrices with the same Dynkin diagram are called twist-equivalent [AS2].

The Nichols algebra %, has a very useful Nﬂo—grading given by the rule degx; = oy, i € 1,
where (a;)icr is the canonical basis of Z¢. By [Kh, Theorem 2.2], %, has a PBW basis

B:{s?...s?: te Ny, s; €8, $1 > 0 > 8y, O<e¢<h(3,~)}.

where S is an ordered set of Nj-homogeneous elements and h : S — NU {oo} is a function
called the height. The following set does not depend on the choice of B:

Al = {degs:s e S} CN.

Occasionally we set AY = A%. The elements of A} are called the (positive) roots of %,.
We assume from now on that

dim %, < 0.

Then Al is a finite set and the map S — Al, s — deg s, is bijective. Also Al admits a
convex (total) order in the sense

a,Ba+peAla<pB = a<a+p<B.
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See [Anl]. The convex order is not unique; in the case-by-case analysis below we use that
of [AA] except when a more suitable choice is possible that we mention explicitly.

A connected component of D is a subset J of I such that the matrix q; = (¢;j)i jes gives
rise to a connected Dynkin subdiagram D; of D and is maximal with this property. Let X
be the set of connected components of D. If J € X, then we identify Ai" with the subset
Ai of Ai of roots with support in J. We also denote by V; the subspace of V' spanned
by (z;)jes. By a result of Grana, we have

2.3.2 By ~ By AL =TT a’.
(23.2) 1=, P 3 JL[( +

Here ® means the braided tensor product of algebras.

2.3.2. Classification. The classification of the matrices q such that dim.%; < oo was
achieved in [H2] (the result is slightly more general). By the preceding discussion we
may assume that D is connected. As in [AA] we organize the classification in 4 types:

(a) Cartan type. (c) Modular type.
(b) Super type. (d) UFO type.

The type refers to the connection with different parts of Lie theory, see loc. cit. We
shall check Condition 1.4.1 for each entry of the classification of [H2].

2.3.3. Root vectors. For brevity, we set
(2.3.3) zi; = ade z4(x;), i#jel
more generally, the iterated braided commutators are
(2.3.4) Tiyigeiy = (ade i) -+ - (ade i) (z4,), 11,00, - ,if € L.
In particular, we will use repeatedly the following further abbreviation:
(2.3.5) T(k1) = Tk (k+1) (k+2)...15 k<l
Using a fixed convex order, we define the root vector z, € %, for every a € Al as
iterated braided commutators proceeding case-by-case, see [AA].

For those q with dim %, < oo, the defining relations of %, were given in [Anl, An2],
again see [AA], but these are not needed in this paper. Instead, we use systematically
[Anl, Theorem 4.9]; that is, for « < 8 € Ai and a suitable defined g5 € k™, we have

(2.3.6) Lok — aBTR%a € Z ko, v, ... 2y,
a<y <y <<y <feAd]

2.4. Realizations. Let I' be a finite abelian group. A Yetter-Drinfeld module V' over kI’
is determined by families (g;)icn, of elements of I' and characters (x;)icn, in [. Then V is
a braided vector space of diagonal type with braiding matrix q = (¢;;)i jer with respect to
a basis (z;)icr, 1.e. c(x; ® x5) = ¢ijr; @ zy, i,j € I, where ¢;; = x;(g:). That is, the same
braided vector space V' with braiding matrix q = (g;;): jer can be realized in many ways
over many I'. Even more, it can be realized over other Hopf algebras than group algebras
over abelian groups. To discuss the possible realizations we need the notion of a YD-pair.
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Let H be a Hopf algebra. A pair (g,x) € G(H) x Homgs(H, k) is a YD-pair for H if
(2.4.1) x(h) g = x(h@)h) 9S(h)), heH.

When this is the case, g € Z(G(H)); also ky =k with action and coaction given by x and
g respectively, is in g)}D. YD-pairs classify the 1-dimensional objects in ZJ}D. Note that,
if dim H < oo, then (g, x) is a YD-pair for H if and only if (x, g) is a YD-pair for H7.

Definition 2.4.2. Let V be a braided vector space of diagonal type with braiding matrix
q = (gij)ije1- A principal realization of V over H is a family (g;, Xi)ier of YD-pairs such
that x;(¢i) = aij, i,j € I, so that V € BYD via ka; ~ ki, and the braiding c is the
categorical one from g)}D.

Given a principal realization of V' over H, we have I' := (g1,...,99) < Z(G(H)); hence
we can also realize V' as an object in %:yl).

Example 2.4.3. If I" is a finite group, then the YD-pairs of H = kI' are of the form
(9,x) € Z(I') x Homg,,(I', k™). For example, the YD-pairs for GL,(p) are (diag(t), p det™),

o~

where t € FX and ¢ € Fy.

Example 2.4.4. Not all realization is principal: if g € Z(T') and p € Irrep " with dim p =
d > 1 and p(g) = id, then the simple Yetter-Drinfeld module M(g, p) [A, Example 24] is
a braided vector space of diagonal type with braiding matrix (g;;); jer, where ¢;; = ¢ for
all 4,j. Other examples arise from simple Yetter-Drinfeld modules M (g, p) such that the
elements in the conjugacy class of g commute with each other.

2.5. The Drinfeld double of a bosonization. Recall that chark = 0. Let £ be a Hopf
algebra whose coradical Ly is a Hopf subalgebra and let H be another Hopf subalgebra of
L. Then Ho = Lo NH by [R, 4.2.2] and this is a Hopf subalgebra of H. By [R, 4.4.11] we
have an injective map of graded Hopf algebras gr H < gr £. Let R and S be the diagrams
of H and L respectively, see (2.2.1). Hence we have an injective map of graded braided
Hopf algebras R — S.

Let £ be a finite-dimensional Hopf algebra. The Drinfeld double of £, denoted by D(L),
is a Hopf algebra whose underlying coalgebra is £L&® L£#°P. Let <—, —> : L& L — k denote
the evaluation map. The multiplication on D(L) is given by the following formula:

(hoa £)(W 54 1) = (Fay, iy (Fiays S (s )Y iy 52 £ fay), o € L# B, I € L,
where h < f := h® f in D(£) and fr = m(f ®r) is the multiplication in £# rather than
in £#oP,

Let K be a semisimple Hopf algebra, hence cosemisimple by the Larson-Radford the-
orem. Let V € KYD with dimZ(V) < oo and H = #B(V)#K. Then V# € KLyD
appropriately and H# ~ ZB(V#)#K#. Since D(H) ~ H#“P? @ H as coalgebras, the
coradical of H, respectively H#, can be identified with K, respectively K#. We identify

D(K) with a Hopf subalgebra of D(H) in a natural way.
The following result generalizes, with an analogous proof, Theorem 2.5 in [Be].

Proposition 2.5.1. The Drinfeld double D(H) is a lifting of a Nichols algebra B(W)
where W =V @ V# and V braided commutes with V7.
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Proof. First, the coradical D(H ) of D(H) equals D(K); this follows from [R, 4.1.8]. Hence
the coradical filtration of D(H) is a Hopf algebra filtration and gr D(H) ~ R#D(K), where
R = @,>oR" is the diagram of D(H). Let W = R'. By the preceding paragraph applied
to £L = D(H) and either H = H or H = H?", we have morphisms of braided vector
spaces V < W and V# — W; we have V @ V# < W by comparing the D(K)-comodule
structures. Recall that dim Z(V) dim Z(V#) < dim Z(V @& V#) and the equality holds iff
V and V# braided commute [Gr, Theorem 2.2]. Then

dim D(H) = dim #(V) dim K dim Z(V*) dim K#
< dim B(W)dim D(K) < dim Rdim D(K) = dim D(H),

hence R = Z(W) = #(V @ V#) and V and V# braided commute. O

Assume next that K = kI where I' is a finite abelian group; recall that T is the group
of characters of I'. Then

kI = (kI)#,
D(kT) 2 k(I x I') 2 kI’ @ (kT')#.

Let (gi)ier, and (xi)ier, be (dual) generating families in I' and r respectively. Let V €
HEFJ)D with a basis (x;);e1 such that the action and coaction of I' on z; are given by x; and
g; respectively, i € I. Assume that (V) has finite dimension and let H = Z(V)#kI['. Let
(yi)ic1 be the basis of V# dual to (z;)ic;. Then H#“P ~ B(V#)#KkI where the action

and coaction of T’ on y; are given by ¢g; and X;l respectively, i € I. Also W =V & V# can

be realized in tgig)ﬂ? extending these structures. See [Be, Theorem 2.5] for details. Let

Z(V) =ker(T(V) — AB(V)) be the ideal of defining relations of the Nichols algebra Z(V).
The following statement is well-known.

Proposition 2.5.2. D(H) is isomorphic to the quotient of T(W)#k(T x T') by the ideal
generated by Z(V), Z(V#) and the relations

(2.5.3) ziy; — X5 (90)yiwi = 0ix; (gi) (1 — gixi) i,j €L

Qutline of the proof. By the preceding discussion there is a morphism of Hopf algebras
T(W)#k(T x T') — D(H) whose kernel . contains Z(V), Z(V#) and the relations (2.5.3),
see the proof of [Be, Theorem 2.5]. The induced map T(W)#k(I' x T)/J — D(H) is
clearly surjective and preserves the coradical filtration. Since the associated graded map
is injective, the claim follows. 0

3. COHOMOLOGY

3.1. Invariants. Let H be a Hopf algebra and A an H-module algebra. The ring of
invariants is the subalgebra

Al ={z e A:h-z=cy(h)x VYhe H}.
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Let now K be a semisimple, hence finite-dimensional, Hopf algebra. Let t € K be a
normalized integral, that is kt = e(k)t = tk for all k € K and (t) = 1. Let A be a
K-module algebra and let R : A — A be the Reynolds operator R(x) =t-z, 2 € A. Then
o The Reynolds operator is a projector, R? = R, and im R = AX.

o R is a morphism of K-modules.
o R is a morphism of R¥-bimodules: R(xyz) = R (y)z, for =,z € AX and y € A.

The following result, a variation of a classical argument by Hilbert, is well-known.

Lemma 3.1.1. Let K be a semisimple Hopf algebra. Let A = Gpen, A" be a graded K-
module algebra that is connected and (right) Noetherian. Let M be a finitely generated
A#K -module. Then AX is finitely generated and M is a finitely generated AX -module.

Proof. Let I = A(AX), be the left ideal of A generated by the augmentation ideal of AX.
Since A is Noetherian, I is finitely generated; we may assume that I = (f1,..., far), where
f; € A is homogeneous of degree d;. We claim that AX = k(f1,..., far). For this we shall
prove that any f € AX homogeneous of degree d belongs to k{fi,..., far). If d = 0, this
follows by connectedness. If d > 0, then we may write f = ), a;f; with a; either 0 or else
homogeneous of degree d — d;. Then f = R(f) = >, R(a:)fi and R(a;) € k(f1,..., fum)
by the recursive hypothesis, so f € k{(f1,..., far).

For the module statement, note that the hypothesis of [Mo, Theorem 4.4.2] holds; namely
the map denoted there £ is the Reynolds operator R. Hence A is a right Noetherian AX-
module, and thus finitely generated over AX. Thus M is a Noetherian AX-module. Since
M¥ is an A¥-submodule, it is also Noetherian, therefore finitely generated over AX. O

If R is an H-module algebra, then H acts on Q*(R) via the comultiplication and the
antipode, and a fortiori on H(R, k). The following proposition is well-known.

Proposition 3.1.2. Let K be a semisimple Hopf algebra and let R be a finite-dimensional
K-module algebra. Let M be an R#K-module. Then

H(R#K k) ~ H(R, k)X, H(R#K,M) ~ H(R, M)X,

and the action of H(R#K,k) on H(R#K, M) is precisely that induced by the isomorphisms
and the action of H(R,k) on H(R, M).

Proof. This is well-known; the first isomorphism is for example [SV, Theorem 2.17]. In
case K is a group algebra, the relevant spectral sequence is the Lyndon-Hochschild-Serre
spectral sequence [Ev, §§7.2, 7.3] which collapses since K is semisimple. O

Now we pass to algebras in gyD. An algebra A in ZyD is braided commutative if the
multiplication m 4 satisfies m4 = macy, a, that is
(3.1.3) ry = (T(_1)  Y)Z(0); z,y € A
If A is braided commutative, then A is central in A. We elaborate on an idea of [MPSW];

for this we do not need the commutativity of I'.

Lemma 3.1.4. Let I' be a finite group and let A be a braided commutative algebra either
in KLYD or in E?)}D. Assume that A is finitely generated (as an algebra). Then A is
Noetherian.
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Proof. Let N be the exponent of I'. We deal first with ﬂg)ﬂ?. As an object in ﬁ;yp,
A is T-graded: A = @g4erAy. Thus, if A = k(f1,..., fu), then we may assume that
each f; belongs to Ay for some g; € I Then N e Aglgv = A.. Since A is braided
commutative, f¥ f; = (g7 - ;) fN = f;fN for alli,j. Then B =k(f{,..., fi¥) is a central
subalgebra of A and is Noetherian by Hilbert’s Basissatz. Now A is a finitely generated
B-module, actually A = ZO<ai<N B it ..., fi}'. Thus Ais a Noetherian B-module hence

a Noetherian algebra. We deal next with ﬁ?)ﬂ). Since H = k' has a basis of idempotents
dg, g € T', again A is I'-graded: A = @gecrAy where Ay = 0,A. Thus, if A =k(f1,..., fu),
with each f; € Ay, for some g; € I', then fiN € AgN = A. = 6.A. But 4. is the integral of

kT, thus again fiN € A" is central. Then we proceed as previously. ]

We wonder whether any finitely generated braided commutative algebra is Noetherian.
We need the following result from [MPSW].

Proposition 3.1.5. [MPSW, Corollary 3.13] Let H be a Hopf algebra and let R be a
bialgebra in gyD. Assume that either H or R is finite-dimensional. Then the (opposite of)
the Hochschild cohomology HH(R, k) is a braided commutative graded algebra in g))D. O

Actually [MPSW, Theorem 3.12] gives more: the claim is true if R is a bialgebra in an
abelian braided monoidal category C where the needed hom-objects exist.

Theorem 3.1.6. Let I' be a finite group and let R be a finite-dimensional Hopf algebra in
%EFJ)D. Let M be a finitely generated R#KI'-module. If R has fgc, then so does R#KI.

Proof. By Proposition 3.1.5, Lemma 3.1.4 and the hypothesis, H(R, k) is Noetherian. Then
H(R,k)" is finitely generated by Lemma 3.1.1. By Proposition 3.1.2, H(R#kI,k) ~
H(R, k)" is finitely generated. We next prove: If M is finitely generated, then H(R#KI, M)
is finitely generated as an H(R#kI',k)-module. For this, we may induct on the length of
the composition series of M, and so it suffices to prove it in case M is simple. Let R
denote the augmentation ideal of R. Note that R, M is an R#kI-submodule of M and
therefore R4 M = 0 (by Nakayama), that is, M|g is a trivial R-module. We conclude
that H(R, M) is finitely generated as an H(R, k)-module. By Lemma 3.1.1, it follows that
H(R, M)¥ is finitely generated over H(R, k). O

We are ready for one of our main results.

Theorem 3.1.7. Let V be a braided vector space of diagonal type such that
(a) the Nichols algebra B(V') is finite-dimensional,
(b) V' is realizable over a finite abelian group,
(c) H(A(V),k) is finitely generated.
Let K be a semisimple Hopf algebra and assume that V is realizable over K. Then
B(V)#K has fgc.

Proof. The proof is the same as for the previous result. By (b), (c), Proposition 3.1.5
and Lemma 3.1.4, H(%(V),k) is Noetherian. Then H(Z(V),k)¥ is finitely generated by
Lemma 3.1.1. By Proposition 3.1.2 and (a), H(Z(V)#K,k) ~ H(B(V),k)X is finitely
generated. The proof of the module statement is similar. O
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Observation 3.1.8. If V' admits a principal realization over K, then (b) holds. Notice
. . . . o . q11  q12
that (a) does not imply (b): take V of dimension 2 with braiding matrix

Qo 422
where ¢g11 € G, q12 ¢ Goo, q22 € Gy, N, M > 1. However we do not know if V' being
realizable over K semisimple implies (b).

3.2. Subalgebras, extensions.

Theorem 3.2.1. Let R be an augmented subalgebra of a finite-dimensional augmented
algebra A, over which A is projective as a right R-module under multiplication. If A has
fgc, then so does R.

Proof. By the right module version of the Eckmann-Shapiro Lemma [Ben, Corollary 2.8.4],
for each n, and any R-module M, there is an isomorphism of vector spaces,
H"(R, M) ~ Exty(k, Homp(A, M)) = H"(A, Hompg (A, M)),

where Homp(A, M) is the coinduced right A-module. (The action is given by (f - a)(b) =
f(ab) for all a,b € A, f € Hompr(A,M). Then f - a is indeed a right R-module ho-
momorphism.) These isomorphisms, one for each n, provide an isomorphism of H(A,k)-
modules H(R, M) ~ H(A,Homp(A, M)). Now when M is a finite-dimensional R-module,
Homp(A, M) is finite-dimensional as a vector space. For M = k, a set of generators of
H(A,Homp(A, k)) as a module for H(A, k), together with the restriction to R of a set of
generators of H(A, k), generates H(R, k) as a k-algebra. For an arbitrary finite-dimensional
module M, Homp(A, M) is then a finite-dimensional module over H(A, k) and, hence, over
H(R, k). O

If K is a Hopf subalgebra of a finite-dimensional Hopf algebra H, then H is free as a
left or right module over K with respect to multiplication by the Nichols—Zoller Theorem.
Thus Theorem 3.2.1 applies to inclusions of Hopf algebras, in particular to the inclusion
of a finite-dimensional Hopf algebra into its Drinfeld double, see [NP, Theorem 3.4]. For
further reference we state a useful application of Theorem 3.2.1.

Corollary 3.2.2. Let H be a finite-dimensional Hopf algebra and V € g)}D such that
dimAB(V) < oo. If D(B(V)#H) has fgc, then so does B(V).

These ideas apply in particular to Morita equivalence of Hopf algebras as in §2.1.
Corollary 3.2.3. If H ~ . H and D(H) has fgc, then so does H'.

Question 3.2.4. Is the fgc property for Hopf algebras invariant under Morita equivalence
in the sense of §2.17

Lemma 3.2.5. Let k - K — H — L — k be an extension of finite-dimensional Hopf
algebras. If K is semisimple and L has finitely generated cohomology, then so does H.

The proof makes use of a variation of the classical Hochschild-Serre spectral sequence.

Proof. Let M be an L-module and N an H-module. By [CE, Chapter 16, Theorem 6.1]
there exists a convergent spectral sequence

Ext? (M, Ext%(k, N)) = Ext? (M, N).
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In particular, if M ~ Kk, then
Ext} (k,Ext%(k,N)) = Ext}/(k,N).

Now Ext% (k, N) ~ N¥ and, since K is semisimple, Ext? (k,N) = 0 when ¢ > 0. If also
M ~k, then

EP? .= Ext} (k,Extl (k. k)) = Ext};(k,k).

Now Ext% (k, k) ~ k and, since K is semisimple, Ext% (k,k) = 0 when ¢ > 0. Hence E5 ~
E%1, thus @pen, Ext}(k, k) is finitely generated, as it has a filtration whose associated
graded algebra is @®pen, Ext} (k,k). Similarly @,en, Ext(k, V) is a finitely generated
module over ey, Ext} (k, N) for any H-module N. O

3.3. Evens Lemma. Let R = @®,¢cn,R" be an Nyp-graded ring with a decreasing algebra
filtration F™R, n € Ny, compatible with the grading. We shall assume that F*R™ = 0 for i
sufficiently large. Then the associated graded ring Eo(R) = Y., F'R/F""' R is N3-graded.

Similarly, the graded Ep(R)-module associated to an Ny-graded R-module N with a
decreasing module filtration is N3-graded. Again, F'N7 = 0 for i sufficiently large. The
following proposition is [Ev, Section 2, Proposition 2.1].

Proposition 3.3.1. Let R be a graded filtered ring and N a graded filtered R-module as
above. If Ey(N) is (left) Noetherian over Eo(R), then N is Noetherian over R. O

The following result is a non-commutative version of [MPSW, Lemma 2.5], adapted in
turn from [FS, Lemma 1.6] and inspired by early work of Evens.

Let EV? = EEF9 be a multiplicative spectral sequence of bigraded k-algebras concen-
trated in the half plane p + ¢ > 0. Recall that x € EF? is called a permanent cycle if
d;(x) =0 for all ¢ > r. More precisely, if ¢ > r, d; is applied to the image of z in F;.
Lemma 3.3.2. [Shr, Lemma 2.6]

(a) Let C** be a bigraded k-algebra such that for each fized q, CP% =0 for p sufficiently
large. Assume that there exists a bigraded map of algebras ¢ : C** — ET"" such that
(1) ¢ makes Ey™ into a left Noetherian C**-module, and

(2) the image of C** in E™ consists of permanent cycles.
Then E%_ is a left Noetherian module over Tot(C**).

(b) Let Ef’q = Egjq be a spectral sequence that is a bigraded module over the spectral
sequence E**. Assume that Ey™ is a left Noetherian module over C** where C**
acts on E7" via the map ¢. Then EX is a finitely generated E -module. O

3.4. The May spectral sequence. Let A be a Hopf algebra equipped with an increasing
multiplicative filtration Ay C A; C As... C A. We fix a (non-canonical) vector space
splitting A ~ Ay @ A4 so that A/A; ~ Agy. Let (P,d) = (V,, ® A,d) be a free resolution

of the trivial module k satisfying the following properties.

Condition 3.4.1. (1) V,, is a finite-dimensional vector space, the action of A on P, is
on the last factor A.
(2) P. is equipped with an increasing filtration ... F;P, C Fi1P, .. ..
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(3) For any x € F;V,, = F;(V, ® 1) := F; P, N (V,, ® 1), we have
d(l’) EF V1 QA+ Fi_1Vy1® A+.

Example 3.4.2. We will apply this setting in at least two different situations.

(i) When P. is the bar resolution and F. is the coradical filtration, see Theorem ?7. In
this case Ag is the coradical.

(ii) When P. is the Anick resolution of k for #(V), and the filtration is given by the
PBW basis induced by the convex ordering of the roots, see Theorem 4.4.3. In this
case Ap = k and we identify A, with the augmentation ideal.

We set up a version of May spectral sequence analogous to the one in [GK, 5.5]. We
follow the construction in May [May] but without assuming that the module M is filtered.
Such a spectral sequence is also constructed in [BKN, §9] using a non-canonical filtration
on M induced by the filtration on A.

Theorem 3.4.3. Let A be a filtered finite-dimensional Hopf algebra , (P.,d) be a projective
resolution of the trivial module k, and assume that A and P. satisfy Condition 3.4.1. Let
M be an A-module. Then there exists a converging cohomological spectral sequence

Ef = H*(gr A, My,) = H*(A, M)
equipped with a natural module structure over the multiplicative spectral sequence
Ef = H*(gr A, k) = H*(A, k).

The action of gr A on My, is via the projection gr A — Ao and then restricting the action
of A on M to the action of the subalgebra Ay C A.

Proof. Let C*(A, M) := Homu(P., M) be the complex computing H*(A, M). Let
F'C™(A,M) :={f € Homa(Py,A) | flr,_,p, =0} C C"(A, M)

be a decreasing filtration on C*(A, M) making it into a filtered complex.

AsV,, C P,, we have an induced filtration (of vector spaces) on V.: F;V,, = F;(V,,®1) =
F;P, N (V, ®1). Using the isomorphism Hom4(V,, ® A, M) ~ Homy(V,,, M), we make the
identifications:

cmn(A’ M) _{f V> M | f\l/Fi—lvn - 0}
FHCn(A, M) {f:V,— M| flpy, =0}

-~ Homk(Vn/Fi,lvn, M)

-~ Homy(V,,/F;V,, M)
FiViy )

~ Hom , M.

g <Fi1Vn
Letting n be the total and ¢ be the internal degree, we have

H M) ~H —— M, | ~ H"(gr A, My,).
oIy, <Fi—1Vn7 ) OlMgr A (Fi—lpn7 tr> (gI‘ , tr)
~ i FiC™(A, M)

7,n—1 L )

and, hence, this defines the 0 page of the spectral sequence of a filtered complex C*(A, M)

Since A is finite-dimensional, the filtration is finite



18 N. ANDRUSKIEWITSCH, I. ANGIONO, J. PEVTSOVA, S. WITHERSPOON

converging to H(A, M). We have identified the terms of the double complex E%(M) with
the complex C*(gr A, My,) computing cohomology H*(gr A, My,). To identify E{(M)
and H(gr A, My,) as complexes, it suffices to show that the differentials in E*(M ) and
E*(M 4,) are the same, that is, that the differential dj; in the spectral sequence only
depends on the Ap-module structure on M.

Consider the differential d;:

EEi (M) Hony, ( #2%, M)

] dIM Td}y[

Eé,n—l—i(M) —_ HOmk (%’ M) ’

FiVn—l
Let f € Homy | ————,
/ F <E_1vn_1

Condition 3.4.1(3) we can write d(x) = vy ® ag + v’ ® o’ with ag € Ag and V' € F;_1V,_1.
We now compute

FV,
M), T € ——— and let € F;V}, be a representative of Z. By
-Fi—lvn

dy (f)(z) = f(du(z))
= f(o)ao + f(7')a
= f(wo)ao
= f(duma, (@) = dary, (F)(@)

The equality (*) holds since ' =v' mod F;_1V,—1 = 0.
The statement about the action of E; (k) acting on F1 (M) follows from the construction
of the spectral sequence. O

4. THE ANICK RESOLUTION

4.1. The setup. In this section we discuss the Anick graph and the construction of the
Anick resolution [Ani, Fa, CoU]. Let V be a finite-dimensional vector space with a basis
(x;)ie1, and Z an ideal of T'(V') such that €(Z) = 0, where € : T(V) — k is the standard
augmentation map, €(z;) = 0 for all + € I. Thus the algebra A := T(V)/Z has an
augmentation map € : A — k.

4.1.1. The tips. Let X be the set of words on the letters (x;);cr (including the empty word
1). Notice that X is a basis of (V). Let x,y € X. We say that z is a subword of y if
there exist w, z € X such that y = wzz. If w = 1, respectively z = 1, then we say that z
is a prefix, respectively a suffix, of y.

Let ¢ : X — Ny be the length function. The lex-length order < on X is defined as
follows: given v,w € X, we say that v < w if either ¢(v) < ¢(w) or else ¢(v) = ¢(w) and v
is less than w for the lexicographical order (induced by the numeration of the basis). This
is a total order on X compatible with left and right multiplication.
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Here is a way to give a set of generators of the ideal Z. Given f € 7 — 0, write f as a
linear combination of elements of X; let z; be the largest element of X (with respect to
<) with non-zero coefficient. Then x¢ is called the tip of f. Consider the set of all tips of
all elements in Z — 0. A tip ¢ is minimal if each subword of x is not a tip (Anick calls a
minimal tip an obstruction). Let T be the set of minimal tips of Z. For each t € T we pick
wt € Z such that ¢ is the tip of w; (which is not unique in general). Arguing recursively on
<, it is possible to show that

IT=(w:teT).
For each w € X we also denote by w its image in A = T'(V)/Z. By [Ani, Lemmas 1.1
and 1.2], the set
(4.1.1) B={w e X :tis not a subword of w Vt € T}

is a basis of A.

4.1.2. The chains. Let n € Nyg. We describe the n-chains which are words defined from
the minimal tips; they will provide a basis of the n-th term of the Anick resolution of A.
The unique 0-chain is the empty word 1. The 1-chains are the letters, i.e. the x;’s. Let
n > 1. An n-chain is a word w such that:

(a) w admits a factorization w = wv such that u is an (n — 1)-chain and the suffix v does
not contain any minimal tip as a subword (i.e., does not contain any tip);

(b) for every suffix y # 1 of w as in (a), the word yv contains a minimal tip as a subword;

(¢) any other prefix w’ of w does not satisfy (a) and (b) simultaneously.
Let M(n) be the set of n-chains. We urge the reader to check that M(2) is the set of minimal
tips—all requirements are needed.

There exists an alternative way to express the definition of n-chains. A word w =
Tj, -+ Ty, 1 € 1, is an (n 4 1)-chain if there exist integers a;, b;, 1 < j < n, such that

(1) 1:a1<a2§bl<a3§b2<~-<an§bn_1<bn:t;
(2) i, Tig 41+ Tig, 1 i, €T forall 1<j<nmn;

(3) for all 1 <m < n, the words z;, - - - z;,, S < by, are not m-chains.
By [Ani, Lemma 1.3] the integers aj, b; satisfying (1)—(3) are uniquely determined and

® z; -~ _ is the unique prefix which is an (n — 1)-chain, and

® Tiy gt does not contain any element of 7 as a subword.
-

+
Example 4.1.2. We fix N > 2, V of dimension 1, z € V —0, Z = (zV). Thus 7 = {z"V}.
Now M(0) = {1}, M(1) = {z}, and we claim that
M(2k) = {zVF}, M(2k 4 1) = {zVFH1} k> 1.

Moreover ag;—1 = (i —1)N + 1, ag; = (i — 1)N + 2, byj—1 = iN, by; = iN + 1. We proceed
by induction on k. If k = 2, then M(1) = {2V} since this is the unique minimal tip, and
{zN*1} is a 2-chain with a; = 1, ap = 2, by = N, by = N +1; thus, each word P AREA IS
is not a 2-chain since z¥t! is a prefix of V17,
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Assume that k& > 2 and the statement holds for k. To compute M(2k + 2), we start
with the unique (2k + 1)-chain zFN+1 and the integers a;, b; already determined: agp41
should satisfy bop_1 = kN < aggyr1 < bogp = EN + 1, hence agrr1 = kKN + 1. Hence
M(2k +2) = {zFDNY For M(2k + 3), we have that z*+tDN+1 is a (2k + 3)-chain, hence
this is the unique (2k 4 3)-chain: indeed, if w = 2* € M(2k + 3), then s > (k+ 1) N since w
should contain the (2k +2)-chain z*+DN as a prefix; but if s > (k+ 1), then w contains
the (2k + 3)-chain £+ DN+1 a5 a prefix so it cannot be a (2k 4 3)-chain.

Let V(n) be the k-vector space with basis M(n). Then
M(n) ;== {u®w:u €Mn), weB}

is a basis of V(n) ® A. Given u ® w,v ® z € ﬁ(n), if uw = vz, then v = v, w = z; indeed,
if £(u) < £(v), then the n-chain u is a prefix of the n-chain v and (3) implies that u = v.
Hence the order on X induces an order on M(n): u®@ w < v ® z if uw < vz.

4.1.3. The Anick graph. We next introduce a graph which helps to compute the chains of
the Anick resolution [CoU]. Let I" be the graph whose set of vertices is given by the union
of {1}, X and the set of all proper suffixes of the minimal tips. For the arrows, there exists
one arrow from 1 — x for each x € X, and one arrow v — v if the word wv contains a
unique minimal tip such that it is a suffix of uv (possibly the word uv).

A basis of the free module of n-chains of the Anick resolution is given by paths of length
n starting at 1. Thus:

e There exists a unique 0O-chain: 1.
e The set X gives a basis of the 1-chains.
e The set of minimal tips gives a basis of the 2-chains.

Notice that vertices v not connected to 1 (that is, without a path from 1 to v) do not
contribute new elements for the basis of chains, hence we may omit them and the related
arTows.

Example 4.1.3. Let ( € G)5, ¢ € k*. We want to determine the Anick graph of the
Nichols algebra %, of [AA, §10.7.5] (The scalar g corresponds to g2 in loc. cit.) In terms
of the PBW generators, %, is presented by generators 1, 1112, 112, 12, T2, and relations

4 3
xz; =0, r171112 = (qT1112771, T1T112 = —q 11271 + T1112,
2 9
xi112 = 0, r1712 = (g w1271 + T112, T1T2 = qT2T1 + T12
3 2 10 2 2
i1 =0, 11127112 = (Fqx11221112, zi112212 = ¢ q” z1221112 — (1 + Q) 27190,
3 3 5 2
x5 =0, 112712 = (g T12T112, T1112%2 = —q x2x1112 + (°¢° T127112,
2 2 9\ 2
x5 =0, T12X2 = —qX2712, T11202 = —q T2T112 — Q12(1 +¢ )fﬁu-

Thus the set of obstructions is
4 2 3 3 .2
M(2) = {1‘1,93111%1‘112,93127£U2’!E11‘11127961$112,1‘1$12,l‘1l‘27
211127112, 21112212, L111222, $112$12,$112$2,$12$2}

and the Anick graph is
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1
1 T1112 T112 12 T3
3 2 2
L1 T112 T12

There exists a vertex 27 with a loop on itself which we omit since this vertex is not
connected to 1. Using the graph we compute

M(3) = {a}, 2121112, 212112, 21212, T2, T127 119, 119, T1110T112, TT119%12, TT110%2,
xlx?l% 95111235%127 x%l% 95%1295127 33%123327 50190:{’27 3511121”?27 9511295?2’ 36112, 95?21’27
T1T3, 111275, T11223, T1223, T3, T1711122112, T1T1112212, T1T111272, T1T112712,
T1211272, L1T12X2, 11122112712, L1112L112L2, 11121272, .%'112.%'12372}.

4.1.4. The resolution. We consider the Anick resolution of the A-module k. In [Ani, The-
orem 1.4] Anick introduced an A-free complex

d1

(4.1.4) V) © A" -1 oAl L v oAt Aok 0

and k-linear maps s,, : V(n)®A — V(n+1)®A, n € Ny, such that (4.1.4) is an A-resolution
of k and s. is a contracting homotopy:
(4.1.5) dn+18n + Sn-1dn = idy(m)g. for all n € N.

The maps d,,, s,—1 are defined recursively; see for example [NWW, §4.1] for a left
module version. For n = 1, the map d; is determined by

di(z®1)=x for all z € M(1),
while for sy we give the values on each w € B:
so(w) =2 ® z, w=uzz,x €M(1), z €B.
Now assume that dy,...,d,_1, So,- .., Sn—2 were already defined and satisfy:

(4.1.5) d;_1d; = 0, Si—28;—1 =0, foralll1<i¢<mn-—1.
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The morphisms of .A-modules d,, : V(n) ® A — V(n — 1) ® A are determined by
dp(u®1) =0t — sp_2dn—1(v®1), u€Mn), u=uvt,veM(n—1),t€B.

Now we define s,_1. From (4.1.5), V(n — 1) ® A = ker d,,—1 ®im s,,_3. We start by defining
(8n-1)|imsp_o = 0, 50 sp_15,2 = 0. Now we define (s,-1)|kera,_, recursively on the
order of the leading term of each element of ker d,,_1, which we write in terms of the basis
M(n — 1). We require dn(8n—1)|kerdp_; = idkerd,_,- Let

K= Zajuj@)bjekerdn,l, aj € k*,uj € M(n —1),b; €B.
J€Im

We assume that u; ® by is bigger than u; ® b; for all j > 1. We write u; = v;t;, where
vj € M(n — 2), t; € B. Hence

0= dn_l(K) =a1v1 @t1by + f?, I? = Zajdn_l(uj &® bj) — Sn_gdn_z(alvl ® tlbl)
Jj=2

Hence t1b; ¢ B, otherwise v; ® t1b; is the biggest element of M(n — 1) in the previous
expression of d,,_1(K) with non-zero coefficient. Now we write by = wyy1, where w; is the
shortest prefix of by such that ¢tyw; ¢ B. Hence ujw; = vitiw; € M(n). Hence we set

(4.1.6) Sn_l(K) =apuiw Y1 + Sp—1 Z a; Uj ® bj — dn(al uiwy X yl)
JEIm

Below the differentials d,, and the maps s, will be denoted simply by d and s.

4.2. Application to Nichols algebras. We consider now the Anick resolution of a
Nichols algebra %, of diagonal type associated to the presentation given by PBW gener-
ators (7g)ge AL We fix a convex order on A%, which induces a total order on the letters:
xg, > x, > -+ >xg,. Weset Ng = ordqgg.

The defining relations of %, are

(4.2.1) z5" =0, N3 finite;

(4‘2'2) [37517x5j}c - Z cgiyi)lw-’njfl xgj_l e xg:i’ i<

i1
Ni41,--,n5-1€Ng

where cg"gﬂ,,,,,nj,l € k can be computed explicitly [Anl, Lemma 4.5].
We denote by x3, 8 € Ai, the set of letters for the tips and the chains, to distinguish
them from the generators xg of the Nichols algebra Z%;. The minimal tips are the following:

(4.2.3) XaXg, a>BEBe AL, xy", Be Al
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Hence the Anick graph looks locally as
1

N

X X3

Nao—1 Ng—1
X0 Xg

for a > B, where if N, = 2, then the loop between z, and z)=~! is understood to be
collapsed to a loop from z, to itself, and similarly for xg. If N, > 3, then there exist
vertices xg and xév‘rt for each 2 <t < N, — 2, and arrows between them. These vertices
are not connected to 1 and are omitted.

Now we describe the set of chains. For each § € Ai we set
(4.2.4) fs : Ng — N, f5(2k) = Nﬁk:, fs(2k+1) = Nﬂk' + 1, k € Np.

The set of all n-chains, n € N, is given by

Fo () _fag(ma) far (m
(4.2.5) M(n):{xﬁfl 1x£2 : ...xéi( ):an:n}.

4.3. Quantum linear spaces. These are the less complicated Nichols algebras of diagonal
type. Let q = (gij)ije1 be as above and assume that g;;q;; = 1 for all @ # j € 1. Let
I'={iel:q; € G} andfori €I, set N; = ordg;;. Then A, is presented by generators
yi, © € I, with relations

(4.3.1) Yi¥i = QijY;Yi, i<jel
(4.3.2) yNi =0, icl.

Proposition 4.3.3. The cohomology ring of %, is generated by n; for i € I and ;, for
j €I with relations

NN, .
&n&j = ay; &ién, h<jel,
N; . .
ni&5 = 45" &M icl, jel,
(4.3.4) ik = —QikNENi; 1< k€L
n? =0, iel, N;>2,
ni&i = &inis iel.

If N; =2, then n? = &. If M is a finitely generated Bq-module, then H(%Bq, M) is finitely
generated as a module over H(%,, k).
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Proof. We will construct the Anick resolution K. of k as a Z;-module. The following
notation will be helpful. For each i, 1 <i <8, let 0;, 5 : Ng — Ny be the functions defined
by

1, if @ is odd

N; — 1, if ais even,

and 7;(a Zol ) for a > 1, 7(0) = 0.

We claim that the differential d of the Anick resolution is given as follows:

(%
d(y‘lr:l(al) . -y;e(a9)®1) _ Z (H(_l)azqmm(ai)n(ae)> y71’1(a1) . y;Fi(az‘*l) L y;’e(ae)(X)y;n‘(ﬂti)7

i=1 \4<i

where we set yfi(o) = 0. This is the right module analog of a formula from [MPSW, §4],
for an explicitly constructed minimal resolution of k as a Z;-module. (There is a slight
difference in comparison of our formulas to those in [MPSW] since we are working with
right modules. This also leads to a slight difference in relations among the generators.)
The resolution from [MPSW] is in fact the Anick resolution: The modules in the Anick
resolution will have the same vector space dimension in each degree by construction, im-
plying that the Anick resolution is also minimal in this case, and so comparison maps
between the Anick resolution and this one must be isomorphisms in each degree.

Next apply Homg(—,k) to K. in order to compute Extg(k,k). Note that d* is the

Ti(a;

zero map since y; acts as 0 on k. Thus in degree n the cohomology is a vector

space of dimension ("ﬁ;l). Now let & € Homg(K2,k) be the function dual to yf-vi ®1
and 7; € Homg(K7,k) be the function dual to y; ® 1. Identify these functions with the
corresponding elements in H2(S, k) and H!(S, k), respectively. We claim that &;, 1; generate
H(S, k). We also denote by &; and 7; the corresponding chain maps §; : K,, — K,_2 and
n; + K, — K, 1 given by

13 (Y?(al) .. Te(ao ®1) quN iTe(ag) T1(a1) ”yﬁ(aid) . .yge(ae) ® 1

)

0>
iy ey @ 1) =
H qh (oi(a;)—1)7¢(ag) H(_l)aeqi—érg(w)y?(m) o y;&‘(ai—l) y;’e(ae) ® yfi(ai)_l.
< >4

Note this implies that if a; is even and N; > 2, then n;(y;" (a1) . 'yge(ae) ® 1) = 0, since
Ni—2

Y; acts as 0 on k. Calculations show that these maps satisfy the following equations:
NiN; N;
(4.3.5) &&= a;; 7&&, ni& = a7 &mi,  and nim; = —qinmi

for all © < j, and n;§; = &n; for all ¢, with one exception: If N; = 2, then 772-2 = ¢ (so
that we may leave & out of our choice of generators, or not, as is convenient), while
if N; > 2, then n? = 0. Due to these equations, any element in the subalgebra of
Extg(k, k) generated by the §Z and 7; may be written as a linear combination of ele-

ments of the form &2 .. fb‘) ey with b > 0 and ¢; € {0,1}. Such an element takes
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yhiNita .YZGNGJ“@ ® 1 to a nonzero scalar multiple of 1 and all other S-basis elements

of Ks~(2p;4¢;) to 0. Recall that the dimension of H"(S,k) is (";f;l); consequently, the
elements €2 - - Z"nfl - my? form a k-basis for H(S, k).

