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SUMMARY

Reliability assessment and maintenance scheduling of
flowmeters are of great importance for process industry
companies because of the need to ensure the production quality
and reduce operational risks and costs. In practice, the failure
process of flowmeters is complicated due to multiple failure
modes arising from different electro-mechanical parts. Besides,
there generally exists heterogeneity among the flowmeters that
is caused by several factors (i.e., covariates) such as operational
conditions. In this paper, we use the nonhomogeneous Poisson
process (NHPP) model with covariates to assess the reliability
of flowmeters and then derive the optimal age-based preventive
maintenance (PM) policy based on the estimated reliability
model. The effects of covariates are incorporated in the
reliability model by means of a proportional intensity function.
We apply the maximum likelihood method to estimate the
model parameters and adopt the random weighted likelihood
bootstrap procedure to address the statistical uncertainty. Real-
world flowmeters failure data from a process industry company
are used in the case study. The estimated intensity functions are
shown to reasonably fit the failure data and the obtained optimal
PM policies provide cost-efficient and covariate-specific
maintenance strategy for the company.

1 INTRODUCTION

Measurement of volumetric or mass flow rate of a liquid or
a gas, is commonly used in many industrial processes (e.g.,
material manufacturing) as a critical indicator. Continuously
accurate flow measurements are important to establish baseline
material usage, improve product quality, and ensure safe
operational environments. In particular, Coriolis mass flow
metering has been considered as the most accurate of the
commonly-used industrial flow measurement technology since
its introduction in the mid 1980s [1]. However, Coriolis meters
are typically expensive because of high manufacturing quality
requirements and the relatively larger size [2]. Unexpected
failures of flowmeters will cause a shutdown of the production
process, resulting in a large amount of downtime cost, and may
also cause safety problems for the operational environments.
Therefore, reliability assessment and maintenance scheduling
of flowmeters is of great importance for process industry

companies.

In practice, reliability assessment and maintenance
scheduling of flowmeters is challenging for the following
reasons. First, during the service life of a flowmeter, multiple
types of failures can occur and require different types of repairs.
For example, failures of electronics, loosing coils and cables,
and blocked tubes can make a flowmeter unable to function, but
it can be repaired by replacement of electronics, tightening the
coils and cables, and cleaning tubes, which can be considered
as minimal repairs. A flowmeter may experience several
minimal repairs over its lifetime that are called recurrent events.
However, if critical components (e.g., transmitters body) fail,
the whole flowmeter needs to be replaced according to its
unique mechanical structures. Second, in actual maintenance
practice, the failure process of flowmeters may be dependent on
many factors (i.e., covariates) such as operational conditions
(e.g., temperature, process type, tube material). For example,
flowmeters which are used to measure acidic and caustic fluids
are more likely to fail than the one with water going through it.
Moreover, incomplete records of flowmeters generally exist. If
a flowmeter has been installed before the company began
careful archival record keeping, then the data for this flowmeter
will be left-truncated since the installation date is unavailable.
Right-censored data are generated from the flowmeters that are
still in service when the data are analyzed. Therefore, we need
to develop an effective framework for reliability assessment
and maintenance scheduling of flowmeters to address multiple
failure modes and covariates based on complicated field data.

In this paper, we use the nonhomogeneous Poisson process
(NHPP) model with proportional intensity functions [3] to
analyze the failure process of flowmeters. The estimated
reliability model is then used to derive the covariate-specific
PM policy. The NHPP is suitable to model recurrent events data
with multiple failure modes and can also handle the standard
right-censored cases [4]. Left-truncated data will be carefully
considered by estimating the installation date according to the
limited history information. Maximum likelihood method is
used for model inference. Furthermore, random weighted
likelihood bootstrap procedure [5] is used to address the
statistical uncertainty of estimated parameters.



