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SUMMARY 

Reliability assessment and maintenance scheduling of 
flowmeters are of great importance for process industry 
companies because of the need to ensure the production quality 
and reduce operational risks and costs.  In practice, the failure 
process of flowmeters is complicated due to multiple failure 
modes arising from different electro-mechanical parts.  Besides, 
there generally exists heterogeneity among the flowmeters that 
is caused by several factors (i.e., covariates) such as operational 
conditions.  In this paper, we use the nonhomogeneous Poisson 
process (NHPP) model with covariates to assess the reliability 
of flowmeters and then derive the optimal age-based preventive 
maintenance (PM) policy based on the estimated reliability 
model.  The effects of covariates are incorporated in the 
reliability model by means of a proportional intensity function.  
We apply the maximum likelihood method to estimate the 
model parameters and adopt the random weighted likelihood 
bootstrap procedure to address the statistical uncertainty.  Real-
world flowmeters failure data from a process industry company 
are used in the case study.  The estimated intensity functions are 
shown to reasonably fit the failure data and the obtained optimal 
PM policies provide cost-efficient and covariate-specific 
maintenance strategy for the company. 

1 INTRODUCTION 

Measurement of volumetric or mass flow rate of a liquid or 
a gas, is commonly used in many industrial processes (e.g., 
material manufacturing) as a critical indicator.  Continuously 
accurate flow measurements are important to establish baseline 
material usage, improve product quality, and ensure safe 
operational environments.  In particular, Coriolis mass flow 
metering has been considered as the most accurate of the 
commonly-used industrial flow measurement technology since 
its introduction in the mid 1980s [1].  However, Coriolis meters 
are typically expensive because of high manufacturing quality 
requirements and the relatively larger size [2].  Unexpected 
failures of flowmeters will cause a shutdown of the production 
process, resulting in a large amount of downtime cost, and may 
also cause safety problems for the operational environments.  
Therefore, reliability assessment and maintenance scheduling 
of flowmeters is of  great importance for process industry 

companies. 
In practice, reliability assessment and maintenance 

scheduling of flowmeters is challenging for the following 
reasons.  First, during the service life of a flowmeter, multiple 
types of failures can occur and require different types of repairs.   
For example, failures of electronics, loosing coils and cables, 
and blocked tubes can make a flowmeter unable to function, but 
it can be repaired by replacement of electronics, tightening the 
coils and cables, and cleaning tubes, which can be considered 
as minimal repairs.  A flowmeter may experience several 
minimal repairs over its lifetime that are called recurrent events.  
However, if critical components (e.g., transmitters body) fail, 
the whole flowmeter needs to be replaced according to its 
unique mechanical structures.  Second, in actual maintenance 
practice, the failure process of flowmeters may be dependent on 
many factors (i.e., covariates) such as operational conditions 
(e.g., temperature, process type, tube material).  For example, 
flowmeters which are used to measure acidic and caustic fluids 
are more likely to fail than the one with water going through it.  
Moreover, incomplete records of flowmeters generally exist.  If 
a flowmeter has been installed before the company began 
careful archival record keeping, then the data for this flowmeter 
will be left-truncated since the installation date is unavailable.  
Right-censored data are generated from the flowmeters that are 
still in service when the data are analyzed.  Therefore, we need 
to develop an effective framework for reliability assessment 
and maintenance scheduling of flowmeters to address multiple 
failure modes and covariates based on complicated field data. 

In this paper, we use the nonhomogeneous Poisson process 
(NHPP) model with proportional intensity functions [3] to 
analyze the failure process of flowmeters.  The estimated 
reliability model is then used to derive the covariate-specific 
PM policy. The NHPP is suitable to model recurrent events data 
with multiple failure modes and can also handle the standard 
right-censored cases [4].  Left-truncated data will be carefully 
considered by estimating the installation date according to the 
limited history information.  Maximum likelihood method is 
used for model inference.  Furthermore, random weighted 
likelihood bootstrap procedure [5] is used to address the 
statistical uncertainty of estimated parameters. 



2 LITERATURE REVIEW 

The reliability of repairable systems has been commonly 
studied by using point process models.  The renewal process 
(RP) and the nonhomogeneous Poisson process (NHPP) are the 
two commonly used models for repairable systems, which are 
strictly applicable only under perfect repair and minimal repair 
assumptions, respectively [6, 7].  Specifically, RP is used to 
model the failure process of a system that will be as good as 
new after each repair.  Applications of RP are limited due to the 
strong assumption of perfect repair.  The NHPP, on the other 
hand, is used to model the failure process of a repairable system 
with minimal repairs, i.e., the system is repaired to be as bad as 
old for each failure.  The assumption is appropriate for many 
repairable systems such as automobiles since typically only a 
small part (e.g., tire) of an automobile is repaired at a time.   
Both processes are special cases, to model the general behavior 
of the failure process (i.e., imperfect repair process), Lindqvist 
et al. [6] propose a trend-renewal process (TRP) model, which 
includes both NHPP and RP models as special cases. 