For the last statement, we may induct on the length of a composition series of M, and
it suffices to prove the statement in the case that M is a simple module. The generators
of %, are all nilpotent, and so the only simple module is the trivial module k, for which
the statement is clear. O

4.4. Cohomology of graded algebras with convex PBW basis. Here we consider a
graded connected algebra R = @,ecn, R" with a finite PBW-basis B = B({1},X, <, h); that
is X is a finite subset of R with r = |X| elements, < a total order on X (with a numeration
X = {x1,29,...} such that i < j if and only if x; < z;) and a function h : X — N U {oo},
x; — Nj (h is called the height), such that

B = {xﬁ’“asz:f x?rit i 0<e < Ni}

is a k-basis of R. Let I = {1,...,r} and I' = {i € T: N; < co}. We assume that the
elements of X are homogeneous: z; € R% | d; € N. We set

degb = (e1,..., e, Z ejd;j) € NG, b=axira ... 2522t € B.
J

Let < be the lexicographical order, reading from the right, on NEH. We consider the
N{ L filtration on R given by

Rp= (b€ B:degb= f), f=0f1,-, fr1) eNgTL
Inspired by [DCK], we also assume that the PBW-basis B is convez, i.e. (Ry) fenptt is an
algebra filtration. It can be shown that the PBW-basis B is convex if and only if
(a) for every 4,j € I with ¢ < j, there exists ¢;; € k such that

(4.4.1) TiTj = QijT;T; + Z Rf;
f<degx;+degx;

(b) for every i € I,

(4.4.2) zle Y Ry
f<N;degz;
See [AAH]. We call this the PBW-filtration. Assume that in (4.4.1), g;; # 0 for all ¢ < j.
Then the associated graded algebra S := gr R is a quantum linear space, i.e. it is presented
by generators y; (the class of x;) and relations (4.3.1), (4.3.2).
The PBW basis gives rise to the Anick resolution computing H(R, k) and H(R, M) for an

R-module M asin §4.1. By construction of the resolution, xfiN" are chains of cohomological
L; N;

degree 2/;. In the next theorem we prove that if the dual cochains (x;

then H*(R, k) has fgc.

)* are cocycles,

Theorem 4.4.3. Let R be a graded comnected algebra with a finite convex PBW-basis
satisfying all of the assumptions above. Suppose that there exist positive integers £; for

*
any i with N; < oo, such that the cochains (XfiNZ) are cocycles on the Anick resolution,
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that is, represent elements in H(R,k). Then H(R,k) is finitely generated and H(R, M) is
finitely generated as a module over H(R,K) for any finitely generated R-module M.

Proof. Observe that gr R is a quantum linear space. By Proposition 4.3.3, the cohomology
H(gr R, k) is finitely generated over its subalgebra generated by ff" for all i € I, since it
is generated by all &, n;. Since the Anick resolution for R is compatible with the PBW-

filtration on R, there exists an associated spectral sequence E convergent to H(R, k) whose
;i N;

;1) are the images

Eq-page is H(gr R, k); see Theorem 3.4.3. Moreover, the cochains (x
of ffi in the spectral sequence (see the proof of Proposition 4.3.3) and so by assumption,
the Efi are permanent cycles. Thus the hypotheses of Lemma 3.3.2 are satisfied, and,
hence, H(R, k) is left Noetherian. (That is, gr H(R, k) is Noetherian, from which it follows
that H(R, k) is Noetherian.) Finite generation follows from Lemma 3.1.1 taking K to be
a trivial algebra there.

If M is a finitely generated R-module, then since the Condition 3.4.1 is satisfied, Theo-
rem 3.4.3 implies that H(R, M) is finitely generated as an H(R, k)-module. O

The following corollary is immediate since Nichols algebras of diagonal type have convex
PBW bases.

Corollary 4.4.4. Let %, be a finite-dimensional Nichols algebra of diagonal type. If %,
satisfies Condition 1.4.1, then it has fgc. O

5. COHOMOLOGY OF THE DRINFELD DOUBLE

In this section we prove that if the bosonization of a Nichols algebra of diagonal type
has fgc then so does its Drinfeld double.

We briefly recall the general definition of a twisting map 7 for two algebras A and B:
Let 7: B® A — A ® B be a bijective k-linear map for which 7(1p ® a) = a ® 1p,
T(b®1ly)=14®0bfor all a € A and b € B, and the following compositions of maps from
BRB®RA®Ato A® B are equal:

To(mp®my)=(ma@mp)(ler)(r7)1®171),

where m 4 (respectively, mp) denotes multiplication on A (respectively, on B), and 1
denotes an identity map. The twisted tensor product algebra A ®, B is A ® B as a vector
space, and its multiplication is the composition (mg4 ® mp)(1 @ 7 ® 1).

If A and B are Hopf algebras, we say that 7 is a Hopf twisting if A®, B is a Hopf algebra
with coalgebra structure being the usual tensor product of coalgebras (no twisting), and
A, B are Hopf subalgebras. The augmentation map is €4 ® eg : A ®, B — k.

We assume that the Hopf twisting 7 is compatible with coradical filtrations, that is for

CACCAC... and CBCCPc...
the coradical filtrations of A and B, we have
rcfechc Y. Clech
r+s<a+b

Then the associated graded space gr(A ®; B) is again a Hopf algebra.
We will need a special case of the twisting construction to apply it to Nichols algebras:
Assume that A and B are graded by abelian groups I and I, Let ¢t : I' x I — k* be a
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bicharacter (that is, it induces a homomorphism I' ®7 I'" — k* of abelian groups). Define
T:B®A— A® B by 7(b® a) =t(|al,|b])a @ b for all homogeneous a € A, b € B, where
la| € T, |b] € T” denote grading. In order to distinguish a twisted tensor product algebra
A ®; B for which the twisting 7 is defined by a bicharacter ¢ in this way, we will write
A ®" B for this twisted tensor product algebra.

Due to the following result of Bergh and Oppermann [BO, Theorem 3.7], the cohomology
of A®! B can be computed.

Theorem 5.0.1. Let A and B be augmented algebras graded by abelian groups T' and T".
Let t be a bicharacter on T' x I'. There is a twisting map t, induced by the bicharacter t,

for which
H(A®' B,k) ~ H(A,k) @ H(B,k).

Let A = R#KI and B = (R#kD)# with R = #(V). Let D = D(A) be the Drinfeld
double of A. Since A and B are subalgebras of D = D(A) and, as a vector space, D is
isomorphic to A ® B, there is an isomorphism of algebras,

D=~ A®, B,

where A ®, B is a twisted tensor product algebra whose twisting map7: B® A — AR B
is defined to correspond to multiplication in D. The augmentation map on D(A) is

ep(A) = exa ®ep).

Recall that A and B are both coradically graded. With respect to the coradical filtration
on D, there is indeed an isomorphism

grD= A®'B

for some bicharacter ¢ on grading groups of A and B. The bicharacter ¢ is defined by
the braiding ¢ and the group action. See, for example, [Be|. Hence, as a consequence of
Theorem 5.0.1, H*(gr D, k) can be computed in terms of H*(A, k) and H*(B, k). Moreover,
since gr D is a Hopf algebra, its cohomology is graded commutative so the bicharacter t
takes values +1.

To show that D has finitely generated cohomology we will establish that H*(D,k) has
“enough” cocycles and apply Evens Lemma (3.3.2).

Let P., Q. be bar resolutions of k as an A-module and as a B-module. Then as in [BO,
SW] for left modules, we may form the twisted tensor product resolutions P. ®, Q. and
P.®' Q. of k as a right A ®, B-module and a right A ®' B-module, respectively. We recall
here briefly this construction, and translate to right modules: As a complex of vector
spaces, each of P.®, Q. and P.®' Q. is simply P.® Q., and it remains to define the A®, B-
and A ®" B-module structures on each vector space P; ® ;. We will do this for A ®; B,
and A ®' B is similar. For each j, define 7;: Q; ® A = A ® Q; by iterating 7. The right
module structure is defined by the following composition of maps:

1® 131 PP,OPQ;

(5.0.2) P2Q,; ®A®B PRA®Q;®B

P ® Qj,

where pp, and pg, denote the module structure maps.
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Lemma 5.0.3. Let f € Homy(P;, k) be a cocycle. Then f extends to a cocycle representing
an element in H*(D,k). A similar statement holds for H*(B,Kk).

Proof. The first statement will follow from the construction of the resolution P. ®; Q. and
the definitions. The second statement involves switching the order of P. and .. This
asymmetry in the proof is due to the asymmetry of choosing to work with right modules
instead of left modules.

Let f € Homy(P;, k) be a cocycle. We first claim that f®ep, as a function on P;®, Qo =
P, ®; B, is an A ®,; B-module homomorphism.

Consider

(5.0.4) (feep)((z®y) (a®b))
where z € P;, a € A, and b,y € B. Expression (5.0.4) can be evaluated by first applying

17T 1tox®y®a®b, then applying f ® €4 ® eg ® € to the result, since f is an
A-module homomorphism and A acts trivially on k. We wish to show this is equal to

(5.0.5) (f@ep)(z®Yy)) (a@b) = (f@ep)(z@y)epay(a@b) = f(x)ep(y)eala)ep(b),

It suffices to show this for all y from a set of generators of B, for all a from a set of
generators of A, and for all x € P; and b € B. If either a or y is an element of the field k,
the expression (5.0.4) is equal to

(f@ep)((x-a)@(y-b)) = f(z-a)ep(y-b) = f(z)ep(y)eala)en(b),
as desired. Now assume that a and y are generators in the kernel of the augmentation
maps for A and B, respectively, so each is either a root vector or a difference of group
elements. The case where either is a difference of group elements is straightforward since
applying € to either of the middle two factors will yield 0 after applying 7. Now assume
that a and y are both root vectors. Then by Proposition 2.5.2 we have that in D(A),

ya = day + k(1 — gx)
where A, k are scalars, g €I, x € . Then

(feep)((z®y) (a®b)) =
(fRea®epRep) (M RaQRyRb+rrR1QIRb-—KrRgR X D) =

Af(@)ea(a)en(y)en(b) + w(f(x)ep(b) — f(z)ealg)en(x)en(b) =
0

where the first term disappears since eg(y) = 0 and the second two terms cancel out since
€a(g) = es(x) = 1. We also have f(z)ep(y)ea(a)ep(b) = 0 since ep(y) = 0. Therefore
the expressions (5.0.4) and (5.0.5) are equal, as desired. It follows that f ® ep is an
A ®; B-module homomorphism, that is, f ® eg € Homag.5(P; ® Qo, k).

By hypothesis, 0 = di, (f) = fdiy1 where d;11 : Piy1 — P; is the differential. Letting
d denote the differential on P. ®, Q.,

d*(foep)=(f@ep)(dip1 @1+ (=1)' @ d1) = fdiy1 @ ep + (—1)'f @ epdy = 0.

Therefore f ® ep is a cocycle representing an element of H(D, k).
Now let g € Homp(Q;,k) be a cocycle representing an element of H(B, k). Note that
AR, B= B®.-1A. Let Q.®,.-1 P. be the twisted tensor product resolution corresponding
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to this inverse twisting 77!. By the above arguments, g ® € is a cocycle representing an

element of H(A ®. B,k). Since P. ®; Q. is quasi-isomorphic to Q. ®,-1 P. (in fact, a
comparison map is given by iterating 7), there is a cocycle ¢’ defined on the resolution
P.®, Q. corresponding to g®e€ on Q; ®,-1 Py. Note that in general ¢’ will not equal €4 ®g,
due to the twisting.

O

Theorem 5.0.6. If the Nichols algebra R = B(V) and its dual R have fgc, then the
Drinfeld double D = D(B(V)#KkIL') of the bosonization B(V )#KI' has fgc.

Proof. Let A = R#kI' and B = A#. By hypothesis, A and B have finitely generated co-
homology, specifically, the cohomology H(A, k) is a finite module over a finitely generated
commutative subalgebra, and similarly for H(B, k). Choose generators of these commuta-
tive subalgebras and representative cocycles on P. and @).; we will use these in a spectral
sequence argument in combination with Theorem 5.0.1.

As a consequence of the Theorem 5.0.1, A ®! B has finitely generated cohomology since
both A and B do. Of necessity, since A ®' B is also a Hopf algebra, H(gr(A @, B),k)
is graded commutative, and so ¢ will in the end only take values +1. We will next show
that A ®, B also has finitely generated cohomology. This relies on existence of needed
cocycles. Let f € Hom4(P;, k) be a cocycle representing an element of H(A, k). Then by
Lemma 5.0.3, f extends to a cocycle representing an element of H(A ®, B, k). A similar
statement holds for H(B, k).

Next note that the filtration on A®, B induces a filtration on the resolution P.®,Q.. Let
E be the corresponding spectral sequence. Page E; is H(A®! B, k), which by Theorem 5.0.1
is isomorphic to H(4,k) @ H(B, k). The cohomology H(A ®" B, k) is the homology of the
total complex of the bicomplex

Hom g, g(P. ®; Q.. k).

By the above argument, a cocycle f € Homa (P, k) representing an element of H'(A, k)
may be extended to a cocycle f ® e € Homag_p(P; ®- Qo,k) representing an element of
H(A ®" B,k). This is thus a permanent cocycle in the spectral sequence E. Moreover, it
corresponds to f @ ¢, this time representing an element of the Ei-page H(A, k) ®! H(B, k).
Similarly, a cocycle g € Homp(Q;,k) representing an element of H (B, k) may be extended
to a cocycle ¢’ € Homyg, g(Py®- Qj, k) representing an element of H(A®, B, k). Thus we
obtain, for each chosen generator of H(gr A ®, B, k), a permanent cocycle in the spectral
sequence. Applying the spectral sequence Lemma 3.3.2, since H(A®' B, k) is a finite module
over a finitely generated (commutative) subalgebra, H(A ®, B, k) is finitely generated.
(A commutative subalgebra can be found by taking high enough powers of the chosen
generators since the defining parameters and thus also the values of the bicharacter # are
all roots of unity.)

Now let M be a finitely generated A ®,; B-module. Then H(A ®, B, M) is a graded
module over H(A ®; B, k). The coradical filtration on A ®, B induces a filtration on the
bar resolution K. of k as A ®; B-module and thus on Homg, g(K., M). Let E* be the
corresponding spectral sequence. Arguing as in [Ja, §1.9.13], we get a spectral sequence

Ei =H(grA®, B,k) ® M = H(A ®, B, M).
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which is a module over the spectral sequence E*. By Lemma 3.3.2, H(A®, B, M) is finitely
generated over H(A ®;, B,k). O

Part II. Permanent cocycles for Nichols algebras of diagonal type
In this Part we deal with

Condition 1.4.1. Let U be a braided vector space of diagonal type whose Nichols
algebra is finite-dimensional. For every positive root v € AK, there ewists L, € N such

*
that the cochain (XA%V) is a cocycle on the Anick resolution, i.e. represents an element in
H(#A(U). k).

We shall prove that Condition 1.4.1 holds for one representative U of each Weyl-
equivalence class in the classification of [H2]. By Theorem 4.4.3 this shows that Z(U)
has fgc and as explained in §1.4, this implies Theorem 1.3.1. We argue also by induction
on dim U; in other words we often assume that the root v has full support, i.e. suppy = 1.
Towards this, we choose the representative U in the Weyl-equivalence class in such a way
that Condition 1.4.1 was already verified for any proper subdiagram.

We discuss the strategy in Section 6, a summary been given in § 6.4. Proofs of the
technical statements in this Section are deferred to Section 10. We proceed case by case
in Sections 7 (classical Cartan and super types), 8 (exceptional Cartan and super types)
and 9 (modular types wk(4) and br(2)). The remaining Nichols algebras of diagonal type
in the classification are dealt with in Part III [?].

6. THE STRATEGY

6.1. The setup. Let q be the braiding matrix of U and denote by %, the corresponding
Nichols algebra as before. For § € Ai recall that N5 = ord gss. Recall that the set of
n-chains, n € N, is given by

(4.2.5) M(n) = {ngl (n1)X§§2(n2) .. .ngnm (nm) : an = n} ,
where for § € Al we introduce fs: Ng — Ny by
fs5(2k) = Nsk, fs(2k+1) = Nsk + 1, k € Ng.

The starting point is the following straightforward observation.

Remark 6.1.1. Let v € A} and L € N.

(a) x,% is a chain if and only if L is of the form ¢N, or /N, + 1, for some ¢ € N.
(b) A cochain (xﬁ)* is a cocycle if and only if for any chain ¢ € M(n + 1) such that
dc® 1) € V(n) ® %y, when written as a linear combination of basis elements, the

term X$ ® 1 has zero coeflicient.

Because of Theorem 4.4.3 and Remark 6.1.1 (a) we shall assume that L = ¢N,, for ¢ € N.
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We reduce the set of chains ¢ € M(n+1) to be considered in (b) using degree and grading
constraints. First, since the relations of %, are N§-homogeneous by definition we have:

Lemma 6.1.2. The differential of the Anick resolution preserves the N'-grading. O
Let ¢ = xﬁl (m)xgj? ) .xfi:" (nm) ¢ M(n + 1) such that
N,
dec®l)=...+Xxy "®@1+..., A#0,

. . . . . IN.
as a linear combination of basis elements. By Lemma 6.1.2 and since x

we have the following constraints:

(6.1.3) Jor(n1)o1 + -+ + f5,, (nm)0m = €Ny,
MLt = 20+ 1,

is a 2¢-chain,

Henceforth we refer to the conditions (6.1.3) and (6.1.4) on the chains as the Nj-grading
and homological degree constraints. Writing the roots as linear combinations of
simple roots, (6.1.3) and (6.1.4) boil down to a system of equations on {ni,...,nm,,¢}.

Let v € Aj_ and ¢ € N. We summarize now the approaches to verify that (XF;N”)* is a
cocycle using Remark 6.1.1 (b). Thus we need to consider the chains ¢ € M(n + 1) in (b)
up to degree and grading constraints.

o We introduce integers P, @, in §6.2. If N, > P,,Q, then (xiv"’)* is a cocycle of degree
2, by Lemma 6.2.5. Here £ = 1.

We may assume that ~ is not simple, otherwise it is covered by the previous discussion.
Then there are 3,6 € Ai such that § <~y < d, v = +9. If N, is small, typically 2 or 3,
then the condition N, > P, Q) does not hold.

o Assume that N, = 2 and condition (6.2.9) holds. Then (XFI)Y 7)* is a 2-cocycle by Lemma
6.2.8. Again ¢ = 1.

o Condition (6.2.9) is about the relations between the root vectors xg, z, 5. If it does
not hold, then a finer analysis is needed. We summarize in Proposition 6.3.2 all possible
cases that we need to check in this setting when N, = 2.

o Similarly we summarize in Proposition 6.3.23 all possible cases to check when IV, > 2
and the condition N, > P,, (), does not hold.

Propositions 6.3.2 and 6.3.23 depend on several Lemmas whose proof is deferred to
Section 10.

The techniques presented in Lemma 6.2.5, Lemma 6.2.8, Proposition 6.3.2 and Propo-
sition 6.3.23 are applied to those Dynkin diagrams in the list of [H2] with a continuous
parameter in Sections 7, 8 and 9. The remaining diagrams in the classification are treated
in Part III.
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6.2. Degree 2 cocycles. We discuss two techniques to get generators of degree 2 in
cohomology from root vectors. First we introduce P, and (- that under suitable conditions
imply the existence of the cocycles.

Definition 6.2.1. Let v € A%. We define

P, = max{P € N: 3 distinct d1, 2,93 € Ai such that §; + d2 + d3 = Py},

@ = max{Q € N : 3 distinct 1,52 € Al such that Ny, 61 + d2 = Q~}.
We set P, = 0, respectively @ = 0 if no such relation exists.
Remark 6.2.2. For any specific v € A%, the computation of P, @, depends only on the
combinatorics of the corresponding root system, see for example Lemma 6.2.7. We will
leave these calculations for an interested reader in the later sections as they are straight-
forward to do in any specific case.
Example 6.2.3. If v is simple, then P, = @ = 0. Also, if v is not simple, then
(6.2.4) P, >2.

For, since v is not simple, v = 3 + 6 for some distinct 3,5 € A%, hence 2y = v+ 8 + 4.

Lemma 6.2.5. Let v € AL. If Ny > P,,Q,, then (Xé\[ﬂ’)* s a cocycle of degree 2. In

particular, if v is simple, then (XJWVV)* s a cocycle of degree 2.

Proof. To show that (xfyv 7)* is a cocycle, we use Remark 6.1.1 (b). That is, we show that

there is no chain ¢ € Cs such that CL’»JYV 7 ® 1 is among the terms, with nonzero coefficient,
of d3(6® 1) S CQ ® A.
The chains in C3 are of the form xgﬁ +1, xgﬁ Xs, x[gxév‘s and xgxsx,. We consider these
cases separately.
F . Ng-l—l o Nﬁ . . .
or c=x5"" ", d3(c) = x5" ® zp, which is not of the required form.

Let ¢ = xgﬁ xs. If xJVV7 ®1 is present in d3(c®1), then Lemma 6.1.2 implies that we have

a numerical relation
NgB + 06 = Ny,
which contradicts the assumption N, > Q.. The case ngév5 is similar.
Finally, if ¢ = xgxsx,,, and X,JYV 7 ® 1 is present in d3(c ® 1), then we have a relation
B+06+n=Nyy
which again contradicts the assumption Ny > P,. ]

Because of the previous Lemma we need to compute P, and (),; this is simplified via
the following result. Let W be the Weyl groupoid of the Nichols algebra %, see [H1] or
[AA].

Lemma 6.2.6. Let 61, d2, 03 € Al. Then there exist w € W and T € Sy such that
w(d;) € A% N (Zyr 1) + Zove(e) + Zvns)) i=1,2,3,
for a suitable p.

Proof. See [CuH, Theorem 2.3]. O
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Lemma 6.2.7. Assume that q is of Cartan type and that v is not simple.
(a) In types Ag, Dy and Ey, we have P, =2 and Q = 1.

(b) In types By, Cy and Fy, we have Py, <3 and Q = 2.

(c) In type G2, Py <4 and Q~ < 3.

Proof. (a) Type A: Let v = ;; with ¢ < j. Suppose that there exists P € N such that
Pij = Yie + Ymn + Ysu with £ < m <'s (and the three roots in the right are different).
Then the coefficient of 7 in the right hand side is at most 3, so P < 3. If P = 3, then
k=m = s =1 and ¢, n, u are all different. If, say, u is the largest of them, then the
coefficient of v, in the right hand side is 1, a contradiction. Thus P, = 2 by (6.2.4). Next,
suppose that there exists P,t € N such that P~v;; = tyks + Ymn (and the two roots in the
right are different). Arguing as before, we see that P < 1, and (6.2.4) applies. Types D, E:
this follows from Type A and Lemma 6.2.6.

(b) Type B: Let ~v1,...,79 be the simple roots with vy the short root. Then the roots
come in three flavors: v;+...+7v;, 1 < j <0, v;+.. .47, and v +. . . 4y—1+27+. . . +27,
i < j < 0. Hence, the maximum P is 3 and P, < 3; similarly, Q, < 2. Note that P, =3
and (), = 2 can occur, e.g.

(Yo—2 +v0-1) + (o—2 + vo—1 +70) + (Yo—2 + Yo—1 + 279) = 3(Yo—2 + Y91 + Vo)

Type C: The coefficient of vy in v is 0 or 1, but in the former, « belongs to a sub-diagram
of type Ag_1 that was already settled. Looking at the coefficient of ~y in both sides of
01 + 02 + 03 = Pry, we conclude that P < 3. Similarly, @, < 2. Note that P, = 3 and
@, = 2 can occur, e.g.

(279—2 + 2701 +70) + (Yo—2 +v6-1 +70) + 70 = 3(Yo—2 + Y91 + )
Type F': this follows from Types B and C and Lemma 6.2.6.
(c) By inspection. O

By Lemma 6.2.5 we may assume < is not simple. If N, = 2, then the Lemma does
not apply. The second technique provides an explicit computation of the differential of a
suitable chain in this setting. Let s = s, be as in (4.1.6).

Lemma 6.2.8. Let v € Ai be such that N, = 2 and the following conditions hold:
(a) Forall ,6 € AL, B <6, 7=+,

(6.2.9) TRTy = By T T3, TyTs = Gy L5y, 48 = Qss-

(b) If 1,72, 73 € AL are three different roots, v; # v, then y1 + 2 + v3 # 2.

(c) If y1,72 € Ai, Y1 # V2, then Ny v1 + v2 # 2.
Then (xg)* is a cocycle of degree two.

Proof. By Remark 6.1.1 we have to check that the coefficient of X,QY ®1in d(c® 1) is zero
for all 3-chains ¢ of degree 2y. By (b) and (c) we have to deal with ¢ = xgx,x5, where
8,0 € Ai, B < d,v= [+ Here we use the convexity to deduce that g < v < 4.

Fix 8,6 € A such that 3 < § and v = 3 + 4. By (4.2.2),

TRT§ = qBsTsTE + bT~ + Z b, Ty - - Ty
B<in <<y <8: Y vi=v
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for some bx,,b,, . ., € k. Using the convexity again we see that if v; < --- < vy, are such
that > v; =7, then 11 <y < 1.
By definition of the differential on 2-chains and (a),

d(xpxs ®1) =x3 ® T5 — qsxs @ T3 —bxy ® 1 — Zbyh_,.,ykxyk ® Ty 4 - Loy,
d(xpxy ® 1) = X3 @ Ty — @31%y @ 28, d(Xy%s D 1) = Xy @ T5 — ¢y5%s @ T
Using these computations and (a),
d(xpx,x5s ® 1) = %% @ 5 — sd(xBX,y ® x(;) = XgXy ® T5 — 5(X5 ® Ty Ts — ByKy @ x,ga:(;)
= XXy Q5 — 8 <qv5xﬂ ® L5y — qoy%y © (qpssas + by + me,...,ukmuk e ﬂful))
= XXy @ L5 — (y5X3Xs © Ty — s((qwg — By)bXy ® Ty — qByqB5%y @ T5T3

) by (G96%0, ® Ty, o Ty Ty — Gy Ky ® Ty - Ty) + 5y GBGH6%s @ x,yx@)
= X%y ® 25 — Gya%p%s ® Ty + (48y — 10)bX; ® 1+ 4y qps%y%5 @ 75

+) iy Q8K Ry, @ Ty, Ty,

— s(Z:byl,m,VkXV,C & (qq,(;:c,,k_l e T Ty = QB Qg Ty Ty _q - - - xyl)

- Zbul,.“,ukqﬂ’ys(fzmxyk xl/k,1 s xlll))

Here fx%xyk = [T+, Ty |c — TyTuy + Gy Xy, ® 2. We claim that

d(x8x,%5 ® 1) = x8%y @ T5 — ¢y5%8%Xs5 @ Ty + (qgy — qwg)bx?y ® 14 qpyq85%4%s @ T3

+ E bul,...7l/kq5fyxfyxyk & Ty g+ Ty

According with the previous computation we should prove that s annihilates
(6.2.10) x, ® (qvgxl,,%l e T Ty = By Gy Ty Ty - - .a:,,l), s(fx%myk Ty oo Toy)-

For the elements on the right of (6.2.10) we use that s> = 0. For the elements on the left
of (6.2.10), due to the convexity of the PBW basis, z,, ,...2,, 2y and 22, | ...x,, are
linear combinations of products Tpj oo Ty with 1 < pp < -+ < pj < vp—q and py < 7.
Hence p; < vy, so they are linear combinations of

Xy @ Ty Tpy = S(Tup Ty Ty ),

and we use again that s> = 0. Finally, using the claim and that

(6.2.9)
48y — Gy = 4884985 — 48sqss = 0,

the coefficient of X% ® 1 is zero. O

6.3. Higher degree cocycles. We now assume that we are not in the situations of §6.2.
We shall compute all chains ¢ € M(2¢ + 1) satisfying the degree and grading constraints
(6.1.3) and (6.1.4) and verify that the condition in Remark 6.1.1 (b) is satisfied. As before
v € AL is fixed.

Let f5: Ng — Np be the function defined in (4.2.4) for § € Ay.
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6.3.1. Ny = 2. Here the constraints (6.1.3) and (6.1.4) take the form
(6.3.1) > f5(ns)s = Ly, d ns=L+1.
dEAL 0eA L

In the following mega statement we collect all possible conditions that we may need to
verify on v to conclude that (x,% )* is an L-cocycle. We explain the scheme of the proof up
to the specific computation of differentials that is postponed to Section 10.

Proposition 6.3.2. Let L = 2( € N even. Assume that each solution (ns)sea, € NOA+ of

the equations (6.3.1) is of one of the forms (A), (B), (C), (D), (E), (F), (G), (H), (I) or
(J). Then (x,%)* is an L-cocycle.

(A) ny =L—1,nq =ng =1 and n, = 0 for the other p € A, ; where o, 3 € AL satisfy
(6.3.3) a<fB, a+p=7,
the corresponding PBW generators satisfy (10.1.8),

(6.3.4) and L satisfies (L)_gaa = 0.
9pp
(B) ny =L—-2,nq =ng =n5 =1 andny, = 0 for the other ¢ € A,. where o, 8,6,n € Ay
satisfy
(6.3.5) a<n<y<p<s y+n=a+p, n+di=7,
the corresponding PBW generators satisfy (10.1.11),
L
(6.3.6) and L satisfies c(aLﬁ)A/ = Z(—ﬁm)k(k +1)g,, = 0.
k=0
(C) ny =L —=3,nq=2,n3 =ns5=1 and ny, =0 for the other ¢ € AL where o, 3,0,1,T
satisfy
6.3.7) a<n<y<T<B<S, y+T=a+8, n+d=7,
(63 No =2 atT=794n n+pf=2r
the corresponding PBW generators satisfy (10.1.16),
L—1
(6.3.8) and L satisfies (L)g,,q,5 + Z c(()fT)7 = 0.
j=1
(D) ny =L —2,nq =ng=mn5 =1 and n, =0 for the other p € Ay, where o, 3,6,1,T €
AL satisfy
atd=vy+mn [+o=n+r7,
6.3.9 <B<y<T<Nn <,
( ) a<f<y<T<u y+o=2n+71, n+p=r1.
the corresponding PBW generators satisfy (10.1.24),
(6.3.10) and L satisfies B .

aBy
(E)y ny =L -3, no =ng =n5 =n, =1 and n, = 0 for the other ¢ € A, where
OZ,B,(S, Y 2UAS A-f— SCLtZ'Sfy
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the corresponding PBW generators satisfy (10.1.33),

L—1
‘ L -
(6.3.12) and L satisfies d(cw)(;7 = Z q(;liy(k‘ + gy (K +2)g,, = 0.
k=0
(F) ny = L—2, ng =ng =ns =1 and ny, = 0 for the other p € Ay, where o, 3,6,n € Ay
satisfy
(6.3.13) a<n<y<p<d ytn=a+d, n+B=17,
the corresponding PBW generators satisfy (10.1.43),
(6.3.14) and L satisfies Cfoé)y = 0.
(G) ny =L—2,nq =ng =n5 =1 andn, = 0 for the other ¢ € AL, where a, 3,0, € Ay
satisfy
(6.3.15) a<p<y<n<d, y+n=p04+9 n+a=-7,
the corresponding PBW generators satisfy (10.1.49),
- ) _
(6.3.16) and L satisfies ¢ 5., = 0.

H ny = L—-2, ny, =mng =mn5 =1 and n, = 0 for the other ¢ € Ay, where
aaﬂ)(sa n,T, v € A-‘r satisfy

a< T fB<y< pu<vr<n<s a+d=n+71, B+i=v+7,

6.3.17

( ) Brn=pty, atv=y,
the corresponding PBW generators satisfy (10.1.55),

(6.3.18) and L satisfies C(—L(S)ow =0.

(I) ny =L -3, nq =ng =n5 =ny =1 and n, = 0 for the other p € AL, where
aaB)”n“’a 577’ € AJr Satisfy

(6.3.19) a<B<v<y<p<o<n B+o=v+v, v+n=p+y, a+tp=1,
the corresponding PBW generators satisfy (10.1.63),

(6.3.20)  and L satisfies d((igﬂ,a,a,y =0.

(J)ny =L =3, no =ng =ns =ny =1 and n, = 0 for the other ¢ € A, where
aaﬁ)‘i URZYES A+ satisfy

(6.321) a<fB<é<y<pu<v<ny B+n=v+v, d+tv=pt+y, at+p=r,
the corresponding PBW generators satisfy (10.1.63),

(6.3.22)  and L satisfies d/ngyay =0.

Proof. As N, = 2, x4y ® 1 is a n-chain for all n € N; hence xﬁ ® 1 is so. By assumption

€*1x5, for a pair («, )
satisfying (6.3.3); xax,€*2x5x(;, for a 4-tuple (o, 3,0,n) satisfying (6.3.5); xix€*3x5x(g, for
a 5-tuple (o, 3,0, n, 7) satisfying (6.3.7), xax[;x%_zx(g, for a 5-tuple (o, 8, 9,1, T) satisfying
L—2
5

all (L + 1)-chains of degree L~ are one of the following forms: x,x

(6.3.9), xax5x(;x€_2xn, for a 6-tuple (a, 3,9, 7,¢,n) satisfying (6.3.11), xox> " *xgxs, for
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a 4-tuple (o, 3,0,n) satisfying (6.3.13), XQX5X§*2X5, for a 4-tuple (o, 3,0,n) satisfying

(6.3.15), XaXIgX,ly’72X5, for a 7-tuple («a, 8, 6,7, T, p, v) satistying (6.3.17), Xax5X€’3X5xn, for
a 6-tuple («, 3, v, ud,n) satisfying (6.3.19).

©)

Fix a pair (o, 3) satisfying (6.3.3). To simplify the notation, call { := —ZO‘—; = —g‘;—;.
Y
We can apply Lemma 10.1.7 since conditions (10.1.8) hold by hypothesis. Assume first

that L = 2a + 1 is odd. Hence the coefficient of XﬂL/ ® 1 in d(xaxfi_IXg ®1)is

b { (== 1) (@) — (0™} = —baly {(L+0) ()2 + ¢} = —bal (L)

If L = 2a is even, then the coefficient of X%,’ ®1in d(xaxg_lxlg ®1)is

b2 (¢ = 1) (a) g2 = —baly" (1+ () (a)e2 = —baly ' (L)c.
By (A) such coefficient is zero in both cases.

Fix a 4-tuple (a, 3, 0, n) satisfying (6.3.5). We can apply Lemma 10.1.10 since conditions
(10.1.11) hold by hypothesis. Hence the coefficient of x{; ® 1 in d(XaX,%_QXﬁX(; ® 1) is
zero by (B).

Fix a 5-tuple («, 8,0, n, 7) satisfying (6.3.7). We can apply Lemma 10.1.15 since condi-
tions (10.1.16) hold by hypothesis. Hence the coefficient of xg ®1in d(xixfi_?’mxg ®1)
is zero by (C).

Fix a 5-tuple (e, 8,6, n,7) satisfying (6.3.9). We can apply Lemma 10.1.23 since condi-
tions (10.1.24) hold by hypothesis. Hence the coefficient of x ® 1 in d(xax5x 225 ® 1)
is zero by (D).

Fix a 6-tuple (o, 8,9, 7, ¢, n) satisfying (6.3.11). We can apply Lemma 10.1.32 since con-
ditions (10.1.33) hold by hypothesis. Hence the coefficient of X,{; ®1in d(xa}%x(gxg—?xn ®
1) is zero by (E).

Fix a 4-tuple («, 3, 6, n) satisfying (6.3.13). We can apply Lemma 10.1.42 since (10.1.43)

holds by hypothesis. Hence the coefficient of x,% ®1in d(xaxg_Qng(; ®1) is zero by (F).

Fix a 4-tuple (a, 3,0,n) satisfying (6.3.15). We apply Lemma 10.1.48 since (10.1.49)
holds by hypothesis: The coefficient of xg ®1in d(xax5x€*2x(; ® 1) is zero by (G).

Fix a 7-tuple (o, 8, 9,1, 7, u, v) satisfying (6.3.17). We can apply Lemma 10.1.54 since
(10.1.55) holds by hypothesis: The coefficient of xg ®1in d(xax5x§_2x(5 ® 1) is zero by

(H).

Fix a 6-tuple («, 8, v, 1, 0, ) satisfying (6.3.19). We apply Lemma 10.1.62 since (10.1.63)
holds by hypothesis: The coefficient of x,% ®1in d(}coé}chﬁ_3}{5)(77 ® 1) is zero by (I).

Fix a 6-tuple (o, 5, 0,1, v, 1) satisfying (6.3.21). We apply Lemma 10.1.70 since (10.1.71)
holds by hypothesis: The coefficient of xg ®1in d(xax[gxaxﬁ_?’xn ® 1) is zero by (J).

Thus the coefficient of X% ® 1 in d(c) is zero for all ¢ € M(L + 1) and Remark 6.1.1

applies. O
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6.3.2. Ny > 2. We carry out a similar analysis when the assumption is IV, > 2 instead.

Proposition 6.3.23. Let v € A be such that Ny, > 2 and for all pairs (a, ) € AL such
that

(6.3.24) a<f and a+p=(N,—1),

the corresponding PBW generators satisfy (10.1.8). Let f5 : No — No be the function de-

fined in (4.2.4) for each § € Ay. Assume that £ € N satisfies the following two conditions:
(a) For each pair (o, f) € Ai satisfying (6.3.24) the scalars qo~ and q g satisfy

oy
6.3.25 — —1)#), 90 =0.
( ) (qvﬂ )( )(ZW;)N’Y

(b) The solutions (ns)sca, € NOA+ of the equations

(6.3.26) > f5(ns)d = (N, > ong=20+1
seAL SeAL
are all of the form ny = 2({ — 1) + 1, no = ng = 1, for any pair (o, B) satisfying
(6.3.24), and ns = 0 for the remaining 0 € Ay.

Then (ng”)* is a 20-cocycle.

Proof. Fix a pair of positive roots («, 3) satisfying (6.3.24). We can apply Lemma 10.1.7
since conditions (10.1.8) hold by hypothesis and conclude that the coefficient of XﬁNv ®1
in d(anJWV”(L 1)Hx ® 1) is zero by (a).

By (b) all (2L + 1)-chains of degree LN,y are of the form xaxff\[”(
(o, B) satisfying (6.3.24). Thus the coefficient of xﬁN” ®1in d(c) is zero for all ¢ € M(2L+1)
and Remark 6.1.1 applies. O

L-1)+1 .
"+ xg, for a pair

Next we deal with the scalars c' B) and d((1 6)5 Given r, s,t € k, let

(6.3.27) L).—Zr (k+1)s, dindy - —ZT (k+1)s(k +2)s.
D L) _ 0
Notice that Caby = G ion and daéﬁ7 = d%m%yﬁéw'

Lemma 6.3.28. (a) Assume that (L), = 0. Then c(L) —schT)
(b) Assume that (L), =0 = (L)s and rs # 1. Then c£7s) =0.
(¢) Assume that (L), =0= (L)s for L >3 andrs # 1. Then d7(~ 8)5 =0.

Proof. For (a) we compute

L—1 koo L-1  L-1 L-1 -1
c7(n7Ls) = 2 rk(jz:% s]) = 2 s’(; rk) = 2 sl((L)r — (z)r) = — ; s'(7)r
L—2 L—
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Now (b) foll i deed, we have that /% = —sc'%) = rsclZ), b
ow (b) follows using (a). Indeed, we have that ¢, = —scs, = rscyg; as rs # 1 by

hypothesis, we have that c%s) = 0.
Next we deal with (c¢). As rs # 1 and (L), = (L)s = 0, we have that (L),s = 0; thus

cﬁﬁ?s =0 by (b). Also, (L;I)S = (. Then we compute

4, = @, 3 ("37) - <2>s]§r’f((k y) +een)

k=0 k=0
L—1 L—2 )
k41 . + 2
—o. X (") v - ()7
k=1 5 =0 s
L—1 )
(i+2
— @3 <J ! ) — (0,
j= s
As r # 1 we have that dq(@Ls,s =0. O

For each § € Ay, let af € Ny be the coordinate of o in 6: that is, 6 = ), afai.

6.4. Summary of the algorithm. The procedure is as follows:

o We fix one type in the classification. We choose a representative of the Weyl-equivalence
with the care that the proper subdiagrams were already treated.

o We fix v € Ai. We assume that v has full support; recall that Lemma 6.2.5 takes care
of simple roots.

o We compute N, P, Q.
Then we apply one of the following criteria:
#
(I) If Ny > Py, Q~, then (X»]va)* is a cocycle of degree 2.
(IT) If Ny =2 and (6.2.9) holds, then (XJVVA’)* is a 2-cocycle.
(IIT) Assume that N, = 2 but (6.2.9) does not hold. We define
L, =lem ({2}U {ord(—ga—a) cy=a+p,a, €Al )
BS

We find all families (1) 5¢ AT of non-negative integers satisfying (6.3.1) with L = L.