2 LITERATURE REVIEW

The reliability of repairable systems has been commonly
studied by using point process models. The renewal process
(RP) and the nonhomogeneous Poisson process (NHPP) are the
two commonly used models for repairable systems, which are
strictly applicable only under perfect repair and minimal repair
assumptions, respectively [6, 7]. Specifically, RP is used to
model the failure process of a system that will be as good as
new after each repair. Applications of RP are limited due to the
strong assumption of perfect repair. The NHPP, on the other
hand, is used to model the failure process of a repairable system
with minimal repairs, i.e., the system is repaired to be as bad as
old for each failure. The assumption is appropriate for many
repairable systems such as automobiles since typically only a
small part (e.g., tire) of an automobile is repaired at a time.
Both processes are special cases, to model the general behavior
of the failure process (i.c., imperfect repair process), Lindqvist
et al. [6] propose a trend-renewal process (TRP) model, which
includes both NHPP and RP models as special cases.

In reliability analysis of electro-mechanical systems (e.g.,
motor vehicles, flowmeters), the event of primary interest can
arise from different parts of the system and may occur several
times during the study period. Hong et al. [8] use an NHPP
model with a bathtub intensity function to describe window-
observed recurrent failures of two failure modes for a service
industry company, which requires a high level of system
availability. Liao et al. [9] conduct reliability analysis of
flowmeters based on complicated field data using the NHPP
model to address multiple failure modes. To incorporate the
effects of covariates, the proportional hazards model (i.e., Cox
regression model) is commonly used [3], which is composed of
two parts, i.e., the baseline intensity function and a link function
with covariates that has either an exponential, log, or logistic
form. The Cox regression model can be taken into
consideration for the reliability analysis which considers either
perfect, minimal, or imperfect repairs [7].

The maintenance planning of productive systems is vital to
improve system availability and reduce operational risks and
costs. Typically, age-based PM optimization is to obtain the
optimal PM cycle that minimizes the long-run operating cost
rate or maximizes the system availability. In our paper, we use
the NHPP model with proportional intensity functions to
analyze the failure mechanism of flowmeters with multiple
failure modes and covariates. We aim at providing cost-
efficient and covariate-specific PM policy for flowmeters based
on the estimated reliability model.

The remainder of this paper is organized as follows.
Section 3 introduces the failure process of flowmeters and
describes the NHPP model with covariates including parameter
estimation method. Section 4 presents age-based preventive
maintenance modeling of flowmeters. Numerical results for
real-world flowmeters failure data are provided in Section 5.
Section 6 contains concluding remarks and areas for future
research.

3 RELIABILITY ASSESSMENT
3.1 System Description

During the service life of a flowmeter, an outage (failure)
event is defined as a situation that makes it unavailable for
functioning, e.g., the flowmeter is not reading or reading wrong
due to electronic failures, coil loosing, or transmitter failures.
The recorded field data often have a complicated structure.
Different electro-mechanical parts of a flowmeter may fail
during its lifetime, resulting in multiple failure modes and
requiring different types of repair. For example, failed
electronics need to be replaced, and loosing coils need to be
tightened, which can be considered as two different failure
modes. But all these repairs can be considered as minimal
repairs since the condition of the flowmeter is almost the same
as it was before failure. These failures may occur several times
over the lifetime of a flowmeter, called as recurrent events.
However, other failure modes arising from critical parts such as
transmitters require replacement of the entire flowmeter due to
its unique mechanical structures. When a flowmeter is
replaced, it will be considered as a new unit and experience the
same failure process after installed. Engineering knowledge
suggests that it is reasonable to assume that all these failure
modes are independent. Moreover, the failure process of
flowmeters can be affected by operational conditions, which
may be constant over time (e.g., process type) or variable over
time (e.g., temperature). These factors provide additional
information about the failure mechanisms of flowmeters, which
need to be incorporated as covariates in the reliability model.