In reliability analysis of electro-mechanical systems (e.g., 
motor vehicles, flowmeters), the event of primary interest can 
arise from different parts of the system and may occur several 
times during the study period.  Hong et al. [8] use an NHPP 
model with a bathtub intensity function to describe window-
observed recurrent failures of two failure modes for a service 
industry company, which requires a high level of system 
availability.  Liao et al. [9] conduct reliability analysis of 
flowmeters based on complicated field data using the NHPP 
model to address multiple failure modes.  To incorporate the 
effects of covariates, the proportional hazards model (i.e., Cox 
regression model) is commonly used [3], which is composed of 
two parts, i.e., the baseline intensity function and a link function 
with covariates that has either an exponential, log, or logistic 
form.  The Cox regression model can be taken into 
consideration for the reliability analysis which considers either 
perfect, minimal, or imperfect repairs [7]. 

The maintenance planning of productive systems is vital to 
improve system availability and reduce operational risks and 
costs.  Typically, age-based PM optimization is to obtain the 
optimal PM cycle that minimizes the long-run operating cost 
rate or maximizes the system availability.  In our paper, we use 
the NHPP model with proportional intensity functions to 
analyze the failure mechanism of flowmeters with multiple 
failure modes and covariates.  We aim at providing cost-
efficient and covariate-specific PM policy for flowmeters based 
on the estimated reliability model. 

The remainder of this paper is organized as follows. 
Section 3 introduces the failure process of flowmeters and 
describes the NHPP model with covariates including parameter 
estimation method. Section 4 presents age-based preventive 
maintenance modeling of flowmeters.  Numerical results for 
real-world flowmeters failure data are provided in Section 5. 
Section 6 contains concluding remarks and areas for future 
research. 

3 RELIABILITY ASSESSMENT 

3.1 System Description  

During the service life of a flowmeter, an outage (failure) 
event is defined as a situation that makes it unavailable for 
functioning, e.g., the flowmeter is not reading or reading wrong 
due to electronic failures, coil loosing, or transmitter failures.   
The recorded field data often have a complicated structure.   
Different electro-mechanical parts of a flowmeter may fail 
during its lifetime, resulting in multiple failure modes and 
requiring different types of repair.  For example, failed 
electronics need to be replaced, and loosing coils need to be 
tightened, which can be considered as two different failure 
modes.  But all these repairs can be considered as minimal 
repairs since the condition of the flowmeter is almost the same 
as it was before failure.  These failures may occur several times 
over the lifetime of a flowmeter, called as recurrent events.  
However, other failure modes arising from critical parts such as 
transmitters require replacement of the entire flowmeter due to 
its unique mechanical structures.  When a flowmeter is 
replaced, it will be considered as a new unit and experience the 
same failure process after installed.  Engineering knowledge 
suggests that it is reasonable to assume that all these failure 
modes are independent.  Moreover, the failure process of 
flowmeters can be affected by operational conditions, which 
may be constant over time (e.g., process type) or variable over 
time (e.g., temperature).  These factors provide additional 
information about the failure mechanisms of flowmeters, which 
need to be incorporated as covariates in the reliability model.    

Information of failure times and maintenance records is 
available after the company began careful archival record 
keeping, which makes the flowmeters installed before it be 
viewed as the left-truncated cases.  An alternative way is to 
determine the most likely estimated date for installation date, 
such as the earliest recoded date that can be found before the 
archival recode system is built.  In addition, it usually happens 
that flowmeters are still in service at the “data-freeze” point, 
which are considered as the right-censored cases.  The NHPP 
model with covariates used in this paper will be presented to be 
very suitable for recurrent failure data with multiple failure 
modes and be able to handle right-censored cases.   

3.2 NHPP Model with Covariates  

In our previous work [9], the NHPP with power-law 
intensity functions is used to model the failure process of 
flowmeters.  However, there generally exist various covariates 
(e.g., process type) that affect the failure mechanisms of 
flowmeters and have not been considered.  In this paper, we 
extend our previous work by incorporating the effects of 
covariates in the reliability model by means of a proportional 
intensity function [3] to modify the baseline intensity.  The 
proportional intensity function is given as  
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where x is the vector of covariates and the corresponding 



coefficients are denoted by α.  Note that x can be a function of 
time for time-varying covariates.  The cumulative intensity 
function is computed as 
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giving the expected cumulative number of failures from time 0 
(i.e., the time or estimated time of installation) to time t.   