We check that any of these families (né)éeAi has one of the forms (A), ..., or (J)

in Proposition 6.3.2. Then (Xﬁ”)* is a cocycle.

(IV) Assume that N, > 2 but inequality # does not hold. We define

L, =lem ({NW}U {ord ((Z’{‘;)Nw>  (Ny—1)y=a+p8,a,8e€ Al )

We find all families (ns)s¢ AT of non-negative integers satisfying (6.3.26) with L =
L. We check that any of these families (ns);c Al has one of the forms (a), ...in

Proposition 6.3.23. Then (xﬁ”)* is a cocycle.
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Actually we distinguish two classes of types in the classification of finite-dimensional
Nichols algebras of diagonal type. In the first the braiding matrices have continuous
parameters and correspondingly the values of IV, might depend on these parameters. Then
arguments by hand are needed. These are the types treated in Sections 7, 8 and 9.

The second class consists of the remaining types where the braiding matrices are so to
say discrete. For them we compute N, Py, @ and the suitable families (ns);c Al using

a computer program developed by Héctor Pena Pollastri towards these goals. We then
check whether (”5)56A1 has one of the forms (A), ..., or (J), respectively (a), ...by hand

using the defining relations, or at least the convex order, of %,;. The types in this class
are those treated in Part III (to appear later).

The implicit numeration of any generalized Dynkin diagram is from the left to the right

and from bottom to top; otherwise, the numeration appears below the vertices.

7. CLASSICAL TYPES

7.1. Types Ag and A(jl0—j),0>1,j¢€ HLMJ' Let g be a root of 1 of order N > 2. In

2
this subsection, we deal with the Nichols algebra % of standard diagonal type A, that is
associated to the Dynkin diagram

q11 @12 922 G23 933 G9—16-1 qo—1¢ Q00
o o — © o — 0

1

where the g;;’s are either —1, ¢ or ¢~ and locally the edges are of the following forms:

) ) )

For more information, see [AA, §4.1, §5.1]. The aim of this Section is to prove that
Condition 1.4.1 holds for types Ag and A(j|0 —j),0>1, j € HLMJ‘ That is,
2

Proposition 7.1.1. For every v € A, there exists L, € N such that (xﬁ”)* s a cocycle.

We start by setting the notation. Let
(7.1.2) Q=Y oy, i<jel
kel; ;
The set of positive roots is Ay = {«;;|4,j € I, i < j}; this set is ordered lexicographically
on the subindex (7,7). Let r = |Ay| = (9”;1); we have a numeration Ay = {3;|i € I} so
that B < B¢ if k < L.
We set N;; := ord qq,;, that is N;; = Ny if @ = «;;. For simplicity we set N; = N;; for
all 7. Then
2 kel ;: = —1] is odd,
(7.1.3) Ny = k€ Lo s e = 1] |
N H{kel;:quw = —1|is even.
The root vectors are
Tay = Tay = T, el

(3

Lag; = L(ij) = [$i7xai+1j]67 1<jel,
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see (2.3.5); we order them lexicographically: z1 < x(j9) < -+ <3 < --- < xg. Thus

ngg ., hO—16 _To—160—1 nw nii .. ..
(2" 2o 191" -2 (1gy - -1 [0 < iy < Nig}

is a PBW-basis of #;. The defining relations in terms of the PBW-generators are

Lig) P (ik) = evijaar T (ik) (i) i<j<k;
L(ik) (k) = doinazi(jk) T (ik)> i<j<k
L(i)L(j4+1k) = doizaz1 kTG+1R)T(g) T Z(ik) i <j<k
L(if) T (k) = dasjone (k)T (ij)> i<j<k—-1</(-1;
Z(i0)T(jk) = Goipoji T (jk) L (ib)s i<j<k<
Z(ij)T(ke) = QovijoreT (k)L (i) T (1- Q~j,j+1)‘1aijakj$(i£)x(kj)7 i <k<j<
2 =0, i <.

Tij) =

The relations are homogeneous with respect to the Ng-grading, an observation that will
be useful later. As an example we draw the Cojocaru-Ufnarovski graph that encodes the
Anick resolution for the Nichols algebra %, of type A in case Ny, N1z, No > 2:

€1 T12 Z2
Nl 1 Ni2—1 Ng 1
Ty T2 T

Observe that in this case Ny = Nis = Ns and we are in Cartan type. The chains are then
Co={x1, x12, X2},

N Na
Cr={x", x5, %0 x1x12, x1%2, X12%2},

Ni4l  Niptl _Notl N Ny Nis Ny No  _Nis
Co={x""", , X]'Xi2, X7 'X2, X1X]5°, X1Xy 2, X12Xy >, Xjg X2, X1X12X2},

X127 5 X9
2N, 2N12 2N> N1 N12 Ni_ N N1+1 N1+
03—{X y X197, X9 7y X1 X9 ,Xl 'x12%2, X7 Xz y Xq X12, X4 X2,
Nia+1 No+1 N- Nia+1 N- No Nao+1
X1X1212 ) X1X22 s X1X12X227 X1212 X2, X1212X2 , X12X22 }7
Ni—1

and so on. In case N1 = 2, the loop between x; and x; is understood to be collapsed
to a loop from x; to itself, and similarly for the other root vectors.

In order to apply Remark 6.1.1, we start by the following Claim.

Claim 1. Let a be a non-simple root with N, = 2. Let ¢ € Cy41(A) a chain such that
d(c) € Cn(A) has a term x) ® 1 with nonzero coefficient. Write ¢ = X3 ... X5 ®1, where
a; € Ng for all j. If Ng, > 2, then a; = 0,1 and

(7.1.4) d ai=N+1.
i€l
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Indeed, we may safely assume that « = a9 = a1 + -+ 4+ ag for simplicity. Since d is
homogeneous, Najg = Zi@[r a;B;. Assume that

S:={iel,: Ng >2,a; >1}

is non-empty. If i € &, then a; > N by looking at the Anick graph, hence a; = N by x.
Also, the supports of the ; with i € & are disjoint. Let R = {k € I : k ¢ supp 5;,i € &};
observe that £ is non-empty because N, = 2, cf. (7.1.3). Now

by *
Zaiﬁi y: Na—NZBz = NZak
1¢6 €6 ker
Pick k£ € R and compute the coefficient of «a; in the last expression; then
Saz Y a-x
¢S 1¢6,kesupp B;
Now the cohomological degree of maﬁi . xg: sums up a; for each ¢ ¢ & and 2 for each i € &
(one arrow in, one out). Thus
N+1=) a;+2/8|>N+2.
i¢&
This contradiction shows that & = () and the claim is proved.

The following result on root systems of type A should be well-known; we provide a proof
for completeness of the argument.

Lemma 7.1.5. Let v,71,.-., Yn+1 € A+ with v1 <72 < ... < vpy1. Assume that

(7.1.6) Y1+t Va1 =ny.
Then

V2= = ==, Y =7t Int1

Proof. We may assume that v = a1 +. ..+ g for otherwise we reduce to a smaller 6. Since
we have n+1 roots in the sum which contains each simple root with coefficient exactly n, we
must have that v1,. .., v, have a; in the support but 4,41 does not. Similarly, v2, ..., Vn+1
must have ay in their support but v; does not. Hence, the supports of s, ..., 7, contain
all simple roots. We conclude that v9 = ... =, =+, thus 71 + y,+1 =7 by (7.1.6). O

Claim 2. Let v € A and let ¢ € C,(R) be a chain of degree n 4 1. Assume that

(a) d(c®@1)=...+Cx; ®1+... for some C # 0,
(b) The polynomial degree of ¢ is n + 1.

Then there exist a, 5 € A4

c:xaxz_l}%, v =a+p.

Proof. By (b), we may write ¢ = %, ...%y,,, ® 1, where 71 < 7o < ... < ypq1 € AL
Since d is N§-homogeneous, (7.1.6) holds by (a). Thus Lemma 7.1.5 applies. O
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daa

Claim 3. Let o, 8,7 € Ay with v = a + 3. Let p = ———. Assume that N, = 2. Then
4ss

d(xaxjﬁ Xy ® 1) = xaxﬂv'_l Qxg — q,ngxax?;_zxﬂ ® T

. L P
+ (—1)7(]06”3%471}(]7 1x5 ® Ty — qZY”B (J)px!, ® 1.
Proof. The defining relations say that
TaZy = qa,fTyTa + Ty, Lalp = qoyTpLas LBLy = qy,pLyTp-

Hence we are in the setting of Lemma 10.1.7. We consider two cases.
First we assume that j = 2a + 1 is odd. The only thing we need to prove is that the
coefficient of xJ, ® 1 is of the given form. We compute

77 { (% 1) (@ - (q)} — (o= D@ — (-9))

4v,8 7,8 dv,3
i q _ i—1 j—1/ .
== 1+ )1+ 9" ...+ ™+ ™) = =g 5 20+ 1)p = —¢] 5 (7).

Next we assume that j = 2a + 2 is even. We do a similar calculation for the coefficient
of ¥} ® 1.

qv.8 o,y

94,8

G s

2

i1 i—1 —1/ .
= _Q%ﬁ I+p)d+p"+...+ @2(1) = _quyg (2a+2)p = _quyg (J)p-

O

Proof of Proposition 7.1.1. First, if N, > 2, then (XZYV”)* is a cocycle in degree 2 by
Lemma 6.2.5, cf. Lemma 6.2.7 (a). Let v be a non-simple root with N, = 2.

By Remark 6.1.1, it suffices to show that there is no ¢ € Cy(R) such that d(c) contains
X,JYV ® 1 with a non-zero coefficient. Assume that this happens. By Claim 1, ¢ satisfies

the hypothesis (b) of Claim 2. Hence ¢ = XOCX,]}Y_IXﬂ ® 1 for some o and 3. But X{YV ®1

does not enter in d(xaxy_lxlg ® 1) with a non-zero coefficient for any «a, 3,7 € AT with
v=a+ f. Indeed, p = oo _ g1, see (7.1.3); taking j = N, the coefficient in Lemma
asp
. —1 /.
3 is qf{ﬁ (J)e =0. O

7.2. Types By and B(j|0 — j), 0 > 1, j € Iy_1. Let ¢ be a root of 1 of order N > 2. In
this subsection, we deal with the Nichols algebras %, of diagonal types Bg or B(j|6 — j).
In the first case, the Dynkin diagram is
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The set of positive roots in both cases is
(7.2.1) Ay ={ap |t <k el}U{ap+ar|i <k el}.
We fix the following convex order:
agp<ap<- <o <agtoa <---<apg+ o

(7.2.2) <ag <oz < - <ag_1 <ag_19 < p—19+ g < ayg.

We set Ny, := ord qa,,, Mik := ord qa,g4+a4y, that is Ny, = Ny if o = oy, My, = N if
a = i + arg. Let M = ord ¢?, P = ord(—q). Then
2 i<j<k<,
M i<k<jorj<i<k<® . _{2 i<ij<k
P i<j<k=0, FTIM i<k<jorj<i<k
N j<i<k=6¢
Here we set j = 0 if q is of Cartan type. For more information, see [AA, §4.2, §5.2].

In this Section we prove that Condition 1.4.1 holds for types By and B(j|0 — j), 0 > 1,
j € Iy_1. We need the following technical result.

Ni, =

Lemma 7.2.3. Let v = g, assume Ny = 3, and let (o, B) be a pair of positive roots such
that

(1) a+pB =2,

(2) o = ayg, B = a1p + agi1g for some k € Ig_q,
(in particular, (o, B) satisfy o < j3).

Then the relations between the root vectors xo, xg and x., are of the form

Tally = Qor@rTas  TrZg = Goplaly,  Talp = daplple +bay,  bek

Proof. The statement follows by the repeated application of the convexity and homogeneity
of the relations.We prove 24Ty = gayZ~%o first. For any n € AL such that o <n <, we
must have n = ay, for some k < r < 6 by (7.2.2). From here, we see that is impossible to
find m1,...,7m such that ao+v # n1 +--- + 1 and a < 1; < 7. Hence, 24Ty = ¢ayTyTo by
(2.3.6).

For the second relation, if n € A, is such that v < n < 3, then n = a9 + a,¢ for some
k<r<@0. Hence S+~ #n +---+nif a < <7, 50 2,28 = qy3757.

The last relation follows similarly: o < < --- < < 8 are such that >, 7, = o + 8
if and only if k =2 and 1 = ny = 7. U

Proposition 7.2.4. For every v € A%, there exists L € N such that (Xﬁ”)* is a cocycle.

Proof. Let v be a positive non-simple root. Arguing recursively we may assume that ~ has
full support. Hence, either v = g or else there exists k € I g such that v = a9 + age.
First we consider v = ag. It is easy to check that P, = 3 and @, = 1. Hence, if N, > 3,

then Lemma 6.2.5 applies and (X]WV 7)* is a 2-cocycle. Next we consider the case N, = 3:
that is, either N = 3 if the braiding is of Cartan type, or else N = 6 if not.

All the pairs («, 3) as in (6.3.24) are of the form o = aqk, 8 = a9 + a1 for some
k € lg_1. Fix a pair (o, §). By Lemma 7.2.3, 24, x5, x satisfy (10.1.8). Also, Z:—; =1
for all of them, so we take L = 1. Now we look for solutions of (6.3.26). That is,
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26€A+ fs(ng)o = 3, 25€A+ nsg = 3. We check that there is no solution with ns = 3
neither with ns = 2, 6 € A,. Hence we are forced to look for solutions with n., =1 for

three different roots 74 € Ay (and 0 for the other roots). We write ¢ = Y. agt)ai. As

> agt) = 3 for all 7 € I, we have agt) =1 for all ¢ € I3, and either a((f) =1 for all ¢t € I3,

or aét) = 2 for some t € I3. If aét) =1 for all ¢t € I3, then 74 = v for all £, a contradiction.
Hence we may assume a(gl) =0, aé2) = 2, aé3) = 1. Then v1 = a1, 72 = 19 + akt10,

~v3 = 7, for some k € Ty_1. Thus Proposition 6.3.23 applies and (X?’Y)* is a 2-cocycle.

Now we consider v = a1p + agg, k € Ip9. Here, P, = 2 and Q, = 1. If N, > 2, then

Lemma 6.2.5 applies and (X]WV 7)* is a 2-cocycle. Next we consider the case N, = 2: that
is, either N = 4 if the braiding is of Cartan type, or else k > j if the braiding is of type
B(j]60—j). Let a < 8 be a pair of positive roots as in (6.3.3). We have several possibilities:

o =011, 8=+ arg, i < k. Arguing as in Lemma 7.2.3, the relations between the
root vectors are of the form:

Taly = ayTyTa, TyTB = QyBTRT~, Lol = qafTRTa + DI, b e k.

o a=a1i-1, 8= g+ g, k <i<80. The relations between root vectors are of the form

i—1
TaZy = ayTyTa; T = QyBTRT~, TaXg = (afTaTa + bxy + Z btZay+aeTari—1s
t=k+1
for some b, b; € k.
o a = aig, B = apg. Arguing as in Lemma 7.2.3,
6-1
TaZy = JayTyTa, TyTf = GupTETy, Talf = JafTaTa + BTy + Z btZag+agTag -1
t=k+1

for some b, b; € k.

In all cases the root vectors satisfy (10.1.8), and _ZC;TZ = ¢*2, so we take L = M.

Next we look for solutions of (6.3.1). In the Cartan case with N = 4, we have
Y se A, e = 3: we easily discard the possibility that ns > 2 for some 0 € Ay, s0 ex-
actly three of them are one, and n, = 0 for the remaining ¢ € A;. Arguing as in
the case v = a19 we check that all solutions are of form n, = n, = ng = 1 for a pair
(o, B) satisfying (6.3.3). Next we consider the case B(j|0 — j), & > j. We have that
25€A+:165upp5 fs(ns) = M. Let n € A4 such that 1 € suppn and n,, > 0.

o If = g, then n, = 1: otherwise, f,(n,) > P =2M > M = z5€A+:1€Supp5 fs(ns), a
contradiction.
o If n = ay4, 7 < j, then n, = 1. Suppose on the contrary that n, > 1. Then n, = 2, since

fn(ny) < M = N,. This implies that ns = 0 for all § # a; such that i € supp .

Let 6 € A4 such that af_H = 2. Then ng = 0 since i € suppd. Thus

M = Z f(g(ng), Z ng < M.

6€A+:af+1:1 5€A+:af+1:1
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Then n;11¢ = 2 for some ¢ > i, which implies that ns = 0 for all § # «;11¢ such that
¢ € suppd. Recursively, there exist ig =1 < i1 =1 <19 < --- < is =7 — 1 such that

2 6= Q14 T € ]IS,
ns =
’ 0 0 # ai,_yi,, suppd NIy # 0.

On the other hand, if ag- =1, then either Ns =1, or § = ayy, i < 7, in which case ng < 1
since N5 = P = 2M. Hence ns = f5(ns) for all 6 such that a?- = 1. Using this fact,

M= fstng)ad =Y ns+2 D fs(ns)

0EAL 56A+:a§.:1 (56A+:a‘]5.:2
< Z ns + 2 Z fo(ng) <M —1+2 Z fs(ns).
6€A+_{77} (56A+:a§.:2 56A+:a§.:2

Thus n, # 0 for some pu € A such that a? = 2; but j — 1 € supp i, a contradiction.
o If either n = ay; or else n = g + g, j < @ < 6, then N, = 2, so fn(”n) =n,.
o If n = a9 + g, i < j, then n, = 1. Otherwise,

M = > fs(ns)ad_y > 2fy(ny) > 2M,
0€AL:j—1€suppd
and we get a contradiction.
Hence f5(ns) = ng for all § such that 1 € suppd. Therefore,
Z ng=M+1— Z ng=M+1— Z fg(n(;):l.
0€AL: 1¢suppd 0€A L :1€suppd d€A:1€suppd

That is, there exists a unique root § € Ay such that 1 ¢ supp 3 and ng # 0; moreover
ng = 1 for this root 5. Thus fs(ns) = ns for all § and we may translate to solve (6.3.1)

as follows: find v, € Ay, t € Iy, not necessarily different such that ), v = M~.

Write ¢ = > ,cr agt)ai. Hence we may assume that agt) =1 for t € Iy, a%MH) =0. As

ZteHMH a](f) = 2M and each a,(f) < 2, at least M — 1 of them are 2, and for the other two
(t)

a;,”’s, either both are 1, or else one of them is 2 and the other is 0. Hence we may assume

that al(:) =1 for t € [jy_;. This forces to have v, = v for t € Ipr—1, Ypmr +Ymr41 = 7.
Hence all the hypotheses of Proposition 6.3.2 hold, and (xﬁ”)* is a cocycle. U

7.3. Type By j standard, j € Iy_;. Here ¢ € G4. In this subsection, we deal with Nichols
algebras %, of standard type By ;. We assume that the corresponding diagram is

¢ ¢ = ¢ ¢ -1 ¢ ¢ - ¢ ¢
o—— o 0 —— o ——o o ——29
J

The set of positive roots is (7.2.1), and we fix the same convex order, see (7.2.2). For more
information, see [AA, §6.1]. We prove that Condition 1.4.1 holds for type By ; standard:

Proposition 7.3.1. For every v € A, there exists L, € N such that (xﬁ”)* s a cocycle.
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Proof. Let v be a positive non-simple root. Arguing recursively we may assume that + has
full support. Hence, either v = g or else there exists k € I 9 such that v = a9 + age.

First we consider v = 9. Here, P, = 3 and Q4 = 2, N, = 3. All the pairs (o, 3) as in
(6.3.24) are of the form o = aq, B = a9 + agy1¢ for some k € [p_;. By Lemma 7.2.3,

Taly = qayTyTa, TyTg = QyBTRL~, Talf = (afTTe + bk:):gy, for some by, € k,

so the root vectors satisfy (10.1.8). Also, Z‘j—; =1 for all of them, so we take L = 1. Now
we look for solutions of (6.3.26). As in the proof of Proposition 8.6.1, there exists a pair
(o, B) as in (6.3.24) such that ny, = no = ng = 1, and ns; = 0 for the remaining roots
§ € A%. Thus Proposition 6.3.23 applies and (xg)* is a 2-cocycle.

Now we consider v = ag + agg, k € Iz 9. Here we have P, = 2 and (), = 1. Hence, if
k < j, then Lemma 6.2.5 applies since IV, = 6, so (xg)* is a 2-cocycle. Next we consider
the case k > j, so Ny = 2. The pairs o < 8 as in (6.3.3) are the same as in Proposition
8.6.1, the root vectors satisfy (10.1.8) and _ZC;TZ = —(*! so we take L = 6. Also, the
same argument as in the case B(j|0 — j) in Proposition 8.6.1 shows that there exists a pair
(o, B) as in (6.3.24) such that ny, = 4, no = ng = 1, and ns = 0 for the remaining roots
0 € Al. Hence all the hypotheses of Proposition 6.3.2 hold, and (xg)* is a cocycle. O

7.4. Type Cy. Let q be a root of 1 of order N > 2. In this subsection, we deal with the
Nichols algebras %, of diagonal type Cy: the Dynkin diagram is

—1 —1 —2 2

q q q q q g q° ¢
O O o O o .

The set of positive roots is

(7.4.1) Ay = {Ozij i <jel}uU{ap+ Q591 i <jelp_}.

We fix the following convex order:

(7.4.2) ap <ap <o <oapger <ogtaggor <o toagog << agg+ a1
o <apg<ay<ag<--<agog<ago1g <19+ ag-1 <ap.

Let M = ord ¢?. It follows from the definition that

N — M, v = aig+ aig—1 or v = ag;
N, ~v=aj+ajy_1,i<j, ory=ay, (i,j) # (6,0).

For more information, see [AA, §4.3]. The aim of this Section is to prove that Condition
1.4.1 holds for type Cy. More precisely,

Proposition 7.4.3. For every v € A, (XJVV’Y)* is a 2-cocycle.

Proof. Let v be a positive non-simple root. Arguing recursively we may assume that ~ has
full support. Hence, either v = a4 or else there exists j € Ip_; such that v = a9 +j9_1.
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First we consider v = ag. In this case we have P, = 3 and (), = 1. Hence, if N, > 3,
then Lemma 6.2.5 applies and (XJWV 7)* is a 2-cocycle.

Now assume that N, = 3: that is, N = 3. The unique pair (o, ) as in (6.3.24) is
a=ap+a19-1, f = ay. Arguing as in Lemma 7.2.3, the relations are of the form !

Taly = QayTyTays  TyTB = @yBTRT~, TalB = (uBTRTo + ba;2 for some b € k,

and then the root vectors satisfy (10.1.8). Also, q“; =1 for all of them, so we take L = 1.

Now we look for solutions of (6.3.26). That is, > 5o 1, fs(ns)d =37, Yo5en, no = 3. We
check that there is no solution with ns = 3 neither Wlth ng =20 € Ay. Hence we look for
solutions with n., = 1, for three different roots v, € Ay (and ns = 0 for the other roots).
We write 7 = > .cq agt)ai. As ), al(-t) = 3 for all 7 € I, we have a((f) =1 for all t € I3, and
either agt) =1 for all t € I3, or agt) = 2 for some t € I3. The case aét) =1forall t €13

(t)

gives a contradiction: either v; = v for all ¢, or else ), a,”

agl) =2, a§2) =0, agg) = 1. Then v1 = a19 + @19-1, Y72 = ag, 73 = v. Thus Proposition
6.3.23 applies and (Xi)* is a 2-cocycle.

; > 3. Hence we may assume

Now we consider v = a9 +ajg—1, j € [p—1. In this case, P, =2 and @, = 1. If N, > 2,

then Lemma 6.2.5 applies and (X]WV 7)* is a 2-cocycle. Hence we need to study the case
N, = 2: thatis, N = 4 and v = a1g + a1p—1. Let o < 8 be a pair of positive roots as in
(6.3.3). We have the following possibilities:

o =11, B=0a1g+ g, i €Iz 9_1. There exist b,b; € k such that

6—1
TaZy = Qay@TyTa, TyTE = QyBTRL~, TaXg = (afTaTa + DT~ + Z btZTagtarg_1Tar i1
t=i+1
o o= ayg, B =ajg_1. In this case,
TaTy = (aryTyTa, TNTE = (yBTRT, TaTB = qafTaTa + T.
In all cases the root vectors satisfy (10.1.8), and —q‘;fo‘ = —1, so we take L = 2.

Next we look for solutions of (6.3.1). That is, > s5cn, f5(ns)d =27, 3 5cn, ns = 3. Let
€ Ay be such that n, # 0, 6 € supp . Notice that

2= Y fslnag= > fs(ne),
dEAL: OE€supp d 0€EAL: O€supp b

so ny, < fu(n,) < 2. Suppose that n, = 2. Then u = a9 + cjp—1 for some i € Iy_; since
N, = fu(2) <2, and there exists n # p such that n, =1, ny = 0if § # p,n. But then

dag;1=2y—2u=  fs(ns)d = f(L)n=n,
d0Fp
a contradiction. Hence n, = 1 for all u € Ay such that n, # 0, 6 € supppu. Then
there exist three different roots 7; € A4 such that n,, = 1, and we may assume that

6 € supp 2 Nsuppys, 6 ¢ suppy1. As 72 # 73, we may assume Y2 # 7, so a]> = 1. This
implies that a]' =1, so y1 = ay; for some i € [y_1, and a]® = 2, so v3 = 7.

1Indeed7 To = [:cl 0—1, xlg]c, Z~y = T19, and using g-Jacobi identity we have that b = ¢(¢—1) HieH#l qi6 -
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Hence all the hypotheses of Proposition 6.3.2 hold, and (xfyv ")* is a 2-cocycle. O

7.5. Type Dy. Let g € Gy, n > 2. Let %, be a Nichols algebra of type Dy. That is, the
generalized Dynkin diagram of %, has the form

o

The set of positive roots is
AL ={ai;li<jel (i,4) # (0 -1,6)}
U {Oéig_g + ayp |Z € ]19_2} U {Oéig +aj9-2 |Z <jE ]19_2}.

We fix the following convex order:

(7.5.1)

o1 <o < - < a1g-1 < a1g—92 o < oag < a1+ ag_o < ...
<oargtazg2 < <oz <<z <ap-20-1 < Qg2+ Qy
< ag_99 < apg—1 < Qp.

For more information, see [AA, §4.4]. The aim of this Section is to prove that Condition
1.4.1 holds for type Dy. More precisely,

Proposition 7.5.2. For every v € A%, (X:ZYV’Y)* is a 2-cocycle.

Proof. By Lemma 6.2.7, P, = 2 and @), = 1 for all non-simple roots a. Hence, if N > 2,
then Lemma 6.2.5 applies and (x]yv 7)* is a 2-cocycle for all roots a.

Next we assume N = 2, that is, ¢ = —1. We will apply Proposition 6.3.2. Let v be
a positive non-simple root. Arguing recursively we may assume that v has full support.
Hence, either v = ag or else there exists & € I g_o such that v = a9 + agg—2. We look
for pairs @ < 8 € A such that v = a + 3. Notice that goa = qgg = —1 = —(q]‘;—g in any
case so we may guess that L = 2.

First we consider v = aqg. All the pairs (o, 5) as in (6.3.3) are of the form o = ayj,
B = aj11¢ for some j € Ip_;. Similar to Lemma 7.2.3,

TaZy = QayTyTas  TyTR = QyLRTy,  Talg = afTaTa + DTy for some b € k,
so the root vectors satisfy (10.1.8). Next we look for solutions of (6.3.1). That is, 2y =

01+062+63,0; € Ay. We write §; = >, ¢ al(-j)oci. Asa? is 0 or 1 fori = 1,60 —1,0, we may

fix agl) = a§2) =1, ag?’) = 0 and see the possible pairs of roots such that agrf)l = agi)l =1,

respectively agp ) = aér) = 1. Suppose that no one of the §;’s has coefficient 1 for the three

simple roots simultaneously. Then we may assume a(gl_)l = aég_)l =1, a((f) = a(gg) =1, so
aéj_)Q > 0 for all j € I3, a contradiction. Hence we assume agl_)l = aél) =1, so az(l) > 1 for
all i € I. If either aé2_)1 =1or aéQ) = 1, then aéQ_)z > 1, which implies agl_)Q =1 and so

01 = «. Otherwise aé?l)l =1= aés), then aé?l)Q > 1, which implies again §; = 7.
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Finally, let v = a9 + agp—2. Let a < 8 be a pair of positive roots as in (6.3.3). Then
the coefficient of oy is one for just one of them (and zero for the other): it should be «,
since o < 3. We have several possibilities:

o a=0Q1;-1, 8= o + Qg g—2, 7 < k. Then
TaTy = QayTyTas TyTg = QyBTRTy, TaTg = ¢aBTTa + DTy for some b € k.

o a:alj_l,ﬁzake—f‘ajg_g,k<j§(9—2. Then

j—1
Taly = JoyTyTa, TyTf = qypTETy; Talf = JafTaTa + BTy + Z btZaygtarg_oTars 1
t=k+2
for some b, b; € k.
o a=a19_-1, B = agg—s + ag. Then
Taly = QayTylLa, TyTE = QyBTRT, TaZg = ¢uBTaTa + DTy,
for some b, b; € k.
o a=ajg, B =arg_o. Then
j—1
Tay = Qoy@yTa, Ty = GypTaTy, Tals = aglala + 0Ty + Y Billayrar sTap 1
t=k+1
for some b, b; € k.
o a=aig+aje_2, B=arj1,k<j<0-—2 Then
j—1
TaZy = JoyTyTa, TyZf = qypTpTy; Talf = Jaflalo + BTy + Z biTajgtarg_aTag 1>
t=k+1

for some b, b; € k.

In each case the justification relies on the homogeneity of the relations and is similar
to Lemma 7.2.3; we leave the details to an interested reader. Therefore the root vectors
satisfy (10.1.8). Next we look for solutions of (6.3.1). That is, 2y = d; + d2 + I3, §; € A

We write d; = > .q agj)ai.
When k£ = 6 — 2, first consider the case 61 = ag_s. Then ag-z) =1for:=1,0—-1,60

and j = 2,3, so da, 03 have full support. This implies that agi) =1for2<i<f—2and
(0-2)

J =2,3, and we need that a; = 1 for one of them; that is, either do =  or else d3 = ~.
If 0; # ag_o for all j € I3, then
2019 = 289—2(7) = s9—2(61) + s9—2(02) + 59-2(3), so—2(0;) € Ay.

Applying the previous case, sg_2(d;) = g for some j € I3, so §; = 7.

If £ < 6 — 2, then we argue recursively. Indeed, we first consider the case §; = o and
argue as in the case k = 6 — 2 to show that either 62 =~y or else 63 = ~. If J; # ay_o for
all j € I3, then

2019 + apt19-2 = 285(7) = 55(01) + 55(02) + 5K(3), sK(0;) € Ay
Hence s1(8;) = a1 + ap419—2 for some j € I3, which means that §; =~ for some j € I3.

Hence all the hypotheses of Proposition 6.3.2 hold, and (x%)* is a 2-cocycle. O
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7.6. Type D(j160 — j5), 0 > 1, j € Iy_;. Let ¢ be a root of 1 of order N > 2. In this
subsection, we deal with the Nichols algebras %, of type D(j|0 — j). We may assume that
the corresponding diagram is

The set of positive roots is
Al ={ap|i <kel}U{apy+ars_1|i <kelyp_1}

(7.6.1) )
@] {Oéw + ip—1 ’Z € ]Ij+179,1}.

Thus (7.6.1) is a subset of the set (7.4.1) of positive roots of type Cy: We fix the convex
order in A} obtained from (7.4.2). For more information, see [AA, §5.3]. We prove
Condition 1.4.1 for type D(j|0 — j):

Proposition 7.6.2. For every v € A%, there exists L € N such that (xﬁ”)* s a cocycle.

Proof. Let v be a positive non-simple root. Arguing recursively we may assume that + has
full support. Hence, either v = g or else there exists k € Iy_1 such that v = a9+ axge_1.

First we consider v = 9. Again, one can easily check that N, = 2, P, = 3 and Q- = 1.
Let o < 8 be a pair of positive roots as in (6.3.3). Then there exists ¢ € Ig_; such that
a = (g, B = O+19- NOWa

Taly = qayTyTa,  TyTR = QyBTRTy,  Talg = (afTRTa 1 DIy for some b € k,

hence the root vectors satisfy (10.1.8), and —Z;—g € {q7' ¢ 2%}, so we take L = N.

There exist 4-tuples («, 3,4,n) € A4 as in (6.3.5):
a=a; <n=0a191 <Y< =a+a19-1<0=ap.
The corresponding PBW generators satisfy (10.1.11); indeed, there exists b € k such that
[Ta,Zgle = QupTpTa + DTyZy, Tpxs = qnsTsTy + x4, and the other pairs of root vectors
g-commute. Now CSZ,)Y = 0 by Lemma 6.3.28 (b) since ¢oy = g3y = ¢ '
Next we look for solutions of (6.3.1). We claim that f,(n,) =n, for alln € Ay.

o If N,, = 2, then this holds by definition of f,,.
o If n = ap+ agp—1,1 <k <0—1,then Ny =N, so f,(k) > Nifk>2. As

2fn(nn) < Z fn(nn)ag—l =N,
seAl

we have that n, <1, so f,(n,) = n,.
o Let n = ayg, with ¢ < k < j. Then N, = N. Suppose that n, > 2: as f,(s) > N if
s > 2, we may have n, = 2: moreover, ns = 0 for all § # a;;, such that 6 N1;; # 0 since

N = Z f&(ns)ag =N+ Z fg(n(;)af for all t € I; .

6€A1 dF i tESUPP &
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Now if £+ 1 < j, then ng = 0 for all § # a1, t > k+ 1: as ZaeAi f(;(n(;)ai_s_1 =N,

we have ng,,,, = 2 for some k+1 <t < j. Thus we may assume k = j—1. Let § € A
be such that j € suppd. Then ns =01if j — 1 € suppd, and N5 =2 if j — 1 ¢ suppd, so

N = Z fs(ns)ag = Z faji(nay,) = Z Najy-
b€ A% :jesupp d d:j€supp 8, j—1¢supp d d:j€supp 6, j—1¢supp &

This implies that ZéeAl ns > N + 2, a contradiction. Then n,, <1, so f,(n,) = n,.
o Let n = ay, J <i < k. Then N,, = N and an argument as in the previous case shows

that we have that n, <1, so f,(n,) = n,.
o Similar situation holds for n = a9 + @;9—1: Ny = M but again n, <1, so f(ny,) = ny.

As the claim holds, we may rewrite the problem as follows: find ~; € Ai, i € Iny1,
such that Y v, = Nv. As a‘ls =1if 1 € suppd, ag = 1if 6 € suppd, there exist § — 1 roots
such that 1,6 € supp~;: we may fix that 1,6 € supp~; for i > 3. As N = Zf:gl agil and
ag’ | > 1, there exists at most one ¢ > 3 such that a) | = 2:
e ifa) , =1foralli>3, then v, = foralli>3andy +7vy2 =7.
o if agil = 2, then v; = v for all # > 4 and 3 = a19 + o p—1 for some k € I 9_1. Hence

Y1+ Y2 = Qrg—1 + Qg, SO Y1, V2 Are a1 k—1, Q.

Hence all the hypotheses of Proposition 6.3.2 hold, and (x?)* is a cocycle.

Now we consider v = a9 + ®;9—1, ¢ € Iog_1. In this case, P, = 2 and ), = 1. Let
i <j. Then Ny = N > 2, so Lemma 6.2.5 applies and (XJWV”)* is a 2-cocycle.

Next we assume that ¢ > j, so N, = 2. The pairs (a, 3) as in (6.3.3) are the following:
o a=ayg, B =a9_1. Asin Lemma 7.2.3,

TaXy = QayT~yTe, TyTg = QyBTRTy, TaTg = ¢aBTaTa + DTy for some b € k.

o a=ayp+akg, B=ajk-1, k €li119-1. Then

01
Tally = QayTyTa, TyTs = (aTaTy, Talh = qapTaTa + DTy + D Bia;, Tarptars:
t=k+1
for some b, b; € k.
o a=ayk-1, B =arg+ajg_1, k €ljy1; 1. Then
i-1
Taly = JoyTyTa, TyTf = qupTETy; Talf = qafTaTa + DTy + Z btZaygta;eTari—1
t=k+1

for some b, b; € k.
o a=aii1, B =+ a;¢_1. In this case,

TaTn = QanTyTa, TyT8 = QyTRT~, Tl = (ufTETa + OT, for some b € k.
Hence all the pairs of root vectors satisfy (10.1.8) and _g(;T; €{qg',¢ %}, sowetake L = N.

Now we look for solutions of (6.3.1); i.e. > 5cn, fo(ns)d = N7v, 2o5ea, ns = N + 1. Let

n € A%l such that 1 € suppn, N, > 2 and n, # 0. Suppose that n, > 2. Arguing
as for the case v = ayp, there exists t € I,_; such that n = ay; and n, = 2. This
implies that ng = 0 for all § € Al such that suppd N1; # 0. Recursively, there exist
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to=0<t1 =t <ty <-- <ty =j—1suchthat n, =2if n = o;,_,114., 7 € L,
and ng = 0 for all § € Al such that suppd NI;_; # 0. Now, if j € suppd, then either
j—1suppd (so ng = 0 by the previous argument) or ag =1, N5 =2, s0 fs(ns) = ng. Thus,

N = Yo fslng)a) = > s

5€ A% :jesupp & S€ A% :jesupp §
But then
N+1:Zn52nn+ Z ng =N + 2,
5€A1 6€A1:j€supp6

a contradiction. Thus we have that f,(n,) = n, for all n € AL such that 1 € supp 7 since
either IV, = 2 or else n, > 1. From here,

N= > fins)aj= D n

5€Ai:1€supp6 5€Aq+:1€supp5

As Z5€Aq+ ns = N + 1, there exists a unique n € A such that n, # 0 and 1 ¢ suppn;

moreover, n, = 1. Again we may rewrite the problem as follows: find ~; € Ai, ke€lntt,
such that >, v = Nv. As a‘f =1if 1 € suppd, ag = 1if 6 € suppd, there exist 0 — 1
roots such that 1,60 € suppy: we may fix that 1,0 € suppy for k > 3. Also, a)* < 2 and
> alf = 2N, so either a]* = 2 for exactly N of them and 0 for the remaining one a;*,
or else a}* = 2 for exactly N — 1 of them and 1 for the remaining two a;*’s. A detailed
study case-by-case shows that v; = v for ¢ > 3, and ~y; + 72 = . Hence all the hypotheses

of Proposition 6.3.2 hold, and (x))* is a cocycle. O

8. EXCEPTIONAL TYPES

8.1. Type Ey. Let ¢ € Gy, n > 2. Let %, be a Nichols algebra of type Ey, 6 < 6 < 8.
That is, the generalized Dynkin diagram of %, has the form

DO

Here A9 = A is a root system of type Fy. We fix the following convex orders on the sets
of positive roots:

Eg :1,2,13,3,1234, 134, 234, 24, 34,4, 1232425, 123425, 23425, 12345, 1345, 2345, 345, 245,
45, 5,12232435%6, 123243526, 123242526, 12324256, 12342526, 23242526, 1234256, 234256,
123456, 23456, 2456, 13456, 3456, 456, 56, 6;

E7 : roots of support contained in Ig ordered as for Eg followed by

1222334453627, 122334153627, 122324453627, 12232435627, 12324353627, 122324352627,
12232435267, 12324352627, 1232435267, 12324252627, 1232425267, 123242567,
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1234252627, 123425267, 12342567, 1234567, 134567, 234252627, 23425267, 2342567,
234567, 24567, 34567, 4567, 567, 67, 7;

Eg : roots of support contained in Iy ordered as for F; followed by
12233%455564738, 12233%465564728, 12233%465%63728, 122334 455463728, 1223344°5463 728,
1222344556378, 1223334°5%63728, 1233345563728, 122233455%63728, 122334°5%63 728,
1222334456378, 1223%445%637%8, 1223244546728, 122233445363728, 1223241536378,
1223245363728, 1223%435363728, 1232435363728, 122233415362 728, 12233415362 728,
122324%53627%8, 12232435362 728, 12232435262 728, 1232435362728, 1232435262728,
1232425262728, 123425262728, 23425262728, 1223314655617382, 12223341536278,
1223344536278, 1223244536278, 1223243536278, 123243526278, 1223243526278,
122324352678, 123243526278, 12324352678, 123242526278, 12324252678, 1232425678,
12342526278, 1234252678, 123425678, 12345678, 1345678, 2342526278, 234252678,
23425678, 2345678, 245678, 345678, 45678, 5678, 678, 78, 8.

For more information, see [AA, §4.5]. The aim of this Section is to prove that Condition
1.4.1 holds for type Ey. We need first the following result.
Lemma 8.1.1. Let < § € AL be such that vy =+6 € Al.
() If pp < --- < pp € Ay satisfy Y, i = B+, then either py < 8 or else py, > 7.
(b) If i < -+ < g, € Ay satisfy >, i = § + v, then either py < or else py, > 9.