Information of failure times and maintenance records is
available after the company began careful archival record
keeping, which makes the flowmeters installed before it be
viewed as the left-truncated cases. An alternative way is to
determine the most likely estimated date for installation date,
such as the earliest recoded date that can be found before the
archival recode system is built. In addition, it usually happens
that flowmeters are still in service at the “data-freeze” point,
which are considered as the right-censored cases. The NHPP
model with covariates used in this paper will be presented to be
very suitable for recurrent failure data with multiple failure
modes and be able to handle right-censored cases.

3.2 NHPP Model with Covariates

In our previous work [9], the NHPP with power-law
intensity functions is used to model the failure process of
flowmeters. However, there generally exist various covariates
(e.g., process type) that affect the failure mechanisms of
flowmeters and have not been considered. In this paper, we
extend our previous work by incorporating the effects of
covariates in the reliability model by means of a proportional
intensity function [3] to modify the baseline intensity. The
proportional intensity function is given as

A
Ut; B, a) = (—j{—] exp (ax),

where x is the vector of covariates and the corresponding



coefficients are denoted by a. Note that x can be a function of
time for time-varying covariates. The cumulative intensity
function is computed as

At Bon@) = [ Aus Bon, @) du, 2)

giving the expected cumulative number of failures from time 0
(i.e., the time or estimated time of installation) to time ¢.

The failure intensity function for each failure mode will be
modeled separately. Let A«(¢; Br, 1k, ax) denote the intensity
function for failure mode k (k =1, 2, ..., K, where K is the
number of failure modes). Specifically, we use the first (K—1)
failure modes to describe different types of small part failures
(e.g., electronics, coils, and tubes) and the failure mode K
contains all critical part failures (e.g., transmitters). Further, the
overall intensity for the flowmeters will be

K
/l(t;@)zz/lk(t;ﬁkv”ksak)a (3)
k=1
where @ = (B1, 1, ai, ... , Bx, 1k, ax). Forthe i (i=1,2, ...,
n) flowmeter, the time scale is from time O to a specific ending
timepoint 7;, which is either the replacement time of the
flowmeter or the “data-freeze” time since we consider the
replaced flowmeter as a new unit. The successive failure events
are recorded by #; and each event is labeled with a failure mode
Aj taking values from {1, 2, ... , K}, j =1, ... , N(T}), where
N{(T;) counts the number of failure events irrespective of the
failure modes for unit i during the observation window (0, 7).
We then use the marked event process (¢, Aj), j =1, ... , N(T)),
i=1,2, ...,n,torepresent the failure process.

3.3 Parameter Estimation

Maximum likelihood estimate (MLE) is used for model
inference. Given the time-to-event data with multiple failure
modes, the likelihood function can be computed by [10]

(O | data) = H{Nﬁ) Iy (1,:0) exp[— [ iw:0) du}}. )

i=1 | =l

Here, © is the parameter vector that denotes all parameters in
the model and the MLE @ is obtained by maximizing the
likelihood function in Equation (4). The likelihood function is
valid under the assumption that 7; is a stopping time, which
means its value depends stochastically only on the past history.
Particularly, this property still holds for the right-censored
cases, where 7; is independent of the failure process [4].

The estimations of parameters depend heavily on the
collected data and will fluctuate among different sample data,
especially when the sample size n is small. To account for the
statistical uncertainty, bootstrap re-sampling methods are
commonly used to provide approximate confidence intervals of
estimated parameters. The random weighted likelihood
bootstrap procedure [5], which has been considered to be
effective and easy-to-use for complicated problems, is used in
our paper. The procedure proceeds as follows.

1) Simulate random values z;, i = 1, 2, ... , n, independently

from the continuous distribution Gamma(l, 1).