The failure intensity function for each failure mode will be 
modeled separately.  Let λk(t; βk, ηk, αk) denote the intensity 
function for failure mode k (k = 1, 2, …, K, where K is the 
number of failure modes).  Specifically, we use the first (K−1) 
failure modes to describe different types of small part failures 
(e.g., electronics, coils, and tubes) and the failure mode K 
contains all critical part failures (e.g., transmitters).  Further, the 
overall intensity for the flowmeters will be 
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where Θ = (β1, η1, α1, … , βK, ηK, αK).  For the ith (i = 1, 2,  … , 
n) flowmeter, the time scale is from time 0 to a specific ending 
timepoint Ti, which is either the replacement time of the 
flowmeter or the “data-freeze” time since we consider the 
replaced flowmeter as a new unit.  The successive failure events 
are recorded by tij and each event is labeled with a failure mode 
Δij taking values from {1, 2, … , K}, j =1, … , Ni(Ti), where 
Ni(Ti) counts the number of failure events irrespective of the 
failure modes for unit i during the observation window (0, Ti).  
We then use the marked event process (tij, Δij), j =1, … , Ni(Ti), 
i = 1, 2,  … , n, to represent the failure process. 

3.3 Parameter Estimation  

Maximum likelihood estimate (MLE) is used for model 
inference.  Given the time-to-event data with multiple failure 
modes, the likelihood function can be computed by [10] 
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Here, Θ is the parameter vector that denotes all parameters in 
the model and the MLE Θ̂  is obtained by maximizing the 
likelihood function in Equation (4).  The likelihood function is 
valid under the assumption that Ti is a stopping time, which 
means its value depends stochastically only on the past history.  
Particularly, this property still holds for the right-censored 
cases, where Ti is independent of the failure process [4]. 

The estimations of parameters depend heavily on the 
collected data and will fluctuate among different sample data, 
especially when the sample size n is small.  To account for the 
statistical uncertainty, bootstrap re-sampling methods are 
commonly used to provide approximate confidence intervals of 
estimated parameters.  The random weighted likelihood 
bootstrap procedure [5], which has been considered to be 
effective and easy-to-use for complicated problems, is used in 
our paper.  The procedure proceeds as follows. 
1) Simulate random values zi, i = 1, 2, … , n, independently 

from the continuous distribution Gamma(1, 1). 
2) The random weighted likelihood is 
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3) Obtain the MLE Θ̂ ∗  by maximizing L*(Θ | data). 
4) Repeat steps 1) − 3) M times to get M bootstrap samples 

ˆ
mΘ∗ , m = 1, 2, … , M. 

The distribution of ˆ ˆ( )n Θ Θ∗ −  can be used to approximate the 
distribution of ˆ( )n Θ Θ−  if the weights zi are generated from 
a continuous distribution with property E(zi) = [Var(zi)]1/2 [11].  
The results are insensitive to the choice of this continuous 
distribution and Gamma(1, 1) is used in our paper. 

Based on MLE Θ̂ , the reliability function can be obtained 
as 

 0
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and the mean time to failure (MTTF) can be computed by 
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Furthermore, an approximate confidence interval of MTTF can 
be obtained from ∫∞ 

0 R(t; ˆ
mΘ∗ )dt, given bootstrap samples ˆ

mΘ∗ . 

4 AGE-BASED MAINTENANCE POLICY 

In our motivated application, flowmeters have multiple 
failure modes arising from different electro-mechanical parts, 
which require different types of maintenance.  It  is desirable to 
develop cost-effective maintenance strategy for flowmeters in 
the process industry.  In this paper, we consider age-based 
maintenance policy for flowmeters based on the estimated 
reliability model.  To address multiple failure modes, three 
different types of maintenance are defined as follows.  
• Preventive maintenance (PM).  PM is a periodic practice 

and is scheduled after every τ units of time.  It is performed 
with a fixed cost cPM, which instantly returns the flowmeter 
to a like-new condition. 

• Corrective maintenance (CM).  When a critical part fails 
(i.e., failure mode K), the flowmeter needs to be replaced 
with a fixed cost cCM and we have cCM > cPM.  After CM, 
the flowmeter returns to be as-good-as-new. 