Proof. Let (-,-) be the symmetric positive definite form on R? such that (v, v) = 2 for all
veA Then —1 < (u,p)<1lifv#£1v e A Asf+d€ A, (8,5) =—1; thus (8,7) = 1.

Next we prove (a): the proof of (b) is analogous. Let u; < --- < ug be such that
> ;i = B+~. Note that £ > 2, since B+ =25+ ¢ A. Suppose on the contrary that
B<p < - < pg <. Then k > 3, since (u;, 8) <1 and

3=(B+7.8) = (11 8).

)

Assume that k£ > 4. Then there exist j # ¢ such that (u;, e) = —1 since
6=0B+7B8+7) =D (i) + > (1ir 1) <8+ > (i pty)-
i i#] i
Thus p1j + pe € Ay, pj < pj + pe < pe and we can replace the set {1 }icr, by
({midien, = {mgy me}) U {py + pe}-

Hence, recursively, we may assume that £k = 3. But using the computer we check that
v+ vty #£ B+ for all the 3-uples 8 < vy < vy < 13 < 7y so we get a contradiction. [

*

Proposition 8.1.2. For every v € A%, (XZWV”) is a 2-cocycle.

Proof. By Lemma 6.2.7, P, = 2 and (), = 1 for all non-simple roots . Hence, if N > 2,
then Lemma 6.2.5 applies and (xiv ")* is a 2-cocycle for all roots 7.
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Next we assume N = 2, that is, ¢ = —1. We will apply Lemma 6.2.8. Let v be a positive
non-simple root. For each pair § < § € Al such that v = 8+ §, we have that

LTy = 4ByTyT g, TyZs = GysT5T

by (4.2.2) and Lemma 8.1.1, and ¢gg = ¢s55 = —1. Hence (6.2.9) holds.

Let v1,7v2,73 € AL be three different roots such that 41 + 72 + 73 = 27. By Lemma
6.2.6 there exists w € W such that the support of w(~;) is of size < 3, and a fortiori 7 too.
As w(y1) + w(y2) + w(vs) = 2w(y) and these roots are contained in a subdiagram of type
As or As x Aq, we conclude that v; =« for some ¢ € I3. Using a similar argument we also
check that 2y1 4+ 72 # 27 for all 41 # 72 € Al. Hence all the hypothesis of Lemma 6.2.8
hold, and (x2)* is a 2-cocycle. O

8.2. Type Fjy. Let g be a root of 1 of order N > 2, M = ord ¢°. In this section, we deal
with a Nichols algebra %, of Cartan type Fy, that is associated to the Dynkin diagram

-1 -2 2 -2 2

q q
(¢} (¢] (¢}

q
@)

For more information, see [AA, §4.6]. The set of positive roots with full support is
(1221334, 12213%4, 12233%4, 12223%4, 122234, 123324, 122324, 1223342, 12234, 1234}.
The aim of this Section is to prove that Condition 1.4.1 holds for type Fy. More precisely,

*is a 2-cocycle.

Proposition 8.2.1. For every v € A%, (xfva)
Proof. By induction on the rank it is enough to consider v with full support. We have:
if v € {12233%4, 123324, 122324, 12234, 1234}, then N,=N,P,=3,Q,=2
if v € {1223%4, 172%3%4, 17273%4, 172234, 1?2*3%°4?}, then N, =M, P, =2, Q, = 2.
Hence, if N > 4, then N, > P,, (@, for all v with full support. Thus (xivv)* is a 2-cocycle
for all v with full support by Lemma 6.2.5.

Next we assume N = 4. If y € {1223324, 12%3%4, 122324, 12234, 1234}, then N, =4 >
P,,Q,, so (X,]y\[”)* is a 2-cocycle by Lemma 6.2.5.

Now we consider v € {1224334, 1224324, 1222324, 122234, 122%334%}. Let a < B be a
pair of positive roots as in (6.3.3). We have the following possibilities:
o v =122334, a = 3, B = 1?2324. There exists b € k such that [z4, 2] = bzs.
o v =122%3%4, o = 23, B = 1223324. There exist b,b; € k such that

[.Ta, wﬁ]c = bl’,y + b1$1224324$3.
o v = 1221334, o = 223, B = 12223%4. There exist b, b; € k such that
[ﬁa, xg]c = bx,y + b1Z129432473 + ba 293324 723.

o v = 1224334, a = 123, B = 123324. There exist b, b; € k such that

[an, ZUB]C == bI»Y + bl$1224324l’3 + b2l‘1223324$23 + b3$1222324$223.
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o v =122%3%4, o = 1223, 8 = 1223%4. There exist b, b; € k such that
[ﬂca, xg]c == bx,y + b1$1224324$3 + b2x1223324x23 + b3x1222324x223 + b4.’17123324l’123.

v = 1224334, a = 12223, B = 22324. There exist b, b; € k such that

o

[Ta, Tgle = DTy + D171294324 73 + DaT 129332423 + 3T 292324 T923
+ byx193324%123 + b5T1923242123.
v = 1224324, o = 223, B = 122234. There exist b € k such that [z, 4] = bz,.
v = 1224324, a = 1223, § = 12234. There exist b, b; € k such that

@]

(e]

[.’130“ .'Ifﬁ]c = b.'L'A/ + b1$122234$223.

v = 1221324, a = 12223, B = 2234. There exist b,b; € k such that

o

[.Ta, xﬁ]c = bx7 + b1x122234:c223 + b2.’I]12234.%'1223.
v =1%2213%4, a = 2, B = 1223324, There exists b € k such that [z4,25]c = bz..
v = 1224324, a = 12, = 123324. There exist b, b; € k such that

(@]

O

[$a, xg]c = bxy + b1T129234T923 + baT 293324 T2.

o

v =1222324, a = 3, B = 1?2%34. There exists b € k such that [zq, 2] = bz,.
v = 1222324, o = 123, 8 = 1234. There exist b,b; € k such that

(@]

[Ta,xglec = Ty + b112923423.

v = 1222324, a = 12223, B = 34. There exist b, b; € k such that

@]

[Tas Tple = DTy + b17129234T3 + DaT12347123-

v =12223%4, a = 1, B = 1223%4. There exist b,b; € k such that

(0]

[T, T8lc = bTy + D12129234%3.

v = 122234, (o, B) one of the pairs (12,1234), (12223,4), (1,12234). There exists b € k
such that [zq,zg]c = bz,.

v = 12243342, o = 122324, B = 12234. There exists b € k such that [z, 2] = bz..
v = 12243342 o = 123324, B = 1234. There exist b,b; € k such that

o

(@]

(0]

[130” JJB]C = b%»y + b1$12234l‘122324.

v = 12243342 o = 122234, B = 223%4. There exist b, b; € k such that

o

[l’a, l'ﬁ]c = bl'/y + b1x12234m122324 =+ b2$1234l’123324.

v = 12243342 o = 1222324, B = 2234. There exist b, b; € k such that

(@]

[l’a, .’I)/B]C = b.’ny + b1x12234x122324 + b2x1234x123324 + b3l’22324$122234.

v = 12293342 o = 1223324, B = 234. There exist b,b; € k such that

@]

[ﬂfa, ﬂcg]c = bx,y + b1$12234$122324 + b2$1234$123324 + b3x22324x122234 + b4$234l‘1223324.
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o v =122%3342, o = 1221324, B = 34. There exist b, b; € k such that

[.CUO“ xg]c = bx,y + b1219234 192324 + 212340193324 + D3T92324L 129234
+ bax234T1293324 + b5T23421293324.

o v =122%3342, o = 122334, 8 = 4. There exist b,b; € k such that

[.Ta, xg]c = b(ﬂ'y + b1x12234$122324 + b2$1234$123324 + b3$22324x122234
+ baZ2341293324 + D5223421203324 + D342 1204324

In all cases [Tq, Z]c = 0 =[x, 2].: the proof of all these relations follow as in Lemma
7.2.3. Hence the root vectors satisfy (10.1.8), and —ZZ—; = —1; then we take L = 2.

Next we look for solutions of (6.3.1). That is, ZéeAi fs(ng)o = 27, ZéeAl ns = 3.
Notice that ng # 3 for all § € Ai: otherwise n, = 0 for all n # 0, so 2y = f5(3)0,
a contradiction. Hence, either 2y = f,,(2)y1 + 72 or else 2y = 1 + 72 + 73 for some
v # 7; € AL. By Lemma 6.2.6 there exists w € W such that v/ = w(7;) have support
in a rank 3 subdiagram, so 7/ = w(y) has the same support: this subdiagram is either of
Cartan type B3 or C3. Looking at the corresponding cases (see the proofs of Propositions
8.6.1 and 7.4.3) the solutions for 4" are v4 = 7/, 7] + 4 = 7. Hence, all solutions for -y are
of form n, = n, = ng =1 for a pair («a, ) satisfying (6.3.3), and n, = 0 for the remaining
@ € A4. Hence all the hypotheses of Proposition 6.3.2 hold, and (ng)* is a 2-cocycle.

Finally we consider N = 3. If v € {1224334, 1224324, 1222324, 122234, 1223342}, then
N,=3>P,,Q,, so (xJVVA’)* is a 2-cocycle by Lemma 6.2.5.

Now we consider v € {1223324, 123324, 122324, 12234, 1234}. Let o < j3 be a pair of
positive roots as in (6.3.24). We have the following possibilities:
oy =1223324, o = 1224324, B = 1222324, There exist b € k such that [z4,25]. = bx%.

v = 1223324, o = 1224334, B = 122234. There exist b, b’ € k such that

o

2 /
[.Ia, ,IB]C = bx,y +Db L1292324L1294324-

v =1233%4, o = 1727324, 8 = 223%4. There exist b € k such that [zq,z]c = b2,

o

v =1233%4, o = 1221334, 8 = 2234. There exist b,b’ € k such that

)

2 /
[.’L’a, .’L'ﬁ]c = b.’l,',Y +b L92324L1294324-

o v =1223%4, a = 1?223%4, B = 22324. There exist b € k such that [z4, 2], = bx?y.

o

v = 122324, o = 1224334, 8 = 34. There exist b, b’ € k such that

2 /
[l‘a,ﬂfﬁ]c = bl',y +Db 9232421292324

(0]

v = 12234, a = 122234, 3 = 2234. There exist b € k such that [x4, 7). = bx%.
v = 12234, o = 1224324, 8 = 4. There exist b, b’ € k such that

@]

2 /
[.TOH .TB]C = b.T,Y +b L92342129234-

v = 1234, a = 1?2234, 3 = 34. There exist b € k such that [z,,z5]. = b:z:gy.

o
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o v =1234, a = 1222324, B = 4. There exist b,b’ € k such that
2 !
[Tas 2gle = by + b 234712923

In all cases [zq, 2] = 0 = |2, 2], and Z:‘—; = 1: the proof of all these relations follow as

in Lemma 7.2.3. Therefore the root vectors satisfy (10.1.8), so we take L = 1.
Next we look for solutions of (6.3.1). That is, ZéeAi fs(ng)d = 3, ZéeAl ns = 3.

Notice that ns # 3 for all § € Al: otherwise n, = 0 for all n # 4, so 3y = [5(3),
a contradiction. Hence, either 3y = f,,(2)y1 + 12 or else 3y = y1 + 72 + 73 for some
Y # v € Al. Again we use Lemma 6.2.6 to reduce to rank 3 subdiagrams and looking
at the proofs of Propositions 8.6.1 and 7.4.3 we conclude that all the solutions for v are of
form n, = ny, = ng = 1 for a pair («, B) satisfying (6.3.24), and n, = 0 for the remaining
@ € A,. Hence all the hypotheses of Proposition 6.3.23 hold, and (X»]va)* is a 2-cocycle. [J

8.3. Type G2 Cartan. Let ¢ be a root of 1 of order N > 3. Set

_JN, 3 does not divide V;
| N/3, 3 divides N.

In this section, we deal with a Nichols algebra %, of Cartan type G2, with Dynkin diagram

g a? ¢
O o .
The set of positive roots is
(8.3.1) AL ={1,132,1%2,1322,12,2}.

We take as generators x1, xs, as well as

r1112 = (ade21)%29, 2112 := (ad. 1)z,

8.3.2
( ) 11212 = [T112, T12)e, X2 = (ad. z1)xa.

We order these root vectors: 1 < z1112 < 2112 < 11212 < T12 < T9.
The aim of this Section is to prove that Condition 1.4.1 holds for type G2. More
precisely,

Proposition 8.3.3. For every v € A%, (X'JYV’Y)* is a 2-cocycle.

Proof. o For v = 132, the case Ny112 > 2 follows by Lemma 6.2.5 again. Assume now that
Nij12 = 2 (that is, N = 6). We will apply Proposition 6.3.2. The unique pair as in (6.3.3)
is @ = a1, 8 = 2a1 + as, since the following relations hold:

2 3 3
T1x112 = 1112 + ¢7q12 T112%1, T1X1112 = ¢°Q12 T1112%1, 11122112 = §°¢12 112T1112-

In this case, —Z‘;—Z = —1 so we take L = 2. The unique solution of (6.3.1) is n; = nysy =

ny29 = 1, and ng = 0 for the remaining roots. Hence Proposition 6.3.2 applies and (x31,5)*
is a 2-cocycle.
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o For v = 122, the case Ny12 > 4 follows by Lemma 6.2.5. Assume now that Nijo = 4. We
will apply Proposition 6.3.23. The unique pair as in (6.3.24) is & = 31 +aa, 8 = 3a1 429,
since the following relations hold:
1112211212 = —(q + 1)(]%233?12 - Q%Q 1121271112, T11122112 = qgth T11221112,
T112T11212 = ¢°q12 T11212T112-
Here Z‘“—g =1, so we take L = 1. The unique solution of (6.3.26) is n3y = nj29 = Ny392 = 1,
Y

and ng = 0 for the remaining roots. Hence Proposition 6.3.23 applies: (x},,)* is a 2-cocycle.

o For v = 1322, the case Nii212 > 2 follows by Lemma 6.2.5. Assume now that Nqja12 = 2
(that is, N = 6). We will apply Proposition 6.3.2. The pairs as in (6.3.3) are o = 2a + a,
8 =ai + as, and o = 3a1 + @z, B = ao, since the following relations hold:
T112Z12 = T11212 + QQQ12 T12%112, T112711212 = Q%z T112122112;
T11212%12 = CI%Q 12211212}
Z111222 = —(3)qQ12 T11212 — q:132 T2T1112 — 2612(]%2 T127112, L1112T11212 = Q%Q T1121221112,
T1121272 = Q%z T2T11212-
In both cases, —Z‘;—Z = —1 so we take L = 2. The solutions of (6.3.1) are
® ny10 = Ny392 = N1 = 1, and ng = 0 for the remaining roots, or
® Ny35 = Ny3g2 = ng = 1, and ns = 0 for the remaining roots.
Hence Proposition 6.3.2 applies and (x3;9;5)* is a 2-cocycle.

o For v = 12, the case N13 > 4 follows by Lemma 6.2.5. Assume now that Nio = 4. We
will apply Proposition 6.3.23. The unique pair as in (6.3.24) is o = 3a1 + 2a9, f = a2,
since the following relations hold:

2 3 4 3
r1121222 = —2(1 4+ q)qis 75 + qq13 T2x 11212, T11212212 = q~q12 T12211212;
3
T1222 = ¢ 12 L2X12-
Here g“—; =1, so we take L = 1. The unique solution of (6.3.26) is ny3g2 = nig = ng = 1,

N
ngs = 0 for the remaining roots. Hence Proposition 6.3.23 applies: (x‘llz)* is a 2-cocycle. [

TABLE 1. The roots with full support of Go; 71 < v =71+ 72 < 72

v | Ny, Cartan | N, (84.1) b | Py | Qy | 1 72 | Ly, Cartan | L, (8.4.1) b

132 M 8 2121 1%22 M 8

122 N 4 413111 12 N 8

1322 M 2 2 |1 [1%22 12 M 8
132 2

12 N 8 41 3 1 2 N 8
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8.4. Type G» standard. Let ¢ € G§. In this section, we deal with a Nichols algebra %,
of standard type G2 associated to any of the Dynkin diagrams

2 = 2 3 5 _
(8.4.1) 8 5 — g, b & —° ol, O L

The set of positive roots is again (8.3.1). Thus we take as generators z1,x2, as well as
(8.3.2) with the same order for these root vectors: x1 < z1112 < T112 < T11212 < T12 < T2.
For more information, see [AA, §6.2]. We prove Condition 1.4.1 for type G5 standard:

Proposition 8.4.2. For every v € A%, there exists Ly € N such that (xﬁ”)* s a cocycle.
Proof. We just consider the diagram (8.4.1) b.
o For v = 132, (x§15)* is a 2-cocycle by Lemma 6.2.5.

o For v = 122, we will use Proposition 6.3.23. The unique pair as in (6.3.24) is o = 31 +ao,
8 = 3aq + 2ae, since the following relations hold:

2,3 3
L1112711212 = ¢12T7112 — q12 1121271112, T11127112 = —q12 T11271112,

5
T112711212 = (12 T11212%112.

N.
In this case, <ga—;) " = —1 s0 we take L = 2. The unique solution of (6.3.26) is nq29 = 3,
v

Nny3g = Nysg2 = 1, ng = 0 for the remaining roots. Hence Proposition 6.3.23 applies and
(x3,5)* is a 4-cocycle.

o For v = 1322, we will use Proposition 6.3.2. The pairs as in (6.3.3) are a = 207 + ag,
B8 =a1+ as, and a = 3a1 + a2, f = aa, since the following relations hold:

T112212 = 11212 + (Cq12 T12T112,
w112011212 = (' Q12 T11212%112,
T11212712 = 12 T12%11212;
w1112 = C(4) s qr2 w1212 — 41y Taw1112 — (P (2) 30Ty T122112,
z112211212 = (Pqly T1121221112,
T1121222 = Qi)’z L2211212-
In both cases, —Z‘;—g = (" so we take L = 8. The solutions of (6.3.1) are

® ny392 = 7, n112 = niz = 1, and ng = 0 for the remaining roots, or
® ny392 = 7, Ny3y = ng = 1, and ng = 0 for the remaining roots.

Hence Proposition 6.3.2 applies and (x$;9;5)* is an 8-cocycle.
o For v =12, (x§,)* is a 2-cocycle by Lemma 6.2.5. O

8.5. Type D(2,1;«). Here ¢,r,s # 1, grs = 1; N = ordq, M = ordr, P = ord s. In this
section, we deal with a Nichols algebra %, of super type D(2, 1;«) with Dynkin diagram
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We fix the following convex order on the set of positive roots:
1<12<123<12°3<2<23<3.
For more information, see [AA, §5.4]. We prove Condition 1.4.1 for type D(2,1; a):

Proposition 8.5.1. For every v € A%, there exists L € N such that (xﬁ”)* s a cocycle.
Proof. By induction on the rank it is enough to consider v with full support. We start
with v = 123. The pairs (o, 3) of positive roots as in (6.3.3) are (1,23) and (12,3). As
T1T23 = 121372371 + T123,  T1T123 = qq12q13T123T1,  T123T23 = —(12¢137237123;
T12T3 = q13G23T3T12 + T123, T127123 = —(13G23T123T12,  T123T3 = I'(13G23T37123-
the root vectors satisfy (10.1.8). As —gg—g = g, respectively = r, we may take L =
lem{N, M, P}. There exists a 4-tuples (o, 3,6,n) € A} as in (6.3.5):
a=1<n=12<~y=123<p3=1223<§=3.
The corresponding PBW generators satisfy (10.1.11); indeed,
Talg = ¢aBTR%a + qq12¢13(1 — s)T 2y, TyTs = (psXsTy + T,

and the other pairs of root vectors g-commute. Now cg\ﬁg = 0 by Lemma 6.3.28 (b) since
Joy = 4, q3y = 5. Next we look for solutions of (6.3.1). There exist three solutions:
O MN123 :L—l, ny = Nnag = 1, n(;:()ifé;é 123,1,23;
O MN123 :L—l, nig = N3 = 1, n(;:()ifé;é 123,12,3;
omn=L—2n1=ns =n3=1,ns=0if § #123,1,123,3;
Hence all the hypotheses of Proposition 6.3.2 hold, and (Xﬁ”)* is a cocycle.

Now we consider v = 1223. If N, > 2 = P, then Lemma 6.2.5 applies and (X{YV”)* is a
2-cocycle. Now assume that N, = 2. The following relations between root vectors hold:
T123T2 = —q12G32T22123 + L1923,
L123%1223 = 41243221223L123, L1223T2 = (12432T271223;
12223 = —q12413¢2323T12 — q23T1223 + q12(r — 1)@2T123,
T12T1223 = —q12413923T123X12, 21223723 = —(12413G23L23L123-
Hence for each pair («, 3) as in (6.3.3), the PBW generators satisfy (10.1.8). Now L = 2
satifies the hypothesis of Proposition 6.3.2, so (X,Qy)* is a 2-cocycle. O

8.6. Type F(4). Let ¢ be a root of 1 of order N > 3. Set M = ord ¢?, P = ord ¢>.
In this subsection, we deal with the Nichols algebras %, of diagonal type F(4). We may
assume that the corresponding diagram is

We fix the following convex order on Ai:
1,12,123,1232,12232,2,23, 232, 3,122334, 122324, 12324, 2324, 1223342, 1234, 234, 34, 4.

For more information, see [AA, §5.5]. The aim of this Section is to prove:
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Proposition 8.6.1. For every positive root 7y, there exists a positive integer L~ such that
the chain (xﬁ”)* is a cocycle.
Proof. Let v be a positive non simple root. Arguing recursively we may assume that + has
full support. That is, v € {122334,122324,123%4,1223342 1234}.

If v = 122324, then N, = 2 = P,. First we look for pairs a < 3 as in (6.3.3). We have
the following posibilities:
o (a, B) = (2,123%4) or (o, B) = (23,1234). There exists b € k such that [z4,z5]c = bz..
o (a, ) = (12,23%4). There exist b,b; € k such that

[T, zgle = DXy + b1219324T2.

o (a, B) = (123,234) or (a, B) = (12232,4). There exist b, b; € k such that

(%, zglc = DXy + 1212342 23.

N
In all cases [zq, Zy]c = 0 = [z, 28], so the root vectors satisfy (10.1.8), and <—3;—;> =1

the proof of all these relations follow as in Lemma 7.2.3. Hence we take L = N.

Next we check that (12,2,122334,123%4,23%4,1223342) is a 6-uple (a, 3,6,7,¢,7n) sat-
isfying (6.3.11). As Goy = ¢* = 4By Qoy = ¢~ ', we have that d(()fB)M = dfﬁ)l’qz,qQ =0 by
Lemma 6.3.28 (c). Hence (E) holds in this case.

Now we look for 4-uples (a,3,d,n) satisfying (6.3.13). There are three possibilities:
(2,123,123%4,1223342), (2,122334,12324,1234) and (12232,1234,234,23). In these cases,
Jary = 02, qpy = ¢~ '. Hence cgfﬁ)7 = c((lg)q_l = 0 by Lemma 6.3.28 (b), and (F) holds.

We look for 4-uples («, 3,8, 7) Satisf}’ling (6.3.15). A possibility is (12,23, 1223342, 2324).
AS Gory = ¢* and G5y = g~ !; thus c(_L(S)OW = chq)Q = 0 by Lemma 6.3.28 (b), and (G) holds.

Now (12, 122334,234, 1223342 1234, 2, 12354, 2324) is a T-uple (o, B, 8,1, T, u, v) satisfying

@ B~ by Lemma 6.3.28 (a).

(6.3.17). AS Gay = ¢°, 45y = ¢~ ', we have that cj ,_ =c 7

Hence (H) holds in this case.

Also, (2,12232,122334,123%4, 1223342 1234) and (12, 12232, 122334, 2324, 1223342 234) are
6-uples («, B, v, 1, 0,n) satisfying (6.3.19). As oy = g3y = ¢*, and g5, = ¢~ in both cases,
we have that d((lLJr)B Sy = d((lf)q,l g2 = 0 by Lemma 6.3.28 (b). Thus (I) holds in this case.

Notice that v1 = 2, v2 = 12, 93 = 12232, y4 = v5 = 1223347 satisfy Y, v = 4.
Hence, if Njg23342 = 2, then ny = niz = njg9232 = 1, ny = ny923342 = 2 is a solution of
(6.3.1). The coefficient of xg ® 1 is zero in d(X2X12X12232X,2yX%223342 ® 1) by Lemma 10.1.79.

Finally we look for solutions of (6.3.1), i.e. ZéeAl f5(ns)d = N, ZéeAi ns =N + 1.

Set n = 1223342, Looking at the coefficient of ay:
N = Z f&(né)aj = 2fn(ny) + Z ng > 2fy(ny).
deAl 8#n,4€supp &
As N, = M, we have that n, < 3. Suppose that n, = 3: necessarily N = 3M and

> g =3M—ny—2f(3) =M —ny—2.
6#m, 3,4€supp 0
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Looking at the coefficient of as:
> fi(na)ag =6M — > nsaj —3£,(3)
§:3€supp §,4¢supp § d#mn, 3,4€supp &
<6M-— > ny—3fy(3)=2M+ns—1<3M=N.
d#n, 3,4€supp §
By inspection, fs(2)aj = Nsad = N for all § such that 3 € suppé,4 ¢ suppd, so ng < 1

for those 6. This implies that fs(ns) = ns for all § # n such that 3 € suppd. Using this
fact, the coefficients of s and ag give the following equalities:

6M = > fi(ns)ad = fra(maz) + fa(ng) +2(M +1)+ > ngad
§:2€supp 6#m:2,3Esupp 0

6M = Z fs(ns)a3 = 3(M +1) + Z nsad
§:3€supp d#mn:3€supp 6

From these two equalities:

fi2(ni2) + fa(no) = M + 1+ Z nsal — Z nsad
0#mn:3€supp 0 0#m:2,3Esupp 0
= M + 1 + 11232 + 932 + ns + 71192334 + 112324 + 19324 + IRV Z M + 1.
As 1192334 + N19324 + N9324 + N34 < M — g — 2 and T 19232, M932, M3 < ]., we have that
flg(’nlg)—l—fg(ng) <MA4+14+34+M-—ngy—2>2M+2—ny <2M — 2.
But this is a contradiction since No = Njo = P. A similar argument holds if we suppose
that n, = 2, son, < 1.

Hence ng = fs(ngs) for all 6 such that 4 € suppd, so we may translate the equations
to the following problem Find ; € A! 4y 1 € Iny1, such that ZzeHN+1 = N~v. As
Sal'=Nandaf <1 for all 6 € A, we may assume that a]' = 1 for i € Iy, a]"™ = 0.
As > a)t = 2N and ay < 2 for all § € A, there are two possible cases: elther ay =2
for N of them, aj’ = 0 for the remaining root or else ag' =2 for N — 1 of them ay =1
for the remaining two roots. In any case N — 1 roots have aj’ = 2, and as a2 = 2 implies
that al = 1, we may assume that a2 =2forall i € Iy_1, so a3 >2foralliely_q. As

Sad 2N at most two of aj’’s are equal to 3. Therefore we have three cases:
(a) ad' = a}?* =3, al' =2 for i € I3 y_1. Hence a]V¥ = a3 = 0, which implies that

al¥N =aNt = O. As >~ a)' = 2N, at least one of them is equal to 2. With all these
conditions we find exactly two solutions:

n = 122342, 12 =1223%, qi=vi€lna, wW=12, N =2
M= =122842, 13=12%3",  yi=qi€lyo1, wW=12, wa =2
The last solution requires 2 = f923342(n) for some n € N: the unique possibility is

N1223342 = 2, n = 2.

(b) a3 =3, al’ =2 for i € Iy y_1. Hence elther al¥ =1, a3’ =0 or else a3¥ =0,

agN+l = 1. In the first case, yny41 = 2, s0 @) = 1. The solutlons are:

Mm=12234% yi=qv,i€ln_y, n-1=1232  gn=1234, ny=2
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1 =12%3%42 N =n,i€lhn 1, YN = 123, YN+1 = 2;

m=1223%, g =v,iclhn_y, v =1234, v =2
Now we consider a3¥ = 0, a;¥*' = 1. Notice that a3, a;" "' < 1,s0 a3y = a;"*' = 1.
This implies that vy = 12. We have three solutions:

7 =12°3%4% g =v,i€lyn_n, N-1=12%3% v =12, gy =234
n=1224% yi=v,i€hy1,  wW=12, v =23
71 =12°3%, y=v,iclhyn, v =12, YN41 = 234,

(c) a’ =2 for all i € [y_;. In this case, exactly N of the a}’’s are 1, and the remaining

one is 0. Hence either
m = 12232, vi=7,1i€lyN-1, N = 1234, YN41 = 234,

or v; = 7, for all i € Iy_1, so Yy + yn41 = 7: the possible pairs (yn,yny+1) are
(123,234), (1234,23), (2,123%), (12,232%4), (12232%,4).

Hence all the hypothesis of Proposition 6.3.2 hold, and (xﬁ”)* is a cocycle.

If v = 122334, then N, = 2 = P,. First we look for pairs a < § as in (6.3.3). We have
the following posibilities:

(1223%,34), (123%,234), (23%,1234), (3,12%3%4), (23,123%4), (123,23%4).

In all cases [zq, Zy]c = 0 = [z, 28]¢, S0 the root vectors satisfy (10.1.8), and <—Z;—Z>N =1.
Hence we take L = N.

Next we check that (1232, 232122324, 1234, 234, 1223342) is a 6-uple (a, 3,6, T, @,n) sat-
isfying (6.3.11). As goy = ¢ = 4Bys G5y = ¢~ !, we have that dgl%)(h = dgji)l e 0 by
Lemma 6.3.28 (c). Hence (E) holds in this case. o

Now we look for 4-uples (a, 3, d,n) satisfying (6.3.13). There are five possibilities:

(1232,23,1223%42,123%4),  (1223%,3,1223%42,1223%4),  (1232,1223%4,23%4,3),
(23%,12%3%4,123%4, 3), (12%32,123%4, 23%4, 23).
Here oy = ¢%, s, = ¢~ '. Hence ¢! 5)7 = c( )q = 0 by Lemma 6.3.28 (b), and (F) holds.
We look for 4-uples («, 3, 6, n) satisfying ( 15). A possibility is (123,232, 1223342, 23%4).
AS oy = ¢% and Gs, = ¢~ ; thus c(_L(s)M = cél;)Q = 0 by Lemma 6.3.28 (b), and (G) holds.
Now (232,12232,122324, 1234, 1223342 12324) and (1232, 12232122324, 234, 1223342, 23%4)
are 6-uples («, B, v, 1, 8,n) satisfying (6.3.19). As Goy = g3y = ¢% and g5, = ¢~ in both
L
cases, we have that d((H)ﬁéa7 d((147)q,1,q2 = 0 by Lemma 6.3.28 (b). Thus (I) holds.
Also y1 = 12237, g = 1232, 43 = 237, 4 = 5 = 1223%42 satisfy Y, 7 = 47. Hence,
lf N1223342 = 2, then N19232 = Nq932 = N932 = 1, n7 = N1923342 = 21is a SOhltiOH Of (631)
The coefficient of xg ® 1 is zero in d(x12232x1232x232x3x%223342 ® 1) by Lemma 10.1.79.
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Finally we look for solutions of (6.3.1), i.e. zaeAi fs(ns)o = N, Z&eAj_ ns =N + 1.
Looking at the coefficient of ay we get as in the previous case that ng = fs(ns) for all §
such that 4 € suppd, so we may translate the equations to the following problem: Find
v € Al, 1 € Inyy1, such that ZzeﬂN Vi =Nv. As > a{" =N and aj <1 forall § € A%,
we may assume that a]' = 1 for i € HN, aYN“ =0. As Y a} = 3N and a} < 3 for all
o€ Al, at least N — 2 of these roots sat1sfy agz = 3 and we have three cases:

(a) a3 =0,a) =3fori €l n+1. Thenal =1, a)' =2, a)' > 1fori € I y41 but there
is no solution in this case.

(b)agl—l ag2:2a =3fori€l3n41. Thenal® =1,a) =2,a) > 1ifi >3, so

M +al? =1, S ta) =2, a)" +a)? <1
If a]' = a}® = 0, then we obtain the following solutions
m =123, vo = 23%, s = 122374, vi =7 ifi € lynyn;
7 = 1237, Y2 = 23, s = 12°3%4%, vi=7ifi€lyny;
1 = 12232 o = 3, vy = 1223342, vi =7 ifi € Iy Nt1-

Otherwise ~; = «y for all ¢ > 3; that is, 71 + 2 = ~, and the possible pairs (71, v2) are
(12%32,34), (123%,234), (23%,1234), (3,12%3%4), (23,123%4), (123,23%4).
(c) al! =2fori€ls, ay =3 fori€lynt1. Thenal' =1, a3 =2, a] >1ifi >4, so
M +al*> +al® =2, alt +a)? +a® =4, a' +a> +a)* <2.
If a]' = a)? = a}® = 0, then the unique solution is
v =12232 4y =123%, 43 =123% gy =15 =1223%42 =y ifi€Ign41.

For this solution we need Nj923342 = 2, which implies that N = 6.
If azl =1, a4 = a4 = 0, then the solutlons are

y=1223%4, 45 =123%, 45 =232 vy =12%3%42  q =y ifi €T3 poq;
y1=123%4, 4y =1223% 3 =232 vy =12%23%42 )y =y ifi €5 noq;
v = 2324, Yo =123%, 43 =1223% 4y =1223%4% 4, = ifi € T5 41

If a)' =a)* =1, a}’ =0, then the unique solution is

v = 122324, o = 23%4, 3 = 1232, vi =7 ifi € Iyny1;

1 = 12324, o = 122324, vz = 232, vi =7 if i € yny1;

1 = 23%4, o = 12324, 3 = 12232, vi=7ifi € Ly ni1.

Hence all the hypothesis of Proposition 6.3.2 hold, and (xsv)* is a cocycle.

If
(@,

v = 123%4, then N, = 2 = P,. The pairs a < 3 as in (6.3.3) are (1,23%4), (123, 34),
B) =
and ( ) = 1. Hence we take L = N.

(1232 4). In all cases [aza, Tyl = 0 =[x, 2], so the root vectors satisfy (10.1.8),
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Now (1232,1234, 34, 3) is a 4-uples («, 3,0, n) satisfying (6.3.13). Here, goy = ¢*, qpy =
q 1, so cg% = cég)q,l = 0 by Lemma 6.3.28 (b), and (F) holds.
Next we check that (1,3,1223342 2324) and (1,122334, 34,23%4) are 4-uples (o, 3,6,7)

1 (L) (L) _

satisfying (6.3.15). As goy = ¢* and G5, = ¢~ oy = Cogr =

6.3.28 (b), and (G) holds.
Also, (1,1232,12%334,23%4, 1223342, 34) is a 6-uple satisfying (6.3.19). As oy = G5y = ¢

and g5, = ¢!, we have that dg—ﬁﬁéa’y = dflf)q,l ;2 = 0 by Lemma 6.3.28 (b). Thus (I)

in both cases, c 0 by Lemma

holds in this case.

Finally we look for solutions of (6.3.1), i.e. Z5€Aq+ f5(ns)d = N, ZéeAi ns =N+ 1.

Looking at the coefficient of oy and arguing as in the case v = 122324, we find that
ns = fs(ng) for all §, so we translate the equations to the following problem: Find v; € Ai,

i € Iny1, such that ZiEHN+1 vi = N~. As Y a/" = N and al <1foralléc Ai, we may
YN +1

assume that a]* =1 for i € Iy, a] = 0. Using a detailed study as the previous case we
check that the solutions are

v =12%3%42  y =~ ichn o, N1 = 1237 v =1, YN+1 = 34;
v = 1223342 ;=i €lan_1, w =1, YN+1 = 3;

n=1223%,  yi=ryiehya,  w=1 IN+1 = 34,

= 1232 Yi =17, 1€l N1, v =1234, yni1 = 34,

or v; =, for all i € Iy_1, so Yy + yn+1 = 7: the possible pairs (yn,vn+1) are (123,34),
(1234,3), (1,2324), (123%,4). Hence all the hypothesis of Proposition 6.3.2 hold, and (x57)*
is a cocycle.

If v = 1234, then Ny, = 2 = P,. The pairs o < 8 as in (6.3.3) are (1,234), (123,4),
(12,34). In all cases [zq,2y]c = 0 = [x,28]c, so the root vectors satisfy (10.1.8), and

N
(7‘1@7@) = 1. Hence we take L = N.
s

Next we check that (1,1223242,234, 4) and (12,123%4, 4, 34) are 4-uples (a, 3,5,7) sat-
(L) (L)

isfying (6.3.15). As guy = ¢* and G5y = ¢~ in both cases, C oy = S

6.3.28 (b), so (G) holds.
Notice that 71 = 1, 72 = 12, 43 = 1223342, 4, = 4 satisfy > ier, Vi = 37. The corre-

= 0 by Lemma

sponding root vectors g-commute so the coefficient of xg ®1in d(x1x12x1223342x$ SBxs1)
is zero by Remark 10.1.2.

Finally we look for solutions of (6.3.1), i.e. ZéeAl fs(ns)o = N+, ZéeAi ns =N + 1.

Looking at the coefficient of a4 and arguing as in the case v = 12234, we find that
ns = fs(ns) for all §, so we translate the equations to the following problem: Find ~; € A%,

1 € Iny1, such that ZiEHN+1 vi = N7v. As Y a' = N and af < 1 for all § € A%, we may
YN+1

assume that a/* =1 for i € Iy, a;" " = 0. Using a detailed study as the previous case we
check that the solutions are

7 =1223%42 Ny =nv,ic€hn o, N1 =12, w=1, N1 =4
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Y1 = 122324, Yi =1, 1€ ]I27N_1, YN = 1, YN+1 = 4.
v =12, Yi=7,1i€lan_1, v =123%4, yny =4,

or v, =, for all i € Iy_1, so yn + yn+1 = 7= the possible pairs (yn,vn+1) are (123,4),
(1,234), (12,34). Hence Proposition 6.3.2 applies and (x,];”)* is a cocycle.

Finally, if v = 1223342, then N, = M, P, =2, Q, = 1. If N # 6, then N, > P, = 2,Q-,
S0 (XZ,V”)* is a 2-cocycle by Lemma 6.2.5. Next we assume N = 6; that is, N, = 2. Let
a < [ be a pair of positive roots as in (6.3.3). We have the following posibilities:

o a = 23%4, B =1234. There exists b € k such that [z, 2] = bz,.
o a = 123%4, 8 = 234. There exist b,b; € k such that

[T, gle = bTy + b121234%0324.
o a = 122324, B = 34. There exist b,b; € k such that
[Ta,xgle = by + b121234%0324 + b22234T19324.
o a = 122334, B = 4. There exist b,b; € k such that
[Ta, 2g]c = by 4 017123429324 + 22234719324 + D32347 192324

In all cases [z, Zy]c = 0 = [z, 28]¢, 50 the root vectors satisfy (10.1.8), and —% =-1:

the proof of all these relations follow as in Lemma 7.2.3. Hence we take L = 2.
Next we look for solutions of (6.3.1). That is, ZéeAi fs(ng)o = 27, Z(SeAi ns = 3.

Suppose that n, = 3 for some n € A%, then nsg = 0 for § # n and 2y = (N, + 1)n, a
contradiction. Now suppose that n, =2, n, =1 for n # 7: 2y = Nyn+ 7. Asaf,a] <1
and 2 = Nya] + a], we have that a] =1, N, = 2, a] = 0. As 4 = 2a] + a] and aj < 2,
aj <1, we have that ag = 2, a3 = 0. Thus 7 € {3, 34,4}, but there is no solution for these
cases, a contradiction.

Therefore, n, = n, = n, = 1 for three different roots 1,7, u. As af,a],af < 1 and
2 = af + a] + d¥, we may assume a = a] =1, af = 0. As al,a] < 2, af <1 and
4 = aj + af + af, either al = al = 2, a = 0 or else ag = 2, a] = af = 1. In the first
case, al,a} < 3, af <1 and 6 = al + af + af, so either a] = a] = 3, a§ = 0 or else
aig =3, a} =2, af = 1; in both cases we are forced to get n = v = 7+ p, and moreover we
obtain only two possibilities, either 7 = 122324, u = 34 or else 7 = 122334, ;. = 4. In the
second case, a] < 2, aj,aly <1 and 4 = aj + af + af, so a] =2, a] = a}/ = 1, and again
we are forced to get n = v = 7 + pu, and moreover we obtain only two possibilities, either
T =123%4, u =234 or else T = 1234, p = 23%4.

Hence all the hypothesis of Proposition 6.3.23 hold, and (X,JYV 7)* is a 2-cocycle. O

8.7. Type G(3). Let ¢ be a root of 1 of order N > 3. In this section, we deal with a
Nichols algebra %, of super type G(3), associated to the Dynkin diagram

For more information, see [AA, §5.6]. The set of positive roots with full support is

{123,12%3,1233,1233%,12%3%}.
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We fix the following convex order of A%:
1<12<123 <1223 <1233 < 12332 < 12932 < 2 < 233 <223 < 2332 < 23 < 3.