2) The random weighted likelihood is

X n_ (Ni(T) T K
L (O |data) = 1:1[{ g /IAU (7;;0)x exp[—'[o Mu; O) du}} .(9)
3) Obtain the MLE o by maximizing L(© | data).
4) Repeat steps 1) — 3) M times to get M bootstrap samples
e ,m=1,2,..., M.
The distribution of ~/n (O" —®) can be used to approximate the
distribution of /n (O -©) if the weights z are generated from
a continuous distribution with property E(z;) = [Var(z;)]"? [11].
The results are insensitive to the choice of this continuous
distribution and Gamma(1, 1) is used in our paper.
Based on MLE @ , the reliability function can be obtained

as
R(t’é) _ e—JOA(u;@)du _ eiA(t;é)’ (6)

and the mean time to failure (MTTF) can be computed by
MTTF = j:’ R(t;0)dt, (7)

Furthermore, an approximate confidence interval of MTTF can
be obtained from [; R(z; @’ )dt, given bootstrap samples @ .

4 AGE-BASED MAINTENANCE POLICY

In our motivated application, flowmeters have multiple
failure modes arising from different electro-mechanical parts,
which require different types of maintenance. It is desirable to
develop cost-effective maintenance strategy for flowmeters in
the process industry. In this paper, we consider age-based
maintenance policy for flowmeters based on the estimated
reliability model. To address multiple failure modes, three
different types of maintenance are defined as follows.

e Preventive maintenance (PM). PM is a periodic practice
and is scheduled after every 7 units of time. It is performed
with a fixed cost cpy, which instantly returns the flowmeter
to a like-new condition.

e Corrective maintenance (CM). When a critical part fails
(i.e., failure mode K), the flowmeter needs to be replaced
with a fixed cost ccyr and we have ceoy > cpy. After CM,
the flowmeter returns to be as-good-as-new.

e Minimal repair (MR). Between two successive
replacements (PM/CM), i.e., in a renewal cycle, several
minimal repairs are performed when small parts fail (i.e.,
failure mode 1, ... , K—1). The MRs caused by failure
mode k have a fixed cost cyrs, kK =1, ... , K—1. All MRs
only restore the function of the flowmeter to the condition
just before the failures.

The 1%cycle  The 2™ cycle The n'" cycle
1
1 ] 1 1
1 1
<« ¢ —> < 1 —>
I— Installation O MR 8 M * PM

Figure 1 — Illustration of the renewal-award process
of flowmeters

All types of maintenance are assumed to be performed



instantaneously since the maintenance times are negligible in
one renewal cycle. Figure 1 illustrates the described renewal-
award process of flowmeters. From Figure 1, we can see that
each renewal cycle ends with either a PM or a CM.

The expected cycle length, denoted by g, is derived as

1 =J.Orth(t)dt+rRK (1) =[0’RK (t)dt

T —J”) (u; g g oy )du T (8)
= [ gy [ st gy
0 0
The expected cost for each renewal cycle is given by
K-1
C=Ry (T)(CPM + ZCMR,kAk (7)]
©)
+(1-R, (r))(cw + ) oS (= TR (r))j.
k=1
Finally, the long-run expected cost rate is given by
C
n=—. (10)
u

The optimal age-based PM policy " is then obtained by
minimizing #.
5 CASE STUDY

Real-world flowmeter failure data from a process industry
company are used in our case study. The recorded flowmeter
operating history has a complicated structure, so we need to
preprocess the raw data first. Due to sparsity of failures, we
consider two failure modes (i.e., K=2) for flowmeters in this
paper. Failure mode 1 (FM1) contains all the small part failures
with minimal repair no matter which part is failed, including
replacing the failed electronics, tightening the loosing coils and
cleaning the tubes. Failure mode 2 (FM2) is used to describe
all the critical part failures such as transmitter, requiring
replacement of the entire flowmeter. After taking out the
irrelevant information, all maintenance records will be labeled
as FM1/FM2 according to the repair descriptions, which have
been well kept in the archival record system since 1999. Data
are organized according to the process locations. There are 75
different locations in the dataset and it will be considered as a
new unit once replacement performed. In other words, each
unit may experience several minimal repairs (FM1) or no
repairs until its complete failure (FM2) or the “data-freeze”
time. Flowmeters that are still in service after January 31%,
2020 (“data-freeze” date) are considered as right-censored data
and flowmeters that were functioning before the record system
is built are considered as the left-truncated data, in which case,
the earliest recording date or the manufacturing date will be
used as the estimated installation date for analysis purpose. For
example, as illustrated in Figure 2, all records for process
location F42XX (Full information is not shown here to protect
sensitive and proprietary information) will be divided into three
different units because two replacements occurred in this
position. The first unit (red) was functioning before 1999, so
the earliest recording date (January 1%, 1996) provided by the
company is used to estimate the installation date. The second