• Minimal repair (MR).  Between two successive 
replacements (PM/CM), i.e., in a renewal cycle, several 
minimal repairs are performed when small parts fail (i.e., 
failure mode 1, … , K−1).  The MRs caused by failure 
mode k have a fixed cost cMR,k, k =1, … , K−1.  All MRs 
only restore the function of the flowmeter to the condition 
just before the failures. 

Figure 1 – Illustration of the renewal-award process 
of flowmeters 

All types of maintenance are assumed to be performed 

⋯ 
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instantaneously since the maintenance times are negligible in 
one renewal cycle.  Figure 1 illustrates the described renewal-
award process of flowmeters.  From Figure 1, we can see that 
each renewal cycle ends with either a PM or a CM. 
The expected cycle length, denoted by μ, is derived as 
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The expected cost for each renewal cycle is given by 
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Finally, the long-run expected cost rate is given by  

 .Cη
μ

=  (10)  

The optimal age-based PM policy τ* is then obtained by 
minimizing η. 

5 CASE STUDY 

Real-world flowmeter failure data from a process industry 
company are used in our case study.  The recorded flowmeter 
operating history has a complicated structure, so we need to 
preprocess the raw data first.  Due to sparsity of failures, we 
consider two failure modes (i.e., K=2) for flowmeters in this 
paper.  Failure mode 1 (FM1) contains all the small part failures 
with minimal repair no matter which part is failed, including 
replacing the failed electronics, tightening the loosing coils and 
cleaning the tubes.  Failure mode 2 (FM2) is used to describe 
all the critical part failures such as transmitter, requiring 
replacement of the entire flowmeter.  After taking out the 
irrelevant information, all maintenance records will be labeled 
as FM1/FM2 according to the repair descriptions, which have 
been well kept in the archival record system since 1999.  Data 
are organized according to the process locations.  There are 75 
different locations in the dataset and it will be considered as a 
new unit once replacement performed.  In other words, each 
unit may experience several minimal repairs (FM1) or no 
repairs until its complete failure (FM2) or the “data-freeze” 
time.  Flowmeters that are still in service after January 31st, 
2020 (“data-freeze” date) are considered as right-censored data 
and flowmeters that were functioning before the record system 
is built are considered as the left-truncated data, in which case, 
the earliest recording date or the manufacturing date will be 
used as the estimated installation date for analysis purpose.  For 
example, as illustrated in Figure 2, all records for process 
location F42XX (Full information is not shown here to protect 
sensitive and proprietary information) will be divided into three 
different units because two replacements occurred in this 
position.  The first unit (red) was functioning before 1999, so 
the earliest recording date (January 1st, 1996) provided by the 
company is used to estimate the installation date.  The second 

unit (blue) has exact installation date which is the replacement 
time of the first unit.  The third unit (green) is right-censored 
since it is still in service after “data-freeze” date.   
 

Figure 2 – Illustration for data preprocessing procedure 

Moreover, these flowmeters are functioning under 
different operational conditions such as temperature and 
process type.  Based on the expert experiences, the process type 
has significant impacts on the failure process of flowmeters, 
which is considered as the covariate in this case study.  There 
exist various process types such as water, nitrogen, and sulfuric 
acid.  Instead of examining the impact of each specific process 
type, we categorize these process types into two levels: critical 
level (e.g., sulfuric acid) and non-critical level (e.g., water) 
according to the engineering knowledge.  We use x to denote 
the process type level and x takes values 1 and 0, which is an 
indicator variable for the critical level.   

Two separate proportional intensity functions are used to 
describe FM1 and FM2, which are given as  
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where x=0,1.  We use the preprocessed data to estimate the 
parameters Θ = (β1, η1, α1, β2, η2, α2) and Table 1 shows the 
MLEs and respective standard errors of parameters for both 
failure modes using random weighted likelihood bootstrap 
method.   

Table 1 – MLEs and standard errors of parameters for both 
failure modes 

Failure mode Parameter MLE Std. err. 

FM1 
β1 1.37 0.17 
η1 17.04 1.99 
α1 0.09 0.22 

FM2 
β2 1.31 0.17 
η2 38.67 5.38 
α2 0.70 0.23 

 
Based on the MLEs, the estimated intensity functions for 

two failure modes are given as 
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( ) ( )
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1 2
1.37 1.31( ) exp 0.09 , ( ) exp 0.7 .

48.65 120.08
t tλ t x λ t x= =  (12) 

Let x take value 1 and 0 in Equation (12), and we can obtain the 
estimated intensity functions for both failure modes under the 
critical process type level and non-critical level, respectively.  