It comes from Lyndon words once we fix the order of the letters 1 < 2 < 3 and differs from
the one in [AA, §5.6]. We prove Condition 1.4.1 for type G(3):

Proposition 8.7.1. For every v € Ai, there exists L, € N such that (xﬁ”)* s a cocycle.
Proof. Tt is enough to prove the statement for v with full support.

o For v = 123, we apply Proposition 6.3.2. The pairs as in (6.3.3) are « = aq, f = ag +as,
and o = a1 + a9, B = ag since the following relations hold:

TaTp = Ty + o TTa, Taly = (o TyTa, Ty TR = (B TRT~.
As —ZZ—; = ¢, respectively ¢3, L should be a multiple of N.
Let L = ord(—q). Now (6.3.5) holds for o = 1, 8 = 1223, § = 3, n = 12, and the root
vectors satisfy (10.1.11); the scalars oy = ¢~ ! and dsy = g2 satisfy c&LB)ﬂf =0.

Also, (6.3.7) holds for a = 1, 8 = 12332, § = 3, n = 12, 7 = 1223, and the root vectors
satisfy (10.1.16); the scalars goy = ¢}, dsy = q Y, Gry = q 72 satisfy (6.3.8).
Let (nf?)éeAi be a solution of (6.3.1). If n3 = 0, then

L(ar + az) = s3(L7) = Y fa(ns)ss(9),

q
seAl

and s3(0) € AY if 0 # a3. As N5 = Ny (5), we have that f5 = f,(5), so we have a system
as in (6.3.1) for oy + ag in place of v and we may restrict the support to «g, as. The new
system has a unique solution, which gives place to the solution of the original system:

e ny =no3 =1, n1e3 = L — 1, ng =0 for all the other § € A%.
Next we assume n3 # 0. Suppose that 115253 > 1. Then fi923(nq923) > N, so the coefficient
of ag in Z5€Aq+ f5(ng)o is > 2N, a contradiction. Hence nqy23 < 1, and then fi925(n1923) =
ny923 < 1. The coefficient of 1 in this sum is

n1 + ni2 + ni123 + nyg23 + Nygsz + Nygsg2 + Nygazz = L.

As the sum of all ng’s is L + 1 and n3 # 0, we have ng = 1, ng = nNgsgz = Ng23 = Ngagz =
ne3 = 0. Now we look at the coefficients of aq, ag in the equality ZéeAl fs(ng)d = Ln:

L = nig + ni23 + 2nq923 + 3n1933 + 3nq9s32 + 4nqazz,
L=1 + ni123 + N1923 + 11933 + 277/12332 + 2”12432.

Thus nia+nq925 + 211933 +Nq9332 + 2n19232 = 1, which implies that ni933 = 19432 = 0 and
two of the three numbers n12, 11923, 19332 are zero (the remaining one being 1). Looking
at the three possibilities, we have three solutions:

e nig=n3=1,nj3 =L —1, ng =0 for all the other § € A% ;

® Ny =n3 = Nyg2g = 1, n193 = L — 2, ng = 0 for all the other § € A% ;

® N1 =2 nyosz2 =ng =1, niag3 = L — 3, ng = 0 for all the other § € Ai.

*

Hence Proposition 6.3.2 applies and (xf%) is a cocycle.
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o For v = 1223, the case N, > 3 follows by Lemma 6.2.5. Assume now that N, = 3.
We will work as in Proposition 6.3.23. The pairs as in (6.3.24) are (1,1213%), (12,12332),
(123, 1233), since for each one of these pairs the following relations hold:

Talg = bagsc% + ap TTq;, TaZy = Qay Ty Ta, THTB = GyB TBT112, bas € k.
As Zo‘—; = 1 for the three cases, we take L = 1. We look for solutions of (6.3.26):
2l
> ns =3, > fs(ns)s = 3y.
seAl deAl

If n, > 2, then f,(ny) > 3, a contradiction. Then n, <1, so f,(n,) = n,. Looking at
the coefficient of oy we get the equation:

(8.7.2) 3 = mn1 + N1z + ni123 + Ng23 + Nygsz + Nygszz + Nygage.

Hence ns = 0 for § = 2,233,223, 2332, 23, 3. Looking at the coefficients of ay and «s,
(8.7.3) 6 = ni12 + 1123 + 211925 + 3933 + 3Ny9332 + 4Nq0a32,

(8.7.4) 3 = n123 + Nyo23 + Nyo33 + 2N19332 + 2N19432.

From (8.7.2) and (8.7.4), n; + ni2 = ny9332 + Nygage. From (8.7.4), njgsg2 + nygage < 1. If
n1 = ni2 = 0, then nyy332 = nyga32 = 0: the solution is nj23 = njg23 = nqgs3 = 1. Next
we assume 11 + nig = 1 = ny9332 + Nygaz2. If myy23 = 1, then the solutions give pairs as in
(6.3.24). Otherwise we have a unique solution: 119 = nj23 = njg132 = 1, ng = 0 otherwise.
Hence we have to compute d(x12x123%10432 ® 1). Notice that

T12T19432 = —QSQ§2Q%3Q§3 X12432212 + D121233T 1923,
T123T12432 = _ng%QQI3Q§2 2124322123 + D2 1233221923,
T19T19332 = —@ Qo013 053 T12332T12 + b3$§223 + bax1933%123,
T123T1933 = —q (10030 T1233%123 + b5TTp05,

for some b; € k. Using these relations, we get
d(x12%123% 12432 ® 1) = X12X123 @ T19432 — S(X12 ® T123T 12432 + §13¢23%123 @ T12T12432)

= X12X123 @ T19432 — S( — q3q:1)’2q13q32,2 X12 ® T194327123 + bax12 @ T19332X1923
- q3q§’2qi’3q§’3 X123 ® T19432212 + ¢13¢23b1X123 @ 96'12331‘1223)

= X12X123 ® T12432 — boX12X 9332 ® Ty923 — §( — 0 qRa113032 X12 ® T191322123
— b2q 41203053 X12332 ® T12T 1923 + bab3Xig23 ® TToag + babuX 933 ® T12371923
- q3qi’2qi’3q§’3 X123 ® T19432212 + q13¢23b1X123 ® 1‘1233331223)

= X12X123 ® T19432 — D2X19X19332 @ 1923 + q3Qi’QQ13Q§2 X12X19432 ® X123
- S(QI2CI23Q%3 X19432 ® 123712 — b1q3Qi’2Q13(J§2X1233 ® 12237123
+ 020741503555 X19332 @ 1923712 + babaX g2z ® 50%223 — Gq12G32b2b4X 1933 @ X1923%123
— @° 412073953 X123 ® T12132 @12 + q13G23b1%X123 ® T1933%1223)

3 3 2
= X12X123 @ T19432 — b2X12X 19332 & T1923 + ¢"(12G13G32 X12X12432 @ T123
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— q1323b1X123% 1933 @ L1923 + ¢ (1oq 3053 X123X 12432 @ T12
+ (¢13¢23b1b5 — babs)xPo2s @ 1.

We compute the scalars b; using the form of the Lyndon words and the g-Jacobi identity:
b1 = Giaq139239(1 — @), b2 = ¢haq13q(1 — q), b3 = q12q13¢539(1 + q), bs = qr2q23q(1 + q).
Hence ¢13¢23b1bs —babs = 0. Thus the coefficient of x3

¢, 80 (x3,55)* is a 2-cocycle.

o For v = 1233, we will apply Proposition 6.3.2. The pairs (a, 3) as in (6.3.3) are (1,233),
(12,223), (1223, 2), since the following relations hold:

1923 ®11in d(c) is zero for all 2-chains

Talg = Ty + (o TRTa, Taly = (o TyTas TATZ = (B TRT~.

As — g‘;“ = ¢, respectively ¢2, ¢>, L should be a multiple of N.

Let L = ord(—¢q). Now (6.3.9) holds for a = 12, B = 1223, § = 233, and the root vectors
satisfy (10.1.11); the scalars goy = ¢~ 1, @y = ¢ -2 satisfy (6 3.10).

Also, (6.3.7) holds for a = 12, 8 = 12432, § = 233, n = 123, 7 = 1223, and the root
vectors satisfy (10.1.16); the scalars gy = q_l, 4By = q Y, Gry = q 72 satisfy (6.3.8).

Let ("5)56A1 be a solution of (6.3.1). If ng = 0, then

N(on + az +as) = s3(Ny) = > fs(ng)ss(s
deAl

and s2(0) € Al if § # az. As N5 = N,,5), we have that f5 = f,,(5), so we have a system
as in (6.3.1) for a; + ag + a3 in place of y. The new system has four solutions, which gives
place to the following solutions of the original system:

® nio =ng23 =1, nygs3 = N — 1, ng = 0 for all the other § € AY;

® Ny =ngsz3 =1, nygs3 = N — 1, ng = 0 for all the other § € A%;

® Ny = Ngsz = Nyg23 = 1, nygs3 = N — 2, ng = 0 for all the other § € AY;

® niy =2, Nygazz = Ngsz = 1, nygsz = N — 3, ng = 0 for all the other § € A%.
Next we assume ny # 0. Suppose that nqy23 > 1. Then fi925(n1923) > N, so the coefficient
of a1 in ZéeAl f5(ng)d is > N; this forces to ng = 0 for any 0 # aq since f5(ns)d must have
aq, as with coefficient zero, and this gives a contradiction. Hence njq23 = fi925(n1923) < 1.
The coefficcient of o in this sum is

n1 +ni2 + 123 + Nig23 + N19s3 + Nygsze + nigazz = N.
As the sum of all ng’s is N + 1 and ng # 0, we have ng = 1, ng = ngsgz = Ng23 = Ng3zz =
no3 = 0. Now we look at the coefficients of as, a3 in the equality ZéeAl fs(ng)d = N~:
3N =1 + ni2 + Tn123 + 2n1223 + 371;1233 + 37112332 + 47’1,12432,
N = ni123 + 1923 + N1933 + 2“12332 + 27112432.

Thus 11 4 21123 + Ny933 + 2n19332 + 4nq9232 = 1, which implies that nj23 = 113332 = 0 and
two of the three numbers ni, ny9s3, ni9132 are zero (the remaining one being 1). Reducing
the three previous equations, we get nja + nqgs3 = N — 1, n1a + 3nqa33 > 3N — 3, so we
have a unique solution:

® nyg23 =Ny =1, nygs3 = N — 1, ny = 0 for all the other § € AY.
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Hence Proposition 6.3.2 applies and (x 1233)* is a cocycle.

o For v = 12332, we will apply Proposition 6.3.2. The pairs («, 3) as in (6.3.3) are (1,2332),
(123,223), (1223,23), (1233, 3), since the following relations hold:

Talg = Ty + (o TRTa, Taly = Qo TyTa, TATZ = (B TRT~.

As g‘;g € {q,4¢% ¢}, L should be a multiple of N.

Let L = ord(—q). Now (6.3.9) holds for o = 123, 8 = 1223, § = 2332, and the root
vectors satisfy (10.1.11); the scalars go, = ¢~ 1, 4By = q~? satisfy (6.3.10).

Also, (6.3.7) holds for a = 123, 8 = 12432, § = 2332, 5 = 12, 7 = 1223, and the root
vectors satisfy (10.1.16); the scalars oy = ¢ 1, dpy = q ', Gry = ¢ % satisfy (6.3.8).

Let (nf?)éeAl be a solution of (6.3.1). If ng = 0, then

N(aj + 3as + ag) = s3(Nvy) = Z fs(ns)ss(d
seAl

and s3(0) € A if 0 # az. As N5 = N, (s), we have that f5 = fy,(5), so we have a system
as in (6.3.1) for a3 + 3as + a3 in place of . The new system has five solutions, which
gives place to the following solutions of the original system:
® nyg23 =93 =1, nygsz2 = N — 1, ng = 0 for all the other § € A%;
N123 = Ng23 = 1, nygsgz = N — 1, ng = 0 for all the other § € AY;
Ny =ngsz2 = 1, nygsz2 = N — 1, ng = 0 for all the other § € A%;
N123 = Ngsz2 = Nyg23 = 1, nygaze = N — 2, ng = 0 for all the other § € AY;
N123 = 2, Nygage = Ngszz = 1, nygsgz = N — 3, ng = 0 for all the other § € A%,

Next we assume n3 # 0. An analogous analysis as for the root 1233 shows that the unique
solution is:
® Ny933 =N3 =1, nygaz2 = N — 1, ns = 0 for all the other § € Ai.
Hence Proposition 6.3.2 applies and (x 12332)* is a cocycle.

o For v = 12432, we apply Proposition 6.3.2 again. The pairs (o, 3) as in (6.3.3) are
(12,233%), (1233, 23), (1223,223), (123,233), (12332,2), since the following relations hold:

TaTB = Ty + Gap TATa, Laly = o TyTa, TyTp = 4B TpTy-

As — 3‘;; € {q,4¢* ¢*}, L should be a multiple of N.

Let L = ord(—¢q). Now (6.3.9) holds for a = 1233, 8 = 1223, § = 2332, and the root
vectors satisfy (10.1.11); the scalars oy = ¢, Gg, = ¢~ 2 satisfy (6.3.10).

Also, (6.3.7) holds for o = 1233, B = 12332, § = 2332, = 1, 7 = 1223, and the root
vectors satisfy (10.1.16); the scalars Gy = ¢~ %, Ggy = ¢, Gy = ¢ 2 satisfy (6.3.8).

Let (n5)6eA1 be a solution of (6.3.1). If ny = 0, then

N(ag + 3ae + 2a3) = s9(Nvy) = Z fs(ng)sa(0
seAl
and s2(0) € Ai if § # az. As N5 = N,,(5), we have that f5 = f,,(5), so we have a system

as in (6.3.1) for ay 4+ 3az + 2a3 in place of 7. The new system has six solutions, which
gives place to the following solutions of the original system:
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Nyg23 = Ng23 = 1, nygaze = N — 1, ng = 0 for all the other § € AY;

Ny93z2 = Ng23 = 1, Nygaz2 = N — 1, ng = 0 for all the other § € AY;

ni2 = Ngaze = 1, nygaz2 = N — 1, ng = 0 for all the other § € Al;

n123 = Ngaz = 1, nygaze = N — 1, ng = 0 for all the other § € A%;

Ny933 = Ngsze = Nyg23 = 1, Nygaz2 = N — 2, ng = 0 for all the other § € AY;
Ny933 = 2, Nyg3z2 = Ngsgz = 1, nygage = N — 3, ng = 0 for all the other § € Al.

Next we assume ny # 0. An analogous analysis as for the root 1233 shows that the unique
solution is:

® nygszz =ng =1, nygazz = N — 1, ny = 0 for all the other § € A%.
Hence Proposition 6.3.2 applies and (xfg432)* is a cocycle. O

9. PARAMETRIC MODULAR TYPES
9.1. Modular type wk(4). Here 8 = 4, ¢ # 1. In this subsection, we deal with a Nichols
algebra %, of diagonal type wk(4). We may assume that the corresponding diagram is

-1

g ¢! -1 -1 -1 —q —q!
O O O O

(9.1.1)

We fix the following convex order on A%:
1,12,2,1223,123, 23, 3,1223%4,123%4, 2324, 12234, 1234, 234, 34, 4.
For more information, see [AA, §7.1]. Let M = ord(—¢q): We may assume that N < M.
Note that
N if § € {1,123%4,23%4},
Ns =< M if 6 € {4,12234,1223},
2 otherwise.

We prove Condition 1.4.1 for type wk(4):

Proposition 9.1.2. For every v € A, there exists L, € N such that (ng)* 18 a cocycle.

Proof. We may assume that + has full support i.e. v € {122324, 1234, 12324, 12234}.
First we consider v = 1223%24. Here N, = 2. The pairs a < (8 such that a + 8 = v are:
(3,12234),  (23,1234),  (123,234),  (12%3,34), (2,123%4),  (12,23%4).
For all pairs, ToTy = GayTyTa, T4T3 = ¢y3T3%~. Also, there exist b; € k such that
(23, T19234)c = b1 2y,  [T123, T234]c = b2 Ty + b3 T1234723,
(223, T1234]c = ba Ty,  [T1923, T34]c = b5 Ty + bp T3 12234 + b7 T23T1234 + bs T2347123,
(%2, T12324]c = by Ty, [212, Taz24]c = b10 Ty + b11 193242

Thus the root vectors satisfy (10.1.8), and —Z‘;—; € {—1,+¢"!}; hence we take L = M.

Next we check that (23,12324,12234, 3), (123,234, 12234, 3) and (1223, 123%4, 234, 123)
are 4-tuples (o, 3,6,n) satisfying (6.3.5). As goy = —1, g3, = ¢, we have that c((xLﬁ)W =

c(fl)’q = 0 by Lemma 6.3.28 (b). Hence (B) holds.
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Finally we compute the solutions of (6.3.1). That is,

(9.1.3) Yo fslns) =M, > fs(ng) =M,
d:1€supp §:4€supp
(9.1.4) > fslng)ad =2M, > fslns)al =2M.
§:2€supp § §:3€supp 0
(9.1.5) > ng=M+1.
seAl

Let (ns) be a solution of (6.3.1). We claim that ns < 1 if N5 # 2. To prove it, first we
note that ng, nqg23,n19234 < 2 by (9.1.3). If ngy = 2, then ng = 0 if 4 € suppd, J # 4, so

2M = Z fs(ns)al = fig23(nig23) + n123 + naz + 13 < flo25(2) + Z ns
seAl 8+#4,1223

<M+ (M—1)=2M—1,

a contradiction. Hence my < 1. Next we suppose that njs23 = 2. Then ns = 0 if either
1 € suppé or else 2 € supp d, § # 1223. From (9.1.5), ng+ngs+ng = M+1-nj925 = M —1,
but we check directly that there are no solutions of (9.1.3) and (9.1.4) with these conditions.
Hence ny523 < 1. Analogously, njg234 < 1.

Next we check that ni,ng324,n19324 < 1. The proof is analogous to the cases ng, 17923,
Nyg234 if N = M. Thus we assume that N < M: that is, M = 2N, N odd. By (9.1.3),
N1,M9324, 112324 S 4. We deal first with MN192324-

e Suppose that nig324 = 4. Then ns = 0 if suppd N {1,3,4} # 0 by (9.1.3) and (9.1.4),
and also ng = 2N. But from (9.1.5), ng = 2N — 3, a contradiction.

e Suppose that 119324 = 3. Then 3 ;515324 n5 = 2N — 2. By (9.1.4),
292
o224 = frazgea(niszgzg)al® ® F < N — 1.

By the first equality of (9.1.4) and the previous computations

3N —1= Z f5(ns)ad = 2 fio2324(nin2z2s) + 2f1223(n1023) + 2f12230(n12234)
5712324
+ > ns < 2mpgegey + 2424 (2N = 2 = nygegey) <3N — 1.
5:ag:1
The equality holds if and only if ny92324 = N — 1, ny923 = ny9234 = 1, but in this case
the second equation of (9.1.4) does not hold.

e Suppose that ni9324 = 2. Then 26#12324 ns = 2N — 1, and by (9.1.4), nyg2324 <
N. A similar computation as for the previous case shows that the equality 3N — 1 =
> 5412324 fs5(ns)a$ holds if and only if nqg2424 = N, nyg923 = Nyg234 = 1, but again the
second equation of (9.1.4) does not hold.
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The same argument applies for nysz24. Finally we check that ny < 1. If ny =4, thenns =0
for all § # 4 such that 4 € suppd, so

9.1.5
oM = > f5(ns)ad = ng +no3 + nigs + npozy < g 0L
§:3€supp & 0#4

M -3,

a contradiction. Now suppose that 2 < nj; < 3: by (9.1.3), nyy2324 < N and

4N = Z fg(ng)ag S 277,122324 + 2 + 2 + (2N — 2 — 7'L122324) S 3N + 2,
5412324
a contradiction. Hence ng < 1 if Ny # 2, so fs(ng) = n5 for all 6 € AY. Then we look for

v € Ai, i € Ipry1, such that ZzeHM+1 = M~. As a < 2for all § € Al there exist two
possibilities up to permutations of these roots:

o =2 for Ins, a3 = 0. As a <2 for all § € A}, at least M — 1 roots satisfy that
a2 = 2, and we know that cﬂM+1
YM + YM+1 =7

< 1,80 7; =~ for i € Ij;_1 up to permutation, and

o a3 = 2 for Ip;_1, a gM = agM“ = 1. Again at least M — 1 roots satisfy that ay' = 2.
If these roots are ;, i € Ipr_1, then 7 = v for ¢ € ;1 up to permutation and
Yu +Ym+1 = 7. Otherwise we may assume that v; = v for i € Iys_o, ay™ ' = ag™ =1,

ag™ ™ = 2. We have three possibilities for (yas_1,var, Yar+1):
(123%4,23,12234), (23%4,123,12234), (12324, 234,12%3).

Hence all the hypotheses of Proposition 6.3.2 hold, and (xy )* is a cocycle.

Next we consider v = 1234. Here N, = 2. The pairs a <  such that o + 8 = v
are (1,234), (12,34), (123,4). For all pairs, Ta%y = GayTyTa, T+Tg = 3232~ and there
exist b € k such that [z,, 23] = bx,. Thus the root vectors satisfy (10.1.8) and — q‘“‘* €
{—1, £q}; hence we take L = M.

Next we check that (12,12324,4,34), (1,123%4,34,234) and (1,1223%4,4,234) are 4-
tuples (a, 3,0,n) satisfying (6.3.15). As (gsy,gp,) are respectively (—g~%, —1), (—1,q),
(—q 1, q), we have that c(_L(S)M = 0 by Lemma 6.3.28 (b). Hence (G) holds.

Finally we check that (1,12324,12234,4,234,34) is a 6-tuple (o, 8,8, 7, i1, ) satisfying
(6.3.21). As guy = ¢ = GBy, Guy = —1, we have that dg )Vcw = 0 by Lemma 6.3.28 (c).
Hence (J) holds.

Next we look for solutions of (6.3.1). That is, (9.1.5) and

(9.1.6) S fslng) =M, > fslng) =M
d:1€supp d 6:4€supp &
(9.1.7) Z fg(ng)ag =M, Z f5(n5)ag =M
0:2€supp 6 6:3€supp &

Let (ns) be a solution of (6.3.1). We claim that ns <1 if N5 # 2. By (9.1.7),

M > 2 f1925(n1923), 2 f12234(112234)-
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As Njj23 = Nij234 = M we have that nqg23,n19234 < 1. Now suppose that ngy > 2. By
(9.1.6) we have that ny = 2. Then ns = 0 for all § # 4 such that 4 € suppd. By (9.1.7),

M = Z fé(na)a§:n123+n23—|—n3ana:M_L
§:3€supp 6 524

a contradiction.

We also have that mngz24,nq9324 < 1 if N = M, and ng32y,Ny9324 < 2 if M = 2N.
Suppose that M = 2N and njags2q4 = 2, a € {0,1}. We have that nsg = 0 for all § such
that 3 € supp 6, § # 1923%4. By (9.1.6), fi(n4) = M: that is, ny = 2, a contradiction.

Finally suppose that n; > 2. By (9.1.6),

M= Y fins)= Y ng<Y ng<M-1,

§:4€supp § d:4€supp § 0#1

a contradiction. Hence ng < 1if Ns # 2, so fs(ns) = ns for all § € Ai. Then we look
for v; € Al, i € Ipy1, such that Ziellzu+1 vi = M~y. As af,aj < 1 for all § € A%,
there exist exactly M roots such that a]® = 1, respectively a;’ = 1. Thus there exist
M — 1 roots ; such that a‘f = ai = 1, which implies that suppvy; = {1,2,3,4} for these
roots. We may assume that a{’ = azi =1 for all 7 € I};_1 and we have three possibilities

up to permutations of the roots: either a{™ = a}¥ = 1, a)™" = a}”™ = 0, or else
a™ = aM" =1, a]" = a}™ = 0. For the first case, aj’,a3’ > 1 for all i € I); and we
have a contradiction. Hence a]™ = a}'*' =1, a/™" = a]™ = 0. For i € I;_1 we write

vi = 12%3%4, a;,b; € Iy. We also write vy = 120M30M  ~y 0 = 20M+130M+14 At most
one of the a;, respectively b;, is 2 for ¢ € Ijy_1. We analyze each case.

oa;=1=b;=1forall i € [j;_1. Hence v; = v for all ¢ € Ipy_; and yps + ypr+1 = 7-
oa;=1foralliely_q1, b =1forall i € lj;_o, byy—1 = 2. Here by = bpr+1 =0, so
v; =y for all i € Ij;_o, -1 = 123%4, Y = 12, Yrm41 = 4.
oca;=1foralltely_o,b;=1foralliely_1,apy—1 =2 Hereapy =apy1 =0, so
v; =y for all ¢ € Ip;_o, YM—1 = 12234, Y =1, Yym+1 = 34.
oa;=b;=1foralli € lj;_o, apy—1 =bpr—1 = 2. Here apr = by = apr1 = b1 =0, so
v; =y for all i € Tjr_o, yar—1 = 122324, Y =1, Yrm+1 = 4.
oa;=1foralli €l o bj=1foralliely_1—{M—2}, apy—1 = bpy—2 = 2. Here
v = foralliely 3, ~y_o= 12324, YM—1 = 12234, ywv =1, yu+1 =4
Hence all the hypotheses of Proposition 6.3.2 hold, and (xy )* is a cocycle.

Finally we consider v = 12324,12234. We have P, =2 Q,=1s0 P,Q, <N,. By
Lemma 6.2.5 (Xévv)* is a 2-cocycle. O
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9.2. Modular type br(2). Here § = 2, ( € G3, ¢ ¢ G3. In this subsection, we deal
with a Nichols algebra %, of modular type br(2), that is associated to any of the Dynkin
diagrams

—1 2 -1
(9.2.1) o —1 % g —> 6 1%

For more information, see [AA, §7.2]. Since (9.2.1 b) has the same shape as (9.2.1 a)
but with (g~! instead of ¢, we just discuss the latter. Essentially this is very similar to
standard Bs. The corresponding set of positive roots with full support is

{2a1 + oo, a1 + 042}.

TABLE 2. The roots with full support of br(2); v < v2, (Ny — 1)y =7+

YNy | Py | Qy | 2| Ly
12{M |21 1 12 2
1213 ]3] 2 (122 2 |odg?

Let M = ord(¢q~'). We order the root vectors: x1 < x112 < 212 < T2.

We prove Condition 1.4.1 for type br(2).

Proposition 9.2.2. For every v € A, (X’YN’Y)* is a 2-cocycle.
Proof. As before we just consider non-simple roots, i.e. with full support.

o For v = 122, the case Ny12 > 2 follows by Lemma 6.2.5. Assume now that Nijo = 2. We
will apply Proposition 6.3.2. The unique pair as in (6.3.3) is o = a1, 8 = a1 + «a, since
the following relations hold:

2 2
T1T12 = 2112 + (q12 L1221, 17112 = (7 Q12 T11271, T112712 = (T q12 T127112-
As _?1(;72 = —1, we take L = 2. The unique solution of (6.3.1) is n112 = n1 = n12 = 1, and

ng = 0. Hence Proposition 6.3.2 applies and (x3;5)* is a 2-cocycle.

o For v = 12, we will apply Proposition 6.3.23. The unique pair as in (6.3.24) is o =
2a1 + ao, B = a9, since the following relations hold:

2 2 2
z11222 = (¢ — {)q12 1o + qqis T2T112, 112712 = (“q12 T127112,
T12T2 = 4412 T2X12-

In this case, Z:—; = (%2¢7 ' as q¢ # (2, we take L = ord¢®. The unique solution of (6.3.26)

is nig = L — 1, n12 = nz = 1, and ny = 0, so Proposition 6.3.23 applies and (x/5)* is a
2L-cocycle.
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10. PROOFS OF THE COMPUTATIONAL LEMMAS
10.1. Given v € Ay, let g4 : Ng — Np be the function

1, n odd,
N, —1 neven.

(10.1.1) 0(n) = £,(n) — fy(n—1) = {

Remark 10.1.2. Let 81 < [ < (3 be positive roots such that the corresponding root
vectors g-commute:

Tp,TE; = 4;8; TB,;TB;s for all ¢ < j.
For each n € N,
(10.1.3) A2 @ 1) = 25,50 g o820 4 (L1l g
(10.1.4) dx Mg, 1) = <" @ g, —qg‘fgi) s, @ a9
(10.1.5)  dixgxy2Vxg © 1) = x5, 502" @25, — 52 Vxg %2 " Vg, @ 272
— (Vg x Vas @2,

fs,(n) I, () I, (n)
(10.1.6) d(xﬁfl X8, X3 @ 1) = Xﬂfl Xg, ®Tpy — qﬂzﬂsxﬁfl Xy & T,

gp, (n) gp,(n)_fg, (n—1) gp, (1)
+q51}32 qﬂllﬁs ,811 XB2 %3 ®$511 :

In fact, the root vectors g-commute by hypothesis so we can compute the differentials
as in the proof of Proposition 4.3.3.

The next results will allow us to identify some cocycles of degree higher than 2.
Lemma 10.1.7. Let n € Ng. Let a < 01,...,6, < v < n1,...,0n < B be positive roots.

Assume that the relations among the corresponding root vectors take the form

n
Ny—1
TaTg = qapTpTa + Ty = + ijxnjxgj,

(10.1.8) =1
Laly = qayTryTa, L; Ly = 45y Ty L6,
LyXp = qyBTply, LoyLyy = Gy Ly Ly
for some scalars b,by,...,b,. Then, for alla > 1, d(xaxiN”x[; ®1)=
xang7 ®xg — q%”*lxax{y”(a D+ g ® T~ Nyl
N, _aN N, _aN
- Qaﬂquwxz "X @ To — Zb]qgﬂxg TxXp; ® s,
j=1

alN,
s (- () o
Y 2l Y

and for all a > 0, d(xang”Hx/g ®1)=

aN~+1 aN~+1 al. +1
%%} @ 2g — gypxax] Kg ® Ty + qapdiy ' Xy R ® T
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n
+3 bjgan N xy, @ s, + gty (Za; B ) (a+1),, @ g,
5 e

9y B
Notice that the first equality in (10.1.8) forces
(10.1.9) (Ny—=1)y=a+B8=20;+n; for all j € I,,.

Proof. We need the following computation:

n
d(xaxg ® 1) = %0 ® T — ¢upxg @ To — bxy ® a:jyv”_z - ijxnj ® w5,
j=1

The proof of the lemma is by induction on a. First we compute:
d(xaxyx3 ® 1) = x0xy ® 2 — 5(d(xaxy ® 1)23)

= XaXy ® 28 — 5(Xa @ TyT3 — GayXy ® Talg)
n
Ny—1
= XXy Q@ Tg — 3<q,ygxa ® TRTy — GayXy @ (qaga:gxa +bx,” "+ ijxn]w(;j))
j=1

= XaXy O Tg = GypXaXp O Ty 8 (chqaﬁ (% @ 25 — 415%8 ® Ty)Ta

n
1

N —
+b(gay — Gyp) %y @ Ty + Z b; (dayXy ® T, — Gy5s,4%n; @ x’?)“j)
=1

n
= XaXy & T — 4ypXaXp & Ty + Z ija'yXfanj ® Ls; + QoayqapE~yXp QR T
j=1

n
N.
+b(gay — ¢yp)xy" ® 1+ 5<ij (qtmqvnj - q’vﬁ%ﬂ)s(l ® a:njafvx(;j)),
j=1

which agrees with the second formula for a = 0 since s o s = 0. Next we compute
N N N
d(xaxy 23 ® 1) = x4%y " @ 2 — 5(d(xaxy” ® 1)23)
N Ny— Ny— Ny_N.
= XaXy QX — S(QW? 1xax7 ® xgry” Ly Goffon Xy @ TFTa
n
Ny, N Ny— Ny_N.
+ Gory x5 @ 257 Tt ijqoﬁxv7 ® wnj$5j>
j=1

N N,—1 N,—1
= XoXy ®xg— q%g XoXyXg ® X

n
N. N,—1 N. No+1 Ny—2 N~ N.
—b <q°‘“7 05 Gyt q’yﬁ) X @y T - ijanxﬁxm ® T3,
j=1
N~ N.
— Japlay Xy X3 ® Ta,

and by (10.1.9), this agrees with the first formula in the lemma when a = 1. Now assume
the second formula given in the lemma holds when a is replaced by a — 1. Then

d(xaxiN”’ng ®1)= xaxf,NA’ Qg — s(d(xaxf';]\hY ® 1)xg)
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Ny(a—1)+1 aN~

@an " wg+ gan Xy @ Tazp)

— N. — N. N.
_ Xax'y Ny ® x5 — S(q%g 1Xaxw~/(a D+1 ®x5$77 +qaﬂq37~/x$ " ® LT

= Xax«, "® g — s(xax«,

n
N. N.
—i—bqafx% K ®x it E bjgary Xy ”®x,7].ac5j>.

Use the induction hypothesis to rewrite the term q%”_lxaxjvv”(a D+ ®mgx]7\[7_l to obtain

d(Xaxfa;/N’yXB (= 1) = XaX,y ® Iﬂg — S( ,{/\; 1d(xax'(ya71)N’y+1X6 ® x,]yv'yfl)

“DNy+1 Ny=1_(a=1)Ny+1_ N
. aNy (Gay " Ny—1
Pp <Q'y,3 ) (a)(qow)]\HX7 © y
9y
)N, +1 DNy+1 Ny—1 N,_aN.
- Zbﬂqwﬁ aa7 : (a ) Xy @ Ty "+ Gapdor Xy | @ TaTa

n
N Ny -1 N
+bgay x5 @y + :qug77X$ ®mm$6a‘>

N Ny— ~1)N N -
= x,x2 @ g — 0 1Xaxga DNy+1 Y 1
Ny—1 1)Ny+1 Ny—1
+ S<qaﬁqg7quﬁw R T
N. q an N N,—1 N, _aN.
+bq)5" (M - > (@) / gar\ ¥ T | B ®277T — dapdany X5 @ pa
T (Qj;) qu

n
Ny—1 (a—1)N,+1 Ny—1 (a 1)N. +1 Ny—1 aNy_a
—I-Zb]q ;T Qay q(;;y Xy 7 ; @y Ty — Zb]qa,ﬂxy ®£C,7jl‘5j).

Now use the formula d(x, syt g 1) = $$N7 ® ., (10.1.4) and (10.1.9) to rewrite the above
expression as

N. -1 N. 1+1 N,—1 N. N.
XaXy | ® T — 43 Xaxwv(a " Xg®xy" T — qaﬁqiv”X‘i "%3 ® T
aN q q. N, aN. +1 aN, a
w{(ﬂ —1)(a )(ZL;)NW - (ﬁ)a iy —Zb]qw”xv Xy @ g
Y v

This agrees with the first claimed formula in the lemma.
Now we use the first formula to obtain the second formula:

d(XaX?,N7+1Xﬁ ®1)= xangTH ® T8 — s(d(xaxg,N”—i_l ® 1)xg)

aN~,+1 alN. alN~+1 aN +1
XaXy | @8 — S(XaXy | @ TyTE — ary T ®xarp)

Ny+ N N
= X,X i AR xrg — s(q%gxaxy & TTy — qagqgfﬂxa e TTq
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NotLgaNytl g o Nyl No+1_aNy+1
—bgay TxIMT K Zb] oy T ®:c,,jx5j).

By our induction hypothesis, we may use the first formula in the statement of the lemma
. alN, ..
to rewrite the term ¢,sx.%y 7 ® 257, obtaining

N+
xaxy T @ g — 5<qvﬂd(xaxv X3 ® 2,) + daglan Gyp%y Xg © Taly

aNy+1 ¢ dary day\aN. . aNy+1 Ny—1
—bq 3 {(ﬁ_ )(G)(%)Nw - @)a Ixy T @3y
Ny+1_aNy+1
+§ :quOW qvﬁxv "Xy, ® Xs; Ty — qozﬁqgw7 Xa T ®@rpTa

N~y+1 N 1 N —1 Ny+1 N 1
—bqa vl alNy+ ¥ ij alNy+1 alNy+ ®x77jx5j>

N~+
= %%y " © 5~ Gy5%axy ”XB@”%
N. N~+1
_S<q@ﬁch” (Gy%5 %5 @ 0yTa — X5 © T4T0)
L — 1) (@) ey vy — (F22)oNy o (oD al Nt g o 0
ole] B g g

— b4

Ny+1 N.
- ijqav (Garxy 7 ® Ln; — qw%ﬂﬁ "Xy @ 9”7)5%')'

Now we use the formula d(xy MaletD) g ®1) = Xf,N7+1 Qx N” ' (10.1.4) and (10.1.9) to rewrite
the above expression as
xafoN”H ®xg — qngaxw Txg @ Ty + qa@an”HXzNﬁ—1 X3 ® Ty

+bq aN”H{(?“; —D(a+ 1)(qa; vyt g gy ZbyanﬁlXaNﬁl nj ® Ts;,
v, 9y

which agrees with the second claimed formula in the lemma. O

Lemma 10.1.10. Let o < n < v < 8 < d be positive roots such that N, = 2 and the
relations among the corresponding root vectors take the form

(10.1.11) Lol = QapTiTa + P1TyTy, TnTs = queTsxy + b,

for some scalars b1, by and the other pairs of root vectors qg-commute. Then, for all n > 0,
d(xaxy%p%s ® 1) = X0X0X5 ® Ts — qasXaXyXs © Tg + qygqygxaxzflx@q ® T

(10.1.12) + (—4ar) " dapdas®yxpXs ® Ta — qusb1(=1)" " gl (n+ 1)z, ) x5 @ 2y

+ blb2c£¢[3)’y( qnmé)_n}(:—"_2 ® 1.

where cgﬁ)7 = kz_:o(—aay)k(k +1)g,,, n €N,
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Notice that the equalities in (10.1.11) force
(10.1.13) y+n=a+p, n+06 =1~
Hence the following equality also holds: 2v = a + 5+ 4.
Proof. First we claim that
d(xax$x5 ®1)= XaXy @ Tg — qyﬂxaxg_lx/g ® Ty — qag(—qm)”x;‘x/g ® Za
—bi(—gay)"(n + 1)(7;;7}(:4_1 ® Ty
The proof is by induction on n. When n = 0,

(10.1.14)

d(xax3 ® 1) = xq ® 28 — 50d1(Xa ® Tg) = Xa ® T3 — ¢apXg ® Ta — b1Xy @ Ty).
Now assume that (10.1.14) holds for n. Let ¢, = (—gay)"(n + 1)z,,. We compute:
d(xaxzﬂxﬁ ®1)= xoéxz+1 ®xg — sd(xozxzJrl ®xg)
= %30 @ 25 — 5(qyp%ax] @ 2a7y + (—ay)" T @ (qoprpa + bras2y))
Gary)"™ qaﬁX"“ ® TpTa

= %Xy @25 — GypXaXyxs ® wy — 5((=
+ (=an)"To1xI T ® 2y + 448008(—Gay) " Ki%S ® Tady + gypbrenxt T @ w1y
— xo[xﬁfr1 ®xg — qvgxax”xfg ® 2y — b1 (qvgqmcn (— qw)”ﬂ)xzw ® xy

o (_qow)nJrlqaﬁsd( n+1
Now the inductive step follows using Remark 10.1.2 and

xg@xa).