unit (blue) has exact installation date which is the replacement
time of the first unit. The third unit (green) is right-censored
since it is still in service after “data-freeze” date.

Location Date Record | Installation date
4/19/2010 FM1
6/16/2012 FM1
F42XX [ 7/15/2013 EMI 01/01/1996
8/26/2013 FM2
3/17/2015 FM1
10/23/2018 FM2
Unit 1 (Red): © 0 o83
Unit2 (Blue): F—0——%R3
Unit 3 (Green): |—
| Installation O FMI1 (MR)
o0— Left-truncated 3 FM2 (CM)
» Right-censored

Figure 2 — lllustration for data preprocessing procedure

Moreover, these flowmeters are functioning under
different operational conditions such as temperature and
process type. Based on the expert experiences, the process type
has significant impacts on the failure process of flowmeters,
which is considered as the covariate in this case study. There
exist various process types such as water, nitrogen, and sulfuric
acid. Instead of examining the impact of each specific process
type, we categorize these process types into two levels: critical
level (e.g., sulfuric acid) and non-critical level (e.g., water)
according to the engineering knowledge. We use x to denote
the process type level and x takes values 1 and 0, which is an
indicator variable for the critical level.

Two separate proportional intensity functions are used to
describe FM1 and FM2, which are given as

fi-l
ik(t;ﬁk,nk,ak):[’j—li‘}[ﬁ%] exp(a,x), k=12, (11)

where x=0,1. We use the preprocessed data to estimate the
parameters @ = (S, 11, ai, B2, 2, az) and Table 1 shows the
MLEs and respective standard errors of parameters for both
failure modes using random weighted likelihood bootstrap
method.

Table 1 — MLEs and standard errors of parameters for both
failure modes

Failure mode | Parameter MLE Std. err.
B 1.37 0.17
FM1 71 17.04 1.99
o1 0.09 0.22
Jip 1.31 0.17
FM2 12 38.67 5.38
o 0.70 0.23

Based on the MLEs, the estimated intensity functions for
two failure modes are given as



1.37¢%7 1.31%"
exp(0.09x), t)=———exp(0.7x). (12
48.65 o ) RO 120.08 o )- (12)
Let x take value 1 and 0 in Equation (12), and we can obtain the
estimated intensity functions for both failure modes under the
critical process type level and non-critical level, respectively.

A(@) =

02 02
J—G
J— Yl

- - -FMI
e FM2

015 | ——Overall 015 | ——Overall

01 P 01

ime since installation (year)

(a) Critical level (b) Non-critical level

Figure 3 — Estimated intensity functions for both levels

Figure 3 shows these estimated intensity functions. We can see
that in both cases, the failures for FM1 are more frequent than
FM2 during the lifetime of flowmeters, indicating that small
parts failures are more likely to occur than critical parts failures.
In addition, the effects of the covariate x on the failure process
are reflected in the exponential terms of Equation (12). Both
MLE:s of a; and a» are positive, which means that flowmeters
with process type in the critical level have more frequent
failures for both failure modes. This effect leads to smaller
MTTF of flowmeters with critical process type. Therefore, for
the critical level, more frequent PM needs to be scheduled to
ensure the functioning of the flowmeters and reduce downtime
costs caused by unexpected failures.