Figure 3 – Estimated intensity functions for both levels 

Figure 3 shows these estimated intensity functions.  We can see 
that in both cases, the failures for FM1 are more frequent than 
FM2 during the lifetime of flowmeters, indicating that small 
parts failures are more likely to occur than critical parts failures.  
In addition, the effects of the covariate x on the failure process 
are reflected in the exponential terms of Equation (12).  Both 
MLEs of α1 and α2 are positive, which means that flowmeters 
with process type in the critical level have more frequent 
failures for both failure modes.  This effect leads to smaller 
MTTF of flowmeters with critical process type.  Therefore, for 
the critical level, more frequent PM needs to be scheduled to 
ensure the functioning of the flowmeters and reduce downtime 
costs caused by unexpected failures.  

Figure 4 – Observed overall cumulative number of failures 
(black dots) and estimated expected overall cumulative 

number of failures (red solid line) with approximate 95%  
pointwise CIs (red dashed line) 

To assess goodness-of-fit of the proposed model, we 
compare the observed overall number of failures with the 
estimated expected cumulative number of failures for both 
process type levels.  The observed overall number of failures is 
the total number of failures for both failure modes that occurred 
by time t.  There are 53 and 78 units for the critical and non-
critical levels respectively, having different observation 
windows. Therefore, the expected overall cumulative number 
of failures for all units in each process type level from time 0 to 
time t is adjusted by 
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where Ti is the endpoint of the observation window for unit i. 
Figure 4 presents the observed overall cumulative number of 
failures (black dots) and the estimated expected overall 
cumulative number of failures (red solid line) with approximate 
95% pointwise CIs (red dashed line), which are derived from 
the bootstrap samples.  For both levels, the actual cumulative 
numbers of failures are almost within the estimated CIs, which 
shows that the parametric model for the overall failures can 
reasonably fit the observed failure data.    

Based on the estimated intensity functions, we compute the 
MTTF and respective confidence interval (CI).  Table 2 
presents the estimated MTTF and the 95% CI for both levels.  
We can see that the MTTF of flowmeters with process type in 
the critical level is approximate 2.4 years smaller than the non-
critical level.  It is verified that the covariate (i.e., process type) 
has significant effects on the failure process of flowmeters. 

Table 2 – MTTF and 95% CI for both process type levels 
(years) 

Process type level MTTF 95% CI 
Lower Upper 

Critical (x=1) 10.10 8.08 12.12 
Non-critical (x=0) 12.51 9.82 15.21 

 
We further derive the age-based PM policy.  For illustrative 

purpose, the maintenance costs are specified as  
 300, 2000, 50.PM CM MRc c c= = =  (14) 

As discussed in Section 4, the optimal age-based PM policy τ* 
is obtained by minimizing the long-run expected cost rate η.  
We summarize the PM policies for both levels in Table 3. 

Table 3 – Optimal age-based PM policies for both process 
type levels (years) 

Process type level τ* η* 

Critical (x=1)  15.82 90.59 
Non-critical (x=0) 26.35 54.60 

 
For the process types in the critical level, the optimal PM cycle  
is 15.82 years, which obtains the minimum long-run expected 
cost rate 90.59.  It means that the flowmeter is replaced when 
its age reaches 15.82 years old or its critical parts fail, 
whichever comes first.  For the non-critical level, the optimal 
PM cycle is 26.35 years.  We can see that the PM is scheduled 
less frequent than the critical level.  This result provides process 
type level-specific and cost-efficient maintenance policies for 
the company to achieve better system performance. 

6 CONCLUSION 

In this paper, an efficient framework is developed for 
reliability assessment and maintenance scheduling of 
flowmeters.  We use the NHPP model with covariates to 
analyze the reliability of flowmeters with multiple failure 
modes and complicated field data.  Based on the estimated 
reliability model, we obtain covariate-specific and cost-
efficient PM policy.  The proposed framework is flexible and 
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can handle left-truncated and right-censored cases well.  
Numerical results present the additional effects caused by 
covariates in the estimated intensity functions for important 
failure modes.  Besides, the estimated mean time to failure and 
derived PM policy under different process type levels provides  
implementation recommendation for the company to design 
inspection and maintenance schedules.  Although the discuss of 
this paper is heavily on the basis of flowmeters failure data, for 
other systems sharing similar data structure, the developed 
framework can also be applied to achieve the same goals. 

In this analysis, we address the heterogeneity by using a 
covariate (i.e., process type). However, in practice, two 
flowmeters that have the same process type may experience 
different failure processes.  An extension is to address this unit-
to-unit variability by introducing random effects. 
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