Ay = qwqﬁvq%l = —qayqpy-
Next we prove by induction on n that there exist e, € k such that:
d(xaxyxp%xs ® 1) = X X)X ® Ts — qsXaXyXs ® :cg + q75q75xax:_1ng(5 ® Ty
+ (*Qav)nQa,BQadXzszX& & T — qpsbicn— 1X s ® Ty + b1b26nx 21,
The proof is again by induction. When n = 0,
d(xaxpxs @ 1) = xoxXg ® T5 — s1d2 (XaXg ® x5)
= XaXg ® 5 — 51 (q8s%a ® TsT8 — §apfasXp @ TsTa — 01Xy @ (¢nsTsTy + b2y ))
= XaXg ® Ts — qsXaXs @ 3 — $1( — GaplasXs @ T5Ta — ¢ysb1Xy @ Ty,
— bibaxy ® Ty + ¢859as%s @ (¢apTaTa + blxyxn))
= XaXg QX5 — qsXaXs @ g + blb?X% ® 1+ gpsb1xyxs @ Ty
- 81( — §ap9as%8 @ TsTa + q35GasXs ® (¢apTpTa + D124Ty) — Gysqysb1Xs @ Iﬂn)
= XoX3 ® Ts — (35XaXs Q Tz + b1b2xi ®1+ Gnsb1XyXs @ Ty + apdasXsTs @ Ta
— b1(g85Gas — Gr6qns)5 (X5 @ Ty2y).
Now assume that the formula holds for n. Using (10.1.14):
d(xax Lxpxs ® 1) = XaX) My @ x5 — Sd(XaX x5 ® 5)
= xax:"'l}cg KR xs — s(q&;xaxw‘*' R Trsxrg — q75q75XaX7X,B & T5T

n+1l_n+1
Xy

_ qaﬁqaé(_qay) X3 Q TsTo + b10n+1xf;+2 ® (qn(ggp(gmn + bzl'»y))
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= xaxfyH_lXﬂ RxTs — qg(;XaXZ—HXg Rxg — S(qggq,ygq%gxaxzxg @ TR
+ q,@&Qaé(_qaw)n+1Xz+1X§ ® (Qaﬂmﬁxa + blx’yxn) - q'y,b’q'yéxaxzxﬁ X TsTy
- QaBQaé(_Qa’Y)n+1X:+l

Next we use the inductive hypothesis, the relation 22 = 0, (10.1.5) and (10.1.6):

X3 ® TsTa — bren1x0 T2 @ (qosy + b))

d(xax;“'lx/gx(; ®1) = xaxz*‘lx[g Qx5 — q5(5xax:+lx(s ® Tg + GyGroXaXyXpXs © Ty
- 5( - Q'yBQ'yé(_Qa'y)n+IQO¢,BQa6X;LXBX6 & TyTo — Q’yﬁQ’yéqW’yqn(Sblcn+lxg+1X6 & Ty Ty

+ b1b2enqy5075%L 2 ® 2y + 485Gas(— o) T KT %5 ® (qapT e + D1TyTy)

- QaﬂQ(xé(_Qa'y)n—’—lXZ-i_l

n+1
Y

X3 @ X§To — b10n+1X,7yl+2 & (qW(Sx(?xn + b2x'y))

= XoX X8 & x5 — qﬁgxaxz—i_l

n+1_n+1
Xy

Xs @ xg + q,y/gq,ygxaxszX(; ® T
+ G0p%as(—Gay) XgXs ® To — b1b2(€ndypdys — Cry1)xs P @ 1
+ qn5b10n+1X2+2X5 ® Ty,
and the inductive step follows. To finish the proof we have to compute e,,. Note that
eg =1, €ntl = —€nGr84qys T Cnt1, for all n > 0.
By (10.1.13) and using that ¢,, = —1,
G = Gy lya s = Goadys-
(n)

Hence ¢e,, = Cofry

(—@ya) " for all n > 0. 0

Lemma 10.1.15. Let a <n < v <7 < f3 <4 be positive roots such that Ny = N, = 2
and the relations among the corresponding root vectors take the form

TalB = QapTpTa + P1T7Ty, TpZs = QnsTsTyn + 2T+,
(10.1.16) ’ )
Talr = Qar®rTa + D3TyTy, TnTg = quaTaty + baxy,
or some scalars b; € k and the other pairs of root vectors q-commute. Then, for alln > 0,
J p q
d(xixzx/gxfg ®1)= XiXZYlXB ® x5 — qg(gxixf;x(g ® x5+ qwqw(gxixz_l)%x(g ® T

+ (—lay) " GaplasXaXi%p%s ® Ta + ¢ qnsb1bsxl x5 @ @,

(10.1.17) qn-i-l n
+ % ((n + 1)%&%6 + Z ng,y)blbgngerg ® 1.
Q'ya Q'yﬁ ]:1

Notice that the equalities in (10.1.16) force
(10.1.18) y+T1=a+0, n+o0=r, a+T=7+mn, n+pB=2r.
Thus the following equality also holds: 3y = 2a+ 8 4 4.
Proof. Let n € Ng. A computation similar to (10.1.14) proves that
d(xaxzxf ®1)= Xaxf; Rz, — q,yTan;L_le Q Ty — qm(fqa,y)"x;be ® Zq

(10.1.19)
—b3(—qay)" (n + Vg, Xy @ 2y,
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d(xaxz)cg ®1)= xaxz ®xg — qwﬁxaxz_lx/g ® Ty — qag(—qa,y)"}c;bx/g ® Zq

10.1.20
( ) - (—qav)"blxz’xT ® T

Now we compute more differentials:

(10.1.21) d(xix:}cﬁ ®1)= xixz ®xg — qngix;‘_l)c/g ® Ty = Gop(—Gay) " %aXy%Xp ® Ta
. + qzylﬁqsq—rlblb?)xg—ia X Xy — (_Qa'y)n+1blxaxzxr R Ty,
(10.1.22) d(xaxzx/gx(g ®1)= xaxzx5 ® x5 — qggxaxzx(; ® xg + q,yﬁqygxaxz_lx5x(; ® T

+ (—Goy) " apd0sxy%p%s @ Ta + (—ary) " Gysb1X5 X0 X5 @ T,
First we prove (10.1.21) by induction on n. For n =0,
d(xi}% ®1) = Xa ®xg — s(qagxa ® T3Ta + b1Xa ® achv)
= xi R xg —b1XaXr & Ty — afXaXs @ To + s(qmblng7 & Xy Ty
+ (darday + Gap)b1X; ® T4T0a)
=X, ® T3 — b1XaXr @ Ty — afXaXg ® Ta + @nb1bsx’ ® 2y
Assume that (10.1.21) holds for n. By inductive hypothesis, :L% = 0, (10.1.19) and
(10.1.20):
d(xixzﬂx[g ®1)= xixfj“ Qg — s(qvgxixg ® XL~ + (—(;{M)”Hxaxz+1 ® Taxg)
= xixz"'l Qxg — q75X3X2X5 ® Ty — s(qwqag(—qw)"xaxleg ® Taly
— 5 g oibaxl 2 @ w4 (—gor) " gapxaxi T @ wpaa
+ (—ch)”‘*'lblxogcg+1 & xTa:,y)
= xzx;“'l ® g — q%gxixZXB ® Ty — (—qm)"ﬂqaﬁxaxg“){g ® Ty
— s((—qav)"ﬂblxaxffrl ® Ty — q%‘lqgjlblngz+2 ® TyTy
+ (=Gay) " P qapbrxl 2, @ 410
= xix?“ Qg — qﬂ,gxg{xleg ® Ty — (—qav)”ﬂqa[gxaszxB ® Ta

- (—qa«y)"ﬂbmax:fHXT Q zy + q:glqgj%lb?,s(x:” ® Tyy)),

so (10.1.21) follows since s(xg"r2 ® Tyy) = XQ‘*‘S ® .
Now we prove (10.1.22) by induction on n. For n =0,
d(xaxpxs @ 1) = XoXg @ T5 — s(qﬁgxa ® T528 — §aBasXp @ LsTa — ¢ysb1Xr @ :E(s.f,y)
= XaXg ® Ts — qs%aXs @ 23 — S(q869as%s ® (4apTpTa + b12,2)
— GaBlas¥p @ T5Ta — Gysb1Xr @ ToT)
= XaXp @ Ts — (B5XaXs @ Tg + qysb1XrXs @ Ty + GaBfGasXpXs & T
Now assume that (10.1.22) holds for n. Using (10.1.20), Remark 10.1.2 three times, in-

ductive hypothesis, :U% =0=2a2,

d(XaXZ),l—HXBXg ®1)= xaxZHXﬁ R x5 — s(qﬁgxaxz"‘l ® T5TE — QypGrsXaXyXp @ ToTy

- Qaﬁ(_Qa’y)n+1Qa6X2+lxﬁ R TsTo — (_Qa'y)n—i_lq'yéblxz—‘rle & $(Sx'y)
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= Xo X7 x5 ® Ts — qpsXaXy s @ xrg — s( — QypQysXaXy X3 @ TsTy
+ 4B50y5 0y BXaX XS @ Ly + qa5(—qa7)n+1q55X2+1X5 ® (qapraTe + b12r 1)
— Gap(—0ar)" " Gas¥) T R @ T570 — (—Gary)" T @ysb1 ¥ T Ry ® w524
— XQXQJAX,B ® x5 — qggxaxi;“x(; ® T + §y8G15XaXyXpXs @ Ty
— 5( = 418975(— o) " Gaplasx XS © T4 T
+ QaBQaz?(_Qa’y) apsxl x5 @ 280 + Gas(—Gary)" T qasb1xn ks ® 211y
— 408(—ar)" 1 qas¥] x5 @ 1530 — (—Gay)" T grsbr1x T xr @ w5y
— xaxz"'lxlg Qx5 — qlg(;XaXQH_lX(; ® x5+ qwngxaxgxlgxcg ® T
+ (—ay)" T gyeb1x] T kx5 © 1y — (= 448055 (—Gary) " GaplasXi X %S © TyTa
+ QaBQa5(_q&'y) qB5X”+1X5 ® 24T — qap(—lar)" dasxl T R © T50)
= XaX Xﬁ KR xs — C_m(;XaX X5 R xg+ qwqngax”}%x(g R Ty
+ (—day) " gre1x] T kx5 @ 2 + Gap(—Gar)™ T dasxt T s ® 24

Finally we prove (10.1.17) by induction on n. Notice that root vectors corresponding to
a <n <7y <7< satisfy (10.1.11), so d(xax)x,x5 ® 1) is given by (10.1.12). We claim
that

d(x2 xyxXpXs ® 1) = x,x0%5 @ T5 — qpsx2 xVX5 @ g+ qygqvgxix:’lex(; ® Ty
+ (—Gay) " GaplasXaXxp%s @ Ta + ¢gpt  qnsb1bsx’ T x5 @ T + cubibobsxl P @ 1
for some scalar ¢,,. For n =0,
d(xix[gx(; ®1)= x3x5 R x5 — s(qg(;xz ® T5T8 — ¢ysb1XaXr @ T6Ty — GaBlasXaXg @ TsTa
+ ¢y b1b3%2 © (qrotsy + b))
= xixB R x5 — q55xix(5 Rxg — s( — @5P1XaXr ® T5Ty — qafGasXaXf & TTa
+ qqu,?(;blng% ® x5y + qu1b2b3X$ ® Ty + G85GasXa®s @ (¢apTaTa + b1xT:c7))
= x2%3 ® Ts — qas¥Xa%Xs ® T8 + Grsb1XaX,Xs ® T — (= Gapdas¥axs @ Tstq
+ GarQasdysP1XrXs ® Loy + Qpsdysb1b3XyXs @ TyTs + iy Gnsb1bax’ © w5y
+ (G + ¢y6)D1b2b3%> @ Ty + 4B5GadasXa¥s ® TaTa)
= x2%5 @ Ts — qasXoXs @ T3 + GrsD1XaXrXs @ Ty + uflasXaXpXs ® Ta
+ (qyy + qws)b1b2b3xi ®1-— 5((Qaﬁ + Garay) Qa5 ys01%rXs @ Ty Ta
+ @nsQysP1b3xXs @ TyXy + anqnéblbiixi ® xaxn)
= XiXﬁ Rxs — q/g(gxgéx(; R xg + qvsb1XaXrXs @ Ty + qapGasXaXpXs & T
+qys(1 — (}7_51)b1b2b3xi ®1+ qwqm;blng,zyx(g ® p.

Now assume that (10.1.17) holds for n. Using (10.1.21), Remark 10.1.2, inductive hypoth-
esis, 22 = 0 = 2, (10.1.12), (10.1.22),

d(x2 X”+1X5X5 ®1)= x2x Xﬁ Qx5 — s(qﬁgxaxf' ® T5x8 — qwnggx NXp @ TsTy
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- QQ,B(_Qa'y)n+1QQ6XaX

1 2 3 1 2 3
+ a3 gy P o1babsx T @ a4+ g0 g P gyebibsxl T @ wsay)

1 2 1
ZJF X8 & T§To — (_QOw)n—i_ q'yéblxaxz—i_ Xr Q TsTy

= xg{xijﬂxlg ® x5 — qg(;xixzﬂx(; ®xg — s(qvnggq&xixgxg ® TRT~

+ Gas(—Gay) " qps%ax] T %5 ® (QupTpTa + 012134) — GypGysXAX XS ® TSIy
— Gap(—Goy) " Gas¥axl T x5 @ 2530 — (—Gay)" TP gysbr1xax] T %y © sy
+ nglqg;r2b1b2bsxz+3 ® Ty + qg;{lq;;;rzqmsblbsxzJr3 ® L5y
= xoxyMxg @ 25 — qasxixy T %5 @ 15 4 Gyp06%XA X X5%s © T4
— 5( = 44806 (—00r)" " G0pasFaX]XsXs @ T34
+ qwnggcnmbzngz*g ® Ty + qwnggqmq%qgjlqngblng;‘*zxa ® Ty
+ Gaplas(—day)" T qpsxax] T %5 ® 0 + qas(—Gar)" T qasbrxaxl T x5 ® T2y
— Gap(—Gar)" Gaskax] T xp ® 2520 — (—Gay) " greb1%0x % © 351,
+ q%rlqgj%lbgngf;"r?’ ® Ty + qulglqngqn(gblngz"’?’ ® T5Ty)
= Xix:"‘lm ® x5 — qB(;XiXZ;’_HXg ® g+ qvﬂqwinX:XﬁXé ® T
+ (—Gay)" P ys01%0xn T x5 © 2y — $( = 0,8075(—Gary) " GaplasXaXRaKs @ 2T
+ 4y80y5Cnb1bab3xl TP @ 2y + 4430550y € dnsbrbsx] TPxs @ Ty
+ qaﬁqaa(—Qav)nHQﬁdxozXZHXs ® TaTo — qaﬁ(—qav)nﬂqa(sxaxﬁﬂx,@ @ T5Ta

1 2 3 1 2 3
+ a3y bibabsx T @ o 4+ 5 4T P gysbibsxy T © sy
2n+3

2 2n+4 1
— Qv89nyAns oy (n + 2)ijb1b3xz+ Xs Q TyTy — q'yéqo;;Jr QaTQOaSleer XrX§ Q TyTo

+ (—Gar)" 2 qysb1babs (—gya) I DE T @ 1)

n+1 2 n+1

= xgtx7 X3 Qx5 — 4ps%XoXy X§ Qzp+ q75q75x3x2x5m & Ty

+ (_QQ“/)n—i_Qq'yéblxaxg—i_lXTXd Q Ty + QOc,B(_QCw)nJrl(LxéXaX:JrlXﬁX& X Tq

— s(d4 g Pansbroax P @ wsxy
+ (@5 ans — anoday (0 + 2)g,., )ars@ny1b3x] x5 © 2y

1 2 2 —n—1 1 3
+ (q% @+ 4ypay5cn — @t arsane et ))blbzb:st+ ® T4).

Hence the claim follows using Remark 10.1.2 and that d(x2"*®1) = x2+**®x,. The scalars
¢, are defined recursively by the equation:

_n+l _n+42 +2 —n—1 +1
Cnr = 3 G + 4ysgracn — qit graaya el Y.

Thus (10.1.17) follows using (10.1.18) to express all the roots in terms of «, 3, 7. O
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Lemma 10.1.23. Let a < B <y <7 <1 < ¢ be positive roots such that N, = 2 and the
relations among the corresponding root vectors take the form

Tals = asTsTa + D1TyTy, TRTs = qsTsTg + bolyr,
(10.1.24) TyTs = Gy6T5T + ngixﬁ TaTr = QarlrTo + baTyTg,
TRTy = qpnTnTs + b5T,
for some scalars b; € k and the other pairs of root vectors g-commute. Then, for alln > 0,
d(xaxpxxs ® 1) = XaXpxy @ T5 — qW;XaXQX,TYL_IX(; ® Ty
— (=487)"qB5%axy%s @ T + qap(—Gay) " dasXpXyXs @ Ta

- (‘ﬁ;l(”)_‘mbzbs + (—%w)nb2)xaxzxn ® Ty
(10.1.25) v 1
+ Qaﬁ(_QOz'y)nblbIXBXTYZXn R Xy — ngax/gxz_ Xy ® TpXr

n
dap (Z(—Ejﬁw)’f(k + 1)%> b1bsx! 2 ® 1.

oy k=0

Notice that the equalities in (10.1.24) force
(10.1.26) a+0=~v+n, B+d=n+r, y+d=2n+T, n+p8=nr.
Thus the following equality also holds: 2y = a + 5+ 4.
Proof. A recursive computation on n € N shows that
(10.1.27) d(xyxs ®1) = x) @ 15 — qngz’_lxcg ® Ty — ngz_lxn ® Tyl
The root vectors corresponding to f < v < n satisfy (10.1.8), so by Lemma 10.1.7,
d(xpxixy ® 1) = xp%7 @ Ty — qwxﬁxg*lxn ® 2y — qay(—qy)" %%y ® 2

+ b5y (n+1)_ap, xT' @ 1.

Y
ayn

(10.1.28)

We need more auxiliary results:
d(xaXpxyxy @ 1) = Xaxx) @ Ty — qwxozx/gxzflx77 ® Ty
(10.1.29) = (=47)" 4pn%axi%y @ 25 + dap(—Gar) " GanXsxy %y @ Ta

— q:n(n + 1)7¢zﬁb5xax2+1 ®1,
ayn
d(xaxy%s ® 1) = XX @ T5 — qmgxaxiflxg ® Ty — (—Gay)" qasX5%s @ Tq

(10.1.30) )

— ngaxz’ Xy @ TyTr — (—qow)”blxijx77 ® T,
d(xpxlxs ® 1) = 2% @ x5 — q75x5x271x(; ® Ty — (—qpy) " qpoxy%s @ T
.

(10.1.31) 1

—b3xpx) Xy ® TyTr — ((—qB,Y)”bQ — b3b5q%(n)7z%)xz’xn R .
We start with the proof of (10.1.29) by induction on n. For n = 0,

d(xaxpxy ® 1) = XoXg ® Ty — s(qm,xa ® xyTg + b5Xq ® Ty — qapGanXs @ :Un:ca>
= XaXg ® Ty — qanXaXy @ T3 + Gafdan¥pXn @ To — b5XaXy @ 1.
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Now assume that (10.1.29) holds for n. By Remark 10.1.2, inductive hypothesis and
(10.1.28),

d(xax[gx;‘“xn ®1) = Xax5xz+1 ® Ty — s(qwxaxgxg ® Ty

)n+1 n+1 ®

+ (_QB’Y XaX,y

(4nTn@s + b524) — Gap(—day)" qanxpxl ! @ :cnxa>
= Xaxﬁxzﬂ ® Ty — GynXaXpXi Xy @ Ty — 5((_qﬁv)nqﬁnqvnqﬁvxaxzxn ® 223
- Qaﬂ(_‘Joc"/>n%nqvnqwxﬁx:xn & TyTo — Qaﬁ(_%ﬁn“qdnxﬁxzﬂ ® TyTa

+ (_qﬁw)nﬂqﬂnxaxzﬂ @ Tyrg + (qul;rl(n +1)_ a5y + (—Qﬂv)nﬂ)bSXaX:H ® xw)
qyn
= XaXLgX,TyLJrl ® Ty — GynXaXpXyXy ® Ty — q%“(n +2) ap, b5x0lxz+2 ®1
qyn

— (—48:)" " ganxax %) @ 25 + qap(—doy)" T qanxax T xy © 24
Next we prove (10.1.30) by induction on n. For n =0,
d(Xaxs ® 1) = Xq ® L5 — qasXs @ To — b1Xy) @ T.

Now assume that (10.1.30) holds for n. Using Remark 10.1.2 three times, inductive
hypothesis and (10.1.27):

d(xaxg“'lx(; ®1)= xoészrl Qx5 — s(xaxz ®@ (qysT52y + b3$371'7—)

+ (_Qav)nﬂxifrl b2y (%61’61’@ + blxnmv)>

= xaxz""l ® T§5 — D3XaX Xy @ TyTr — GysXaXyXs © Ty — s((—qm)”HbleJrl ® Ty~
+1_n+1 +1
+ QQé(_Q(xw)n Xfyl QK XsTo — (_QQ'y)n QQ(SQWJX:XJ & Ty
2 2

+ oy (—Gan) " ar 3% %y © TnTrTa + 4opn(—dary) "P3baxlx,; @ {En:L’,yﬂZﬁ)

= xaxz"'1 ® Ts — b3XaX Xy @ TnTr — @ysXaXyXs @ Ty — (—qm)”"rlbl}cg“x?7 ® T
1.n+1
- QOz5(_QQ’y)n+ X:/H— X5 Q Xq.

Now we prove (10.1.31) by induction on n. For n =0,
d(xpxs ® 1) = xg ® T5 — qgsxs ® g — baxy @ .
We assume that (10.1.31) holds for n. Using Remark 10.1.2 three times, (10.1.28),
inductive hypothesis and (10.1.27):
d(X5X2+1X5 ®1) = XgX,TYL+1 ® 5 — 8 (q75x5x: ® Ty + b3xpxl) @ x%xT

+ 4as(—a) "R @ s + (— 5" oax T @ g )

1
= xx0 " @ x5 — Gr5Xpx x5 © 2y — D3RRy ® LTy — s(dnqvgxzxn ® T7T-

- qvé(*QBv)n—HQB(SX;ZXé K xyx8 + qgg(—qu)”ﬂxzﬂ ® T523

+ Q57 (—08y) " 03X Xy © Ty2r 25 + Gan(—qpy) " dyrbbIX Xy © 7y
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(=)™ s — ybsgly (1), )2 © 2y

oy
— mx?“ ® T5 — Gr6XpXL%s @ Tny — b3XpX Xy @ TnTr — qas(—qsy)
_ ((_q/g,y)n—i_lbg — b3b5q%"1(n + 1)_(137“/)X:+1XTI X Tr.

ayn

n+1l_n+1
X, X5 X xp

Finally we prove (10.1.25). To do so, we prove that there exist ¢, d,, e, € k such that
d(xaxpx%s @ 1) = XaXgX) ® Ts — qwxax/gxz_lx(; ® Ty — (—qpy) " qas%aXyXs @ T
+ qaﬁ(—qm)"qa(g}(ﬂxzx(g ® To — Cn Xaxen QT; — ngaXﬁXZ_lxn ® TpTr
+d, Xfylxn ® Ty — enb1b5xz+2 ® 1.
For n =0,
d(xaxpxs @ 1) = XoXg ® T — s(xa ® (gasxsxp + baxy®s) — qapxg @ wax(s)

= XaXg @ X5 — (psXaXs Q g — baXaXy Q Tr + S<Q()¢,BQa6Xﬂ & T5Ta + qapb1Xp & Ty,

- (Qﬂébl + QOmeb4)x77 QTyTg — QaTQOmeXn R TrTo — Gafasq8sXs X $5$a)
= XaXB @ T — qBsXaXs © T3 — b2aXaXy © Tr + ¢aBGasXpXs @ Ta + qapbixsxy @ T,

+ qo[gblbg,x,zy ®1-— 3((q55b1 + qanbaby — q5nq57qagb1)s(xn:c7xg)).

We assume that (10.1.25) holds for n. Using Remark 10.1.2 twice, (10.1.29), inductive
hypothesis, (10.1.30), (10.1.28), (10.1.31)

d(xaxm;:ﬂx(; ®1) = xaxm(fy”rl ® x5 — s(q,ﬂ;anBXZ ® T5T~ + ngax[gxf; ® x%xT
+ (*QB’y)n—HXaXTyH_I X xgxTs5 — QQﬁ(*QQ’y)nJ’_lXﬂX:—H ® $o<$6>
= Xax,@xz—i_l R x5 — q,y(;xax5xzxtg ® Ty — b3XaX,BXzX'r] Q TpTr — 3<Q76€nb1b5x2+2 ® 2

+ 435(—057) " 45,4557 Xy %5 @ T4 5 + 4150ap(—dar) " das%a % %5 © Ty Ta

+ (—qm)""'lquax:"’l ® Tsrs + qqﬂ;cnngaxzx77 ® Ty

+ (—q8y) " By a5 P3%a X%y @ TyTr23 + (—qay) " qnGyrb3bsXaX] Xy @ Tr2y

— qaﬁ(—qav)"qinqa.rng/gx:xn ® TyTrTa — qaﬁ(—qav)"qinbgbzlx[gxgxn ® Ty

+ (CJ%(” +1) s, bgbs + (_q,ﬁ’v)n+1b2)xax:+l @ TyTr

ayn

- QQ,B(_QQ’V)”JFlleBXZ-’_l & TyTy — QOcﬁ(_QQ'y)n—i_IQOc(SXBXZ-’_l X -7363704)

= xaxgszrl Qx5 — q,ygxaxgxzx(; R Xy — (—qgv)n+lq5gxaxz+lxg K xs

— ngo{XBX,:LX77 Q@ TpTr — (q%(n + 1)7mb3b5 + (—QQW)n+1b2)Xaxg+1Xn X T
aym

- 5( - szﬁ(_%’y)n+1blxﬁxg+l ® LnLy — QQB(_Qa’Y)nJrl(JQﬁXBX;LJrl ® T5xq

+ (q%(n +1)_as, bgbs + (_q,ﬁ’v)n+1b2)Qan(_Qav)n—’—lX:-i_lxn ® TaTr

ayn
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+ Gyoenb1bsxl T ® Ty + qapqlt 1%5qu Lapsxl x5 ® 1p2a

+ 436008 (—or)" " dasxaxyxs ® Tyt + (=) a5 (—gan) " T 1x0 Ry @ g

- qdﬁ(—%v)nqinchbiixﬁx:xn Q TyTrTo — qag(—qaw)”qinb;;bz;}(gx;lxn ® xnx7x5>
= xax,gxfylle ® T§ — QysXaXpXyXs @ Toy — (—qm)"Jrlqwxax:HXg ® x3

- ngaXBX:xn ® TypTr — (q%(n +1) as,bgbs + (—qm)m'le)Xax”"'lzg7 Q x,

o
qyn
+ qa@(—qm)”J’lblxﬁx’”l}g7 ® Ty + Gop(—Gary)" ' qa 5X5Xn+1X5 ® Tq
s ((qaﬁ(_qm)nﬂqgn“(n +2)_asy + Gyoen)b1bsxl T @z,

avn

+ (¢Z,(n+1)_ag, b3bs + (—qsy)"'b2) qan(—qary) " as(xI T @ zpayws)

@y
- qaﬁ(_QQ’y)nqznb3b43(X6X: & 33‘7271‘71‘5)) .
Hence the inductive step follows since s* = 0 and s(xﬁ;” ® Ty) = Xfy”r?’ ® 1; for the last

step we use the equalities

1 1 2
s(xIT @ mpayag) = x0 k) @ yap, s(xpxy @ T,T4Tp) = XgXNXy @ TyTyTg,

which follow since xv = 0 and z,x, = ¢y,Tyx,. The formula for ¢,, d, is explicit, while
for the e,’s we have the recursive expression: eg = g3,

ent1 = daploy 655 (n+2)g,, + Gad gen, n >0,
where we use (10.1.26) to express 0 and 7 in terms of «, § and +. O

Lemma 10.1.32. Let a < 8 <6 <y < T < ¢ <n be positive roots such that Ny =2 and
the relations among the corresponding root vectors take the form
TaTyp = QupTpTo + D12
(10.1.33) aTe T Teemene I
TRTr = qar&rlp + boly, LTy = qonTnTs + b3LeLrTy,
for some scalars b;, and the other pairs of root vectors q-commute. Then, for all n > 0,
d(xaXpxsxhxy @ 1) = XaXaXsX @ Ty — q’ynXaXBX(;XZ_an ® T
- (_(M'y)n(ﬁnxaxb’xzxn K x5+ QBé(_Qﬁv)nQBnXaxéxzxn X xa
(10‘1'34) - QaBQaé(_Qav)nQQnXﬂxéxzxn KT — (_Qci'y)anXaXﬂXnXgo @ Ty

qapdyn d(n) "3 1,

— Gapye (0 + D, (—d5y)"brbsxsx ™ %, @ 2, — (—go ) s
vy

where daﬁéﬁf Z CIM(]‘? + Do, (K +2)g,,, n €N,

Notice that the equalities in (10.1.33) force

(10.1.35) atp=vy=p+T, n+d=v+7+¢.
Hence the following equality also holds: 3y =a+ 5+ + .
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Proof. We may apply Lemma 10.1.7 to the 3-tuples a < v < ¢ and 5 < v < 7 to obtain

(10136 CFeTTe @) =Taxy @ T, = GrpXaXly % @ Ty — (~Gay) " GapXy%p @ Ta
- +b1¢yp(n + 1)z, x5 @1,
d(xgxixe © 1) = X535 © &7 = GyrXp®y Xr © 2y = (=57)" Gpr¥y%r @

(10.1.37)
+ bagy-(n + 1)q~ﬁ7x2+1 ®1,

for all n > 0. The next step is to prove by induction on n the following equalities:
d(xax/gxzxw ®1) = XaXpXy @ Ty — qwaxax/gxz_lxw ® Ty
(10138) - (_Qﬁ'y)nq,&axaxzxgo Krg+ Qaﬂ(_QQ'y>nQQ<pX,BX;LXQD X T
+ Gapdy,(n + 1)-q~m/b1x5xf;H ® 1,

d(x(;x:xn ®1) = x5%) @ Ty — qthgxfflx77 ® Ty — (—Qsy)" Qonxy %y @ T5

(10.1.39)
— (—q(g,y)"nggx(p ® TrLry,
d(xaXsxy%y @ 1) = XaXsXy @ Ty — qwxoéx(;xzflx77 ® T
(10.1.40) — (—Q57)"q(;,7xax2xn R xs + qaa(—qay)"qanx(ngxn ® Ty,

— (—5y)"b3%aX] %Xy @ T2y — gyp(n + 1)g, (—gs57)"b1b3xl %, @ 3,
d(xpxsxyxy @ 1) = XXXy @ Ty — qwx[gx(;xz_lxn ® Ty
(10.1.41) — (=s7)" @snxpxy %y ® T5 + qas(—qpy) " qanXs Xy %y @ T
— (—4sy)"b3xpX Xy @ T7T.
We start with (10.1.38). For n = 0 we have

d(xaxpx, ® 1) = X0X3 @ T, — s(q@pxa ® T8 — §apXs @ (apTeTa + blmv))
= XoXp QO Ty — qppXaXe Q) Tg — 3(‘1690‘1@90%6’{90 @ TpTa + qppb1Xy ® T
~ dapapXp ® TpTa — qapb1Xp ® T-)
= XaX8 ® Ty — qBpXaXy @ T3 + qaflapXsXe @ Ta + qapb1Xs%, @ 1.
We assume that (10.1.38) holds for n. Using Remark 10.1.2 three times, inductive hypoth-
esis, (10.1.36), (10.1.33) and x% = 0, we compute
d(xaxlgxijﬂxcp ®1)= xaxlgx;”rl ® Ty, — s(qwxaxlgxz ® T pTny
+ (_qﬁv)nﬂq&pxaxzﬂ ® TpTp — thﬁ(_q(xv)n“xﬁxzﬂ ® (GapTpTa + b127))
= XaX,gX,TYLJrl ® Ty — GypXaXpXaXp @ Ty — (—qﬁw)"HqB@xangHx(p ® x3
- 3(Qaﬂ(_qm)nﬂqwqwxﬁxzxsa ® Tyla + %soqaﬁqgfqgquxz“xso ® TpTa
— Gap(—00y)" Gagpxsxy T @ 20 — (=480)" T appb10y0 (0 + 2)g,, x0T @ w
- (qu(n + 1)‘7&7 + (_qaw)n+1)Qaﬁb1XﬁX2+l & x'y)
= Xaxﬁxzﬂ ® T — GypXaXpXyXp @ Ty — (_qﬁw)nﬂqwxaxzﬂx@ Qg

+ qapqyp(n + 2)5mblegxf;+2 ®1+ qag(—qa,y)n+1qa@x/gxz+lxgo ® Tg.
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Now we prove (10.1.39). For n = 0,
d(x5%y ® 1) = x5 @ Ty — QspXy @ T5 — b3Xy @ Ty

We assume that (10.1.39) holds for n. By Remark 10.1.2 and inductive hypothesis,

n+1l_n+1
Xy

d(xsx2 %y ® 1) = %5371 @ ) — 5(qynxex @ TyTy + (—G54) ® oy

_ n+1 n n+1 n+1
= x5X)" ® Ty — QynXsXyXy @ Ty — (—as+) b3x’

1 1
— (=g5,)"" qénxfywr Xn & Ts.

Next we prove (10.1.40). For n =0,

Xp @ Ty

d(xaxsxy ® 1) = XoX5 @ Ty — s(q(gnxa ® TpTs + b3Xa ® TpTrTy — GasGanXs @ l‘nl’a)
= XaX§ @ Ty — b3XaXp Q TrTy — QspXaXny @ Ty — s(qanqanqagxn R T5T
+ GapGardayb3Xy @ TrTyTo + b103Xy & T7Xy — GasGanXs @ :L‘n:Ea)
= XaX§ @ Ty — b3XaXp @ TrXy — QsnXaXn @ T + qasqanXs¥n @ To — b1b3XyXr @ X .
We assume that (10.1.40) holds for n. Using Remark 10.1.2 three times, inductive hypoth-
esis, (10.1.36), (10.1.39), we have
d(xax(;x:“x77 ®1) = xoéx(;x;”rl ® &y — 5(qyyXaXs¥] ® Ty + (—q(sy)"Jrlq(;nxaxZJrl ® TyTs
+ (—%»y)"ﬂngaxg“ ® TpTrly + qms(—qow)"Jrlqomx(;xz+1 ® TyTa)
= xax(;x;”r1 ® Ty — GynXaXsXyXy @ Ty — (—q(gv)"ﬂngaxzﬂx(p ® T7T-

- S( - (_QEv)nJrl(anVnXaX:Xn X Tyxs + QQJ(_QQ’Y)n+IQanQ'ynX6X:Xn X TyZq

+ (_Q57)H+IQ577X04X:+1 @ TpTs + Qaé(_QtX'y)n—i_l(IanX(SX:—i_l R TpZTa

+ qg¢2QO¢<pQQquL;—1b3X:+1X<p X TrTyTo + q’ygo(” =+ 2)@1»\,(_Q57)n+1b1b3x2+2 X x’r:B'y)

1 1 1
= xax(;x;H' ® Ty — QyyXaXsXyXy @ Tn — (—q(w)"+ ngaxz+ Xp @ LT~
+

1 1 1 1
- <_Q5'y)n+ innXaXZYH_ Xy Qs+ Qad(_QQ'y)n+ QaanSXnyL Xy Q Ty

— qyp(n +2)g (—%y)nﬂblb?}s(xzﬂ @ Try).

davy

Jr

As mg =0 and =z, = ¢yrTr2, we have that s(x,’;“r2 ® xTxW) =x"2x_ ® z; hence the

inductive step follows. k
Now we prove (10.1.41). For n = 0,
d(xpxs5%y @ 1) = x8%5 @ Xy — s(q(;nXg ® Tyxs + b3xg @ TpTrTy — ¢B5GRR%S @ mnxg)
= XgXs @ Ty — QonXpXy ® T5 — bsXpXy @ T2y — 5(Qsnqanass¥n @ ToTp
+ qppbsx, @ (q8rorTs + bawy) Ty — qasqanXs ® Ty )
= X3X5 Q Ty — QsnXpXn ® Ts — b3XpXyp Q Trxy + q55G8n%s%n @ X 3.

We assume that (10.1.41) holds for n. Using Remark 10.1.2 three times, inductive hypoth-
esis and (10.1.39), we have

d(ngx(;xf;HXn ®1) = XﬁX(;XZYH_l ® Xy — s(q,m}%x(gxz ® Ty~ + (*q(s,\/)n+IQ5nX6X:+1 ® Tpxs

+ (_Q5'y)n+lb3x,3xzyl+1 ® Lol Ly + qﬁzS(_Qﬁ’y)n—i_lqﬁnX(sx:fH_l ® $77$5)
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= %5355 ® iy — Gy xpXsXHy @ Ty — (—057)"  o32x) T xy @ 2y
- (—%»y)nH%nX,BXzHXn ® s — 8(Qﬁa(—th)n“%nqvnxéxzxn Q zyZg
+ o n+1 n+1 n+1 _n+1 n+1
85(—apy)"" apnXsxy T @ Tnap + Q5 gy 4pebsxyT Xp © (qrarp + oty )Ty
+ a5 aonat tapnasset xy © wswp))
= xﬁx(;xw“' ® Ty — QyyXpXsXY Xy @ Ty — (—qgw)”+1b3x5x§+1x¢ ® TrTy

— (=a57)" M asnxpxl T xn @ 25 + qas(—asy) " qayxext T xy @ 2.

Finally, we prove (10.1.34) by induction on n. For n = 0,
d(xaxpxsxy ® 1) = X0XgXs @ Ty — s(qgnxax/g ® TpTs + 03XaX3 ® THTrTy

— 4854Bn%XaXs @ TnTg + qaplasanXpXs ® TyTa)

= XaXpXs Q Ty — b3XaXpXyp Q@ Trly — G5pXaXpXy @ Xs
— 5(qpnasstmEa®n @ T6T5 — Gaplandasdsn®sXn ® ToTa
+ 48y 9Brq3yP3RaXp @ TrTyTB — dapfGapdardayP3XpXe @ LrlyTo
— Gapb1b3XsXy @ L1y — 4354Bn%XaXs ® TnTg + GaplasdanXpXs ® TyTa)

= XaXpXs @ Ty — b3XaXpXp @ Trly — qsnXaXpXy Q Ts + 4Bs4anXaXsEny @ T
— aBY9asGanX XXy @ To + §asb1D3XEXAXr @ Ty — ¢afdyr [Q]QMblbgng ® 1.

We assume that (10.1.34) holds for n. Using Remark 10.1.2 twice, inductive hypothesis,
(10.1.38), (10.1.40), (10.1.41), (10.1.37), we have

d(XaXBX(SX:J'_an ®1)= XaX5X§X:+1 ® Ty — s(q,mxoéx/gx(gxgI ® Ty
+ (—Q§7)”+1q5nan5x$+l ® xps + (—(]57)n"'lbg;}coé}c[g}cz‘*'1 @ L7y
— 45(—457)" apyxaxsxy T @ w5 + dapdas(—dar)" T anxexsxy ! © 2y2a)
= XO[XBX5X2+1 ® Ty — GynXaXpXsXn Xy @ Ty — (—q(gv)"“nga}%x”“xlp ® TrTy

"y, ® qarrrayTs

$(Gyn(—a5y) " 45y GonFaXpXe %y © 245 + 43 2qppqs D3xax]
- qvnqﬁé(_qﬁv)nqﬁwqﬁnxaxﬂzxn ® TyTp — qvanzBQaé(_qu) Qanxﬁxéxzxn ® TyTo
+ (*C]M)nﬂ%nxaxﬁxn“ ® TyTs — QaBQZ¢2QQ@QQ7q:§Lj1b3X/3X:+1X<p ® LTy T
+ QWQan(s_yn_ld&ﬁ)Mblb2b3x "0 2y — qaptye(n + 2)g., (—gsy) " bsbixgxl T @ xoa,y
- %’6(_%7)” Qﬂnxaxéxy e Tpxg + qagqa(;(—qay)"ﬂqanx[gx(gxﬁl ® xna;a)
— an5X5X2+1 ® Ly — GynXaXpXsX Ky © Ty — (—q(;v)”*lngaxﬂxzﬂxsp ® T Ty
— (=a57)" M aonxaxsxl T xy © 35 + qps(—qsy) " ganRaxsxl T Ry ®@ 2
= 5( = 4yn4asas(—dar)" ' danxsxsx %y ® 2420
— Qap it daplar gy, b3xaxl T R, ® T3,
- Q'YnQa,Bqunild((xg)&yblebSXn—’_ ® Ty — Gaplye(n + 2)g,, (—57)" T b3b1xxI T @ 2y

+ QQﬁQOM(_Qa'y) QQnX,BX6X7+ & TyTo — qyjIQJthx,@qz;‘rlQar]QOzdxﬁxz-i_lxn Q) T5Tq
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+ Qﬁaqm QBUQ(X,BQCu;qa'y qaanSX"HXn ®© TTa

— Gty aps a5t apn(n + 2)g,, b1bsxy T X, @ w4 p)
= XaX5X5X7+ ® Ty — qwxax[gxax,yxn ® Ty — (—q(;v)”ﬂngaxlgxzﬂx@ ® TrLry
— (=a8y)" " asnxaxsxy T xy ® 25 + 4p5(—apy)" T gpnxaxsxy I xy @ 2
- QaBQaé(_Qaw)n+1QanX6X6X2+1Xn Q@ T — 3(Qaﬁanq(s_yn_ldgg)gfybleb?)X "B T
~ Gaptye(n + 2)g,, (—a5))"osb1xgx T @ w
— Grdy  apsqlt  qan(n + 2)g,, b1bsxl P x, @ 1)
= xopch(;x,y+ ® Ty — QynXaXpXeXyXy @ Tn — (—q(;v)"ﬂq(;nxax[ngHxn ® xs
+ Q,Bé(_Qﬁw)n+1Q,8nan§Xn+1Xn @ xg — QCxﬂQQ(S(_Qa'y)n+1QOmXBX6X:+1Xn X Zq
— (—gsy)" b3xax5xn+1x¢ ® LTy — qaflye (N + 2)g,, (—Q57)”+1b1b3x5x2+2}<7 ® T
1 3
— 0 (4vn(—05,) 455, — e (n + D, (=05, e (0 + ), Prbabss(x) P @ ).
Thus the proof of the inductive step follows since ¢ysqvs = ¢yyGyr@yp = —Gyrye and
sEIPP@a,) =xIM @ L O
Lemma 10.1.42. Let o < n < v < 8 < d be positive roots such that N, = 2 and the
relations among the corresponding root vectors take the form
(10.1.43) TaTs = qasTsTo + 1T Ty + b2$5:6%, TyTE = QnaTRTy + 3T,

for some scalars by,be, by and the other pairs of root vectors q-commute. Then, for all
n >0,

d(Xaxz}(ﬁX(; ®1) = Xaxzx/g Qx5 — q/ggxaxzx(; X xg + q,yﬁq,ygxaxz_lx/gx(g R Xy

(10.1.44) + (=Gay) " 40pdas¥y%s%s @ Ta 4 b1(—Gary)" (1 + 1)g;, "+1x5 ®
4o (n -+ 2,08, 2P2x55 © ) — gss(—ara) "Brbacly, K @ 1.