150 150
—Fitied values

— _ — Approximate 95% pointwise CIs

o Data points

100 100

where 7; is the endpoint of the observation window for unit .
Figure 4 presents the observed overall cumulative number of
failures (black dots) and the estimated expected overall
cumulative number of failures (red solid line) with approximate
95% pointwise Cls (red dashed line), which are derived from
the bootstrap samples. For both levels, the actual cumulative
numbers of failures are almost within the estimated CIs, which
shows that the parametric model for the overall failures can
reasonably fit the observed failure data.

Based on the estimated intensity functions, we compute the
MTTF and respective confidence interval (CI). Table 2
presents the estimated MTTF and the 95% CI for both levels.
We can see that the MTTF of flowmeters with process type in
the critical level is approximate 2.4 years smaller than the non-
critical level. It is verified that the covariate (i.e., process type)
has significant effects on the failure process of flowmeters.

Table 2 — MTTF and 95% CI for both process type levels

(vears)
95% CI
Process type level MTTF Lower Upper
Critical (x=1) 10.10 8.08 12.12
Non-critical (x=0) 12.51 9.82 15.21

We further derive the age-based PM policy. For illustrative
purpose, the maintenance costs are specified as

Cppy =300, oy =2000, ¢,y =50.

R (14)
As discussed in Section 4, the optimal age-based PM policy z°
is obtained by minimizing the long-run expected cost rate 7.

We summarize the PM policies for both levels in Table 3.

Table 3 — Optimal age-based PM policies for both process
type levels (years)

50

year)

(a) Critical level (b) Non-critical level

Figure 4 — Observed overall cumulative number of failures
(black dots) and estimated expected overall cumulative
number of failures (red solid line) with approximate 95%
pointwise Cls (red dashed line)

To assess goodness-of-fit of the proposed model, we
compare the observed overall number of failures with the
estimated expected cumulative number of failures for both
process type levels. The observed overall number of failures is
the total number of failures for both failure modes that occurred
by time ¢. There are 53 and 78 units for the critical and non-
critical levels respectively, having different observation
windows. Therefore, the expected overall cumulative number
of failures for all units in each process type level from time 0 to
time ¢ is adjusted by

E(t;@) = iiAk (min{t,ﬂ};ﬁk,ﬁk,dk ),

i=1 k=1

(13)

Process type level T n"
Critical (x=1) 15.82 90.59
Non-critical (x=0) 26.35 54.60

For the process types in the critical level, the optimal PM cycle
is 15.82 years, which obtains the minimum long-run expected
cost rate 90.59. It means that the flowmeter is replaced when
its age reaches 15.82 years old or its critical parts fail,
whichever comes first. For the non-critical level, the optimal
PM cycle is 26.35 years. We can see that the PM is scheduled
less frequent than the critical level. This result provides process
type level-specific and cost-efficient maintenance policies for
the company to achieve better system performance.

6 CONCLUSION

In this paper, an efficient framework is developed for
reliability assessment and maintenance scheduling of
flowmeters. We use the NHPP model with covariates to
analyze the reliability of flowmeters with multiple failure
modes and complicated field data. Based on the estimated
reliability model, we obtain covariate-specific and cost-
efficient PM policy. The proposed framework is flexible and



can handle left-truncated and right-censored cases well.
Numerical results present the additional effects caused by
covariates in the estimated intensity functions for important
failure modes. Besides, the estimated mean time to failure and
derived PM policy under different process type levels provides
implementation recommendation for the company to design
inspection and maintenance schedules. Although the discuss of
this paper is heavily on the basis of flowmeters failure data, for
other systems sharing similar data structure, the developed
framework can also be applied to achieve the same goals.

In this analysis, we address the heterogeneity by using a
covariate (i.e., process type). However, in practice, two
flowmeters that have the same process type may experience
different failure processes. An extension is to address this unit-
to-unit variability by introducing random effects.
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