Notice that the equalities in (10.1.43) force
(10.1.45) v+ =a+i, n+p=r.
Hence the following equality also holds: 2y = a + 5 + 4.
Proof. Lemma 10.1.7 applied to n < v < 8 says that the following formula holds for n > 0:
d(xyxyxs ®@ 1) = %% @ Tg — ¢,5%nX "_1}(5 ® Ty — (—yy) " GnpxyXs @ Ty
+b3gyp(n + 1)z, x ZH ®1,
Next we prove that the following formula holds for all n > 0:

(10.1.46)

(10.1.47) d(xaxgx(g ®1)= XaXy ® T§ — qw;xaxz_lx(g ® Ty — (—qaw)”ngg}% ® .%727
1. — (o) (n + 1)‘15'Yb1X”ryl+1 ® Ty — (_qm{)”qaéxzx(g ® T
For n = 0 we have that

d(xaxs 1) = x4 @ x5 — s(qw;x(;a:a +bizyxy, + bga:@x??)

=Xq ® x5 _bley ®3377 _b2xﬁ ®$37 — Qa5 @ Tq,
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Now assume that (10.1.47) holds for n. Using Remark 10.1.2, inductive hypothesis,
d(xaszrlX(s ®1) = xoéxz+1 ® 25 — $(¢yo%aX) @ T52y + (—qay )"Jrl @ xaxs)

)n+1 n+1 ® TsTq

= xoészrl ® T§ — Gy5%¥aXyXs @ Ty — s((—qm JasXy
+ (—qm)"“(l + qys(n + 1)5M)blxz+1 ® TyTy + (—qop,)"Jrlbzxg”rl ® xgx%
+ 42 0y5(—Gary) "b2x%5 ® Ty 2h — (—ay)™ T Gas@ys X %s ® 24T

= xoészrl ® Ts — QysXaXyXs @ Ty — (—qM)"H(n + 2)(757b1x2+2 ®
- (_Qav)nﬂ

Now we prove (10.1.44) by induction on n. When n = 0,

+1 +1 +1 2
GasXy X5 @ To — (—qary)" box " xp ® ;.

d(xaxpxs @ 1) = XoXg ® T5 — s(qﬂgxa ® TsT3 — qapXs @ xawg)
= XaXg @ T§ — psXaXs ® Tg — qggblng?y ® 1 — qnpqpsb1X4%g @ Ty
+ G0 (2)g,5ON5,2D2%5 @ T + qaplas¥sXs © Ta,
since xg ® x &y = s(xgryxy) and s(xg ®x5x2) = 0: either xg® l’ﬁl’ = s(xﬁx ) if Ng # 2

or q[g(;qf]ﬁ = qrg(;qgﬂ = —(apqps if Ng = 2. Now assume that (10.1.50) holds for n. Using
Remark 10.1.2, (10.1.47) and inductive hypothesis,

d(xax X5X5 ®1)= xax X/g ® x5 — s(q55xax A T6TG — GypGrs%aXyXp @ TsTy
— (—qm) qaﬁx"+1x5 ® (qas®5Ta + O1TyTy + ngga:n))
— xaxZ“xB ® T5 — qﬁgxax”“x(; ® T + GypGyeXaXyXpXs © Ty
— 4s5(—tya) TS5 orbgxl ™ @ 1= (o)™ ayaaps (n + 2)g, 1% x5 @
+ gap(n + 2)@555Nﬁ’2b2x2X% ® ZE% + (—qm)"“qa/@qm;xzﬂmxg ® Ty
which completes the inductive step. ]

Lemma 10.1.48. Let o < 8 < v < n < d be positive roots such that N, = 2 and the
relations among the corresponding root vectors take the form

(10,1,49) TRTs = qRsTsTH + P1TyT~, Loy = QanTnTa + 2Ty,

for some scalars by, by and the other pairs of root vectors q-commute. Then, for alln > 0,
d(xaxpxxs ® 1) = XaXgXy ® Ts — qngaxlgxz_lx(s ® T

(10.1.50) — (—48y)"4p5%ax)%s @ T8 + (—Gay) " daplasXaxyXs © Ta

— (—qBv)nblxaszn Q Ty — qzéc(:lg7a’7b1ngz+2 ® 1.

Notice that the equalities in (10.1.49) force
(10.1.51) vy+n=p+9, n+a=-y
Hence the following equality also holds: 2v = a + 5+ 4.
Proof. The following formula holds for all n > 0:
d(xpxlxs ® 1) = 2% @ 25 — q,YgX/BXZ_lX(; ® Ty — (—qpy) " qps%y %5 ® T

(10.1.52)
— (=a8y)"P1x5 %y © 4.
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The proof is analogous to (10.1.14), see also the proof of (10.1.30). Next, we apply Lemma
10.1.7 for ae < v < n (no other intermediate roots) to get
(10.1.53) d(xaxixy @ 1) = 0%} @ Ty — qﬂmxax;‘_lx77 ® Ty — Gon(—Gay) " X%y ® T4

a - (—qm)”(n + 1)q~a7b2X$+1 ® 1.

Now we prove (10.1.50) by induction on n. When n =0,
d(xaxpxs @ 1) = XaXg @ T5 — 5 (¢a5%a ® T5Tg + b1Xa ® TyTy — ¢aBlasXs @ T5Ta)
= XoXp ® s — b1XaXy ® Ty — (BsXaXs @ T — S(QaBQ(MSQﬁ(SX& X TpTy
+ GayQanb1Xy @ TyTa + 12Xy ® Ty — GuplasXs & x(;:ca)
= XoX3 ® Ts — D1XaXy @ Ty — (B5XaXs @ T3 + GaBGasXpXs @ Ty — b1b2x3 ® 1.

Now assume that (10.1.50) holds for n. Using Remark 10.1.2, inductive hypothesis, the
relation 2 = 0, (10.1.53), (10.1.52),

d(xax5xz+1x(5 ®1)= XaX5X2+1 ® x5 — s(qm;xax[gxg ® T5xy + (—qu)”ﬂblxax:*l ® Ty

+ (—q87)" M gpoxaxi T @ 575 — Gap(—Gary)" T Gasxpxt T © 2524
= xoéxgszrl ® Ts — Gy6XaXpXyXs @ Ty — (—qﬁﬁ,)"ﬂblxax:*lxn ® T
— (—a8y)" " apsxaxt x5 @ 25 — $( — qap(—day)"  qasxpxI T @ w570

- Qa’y(_Qav)HQQBQQ§qW6XBX;LX§ R Ty T
+ (qggrlc(_"é)ﬁa,7 + qg;rlqgjl(n +2)z,, )biboxl P @ 2y
+ QZj1Qquzfyr2bleyL+1Xn D TyTo — QE;JQBEQ()BQZ;AQ()&X:JFIX(S X xﬂxa)

= xaxlgxzJrl ® x5 — q,Y(;xaxBx:X(; ® Ty — (—qgﬂ,)"Jrlleax:HXn ® Ty
— (—a8y)" " aps%axn %5 ® 25 + Gap(—Gan)" T Gasxsxl T x5 ® 24

Y ¥
1 2(n+1) ,—n—1 3
— (7 e+ AT (4 2)g, Jorbax T @ 1,
and the inductive step follows. ]

Lemma 10.1.54. Let a <7 < B <y <pu<v<n<J be positive roots such that Ny = 2
and the relations among the corresponding root vectors take the form

Tals = qasTsTa + D1TnTr, TRTs = qBsT5TE + 2Ty Ty,

(10.1.55)
TRTy = (BnTnTg + D3TuTy, Taly = QauTyTa + D4y,

for some scalars b; and the other pairs of root vectors q-commute. Then, for all n > 0,

d(xaxpxyxs ® 1) = XaXpxy ® Ts — qvgxaxlgxzflx(s ® T
(10.1.56) — (—48+)"485%ax%5 © T3 + (—Gar) " GaplasXsX %5 © Ta
o + Qaﬁ(_Qav)nblxﬂxzxn QT — (—QQW)anXaXQLXV & Ty

2
— qz(;C(_n(%a’,beb4X2+ ® 1.
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Notice that the equalities in (10.1.55) force
(10.1.57) a+d=n+7, B+o=v+y, B+n=p+vy at+tv=1.
Hence the following equality also holds: 2v = a + 5+ 4.
Proof. We need some auxiliary computations. First we apply Lemma 10.1.7 to o < v < v:
d(anZx,, ®1)= xaxf; o - qwxaxz_lxy ® Ty — qa,,(—qm)"xZX,, Q T,
— (=Gay)" (n + 1)(7Mb4xf;+1 ® 1.

Next we claim that the following formulas hold for all n > 0:

(10.1.58)

d(xax)xs @ 1) = x4 ® T5 — qﬁﬂ;xaxzflx(; ® Ty — (—qary)" qasxyXs @ T

(10.1.59)
- (_Qav)anX:Xn & Tr,
(10.1.60) d(xpxxs © 1) = x5x] © w5 — grsxax]) %5 @ 2y — (—qpy) " qps%%5 @ T
h ( 'y)anX:Xy & Ly,
(10.1.61) d(xpxi%y @ 1) = XXy © Ty — q’mxﬁx:ilxn ® Ty — (—qpy) " qanxy %y @ T

— (—3y)"P3xxy @ 4.
The proof of each equality is analogous to (10.1.14).
Now we prove (10.1.56) by induction on n. When n = 0,
d(xaxpxs ® 1) = X% ® Ts — 5(qas%a @ T528 + b2Xa ® TyTry — qapXs @ TalLs)
= XoX3 ® s — b2XoXy ® Ty — qBsXaXs @ g — s( — qapfqas¥s @ TsTa — qapb1Xg & TyTr
+ Garb2xy @ TaZy + bobaXy ® Ty + ¢aBdasqasXs ® TaTa + ¢raqssbixy ® T, )
= XoX3 ® s — b2XoXy ® Ty — qB6XaXs @ T3 + qasb1XXy @ Tr + (apdasXsXs @ T
— s(b2b4x7 & Ty — qapb1bsxy, & xvxT),
which is (10.1.56) for n = 0 since
S(Xv ® xv) = ng ®1, S(Xu ® xvxf) =80 S(xuxvxT) =0.

Now assume that (10.1.50) holds for n. Using Remark 10.1.2, inductive hypothesis, the
relation 2 = 0, (10.1.58), (10.1.59), (10.1.60), (10.1.61),

d(xax[gx: x®1)= xa}cﬁxwrl Qx5 — S(q75XQX5Xn ® T5xy + (—qB,Y)"Hngax:H ® Ty

)n+1 n+1 ® Ts5Tp — QQﬁ( Q()w) q 5X6Xn+1 @ T§To

n+1

+ qps(—aqpy
- QOzﬂ( Qa’y) ot blxﬂx

1 1
= xaxﬁx,y+ ® x§ — qngaXBsz(g ® Ty — (—qm)""’ ngaxgH' Xy @ Ty

& a:na:T)

5( - Q"/(S(*Q,B”/)n—kl‘]ﬁéxaxgxé R xyxg + qWé(*QOz"/)n—HQaBQOcéXﬁX:Xé R Ty T
- CthQaﬁ(_Qa’y)nle,BXan R Trxy + qu(—Qﬁy)anXaXQXy ® -T?y
+ (q;l;lc(—ga L+ gt n+1(n + 2)qw)b2b4xn+2 ®

ay 9y

n+1 n+1 n+1

® 2578 — qas(— qom) Y0 §XpXy " @ T5To
n+1 n+2
Y

+ qs5(—aqp+)

B qag( Qa'y) —HleﬁX n+1b Xn+

& Thrr + QQuqa Q57 lxu & xfyl'a)
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n+1

1
= XoXpx) Q@ Ts — qngax/gx:}((g ® Ty — (_Qﬁ»y)m— b2Xaxz+

1X,, X Ty

)n+1XaXZ+1X5 ® g + qaﬂ(_QCx"/>n+1blxﬁX:’yl+1X'r] ® T,

— qps(—qpy
+ QQﬂ(_Qaw)n+1Qa6XﬁX:+lx6 R To — 5( - QCxﬁQZfTIQE;_lblb?)X:jLIXM R TyTr

+ qn—i-l (C(n)

S T a0 e T (0 2)g,, Jbebaxy T @ ).

ay 9y Gory
As a+ =2y — 9, we have qulqgjlq;;—l = 'q}}"_l. Also, s(x’v“r2 ® Ty) = XZ*'?’ ® 1, so

d(xax5x:+1X5 ®1)= xax[gx:H ® Ts — Gy6XaXpXyXs @ Ty — (—qm)”*lngaxgﬂxy ® T+
)”Hxaxzﬂxcs ® g+ qag(—qow)wrlbmgx:+1

+1
+ QQﬁ(_QQv)n+lQQ6XBXZ+1X6 R To — nglc(_n(;,a7)7b2b4xz+3 ®1

—qps(—apy Xy ® X7

+ qagqgjlqg;rlblbgs(xzﬂxu ® :cvxT).
Next we claim that x!*'x, ® z 2, = s(x2T! @ z,22,). Indeed,
al(xzJrl ® TpXyTr) = Xi: ® Ty T Ty Tr = qwxz ® 90;@%337 =0,
o) XT;LH ® x,x427 € kerd,, and we compute

S(Xzﬂ ® Turytr) = x0Tx, @ Tyas + s(xz+1 ® TpTyTr — d(x?“xu ® Ty Tr))

5
_ Jn+l1 n+1 n+1 n 2
= x0T %, @ pyxr + (T @ apras — (7T @ wpryr, — ¢uxix, © 252,))

_ Xn—l—l

=X, Xy X TyTr.

n+1

From this claim, s(x7

Xy ® meT) = 0, and the inductive step follows. ]

Lemma 10.1.62. Let a < f <v <y < pu <06 <n be positive roots such that N, =2 and
the relations among the corresponding root vectors take the form
TRLs = (BsT5TB + b1T~T TyTy = QupTnTy + box,x
(10.1.63) B B B vy, Lvdy vntnty pebys

TaTy = QapTuTo + 3T,
for some scalars b;, x~ q-commutes with the other root vectors and the following pairs
of root vectors also q-commute: (Ta,x8), (Ta,xv), (TasTs), (TasTy), (g, 2,), (28,2y),
(1'1/7335)} (:L'Val'n)z (13“,1'5), (l“u,l'n). Then, for alln >0,

d(xaxpx %Xs%y @ 1) = XaXax0Xs @ Ty + (—qpy)" (1 + 1)q~5wb1b2xaxz+1x# ® T

(10.1.64) - q<57IXaXBX::X77 ® x5 + qW(_qﬁ’Y)n(n + 1)§Mble1x:fl+1x7l ® xy
o + qWéanan,BxfythJXn & Ty + (_qﬁ’y)nqﬁl;qﬂnxflxzxtsxﬂ ®zs

- QQB(_Qa'y)nQQ(s(IOmXBXan{X&Xn X T — %m/Q%q;lnd&?f;’(g,aﬁblb2ngz+3 ® 1.

Notice that the equalities in (10.1.63) force
(10.1.65) B+o=v+v, v+n=p+vy, at+p=r1.

Hence the following equality also holds: 3y =a+ 5+ + .
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Proof. We need some auxiliary computations. By (10.1.14)

d(XﬂXQX(; ®1)= X/BXTYL Qx5 — q,y(;X/BXZ_lX(; QR Xy — qﬁg(—q,g,y)"xzx(; R xp
— (—g8y)"(n + 1)(767b1x2Jr1 ® Ty

Next we apply Lemma 10.1.7 to oo < v <

(10.1.66)

d(xax)x, ® 1) = x0%X) @ T, — qwxaxzflxu ® Ty = Gap(—Gary) " X%y @ T

— (—qary)" (n + 1)§Mb3x2+1 ® 1.

Now we prove the following equality by induction on n:

(10.1.67)

d(xaxm(zx(; ®1)= XaXpXy @ Ts — qvgxaxﬁxz_lxlg ® T
(10.1.68) — (—484)" 4ps%axy%s @ T + qap(—dary) " QasXpXy%s @ T
—(=g3y)" (n + 1)z, bixaxi ' @ @,
d(xpxxsxy @ 1) = XX %5 @ Ty — QsnXpXnXy @ Ts
(10.1.69) + GroGymXsxD K5y ® Ty + (—qay)" (0 + 1)g; brbox!x, @ 2y
+ (—8y)" 034y X} %%y @ T4 + (= 8y) " ton(n + 1)z, 0125 oy @ .
Indeed, for n = 0 we have:
d(xaxpxs ® 1) = Xoxg ® T5 — s(qggxa ® T5T8 + b1Xa ® Ty — ¢apGasXs @ mga:a)
= XoX3 ® Ts — (35XaXs @ Tg — b1XaXy ® Ty — 5( — GaBqasXp Q T5Tq
+ GarGarb1Xy @ TuTa + Gapdssdas®s @ TpTa)
= XaXg QO Ts — @35XaXs Q Tg — blxax,y X Ty + §apdasXpXxs & Tq.
And for the other equality,
d(xpxsxy ® 1) = xp%5 @ T — s(qan5 ® TyTs — qBsYBnXs @ Tty — b1Xy ® x,,xn)
= Xg%5 ® Ty — QonXp%n © 5 — 5( = GasGanXs ® TyT — Qunb1Xy @ Ty
— b1boXy @ Tyy + QaslpndenEn © TsTs + AandonPrin ® T4Ty)
= X3X5 Q Ty — QsnXpXy Q Ts + b1box Xy, & Ty + quyb1X4Xy Q@ Ty + q5sq8n%Xsxn @ X 3.

Now assume that (10.1.68) holds for n. Using Remark 10.1.2 repeatedly, inductive
hypothesis, the relation :173 =0 and (10.1.66),

d(xa}%xzﬂ}c(g ®1)= Xoéx/gxgH'1 Qx5 — s(qngax/gxz ® T5xy + (fqm)"‘”'lblxaxgH'1 @ Ty
+ (—q8y) " qpsxaxl T @ 2525 — Gap(—day) " dasxsx] T ® 520
= xax5xg+1 ® Ts — QysXaXpXyXs @ Tny — s((—(]57)"“q/gfgxoéxg'H ® 528
+ (=4y)" " (1 + 46007 (=437) ™ (n + Vg, Jorxaxy ™ @y,
— 4a8(—ar)"  qasxsxl T @ 2530 — (—q8y)" T 4850y5%aX] X5 @ Ty
+ Qap(—Gar)"  dastrexpxI %S @ T4
— xax5x;‘+1 ® x5 — qw;xa}%xgxfs ® Ty — (—qﬁv)"“qg(gxax;‘“x(g ® 3

— (=q3y)" T (n 4 2)g,, b1xax 2 @ 2y — 5( = qap(—Gay)" Gasxpxl T @ w54
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+ Gap (o) Gastys% % %5 © Ty T0 + Gapdan osdl qsXS T Xs © TaTa

+ qngqgjl(n + 2);;Mb1xfyl+2 ® TaZy)
= xax[gxzﬂ R x5 — q,ygxax[gxzxts ® Ty — (—q57)”+1q55xax:+1x(; ® g
— (—gq5)" (0 + 2)q~hb1xax2Jr2 R, + qaﬁ(_qay)n+lqa5X5X:+1X5 ® Tq.
Next we assume that (10.1.69) holds for n. Using (10.1.66), inductive hypothesis, Re-
mark 10.1.2, the relation 33% =0,
(1(}(/3}(24'1}15}97 ®1)= X/3X2+1X5 ® Ty — S(q(gnx[gxzﬂ ® TnTs — Qy6GynXpXXs @ TyTy
— (=48)" " 4oy xs @ s — (—qpy)" T (0 + 2)g, 12l @ wyy)
= xﬁxfyl"rlx(; ® Xy — Q5nx5xg+1xn ® T§ + QysQynXpXyXsXy @ Ty — s(
— (—ga)" T (n + 2)557b1b2x$+2 ® 2y — (—qsy)" T qun(n + 2)(757b1x1;+2 ® TyTy
— (=a8y)" " 4psqenxy x5 © wyzg
+ anq'yn(*Q,Bv)n—H(l + Gys(n + 1)q~5w)blxz+lxn Q Ty Ty
+ %n(_QBv)anﬁéanX:HXn QxsTH — ‘175%77(_qﬁv)nﬂqﬂéqﬁnxzmxn ® xvxﬁ)
= xﬂx:"rlxg ® Xy — chnxmczﬂxn ® T§ + GysQynXpXyXsXy @ Toy
+ (—g5y)" T (n + 2)%7b1b2x$+2xu ® 2y + (=) P aun(n + 2)q~5vb1X:+2Xn ® T,
= 5( = (=as)" gm0t %y x5 ® Tns + don(—a50)"™ qaotsn Xy xy @ w525
- q«,(;qw(—qﬂw)”ﬂqg(sqﬂnxgxgxn ® xvxﬂ)
= xﬂxfyl"rlx(; ® Xy — Q5nx5xg+lxn ® T§ + GysQynXpXyXsXny @ Ty
+ (—gq5y)" T (n + Q)aﬁblngz‘mxﬂ ® 2y + (—q5,)" g (n + 2)q~6vb1x$"'2x77 ® T,
+ (=48, 45050 %y 1%y @ .

Finally we prove (10.1.64) by induction on n. When n = 0,
d(xaxpxsxy ® 1) = X0Xgxs @ Ty — s(qgnxax[g ® TyTs — qBndasXaXs @ TnTg

— qupb1XaXy ® Tpxy — b1baXaXy & T, Ty + §afGasGanXpsXs @ xnxa)

= XaXBXs Q Ty — @spXaXpXn ® s + 9nqpsXaXsiy & Tg — s( — Qunb1XaXy & Ty,
— b1boxaXy ® Tp%y + G8ndsnP1XaXy Q@ TyTy + qafGasdanXsXs Q@ TnTa
— qapandas9n¥xpEn @ T5Ta + 9apqasQondndBsXsXn & 96;3%)

= XaXpXs Q Ty — qsnXaXpXy @ Ts + 4nQpsXaXsXny @ Tg + quyb1XaXyXy Q X,
+ b1boxaxy X, @ Ty — s(qagqa(;qan}ch(; ® TpTo + qa7(2)awb1b2ngi ® T
— Gap9onasqsnXp¥n @ TsTa + qaslasqandsndpsXs¥n @ TTa
+ GaryGanQavGunP1%y Xy @ TuTa + Gapdayb1b2X X, ® TyTa)

= XaXpXs @ Tp — ¢snXaXpXn @ Ts + qpndpsXaXsXn @ Tp + qynblxax,yxn X Ty,

+ b1boxaXyXy, ® Ty — GaplasGonXpXsXy Q@ To — QQW(2)§a7b1b2b3X?y ®1,
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which is (10.1.64) for n = 0. Now assume that (10.1.64) holds for n. Using (10.1.68),
Remark 10.1.2, inductive hypothesis, the relation :B% =0, (10.1.67), (10.1.69),

d(xa}%xf;"_lx(;xn ®1) = xax5x”+1x(; ® Ty — s(qgnanﬁxz+1 ® Tpxs

— (—487)"  apsqpnxax x5 @ 292 p + Gap(—Gary)" T dasqanxsx T xs @ Tpa
— G50 XaXaXaxs ® Ty — (—qpy)" T (0 + 2);1v57b1xo¢x7”r2 ® (qynxnxl, + box )

= xax[gxzﬂx(; ® Ty — q(;nxa}%xfy”'lxn Qx5 — s( — (—qgy)"t qﬁgqgnxax s ® Tyxg
+ Qaﬁ(_ch)nﬂ%éqwxﬁx:ﬂm ® TyTa = GysGymXaXpXyXs @ TnTy
— qun(—asy)" " (N +2)g,, b1xax”+2 ® TyTy + QynlonGroXaXpXyXy ® ToTry

— (—gsy )nH(” + 2)«15 blb?xax ’® Lpley — Qaﬁ(_qm)anOzéqanthnXﬁXfyLHXn ® T5Ta

+(=48)" " apnaonxaxy xy @ (qpsTs7 + b1 7))

= XQXBXn+1X5 ® Ty — q(;nxa}%xz"'lxn ® xs + q,y(;qqﬂ?xa}(gx"x(;x77 ® T~
— 5(gap(—Gar) " GasGonxsxt T x5 ® TyTa — (—q7)" T (0 + 2)g;, blechX 2@z,
— (=) qpsapyEaxt T x5 @ T — Qun(—apy)" T (0 + 2)g, brxaxI T @ zy,
+ (=a57)" (@1 + 1)z, oy Gysyn — Qv Gandon)P1xaxy 2y © 22,
— Gap(—Goy)" ™ GasGongonxsx T %y © T5a + (—apy) " 4as0n G KX Ry @ T51 8
- (_qﬂv)nHqﬁéqﬂnqvéqwxax:xéxn ® TyTg — qavqr‘a“fﬁfdilﬁ S yb1b2b3xz+3 ® Ty
+ Qaﬁ(_q(w)nﬂQaé%nqwé%nxﬂxzxﬁxn ® xvxa)

= xaxgx”Hx(; Q xy — qanxaxlgxnﬂxn Qx5+ q,ﬂ;qwxaxlgxﬁjxaxn ® T~
+ (—qsy )"H(n + 2) blbzxax XM ® zy + qyn(—qm)"Jrl(n + 2)§Mblxaxz+2x77 ® x
+ (—gp,)"* (Jﬁéfmnxux XéXn ® 25— 5( = qap(—Gor)"" Gasdandsnxsxy %y @ 2520
+ Gop(—Gar)" " dasGanxsxs T %5 © TpTa + Gap @it Gosdan ) pssnX] T X5%y © T5Ta
+ dop(—Gar)" " GasGantyo G X s X xs Ty © T420
Qo @ @ (n + 2)% (n+3)z., +d\") 5 5.0, o1babsx 3 @ 2y
4 qaquj?,qg;rl(n + 2)(757b1b2x7 Xy @ TyTq
+ Gav @it *qandun @t (0 + 2)g; b1x5 %, ® 1,3,

= xax/gxf' X5 @ Xy — q(;nxa}%xz"'lxn ® T§ + Gr6GynXaXpXyXsXy @ Ty
+ (=a5y)" (0 + 2)g5, brbaxaxy Px, @ 2y + oy (—asy)" T (0 + 2)g;, brxax Pxy © 7,
+ (=a57)"  apsasnxaxy  xs% © 25 = Gap(—an) " dasdanxs®y  R5%y © 24

1 1 4(n+1 3
Qa'yq,er n+ d((;fi-ﬁzia ,Yb1b2b38<xfyl+ X ‘T'Y)’

and the inductive step follows. O
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Lemma 10.1.70. Let a < <6 <y < pu < v <1 be positive roots such that N, = 2 and
the relations among the corresponding root vectors take the form

TRLy = qBpTnTg + b1T,T~,
(10.1.71) B4 Bt s vty
TsTy = Qsp s + D2XpTry,  Talpy = apluTa + 3T+,

for some scalars b; and all other pairs of root vectors q-commute except possibly (xg,x,).
Then, for allm > 0,

d(xaxpxsxyXy; ® 1) = X XaXsX) @ Ty — qynxa}(ﬁx(;xg_lxn ® T
— (=57)" @syxaxpx %y @ 5 + qas(—qpy) " anXaXsXy Xy @ T
+ Qﬁé(_Qﬁ’y)nblxaxéxgxu X Ty — QaBQQ(S(_Qaw)RQanXﬁX(SX:Xn X Tq

+ q55q$77d(ﬁnzu a’yblb?b?’xz—‘r?) ® 1.

(10.1.72)

Notice that the equalities in (10.1.71) force
(10.1.73) B+n=v+v, d+tv=q+pu a+upu=r.
Hence the following equality also holds: 3y =a+ 5+ + .
Proof. We need some auxiliary computations. By (10.1.60),

d(xpxixy © 1) = x5%5 @ 2y — %nxﬁxz_lxn ® Ty = (—qpy) " qanxyxn ® T
- (_qﬁ'y)nblxzxv © Ty,

d(xsxy%, @ 1)
- (_Q5'y>

(10.1.74)

= %537 @ Ty — GruXsX" 1%, @ Ty — (—qs) "o x" %y @ Ts
(10.1.75) Lo X8y 1~ (745) oy
ng,yxu & X-
Now we prove the following equality by induction on n:
(10.1.76)
d(xa}%xZXn ®1)= XaXpXy @ Ty — q,mxa)%xz_lx?7 ® Ty — (—qﬁ,y)"blanZx,, ® T
— (—=48y)" 4sy%axxn © 28 + Gap(—Gay)" Ganxaxi %y @ Lo
Indeed for n = 0 we have:
d(xaxpxy ® 1) = X0X3 @ Ty — s(qgnxa ® Tpxg + b1Xa ® Ty — ¢aplapXs @ xnxa)
= XoXp ® Ty — b1XaXy @ Ty — @gnXaXn ® Tg + qaplanXsXn @ Ta-
Now assume that (10.1.76) holds for n. By Remark 10.1.2, inductive hypothesis and
(10.1.74),
d(xax/gxzﬂx77 ®1)= xaxﬁx;”'l ® Ty — s(qwxax/gx: ® LTy
+ (—qm)”“an?“ ® (apnTnTp + b12yTy) — Qaﬁ(_qm)nﬂquﬁxzﬂ ® TyTa)
= Xaxpx) " ® By — GyyXaXpXyxy ® Ty — (—qpy)" T b1xax) T, ® 2y

)n+1 n+1

— (=48y)"  ganxaxy ay @ 25 + dap(—dar)" T danxsxy Ty ® 2a.
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Next we apply Lemma 10.1.48 to a < d < v < u < v to get:
d(xax(gxzxy ®1)= XaXsXy ® Ty — wxax(;x;‘_lxl, ® Ty
(10.1.77) - (_q5’y)nQ5VXaX7XV R x5+ (_qa’y)nQO«SQauxéxnxu ® Ta
— (—g5,)"brxax %, ® 2y — g7, | bobyx 2 @ 1.

Now we prove by induction on n that

(10.1.78)
d(xpxsxyxy @ 1) = XXX ® Ty — q,mXﬁX(sXZ'_an ® Ty — (—qsy) " onXpxy %Xy @ T
+ (—a8y)" 48503 %s¥ %y @ T + q35(— ) "P1X6X] %, @ T
Indeed, for n = 0 we have
d(xpxsxy ® 1) = xp%5 @ T — s(qgnx5 ® TpTs — qBsqenXs @ TyTg — qasb1Xs @ xl,xw)
= XX ® Ty — QonXpXy R Ts + 4508n%s%Xn ® Tg + (5sP1X6Xy & T.

Now we assume that (10.1.78) holds for n. Using Remark 10.1.2, inductive hypothesis,
(10.1.74), (10.1.75),

d(x5x(;x§+1xn ®1) = x5x§xf;+1 ® Ty — s(qw}%x(;x” ® Ty~ + (—qg,y)”ﬂq(;nxrgxffrl ® TyTs

n+1 ® -’L'yx'y)

— 4a5(—apy)"  aanxoxy T @ wyms — qps(—qsy)" " Drxsx]
= X5X5Xz+1 ® Ty — QXXX Xy B Tn) — (—qsy)"" q(;nxmcy Xn ® T
+qps(—qpy) " orxsxl x, © 2y 4+ qas(—qay)" T gaxex xy @ s
- qgfqgljl%sn(l — Gas)brs(x0 1%, ® 2y15),
and the inductive step follows since x*'x, @ z,x5 = s(xI © z,2y25).
Finally we prove (10.1.72) by induction on n. When n = 0,
d(xaxpxsxy ® 1) = X0Xgxs @ Ty — s(q(;nxaxﬁ ® TyTs — qBsdpnXaXs @ TyTg
— 4psb1%aXs © TyTy + GapladslanXpXs © TyTa)
= XaXpXs Q Ty — QsnXaXpXy R x5+ 4B598nXaXsXy Xz + q[g(gblxax(;x,, & Ty
— GaB9as9anXpXsXy @ To + q55b1b2b3x§y ® 1.

Now assume that (10.1.72) holds for n. Using Remark 10.1.2, inductive hypothesis,
(10.1.76), (10.1.77) and (10.1.78)

d(XaX/3X§X$+1Xn ®1)= XQXBX(gxz‘H ® Ty — s(qynxa}%x(gxz ® Ty
+ (—57)" T axpxl T @ wyms — qps(—apy)" T qanxaxsxl T @ wyag
— qa5(—a3y)" T 1xaxsx I @ 22y + Gaptas(—ar)" T danxpxsxl T @ Th2a)
= an5X5XZ+1 ® Ty — GynXaXpXeXyXy ® Ty — (—q(;w)"Jrlq(;nxozxﬁgxzﬂm7 ® x5
+ap5(—py)" o1xaxsx ) xy © 2+ 4ps(—q,)"  gnaxsxy TRy © 2

- 5(QaBQCxé(_QOA'y)n+1QanX6X6X:+1 R TpTo — QaEQatsqay Qanqyjlcﬁnxﬂx Xp @ TsTa

- %15‘]045(_QQ'y)n—HQanQ'ynXﬁdezxn & TyTo + quqgjlqgi Qa5QOA/b1X6X7+ Xy & TyTo
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+1
_ Q55(qn+1d( )l/om/ 4 q?yljlc(_ny’a?y(_QBW)H+1)b1b2b3X:+3 ® Ty

+ 4p5 5 4Bndasdosdan donXsx T Xy © 25T )

- XQngx(gxfyLH ® Ty — GynXaXpXsXnXy @ Toy — (—qay)”"'lq(;nxaxﬁgxzﬂxn ® x§
+ a5 (—asy)" T orxaxsxS i, © 2y + 4ps(—asy) " agxaxsxy vy @ g
— qagqa(;(—qm)"“qanx5x(gx Xy @ o + qmqnﬂd(nflwb bgng"Jr4 ®1,

and the inductive step follows. ]

Lemma 10.1.79. Let a < B < T <d < p<v <vy <k <1i<n be positive roots such that
N, = N, = N, = 2 and the relations among the corresponding root vectors take the form
TaZs = qasTsTa + b13372_565, T§Ty = QsnTnTs + beIil"yxu + bgfb,yﬂj,,,
(10.1.80) TrTy = QrpTpTr + P4TrTy, TaTp = apTula + bs5TrX3,
TpTy = QunTnTy + DT, Ty,  TyTy = QupTpTy + D7T,TT,
TRTr = qBrTrTp + bewy Tal, = T To + b9x’ya
for some scalars b; € k and the other pairs of root vectors q-commute, except possibly
(x‘l'vx,u)z (xﬂvxﬁ)7 (l'd,l',{). Then
d(xax5X5X,2YX37 ® 1) = }(a}(ﬁxgxzx77 & Ty + q,QYnanQX5X7X727 @ T
+ Q§7(3)%nb3b7xax5x§xb X TrT~ + qquyn(B)%nngaxBxgxn R Ty
+ qg,yqlmqwngax5x3xnxn Q Ty, + qqugnxax5x3x727 X T
3
(10.1.81)  + g} dech),
2 2 2.2 2 2 2 2
- qﬁéqﬂyqﬂnxaxéxyxn & :B,B + Q(X,Bqﬁ’yqﬁan'yQ'ynblb4XﬁXTXryXHXT] ® x'yxﬁ
— Q0BT T 0 D1 XXX @ T8 + aplaslon oy X XXX ® Tg

4 2 2 3 4
b2b6b8xaxvxb A q(;ﬂyqmqm,crg,n)vbgngoéxvx77 QX xy

- 3
— QB0 oy Gy T 202, o b1bsbsx X, @ 5 — g3,62,d(]),babgbsbexd @ 1.
Notice that the equalities in (10.1.16) forces

atd=p+21,  d+n=rkt+y+p O+n=7+v,
(10.1.82) T+n=r+7, at+pu=1+p, w+n=t+7,

v+n=1+K+7y, B+r=7, a+i=nr.
Thus the following equality also holds: 4v = a + 5+ § + 27.
Proof. First we note that Lemma 10.1.7 applies for o < v < ¢, and Lemma 10.1.48 applies
for B < T < v < kK <. Hence the following formulas hold for all n > 0:
d(xaxsz ®1)= Xaxf; Rz, — q,nyax:_le ® Ty — qaL(—qM)"x;LxL ® Zq

— (—qay)"(n + 1)g,, box ' @ 1,

Goy

(10.1.83)

d(x.rx;‘xn ®1)= Xfxz ® Xy — qﬂmxsz_lx77 ® Ty — (—qm)nqu:xn Q T,

(10.1.84)
- (_QT'y)anLXzXn & X,
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d(xpxyx, ® 1) = x5%7 @ T, — quﬁX:_lxH ® Ty — qpr(—qpy) "X %s @ Tp

(10.1.85) : .
- (_QB"/) (’I’L + 1)q~57b8X'y ® 17
d(xpx,x0%y @ 1) = Xp%, X @ Ty — c_pmxlngX:_lx77 ® T
(10.1.86) — (=0r) " rnxpxxn @ 7 + (—qpy)" 4Brdpm X%y @ T5

= (=) "baxpxixy @ 2y — qgnc(jﬂﬂb‘lngzﬁ ® 1.

We also need some auxiliar computations. These are straightforward and we omit the
details:
(10.1.87) d(xaxpxs @ 1) = XoXg ® Ts — (sXaXs @ T3 + apb1XaXr ® TrTp
+ 4apqas*pEs ® Ta,

d(xaxpx; ® 1) = XaXg3 @ Tx — bgXaXy ® 1 — ¢geXaXs ® 2

+ GapdarXpXs @ Ta,
d(xaX5%y @ 1) = X0X5 @ Ty — 5yXaXy @ T5 + GasaryXsXy @ To

+ @ryqpyb1X: %Xy ® T 24,
d(xaxsxy ® 1) = XaXs5 @ Ty — @snXaXy @ Ts — baXaXx @ T Ty — b3XaXy ® Ty

+ GasGan¥sxn @ To + qapb1baXr Xk ® TyXg + qanGrb1XrXy @ T 28,

(10.1.88)
(10.1.89)

(10.1.90)

d(xpx:%, ® 1) = X8%r @ Ty — ¢rrXpXe @ Tr + qarbgX, %y ® 1
(10.1.91) ( 8 K ) B k — 4rrXpXg q4pr 08 o
+ 98r98x%X Xk @ T3,
(10.1.92) d(xpxs5%y ® 1) = X8X5 ® Ty — @snXpXy @ Ts — baXgX, @ Ty, — b3XgXy @ Ty
o + 45s59Bn%Xsxn @ T — bgngi & xy,
(10.1.93) d(XﬁXi ® 1) = xpx; ® Tx + bgx, X, @ 1+ qgﬁxz ® xg,
(10.1.94) d(xpxxxy ® 1) = X8, @ Ty — @unXa%y @ Tr + bsXyXy @ 1+ qBrqanXaxy @ s,
d(XTXHXU ® 1) = X7Xg & Ly — qun¥rXy R Ty + qredmm¥kXn K xr
+ QNT(Q)nKbﬁlxi & Ty,
(10.1.96) d(xTX?7 ® 1) = x:Xy @ Ty + Gyybaxpxy @ T, + anxi ® T,
d(x5%y%y @ 1) = X5%y @ Ty — GyXsXny @ Ty + @5y QonXyXy @ Ts

(10.1.95)

(10.1.97) 9
+ @syboxy Xk ® THxy, + q57(2)awb3x,y X Ty.

(10.1.98) d(X‘SX% ®1) = X§Xp @ Ty + b3brx,X, @ Xy + Qunb3xyXy @ Ty
1. + GynQunb2XeXy ® ToTy + GF, %0 @ T5.

Next we compute differentials of some 4-chains, using the previous computations on

3-chains and Remark 10.1.2:
(10.1.99) d(xaxp%X5%y ® 1) = XaXgXs @ Ty — G5y XaXpXy ® T5 + (35081 %XaXsXy ® T
o — 4aBqByaryP1XpXrXy @ X723 — GaBadGayXpRsXy & Ta,

(10 1 100) d(XaX(SX% & 1) = XoX§Xy @ Ty + quxozX?y ® s — qa(gqi,\{x(gx?}/ ® Tq
- QEWQEWblxrxi S zrxg,
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d(xaxpxsxy ® 1) = X0XgXs ® Ty — @snXaXpXy @ Ts — D3XaXgXy ® Ty
(10‘1‘101) — boxaXpx, & THxy — bzngaxi & Xy + qps4snXaXsXny @ T
— QapqBnP1P4XBX Xk @ Ty TR — apdpndrmP1XpXrXy & T3
— GaBGasGonXpXsXny & Ta + QBTQQBqﬁnb1b4b8XTX»2y X x8,
(10.1.102) d(XaXpXeXy ® 1) = X0XgXk @ Ty — @unXaXpXy @ Tk + (BrlpnXaXnXy @ T3
+ bsXaXXy ® 1 — qopGarfanXpXay @ Ta,
(10.1.103) d(xaxm{y}iﬁ ® 1) = XXXy @ Ti — @yrXaXpXr @ Ty + ¢81q8rXaXyXx @ T3
+ 4,5 (2)g5,b8%aXs © 1 = GaponGan¥s®sXs @ Ta,
d(XaX5%yXy ® 1) = XaX5%y @ Ty — ynXaXsXy @ Ty + 5yd5nKaXyXy @ Ts
+ @5yP2Xa XXk ® Ty — GasdarydanXsE~yXny Ty
(10.1.104) 2
— Gry4By9BnP104X XX © Ty Tg + @5y b3XaXS © Ty
— 4B8+49BnqrydrnP1Xr XXy @ Tr23 — Q(znyquéq/beBX?yxn ® zrx8,
d(xaxfgx% ® 1) = XaX5%Xy @ Ty + Qunb3XaXyXy @ T, + qgnxax% ® xs
(10.1.105) + QunGynb2XaXkXy @ TyT, — q%nqwblbzlx.rxnxn ® Ty
— @By @2 P1Xr X ® X728 — aslay¥sXe © Ta,
(10.1.106) d(xgXr Xy Xy 81 1) = X8%XrXy ® Ti — QyXXrXg @ Ty + QryQruXpXyXp & Tr
— 4845 (25, bs%r X5 © 1 — 4prqpyqpnXrXyXs @ T,
d(xpxrXc%Xy @ 1) = XXX, @ Ty — QrnXpXrXy @ T + QriQrnXpXeXy @ Ty
(10.1.107) — qrbsx X%y @ 1 — Gty (2)g,,Da%px2 @ T
— Q87 8rUBnErXrXy ® T3 — rnbabeXox, ® 1,
(10.1.108) d(xBxTx?7 ®1) = X%, %y Q@ Ty + q72.77X5X727 R Ty — qlg.,—q[%nXTX% ® g
+ Gynbax XXy @ Ty + b4b8x?yx77 ®1,
d(x8x5%y%y @ 1) = X3XsXy @ Ty — QynXBXsXy @ Ty + 5yYonXaXyXy @ Ts

(10.1.109) + QoyP2x5% X @ Ty + 45,(2)7

qwngﬁxi R Ty
+ qﬁVQCSW(Q)%nbzbSX?y Q@ Ty — 4B64B~ %o XyXn & T3,

d(}cﬂ}c(s}c?7 ® 1) = x8xsXy @ Ty + b3b7XgXyX, ® Ty + Quyb3Xgx,X,y @ Ty

(10.1.110) + QunGynb2xaX Xy @ TyT) + qgnx/gxg ® x5 — q/g(;qan(sX% ®x3
+ q,uanbSXg/Xn (9 m + b2b6b8XA2/XL & Ly,
d(xp%,%2 ® 1) = X%, %k @ T + qiﬁx/gxi ® Ty — q57b8(2)q~wxgx,€ ®1

(10.1.111) L,

~ 9Bv93r*vEk X xg,
(10.1.112) d(xp% %Xy @ 1) = Xg% X @ Ty — QunXpXyXy @ T, + Gyl XaXeXy @ Tr
1. — q/B’Y(Q)qunbs}%Xn ® 1 — qpyq8r98nEXyXniny @ X,
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(10.1.113) d(Xr Xy XXy @ 1) = XXXk ® Ty — QupXrXy Xy @ T + GyuGynXrXaXy @ Ty
: B qryq”i(z)q}nb‘lx’}/xi R Ty — QryQredrnXyXxXy @ Tr,

(10.1.114) d(xr %% ® 1) = XeXyXy © Ty + GuXeXy @ Ty = Gy Gy DA%y XXy @ Ty
- QquZnXWX% ® xr,
(10.1.115) d(xsxxy ® 1) = X555 © Ty — GXsXa X © Ty — G5, 02X ® Ty

— qgv(?))gwngi X xy, — qg,yq(;nxgxn R xs,

d(x(;x«,x?7 ® 1) = x5%y%y @ T + q,zmx(;xg7 ® Ty — q57(2)%nb3b7x,2ny ® Ty

(10.1.116) ) 2 o
- qg,yq,m(2)%nb3x7xn @ Ty — 46y QunGynP2XyXuXy @ TyTp — G5y Q5 XXy O Ts.

Next we compute differentials of some 5-chains:

(10.1.117)

d(XaXBX(SX?y ® 1) = XXXy @ Ty + ngXaX,BX?Y ® x5 — qﬂgq/%wxax(gxi ®x3
+ Qa,BQE—yqz«,blx,BXTX% ® xrxs + Qaﬁqquwxﬁxéxg @ Tas
(10.1.118)
d(xaXpxs%y%y @ 1) = XaXaXsXy @ Ty + 45+(2)g,,
— QynXaXpXsXn Q Ty + 5yqsnXaXpXyXy @ Ts + ¢54D2XaXpX X & Ty
~ 48598y YBn¥aXs¥yXy O Lp + GapqpydsndrydrnPIXpXT XXy © Lrp

—1.(2
— %'yq'yﬁlc,(é’n)vbeSXan ® Ty + §aBq8v98ndryP1P4XBRI XX @ XX

2
ngaXBX,y R Ty

+ GaBlasTar anXa%s%e Xy @ To + Gapqsr Qs €A Con b1babsX-X> @ 5,
(10.1.119)
d(xax5X5X727 ® 1) = XaXX5Xy @ Ty + b3b7XaXgXX, ® T4y + qgnxaxﬁx% ® x5
+ Qunb3XaXpXyXy @ Ty + QuyGunGynb2XaXpXpXn & Ty
- qﬁgqgnxax(g}c% R x5+ b2b6b8XaX3XL ® Ty — (4)qwb2b6b8ngi ®1
+ qugngoéx?yXT7 @ xy + qaﬁqgnqznbp{ﬁxrx?] & xrxg
+ Gapsy TGy TmPIDAREX XXy ® T3 + (aplaslonXpXsXe © To
- QBT(]aﬁq,%’nblb4b8X7—X,2yxn ® g,
(10.1.120)
d(xopch?YxN ®1) = xopchgY ® Tr — QyrXaXgXyXg @ Ty — qquanx,nyH ®xg

- q;§(3)aﬁwb8xaxi ®1+ qaﬁqivqaﬁxﬁxixn R Tq,
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(10.1.121)
d(XaXﬁX’YXnX'f] ® 1) = XO‘XBX’YXR & .’L'n — q“nXQX,BX’YXU X Ty
N q;ﬁl(m%vbsxaxgxﬂ ® 1+ yGymXaXpXeXy @ Ty
— 4B8v4Br4pnEaXyXkXy X za + qapqoyqdaranXpXyXxXy R xq,
(10.1.122)

2 2 2
d(xaXs% %y @ 1) = XaX6X5 ® Ty — GypXaXs¥yXn @ Ty — q5,(2)g,,

ngax?’y & xy
2 2 2 2 2 2
= 5,02XaX X @ Ty Ty — G5y GsnXaX Xy @ T5 + (asYaryanXsXyXny @ Ta
+ QBna2 A5y QD1 X2 %y @ T8 + Qa2 Q5 DIDAX XXk @ T4 T3,
(10.1.123)
d(xaxfg)&:«/x?7 ® 1) = XaXsX Xy @ Ty — quqlm(Q)

- Q5'y(2)q~,mb3b7an3XL @ Ty + Q(S'\/C((fn)'ybiib?bQX;l/ Q Ty,

%nb3xax'2yxn R Xy
— @5vQundynb2XaXy XXy @ TyTy + qinxax(gx% & Ty — qhqgnxaxvx?] X T
+ qwé},%nqqunbmxyxz ® xrxg + qquq%nq»mb1b4XTxyxﬁxn ® T3
+ Qiqu%n%yb2b4b5X3Xi @ xyT3 + qaaqmqgnxtsxyxg ® T
+ Qo QarBn oy Grnb2bs X2 XXy ® Tr23,
(10.1.124)
d(x5xﬂ-xix,{ ®1)= Xf;XTX% ® Tr — QyrXBXrEyXp @ Ty — (127(17,{}%}{,%}{,$ ® Tr
+ 5r45 (3)g,, bs%rXS @ 1 + qprqf, an¥Xr Xy ® 5,
(10.1.125)
d(x8xr XXXy @ 1) = XXXy X ® Ty — QrnXaXrXyXy @ T
- qqum(Q)annMXﬂX»yXﬁ @ Ty + QyrGynXpXrXpXn & Ty
— QryQrrQrnXpXy XXy @ Tr + Q5Tq;ﬁl(2)q~6’yng7-x,2yxn ®1
+ 48145y Aok n XXy XXy @ T — Gundyyy (2)g,, babsxax, © 1,
(10.1.126)
d(xbpx.rxvxg ® 1) = XX, XyXy @ Ty + qanBXTX% ® Ty — QryGynbaXgXy XXy @ Ty
— qqunxfngx% R xr+ qg.quq%nXTxA,X% ® g+ q%lc(_gé_mbzlngixn ®1,
(10.1.127)
d(XﬁX(;X,QYXn ®1)= X5X5X,27 ® Ty — QyyXBX5EAXy @ Ty — qqu(;n)%xixn ® xs
- qg,yngBx?/x,i ® TyTy — q§7(3)q~wb3x/3x?; ® Xy

- 3
+ Qﬁé(J%y(JBnXéX%Xn ®xg — ququ q§7c(ﬁn’ bzbsxfly @ Ty,
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(10.1.128)

d(XﬁXJX”/X?z ® 1) = xp%X6%y%y @ Ty — Goy(2)g

2
qwb3b7XﬁX7XL R Ty

- %7(2)%7; anb?’Xﬁxgan @ Ty — G5y Qunrnb2XpXyXkXy @ Ty
+ XXX, ® Ty — G5y 5, XXy Xn @ T3 + 45013 Xs%A X, @ T3
- qﬁ'y%v@)%nb?bﬁngixb Q@ zy — qﬁququn@)%nb?bBXan ® Ty,
(10.1.129)
2.2 _ 2 2 2
d(x/gxﬁ/x,.C ®1)= XXX @ Ty + @5 Xa%A Xy © Ty
+ 43, (3)g,, bsx3%s ® 1+ g a3, x5x; @ a5,
(10.1.130)
d(xlgx?yx,.g}g7 ®1)= x[gx,%x,{ ® Ty — q,.m)ch?Yx77 ® Tr + QyrGynXaXy XXy @ Ty
+ qgnqqulgnx?yxﬁxn ® g+ qév(?’)ﬁawbSX?yxn ®1,
(10.1.131)
d(xTngx,fX,7 ®1)= xTxgx,{ ® Ty — q,mx.rx%xT7 ® Tr + GyrGynXrXy XXy @ Ty

+ qu%-n(2)a,wb4x%xi &z + qZWQTﬁQTnX?/X/@Xn K xr,

(10.1.132)
2.2 _ 2 2 2
d(xwaxn ®1) = XXy Xy @ Ty + ¢pXrXyX; @ Ty
+ qqz"yq’yﬁbﬁlxgyxfﬁxr] ® $'y + qzyqzr}x%x% ® Zr,
(10.1.133)

d(x(;x,zyx?z7 ®1)= X(;X%Xn ® Ty + q,Qynx(;XA/X?] ® T
+ q§7(3)q~wnb3b7x3xL ® Ty + qqul,n(3)%nb3x§yxn Rz,
+ qquwqwngixﬁxn ® TyTy + qgwqgnxix% ® 5.
First we check (10.1.117). Using (10.1.99), Remark 10.1.2, (10.1.100),
d(XaXBX(;X,Qy ® 1) = XXXy ® Ty — s( — qgwxaxmcﬂ, ® Tyx5 + qﬁgqgﬁ/xax(gx7 ® T2
— qagq%7q37b1X5X7X7 Q TyxrTg — QaBQQ6q37XﬂX6X7 ® xwxa)
= XaXBX5Xy Q Ty + qgwxax[;xi R x5 — q55q[2hxax(;x,2y Kxs
— s( — qoégqthzﬂyblxg}qx7 ® TATrLg — qaﬁqoé(;qzwxmc(;x7 Q TyZa
— qalgqgmqm;q%}%xgY R T§To — qaﬁqiwqgwbp%x?y ® xzxg
+ 48503, 13 b1Xr X2 @ T2 + apladlay 18505, X% ® TaT)
= XaXBXsXy Q T + qgvxaxmc% KRxs — Qﬁéquxaxéxi K xs
+ Qapdh, 1, P1XE% XS ® T g + (aplasdonXsXs%e ® Ta.
For (10.1.118), we use (10.1.99), (10.1.101), Remark 10.1.2, (10.1.104), (10.1.106), (10.1.86),
(10.1.109), %ax2 @ 2,73 = $(XaXy ® T2, TR), X @ Tyla = S(X2 @ TyTuTa),
d(xaxpXsXyXy ® 1) = X0 XpXeXy @ Ty — s(qwxaxm(g ® Tn~y — QoyQsnXaXpXy ® Tyks

+ 48598+ 48nXaXsXy Q@ TyTa — q5yD2XaX3Xy @ TTryTy — qsyb3XaXgXy & THXy
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— 4ap9Bv98drydrnP1XaXr Xy @ TynTr TR — afq8~q8ndryP104X XXy @ L@ T

— daop9asQayqanXpEsXy (%9 33,79:&)
= XaXBX§Xy @ Ty — GynXaXpXsXn & Ty + (5yQsnXaXpXyXy @ T5 + qsyb2X XXXy & T Ty

—1 (2
+ 45y(2)7,b3%aXpX] ® Ty — (8308 U ¥aXsXyXy © T — %qub}cé’gﬁbeﬂQXi ®zy
T 4ap4ByIBndrydrnP1XAXr Xy Xy & TrLg + (apqByd8ndryP1PAXX Xy X & T T8
—1 —1.(2

+ G0 o Qo X5X5% % © T + Q137 63 Sy D1DADR XS © .

For (10.1.119), we use (10.1.101), Remark 10.1.2, (10.1.102), (10.1.105), (10.1.83), (10.1.107),
(10.1.108), (10.1.110) and (10.1.84):

d(XaX5X5X?] ® 1) = XaXgXsXy @ Ty — s( — Quyb3XaXgXy @ TpTy — b3b7XaXgXy @ T,TkTA
— qanaXﬁXn & TnTs — QonbaXaXpXy @ TTyXy — Gsnb3XaXpXy @ THTy
— QynQunb2XaXpX @ TyT Ly — bgngaxi ® (QunTnTy + be,2y) + qﬁgqgnxaxcsxn ® Ty
— GaB Uy T P1PAX X K ® Tyl BTy — GaplyTrnP1XsXr Xy @ (GrpTyTr + baTrls)Tg

— 0pdasdayXpXo%n @ TnTa + Asrdapds,b1bibsx X5 @ 2y )
= XaXBX5Xp @ Ty + b3b7X0 XXX, @ Ty + qupb3XaXpxyXy ® Ty
+ Quy QunGynP2XaXpXeXy & Ty Ty + qanaXBX% Qx5 — QBéqanaX(SX% X xg
+ bybgbsxax2x, ® 2y — (4)g,, babgbsbox’ ® 1 + quybabsxax>x, ®
+ Qap U347 P1XFX Xy © L1 + GaflB Gy Ty P1DAX XXXy @ T T
+ (MBQ&&Qinxﬁxéxg & T — qﬂTqaﬂq%nblb4b8XTX'2yX’l7 ® xa.
Next we check (10.1.120) using Remark 10.1.2, (10.1.103) and x% QLo = s(x?y ® Ty Tq )
d(xo(xmcgyx,.i ®1)= XaXﬁX,zy Q Xy — s(quaxfng ® Ty + q%,ng,{xaxi ® Txx3
+ qgvngaxi K Ty — qagqiqungi & w,.gxa)
= xaxﬁxi ® Tr — GyrXaXpXyXx @ Ty — qgvc_m,.cxoéx?yx,$ ® T8 — q;ﬂz(?))%vngaxi ®1
+ qo[g(137(_[6,4,{}{5}(%}{,ﬂ ® Tq-
For (10.1.121) we use (10.1.103), Remark 10.1.2, (10.1.102) and (10.1.112):
A(XaXpXyXeXy ® 1) = XoXgXyX @ Ty — s(qn,.ixaxlgx7 ® TpTx — QyrGynXaXsXs @ TnTy
1 4848k 80 %aXy X O TyTp + qy_é(Q)%beXaX?y ® Ty — GapordorXpEyXs & xamn)
= XaXBXyXg ® Ty — QrnXaXpXyXy @ Ty — qv_ﬁl(2)q37ngax,2yxn ®1
t QyudynXaXpXeXn @ Ty — 4py4BrdpnXaXyXrXn & T + qaployardonXpXyXrXy & Ta-
To check (10.1.122) we use (10.1.100), (10.1.104), Remark 10.1.2, (10.1.84) and (10.1.115):
d(xoéx(gxix77 ®1)= Xaxchi ® Ty — s(qwxax(ng ® Ty~ + qqu(gnxax?y ® TyTs
+ G5, D2%a X2 ® Ty Ty + G5, D3XXE ® Ty Ty — 43902 Q3 Grnb1 XX ® Ty T7 T3

- QBnqzryq%fybleLXTX?y Q) TrTyTB — Qadqiqﬂanxdx?y ® xnﬁva)
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= Xax(;xg/ ® Ty — QyyXaXsXyXy @ T — q§7(2)%nngaxi Q T, — qg,beXaX?yXH ® Ty Ty,
- q(?'yq&]xax?yxn Qx5+ QOzéqzé—\/QanXJX?an QT + QBnqz—»YQg‘fYQTnbleX?yxn X TrTs
+ Qﬁnqzy(Z%»yblbélex»zyxm K TyTs + qaéqi'yQOé’V](L%'y(g)ﬂqanbigs(Xg 02y HJV:L'Q),

and we use that x:;’ ® TyTo = s(xgy ® xvx,,xa). To prove (10.1.123) we use (10.1.104),
(10.1.105), (10.1.83), Remark 10.1.2, (10.1.113), (10.1.114) and (10.1.116):

d(xoéx(gxwxf7 ® 1) = XaX5Xy Xy @ Ty — s( — qgmxax(;xn ® TpTy + G5y GsnXaXyXy @ TsTy

+ G5y b2XaXy Xy @ Ty Ty Ty — GasdayanXsXyXny @ Taly
— Qryq8v98y P14 Xy Xy @ TN XLy + Q57b3xax3 & Ty Ty
— 48480 9r~drP1Xr XXy @ T XRTy — qify‘]aﬂq&bebf)X%/XH ® x‘rxﬁ%?)

= XoX§XyXp @ Ty + qgnxax(;x% ® Ty — q(;wqwl(2)q~wb3xoéx3x77 Q T,
- Q57(2)§7nb3b7xaxixb ® Tply + q(gwcg2,7)wb3b7ngi Q x) — qqugnxaxfyxfl ® xs
— 45yqundynb2XaXyXnXy @ Tyy + qmquq%nqwblbzlexvx,{xn ® T2
+ 45905 Gry Gy D1 %r Xy Xy @ Tr25 + Qo Qanpn sy P2bADEX X, © Ty
+ QaoTar oy s%y Xy ® Ta + QonGandpndsydryb2bsXs XnXy ® T,24.

We compute (10.1.125) using (10.1.106), (10.1.86), (10.1.107), (10.1.111), (10.1.112),
(10.1.84), (10.1.113) and Remark 10.1.2:

d(xpxr XXXy @ 1) = XXXy Xy @ Ty — s(q,.mx/;xTx7 ® TpTx — QyrGynXpErEe @ Tyl
+ QryQreQrmEpEyKr @ TnZr + QryQrebaXpryXy @ Ty
- %Tq;gl(?)qﬁvbsxrxi ® Ty — BrqayUandBn Xy X @ TyTg)
= XpXrXnyXp © Ty — QrunXpXrXyXy @ T — qmq”e(2)<7mb4xﬂxvxi ® T
+ Gyl X% XXy @ Ty = G GrnllrgX g% XnXn © T7 + 45765 (2)g,, bsxrxyxy @ 1
+ 487481 48R 080 %r Xy XXy @ T — Gty (2)7,,Pabsx %, @ 1.
Next we check (10.1.124) using Remark 10.1.2, (10.1.106) and (10.1.85):
d(x/gx.rx%xﬁ ®1) = x[gxfxg Q Ty — s(qﬁ,,{x/ngx7 ® Ty + qzvqu/gxi Q TpXr
- qﬂTQ%’yq,BHXTXE/ ® TrTp — qBquwbsxfﬁ ® T+ )
= x5x7x3 ® Ty — QyrXBXrXyXy & Loy — qzwqﬂﬁxm{?yx,.C ® Xy + qgfq;§(3)%vng7x§y ®1
+ q,BTq?:j"yqﬁI{XTX?yXK) ® zg.
For (10.1.126) we use (10.1.86), (10.1.108), (10.1.112), Remark 10.1.2 and (10.1.114):
d(x5x7x7x3] ® 1) = XXXy Xy @ Ty — s( — qgmx/BXTxn ® XyTy + qqun}%XA,Xn ® TpTr
+ QryQrnbaX XXy @ Xy + Qry@ynPaXgEaX @ Ty
- qwqﬂvQEnXwaxn ® Tyxp — quﬂfl@)%nmbSXi ® )
= XBXrXyXp Q Ty + q,%nXBXTX% & Ty — QryQynb4XFEA KKy & Ty — qT,qunXg}cﬁyx?7 X T

—1.(2
+ q[gquvqgnxwax% ®xg + qwlc(_[)_j_mbzlngixn ® 1.
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The proof of (10.1.127) is similar, using Remark 10.1.2, (10.1.109), (10.1.85) and (10.1.115):
d(x5x(;x3xn ®1)= X5X5X,2Y ® Ty — s(qw}(gx(;x7 ® Ty~ + qqu(SnXgX% ® TyTs
+ qgvnglgx% Q Ty, + qung[;x% & TyTy — q55q§7qlgnxgx,2y & xn:cg)
= XﬁXgX% @ Ty — QynXBR§XAXy @ Ty — qgwq(;nxlgxixn & x5 — q§7b2X5X,2YX,€ Q Tyxy
- qg7(3)?1”vnb3xﬁx§y ® xy, + qﬁgqqugnx(;xixn ®xg — quqv_éqgwc(;gbgngi ® z.
For (10.1.128) we use (10.1.109), (10.1.110), Remark 10.1.2, (10.1.112) and (10.1.116):
d(x5x(5xvx3] ® 1) = xpXsXy Xy @ Ty — 5( — qin}%x(;xn ® Ty~ + q(qugnxlngxn ® TpTs
+ G5y 25y P2XpRN Ky @ Ty Ty + 45y qonP3XRY Ky & Ty Ty
+ 46y QunGynP2XpXy X @ TyTyTy + qav(2)a7nqunb3X5X3 @ TyTy
+ 45y(2)g,, bsbrXa%> ® Ty + Gy Qv (2)g,, b2bsxs ® 24T,
+ 0805+(2)g,, b2bebsX; @ 2,2y — 43508 Uy X% % ® Ty5)
= XBXsXyXy @ Ty + q,2mX5X5x$] ® Ty — qlgy(2)%nb3b7X5x,2ny ® Tyl
- Q5v(2)%nq'/nb3xﬂxgxn @ Ty — 4y QunGynb2XpXy XXy © TyTy,
— 5y 03 %% %y © T5 + 4BoUs UG Xo%A Xy @ L
— 45745(2)g,, P2b6bS XX, ® Ty — G845 (2),, b2bsX3 %y @ .
We check (10.1.129) using (10.1.85), (10.1.111) and Remark 10.1.2:
d(xfgxgxi ®1)= xBxgyx,.C Q Ty — s( — qgmmxﬂ,x,ﬁ @ Ty — qgﬁq§7b8x3XH ® T~
— qgﬁq%wx?yx,§ ® TpTg — qgv(S)%vngi ® a:,.i)
= xlgxgyx,.€ ® X + q,zmx[gxwxi ® Ty + q%7(3);1737b8x§yx,.i ®1+ q%nqg,yxgxi ® 8.
For (10.1.130) we use (10.1.85), Remark 10.1.2 and (10.1.112):
d(x5xixﬁxn ®1)= nggyx,i ® Ty — s(qﬁnx5xgy ® TyTr — QyrQynXaXyXg @ TyTy
~ 4By B0y %n © s — 0 (3)q, Psxy © )
= nggx,ﬂ X Ty — quﬁxixn X T + QyrGynXpRy XXy & Ty
+ qﬁg,{qgv%nxgx,ﬂxn ® xg + q%v(?))%vngixn ® 1.
Now we compute (10.1.131) using Remark 10.1.2, (10.1.84) and (10.1.113),
d(xTX%x,@g7 ®1)= xTx%x,i ® Ty — s(q,mxTxg ® TpTy — qgnxTxvx,{ ® Ty
— Gk Xo X ® TnTy — (o QrxbaXoXy @ Ty
= XXXk @ Ty — QX XXy @ T + QynynXr XXXy @ Ty + G2 Grie(2) g, PAXEX @ Ty
+ @y Qrrlrn XXXy ® T
For (10.1.132) we use (10.1.84), (10.1.114) and Remark 10.1.2:
d(xfxix% ®1)= XTX?YXn ® Ty — 8( — qﬁnxTx,an ® TyTy — qqumbzlxixn ® Ty

2 2 2 2 2
— 7y Qe XXy @ TnTr — qryGynPaXiXs @ xnxv)
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— 2 2 2 2 2 2 2 2.2
= XXXy @ Ty + @ XrXa Xy @ Ty + Q7 QymPaX XXy & Ty + A7y Urn Xy Xy @ Tr.

Finally we compute (10.1.133) using (10.1.115), (10.1.116) and Remark 10.1.2:

cl(x(;xgyx?7 ®1)= x(;x%xv7 ® Ty — s( — q%nx(5x7x,7 ® TpTy — q(%qqunngix,.C ® TpTyTy
- q§7(3)%nb3b7x§y ® T, LTy — qg,yql,n(3)q~wngi ® TpTy — qqu(;nb;),xzxn ® T Ty
— qqugnngixn Q Ty Ty — qqugnxgyxn ® xnx(;)
= x(;x?yxn ® zp + q?m)c(;}g,)c?7 ® xy + qg,y (3)%nb3b7x3xb ® Ty

+ qg,qu, (Z%)—qvwbg,x?yx?7 ® x, + qquwqwngix,ixn ® Tyxy + qgwqgnxixgi ® x5.

Next we compute differentials of some 6-chains:

(10.1.134)

d(xaxfgx(;x%xn ®1) = XQXBX5X3 ® Ty — QyyXaXBXsXyXy @ Ty — q§7(3)q~7nb3xa}{6x?y ® xy
— qgvngax/gxixﬁ QR TyXy — qqu(gnxa}%xixn Qx5+ qﬁgqévqﬁnxa}c(gxgxn X xg
— 3
_ qquygc(ﬁ%bgngaxi ® Ty — qaﬁqgwq@nqzwblbzlxﬁngxix,{ ® T
_ qaﬂq%,}/qlgnqZ,}/anb:lXﬂXTX,QYXn ® IT«Tﬂ - qaﬁqQéqzwqanXBX(;X?an ® T
2 -2 2 4
+ 40348098749, 5 (3)gs, Gryb1babsx Xy ® T3,
(10.1.135)
d(xoéxlgx(;xvxf7 ® 1) = XaXgX5XyXy @ Ty + qgnxopch(;xg7 ® Ty — Q57(2)§qunb3xax[3xgyxn Q xy
— q57(2);]~7nb3b7xax5xixL ® TTry — 45yTnTunP2XaXpXy XXy ® Ty,
- Q(qugnxaxﬂxfyxi Qx5+ Qa,BQBqu’nQT'\/Q'ynblb4X6XTX'yX/$Xn X xHyxg

— 2 3
+ qtsfyq,yﬂlc(ﬂn)vbgbigXaX?yXL X xy + q(hq,yﬁdéﬁ),nvbgbﬁbgng?{ ®1

+ qu;ﬁlqMc(ﬁ?ngngaxgxn ® xy + q55Qﬁ7q§nxax(;x7x3] ® zg
~ QapUBy Ty rnP1X% K Xy ® T7 T3 — apasfonlay*5%5%a %y @ Ta
~ Qa7 03, PIIDSE KKy © 25,
(10.1.136)
d(XaXBX?YXHXn ®1) = XO‘X/J’XEYX“ © Ty — quax/gx?yxn ®Q T + GyrdynXaXpXyXpXy @ Ty
+ q;g(?))zjﬁwbsxaxixn ®1+ qévqmqgnxaxixﬁxn Qg — qﬂﬂquvq%%nxﬂx?yxnxn ® Tar,s
(10.1.137)
d(XaX5X,2yX% ®1)= xaxaxixn ® Ty + qinxaxgxyx% ® Ty + q§7(2)%nb3b7xaxixb ® Ty
_ qucg?;?’ybgbngg ® X + qgwq,,n(Q)%nngaxf’/xn ® x, + qqu(?nXaXiX% @ x5
+ qquunqwngaxix,ﬂxn ® TyTy — Q%nqzyqéwqwblbz;mxix,{xn ® T8

2 2 2 2 2,2 2 2 2.2
- qgnqrng—y%—nblxrxfyxn R xrT8 — das 90y donXsXyXy ® Tq,
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(10.1.138)
d(xfngx,zyx,.i}g7 & 1) = XBXTX,QYX,.C Q Ty — anXﬁxTxgxn Q Ty + QyrQynXpRrEy XXy @ Ty

+ q72—'y(J‘rn(2)q~,wb4XBX»27X2 @ xy + qg'yQTliqT’I]XBX?yXI{X’r] Qxr — QﬂTq’;ﬁz (3)Z]Vﬁvb8XTX3X77 ®1

2

- QﬁTQ%'yQZqu,BT]XTX?yXHXn Krg — q?mqnnc(_%’gﬁb4b8xitxn ®1,
(10.1.139)
d(XQXTxixfl ®1) = x[gxfxgxn ® ) + q,%nx/gx.rxfyxg ® Ty + qzqunbz;x[gxzx,{xn ® T

2

+ qzqunXgX?YX% QT — quqévq%nxTxgyx% Rz + q,QYnc(_%ﬁﬁbzlngfly ® .

(10.1.140)

d(XﬁX(;X%X% ®1)= x,gx(;xgxn ® Ty + qgnx/gx(;xvx% ® Ty + qgv(?’)%n

b3b7X3x§xL @ LTy
+ quqz/n(?’)%nb?)xﬁxixn ®zy + ququnqvnbﬂﬁxgxﬁxn ® TyTy
+ qqugnmx%x% ®© x5 — qggqévqgnxgxixi ® zg
2 (3) 4 2 (3) 4
— q,quwq(;vcﬁn b2b6b8x7xb X Ty — q/gwqwq(;wc&7 qﬂanngvxn Q-

First we deal with (10.1.134): using (10.1.117), Remark 10.1.2, (10.1.118), (10.1.120),
(10.1.122), (10.1.124), (10.1.86) and (10.1.127):
d(XaXIgX(;X,Zan & 1) = XaXﬁX(;X?Y @ Ty — s(qwxax[gxing X TyTy + qgﬁ/xaxﬁx?y & GsnTnTs
+ q?vxaxm(gy & boxkxyT, + qgvxaxmcgy ® b3zyTy, — q[g(;qfhqgnxwx(;x?Y & xprg
+ Qa3 101 P1X5% X0 @ (GryTnTr + DaTaTy) T8 + Gaplaslon donXsXs%s @ Tyle )
= xaxlgxaxg ® Ty — GyyXaXpXsX Ky @ Ty — qgv(S)%nngax@ci ® Ty
— (1(?7b2xaxlgx?yx,$ Q Tyxy — ngq&nXaXﬁﬁXn & x5 + qg(;qqulgnxaxtgxgyxn X xa
— g}, 3¢ babsxaxt @ T — Gapqdydsnd b1bisx X2 %, © 2yT5
— QaBYEn a0 dey GrnPIXEX XKy @ T8 = Quiasdan danXaXsXaXy @ Ta
+ 4aB95, 95096745 (3)ds, 42, b1Dabsx, X, © 5.

Next we compute (10.1.135): using (10.1.118), (10.1.119), Remark 10.1.2, (10.1.121),
(10.1.123), (10.1.83), (10.1.125), (10.1.126), (10.1.128) and (10.1.84):

d(xoéx/gxgxyxg7 ® 1) = XaXgX5XyXy @ Ty — 8(q(;,y(2)awb3xax/gxg ® (QuyTyTy + b7, Tk )
— q,zmxax[;x(;xn ® TyTy + G5ydsnXaXpXyXy @ (qsnTnTs + 02222, + b3T,)
+ 5y QunP2XaXpXyXg @ TylyTy — qg(;qmq%nxax(ngxn ® Tpxg
+ QaﬂqﬁqunqmqmblxﬁxTxvxn ® (grnTnTr + baTkTy)Ts
- qwz;g Cg?7b2bsXaX§ ® Ty + GopsyToydrGmPIPAXEX X Xy © Tyl T g
+ qagqm;qa,yqin}{ﬂx(gx,yxn ® TyTo + qaﬂqBTq%nq;,qugﬁlc(;%blbzlngfx?’y ® 1?771,‘,3)
= XaXBX5XyXy ® Ty + qgnxax[gx(gxg ® Ty — oy (2)q~7nb3b7an5X,2yxb ® Tyry
- %W(Q)Zz?,ananXaXBX%Xn @ Ty = GoyQynQunP2XaXpXyXpXy & Tyly

- Q57q§nXaX5X7X727 K xs + Qaﬁ(Jﬁqu’nQT'\/(}ynblb4X,8XTX'anXn QX xyxg
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e

— 2
+ 4570 babEbEXAX2E, @ T+ Gy Gedl ), b2bGDEDOXS © 1+ Gy GunChny

By bgngaX S X & xy

+ 8503y Py KaX 5%y X @ T3 — QaBly Ty dry Ty D1 XX Xy X © TrTg
— QaBlaslon T2y EEXEXA X @ Ta = Gaplsr Qi 0 Conn D1DAbEX, X3, © 2.
For (10.1.136) we use (10.1.120), Remark 10.1.2, (10.1.121) and (10.1.130):
d(xa}(ﬂxzx,ixn ®1)= XaXﬁX,QYX,{ ® Ty — s(qnnxa}(ﬂxg ® T — QyrQynXaXpXyXe @ TpLy
— qqumqlgnxaxgyxﬁ ® Tprg — qv_g(3)5ﬁwb8xaxig; ® Ty + qagqgwqoé,.@qom}%x%x,.i ® TpTa)
= Xanxix,@ & Ty — q,{nxax5x3xn X T + QyrGynXaXpXyXXy & Ty
+ q;ﬁ(?))qmngaxixn 1+ qg)wqﬁ,{qm,xoéx?/x,ixq7 ® g — qagqiwqanqanx/gx%xnxn R Tg-
For (10.1.137) we use (10.1.122), (10.1.123), (10.1.83), (10.1.131), (10.1.132) and (10.1.133):
d(xax(gx X ®1)= XaX(;X%Xn ® Ty — s( — qznxax(;x,y}c?7 ® TyTy — qqu,m(Z)qﬁmngaxi ® TyTy
— q57(2)%7,b3b7xax3 ® T, TpTry — qg,yqunqw,ngax?/x,{ ® TpTyTy — quqgnxaxglxn ® Tpxs
— qg,yq(;nngaxg/xn @ TTyTy — qqu(;,,ngax%xn R Tyxy + qa(gqivqinx(;xgxn @ TynTq
+ Q3o T o P1X XXy © Ty T7 TG + Ay Gy T GrnP1DAX KXy ® T
+ q%nqzyq%ﬂ/qwblbzlxmzxﬁ X xnxﬂ,xﬁg)
= xax(;)czx77 ® Ty + q,%nxax(;xq,x% ® Ty + q§7(2)~

qvyn
_ q5’y &37%b3b7b9x2 ® x, + qqu,m(Q)qugxaxf’/xn Q x, + q§7q/mq,mngopcg{x,{x,7 ® Ty

b3b7xax§xb & Ty

+ Q(S'}/Q(Snxax?yle ® '1"(5 - Q%nqz'y(Ig—y(I'ynbleLXTXQXan ® :L"y:Eﬂ
- Q%nqz'\/Q%’yqznbleX%X% ® xT':Uﬂ qa(sqa'yqanx(sx ® Ta-

Next we compute (10.1.138) using (10.1.124), (10.1.86), (10.1.125), (10.1.129), (10.1.130),
(10.1.84) and (10.1.131):

d(xBXTX%XKX77 ®1)= x5xTx2/xH ® Ty — s(q,mxm(TX?/ ® TpTr — QyrGynXpErEyXp @ TyTn
- QZWQMMX[BX%XH @ Ty — qzquqmmxgxn ® TpTr
+ quq;g(?))qB,yngTX?; ® ) + q57q§7q5,{q5n}{7xgyx,{ ® xnmg)
= x[ngx,zyx,.; Q Ty — qu[ngx,nyn Q T + QyrGynXpXrX XXy @ Ty
+ @2 Grw(2)4i, DAXBXE XL @ Ty + G GrirnXpXaXnXy @ Tr — qprq 5 (3)g,, bsxr X%, @ 1
— Q8703 IR s K r XXXy ® T — Q3nqmc(_2,)],gﬁb4bsxixﬁ ® L
For (10.1.139) we use (10.1.86), (10.1.126), (10.1.130), Remark 10.1.2 and (10.1.132):
d(x5x7xix,27 ®1)= XBXTX,QYX,] ®ay—s(— q,2mx5x7x7xn ® Tpxy — qzqunx5x,2yxn ® Ty
— qzﬁ/qwbzlxgxgyx,i & Ty — qzﬂ/qﬂ,b@c&xe77 ® Xy
+ qg.rq%,yq%nxTxgxn K xpyrg — qW (_1)7 3, 7b4ng4 ® xn)
= X,BXTXQXn @ Ty + qwxrngxvx X xy + qmqwb@:ﬂx XXy Q@ Ty + qmqu/gx ® Ty

(2)
- qﬂTqﬂ'yqﬂr]XTx'an ®xp+ (]W,Cﬂ]ﬁﬁ'bszsxW ® Ty).
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The proof of (10.1.140) is similar, using in this case (10.1.127), (10.1.128), Remark
10.1.2, (10.1.130) and (10.1.133):

d(x/gxlgxgyxf7 ®1)= XﬁXgX,Qan ® Ty — s( — qgnxﬂxéxvxn ® TpTy — qqu(;nngQx?yxn ® T Ty
- qg,yq(;nngfgxgyxn Q Ty Xy — qgwqgnx/gx,%xn QK Tyrs — q(%vq#,,,qwngfgxgyx,{ Q Ty Ty
— q§7(3)%nb3b7Xﬁx2 ® T, Ty — qgwqyn(zs)%ngﬁxi ® TpTy + qggqg,yq%nx(;xixn ® Ty
— qmqv_ﬁlqgvcg;)bgbﬁngi @ X, Xy — q/gwq;gqgvc(ﬁ?qwbgngi X xnxu)
= X,ngX%Xn ® Ty + qanBX(;X,YX% ® Ty + q§7(3)q~7nb3b7x5x§xL ® Ty
+ 05 Qun (3)g,, 03%X6% % ® Ty + G5, Qun Gy 2X XXXy @ T2
+ qqugnmx%x% ®© x5 — qﬁ‘;qévq%nxﬂixi ® zg
— qﬁ,quqgwc(ﬁ?bgbf;ngixb & Ty — q/g,quqgvc(ﬁ?;])q#nbgngixn & xy-
Finally we compute (10.1.81). Using (10.1.134), (10.1.135), Remark 10.1.2, (10.1.136),
(10.1.137), (10.1.138), (10.1.139), (10.1.140) and (10.1.84):
d(xa}%x(gxgyxi ®1)= }(O[X/gx(;x?yx77 ® Ty — s( — q,%nanBX(ngxn ® LTy
— qgv (3)§7nb3xax5xi ® Ty — qgvngaxszx,{ ® Ty XLy — qqugnanQXEYXn ® T5Ty
+ q55q§7q5UXQX5x3xn X xgxTy — qagquqﬁnqzvblmx/g}qxzxn &Q TyTRTy
— qquggcg?vbgngaxi Q XpXy — qa,eq?qu,enq%qmmXﬁxaﬁxn & xrxaTy
— (o0pGaslon danX8%5%o%y ® Loy + Qapdinqen879, 4 (3)gs, Gonb1babEX X © TpTy)
= Xax5x(;x,2yxn ® Ty + qznxaxﬁx(;xn/x% ® Ty + qg,y(?));jwbgbﬁax[gxixb ® Tyry
+ qgrqu@)iiwbiixaxﬂxixn ® Ty + qquunqvnbﬂaxﬁxgyxnxn @ Ty Ty
+ qgwqgnxaxfgx%x?] Qx5 — thgqgwqgnxaxtgxixg Kxg
+ qquz,{cgvbgbﬁngaxixb & X~ + qqug,{qwcgvbgngaxixn & xy
+ Qa0 U5y T G PIDIX XXX, Xy @ Ty T — Gaf o Uiy do Loy P1X 3% X2X2 @ T2

— 3
+ QaBlas T 0y XaXsK2XD © Ta — Gaplsr Qo Tyds s 0o, b1babsx X%, © 25

2 2 (4 6
- q(quwdigwbzbsbgngw ® 1.
This completes the proof. O
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