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SUMMARY  

The reliability of critical components within large test 
facilities, such as the Unitary Plan Wind Tunnel (UPWT), is a 
paramount concern, due to the significant impact of component 
failures which result in facility downtime and subsequent 
schedule increases.  Testing is on the critical path of multiple 
aircraft and spacecraft development projects, therefore, a 
component failure affects not only the test facility but also 
many development programs which require testing prior to 
attaining key milestones in order to stay on schedule.  Vacuum 
circuit breakers, which actuate electrical power during wind 
tunnel operations, are critical single point of failure 
components.  The breakers have several failure mechanisms 
and associated repair processes.  This paper models the 
recurrent failure and subsequent maintenance events 
throughout the operation life of vacuum circuit breakers as a 
trend renewal process.  The model parameters are estimated 
using the maximum likelihood method.  Subsequently, a 
generalized maintenance policy is constructed which 
maximizes the availability of the UPWT system.  The policy 
establishes optimal preventative maintenance scheduling for 
individual circuit breakers given their unique failure history.   

1 INTRODUCTION 

The UPWT is used by NASA to test aircraft and spacecraft.  
During tests, scaled physical models of aircraft and spacecraft 
are placed within the UPWT and subjected to airflow velocity 
as high as 2.5 Mach.  Testing results are subsequently used to 
validate software models and improve the design of the tested 
crafts.  UPWT relies on induction motors to power an axial flow 
compressor which generates the high velocity airflow required 
for testing.  A significant amount of electrical power is required 
to generate the high velocity airflow of the wind tunnel.  UPWT 
utilizes a high voltage system to generate the required air 
flowrates. However, the high voltage electrical switchgear is 
susceptible to arc flash, which occurs when an electric arc 
crosses an air gap and current flows from air to ground or to 
other components within an electrical system.  Safety hazards, 
as well as extensive damage to electrical components, are 
common when arc flash occurs due to the high temperatures it 
generates.  A potential mitigation for this hazard is utilizing 
vacuum circuit breakers within the high voltage electrical 

switchgear.  Vacuum circuit breakers place electrical contacts 
inside a vacuum chamber.  The reduced air pressure within the 
evacuated vacuum chamber significantly increases the 
impedance between electrical contacts and, thereby reduces the 
likelihood of arc flashing.  However, due to the fact that some 
small quantity of air remains within the vacuum chamber, arc 
flashing may still occur when electrical contacts are in close 
proximity but not quite making physical contact, such as when 
a switch is just beginning to open or when a switch is nearly 
closed.  During these scenarios another arc flash mitigation is 
frequently utilized.  To mitigate this residual arc flash risk, 
vacuum circuit breakers employ mechanisms to rapidly open 
and close circuits.  Opening and closing circuits with fast acting 
physical mechanisms reduces the likelihood and severity of arc 
flash by minimizing the amount of time for arcing to initiate and 
occur.  However, these rapid physical mechanisms require 
increasing force which in turn increases stress, resulting in 
frequent failures within mechanical linkages required to rapidly 
actuate switches.   

The UPWT utilizes twelve primary vacuum circuit 
breakers and four spares as arc flash hazard mitigating electrical 
switchgear.  Each of the primary vacuum circuit breakers is 
required for operations.  A failure in one breaker results in a 
nonfunctional system due to a lack of redundancy.  Breaker 
maintenance consists of scheduled preventative maintenance, 
in-place corrective maintenance which does not require 
removing the failed breaker for repair, and corrective 
maintenance actions which warranted failed breaker removal 
with temporary use of a spare breaker.  In this study, we 
categorize vacuum circuit breaker failures into two types.  Type 
1 failures can be repaired quickly and subsequently do not 
warrant using a spare breaker while maintenance actions are 
completed.  Type 1 failures are addressed using the repair in 
place corrective maintenance action.  Type 2 failures are more 
significant and take more time to repair.  Subsequently, in order 
to minimize system downtime, corrective maintenance for type 
2 failures requires removal of the failed breaker and temporary 
use of a spare breaker while the failed original breaker is 
repaired. Since the UPWT is a critical test facility required for 
design iteration and performance verification of both aircraft 
and spacecraft, continued UPWT operations are crucial to 
numerous development programs.  Therefore, the reliability of 
the vacuum circuit breakers within UPWT is of critical 



importance for not only continued successful UPWT operations 
but also many other developmental programs which rely on data 
collected from UPWT testing. 

1.1 Problem Statement 

This paper utilizes a trend-renewal process (TRP) which 
incorporates the power law function as the trend process and the 
Weibull distribution as the renewal process in order to predict 
failure rates of the circuit breakers for both failure types.  Three 
model parameters are estimated using maximum likelihood to 
characterize the TRP.   A case study is conducted using vacuum 
circuit breaker data [of the UPWT at NASA Ames Research 
Center].  Approximately ten years of data, from sixteen circuit 
breakers which experienced 192 failures is used in the case 
study.  The study provides insights into the prognostics of 
vacuum circuit breakers in terms of predicted failure rates in 
order to plan for wind tunnel operations and maintenance. The 
motivation for applying the TRP to the circuit breaker data is to 
utilize the TRP model results to predict reliability and optimize 
the frequency of corrective maintenance actions in order to 
maximize the availability of the wind tunnel.      

The remaining sections of the paper are organized as 
follows: Section 2 reviews the relevant existing literature, 
Section 3 provides the model development, Section 4 presents 
the case study, and concluding remarks are summarized in 
Section 5. 

2 LITERATURE REVIEW 

The scope of this review includes: repairable systems, 
recurrent events, and renewal models.  Particular emphasis is 
placed on describing renewal models and the trend renewal 
process. 

Rigdon et al [1] define a repairable system as a system that 
upon experiencing a failure can be restored to fully operational 
performance by any method other than complete replacement 
of the entire system.  Systems of this type are subjected to 
recurrent events.  The system endures an environment which 
causes a failure event and a subsequent repair event.  This cycle 
of failure followed by repair can occur repeatedly and is, 
therefore, composed of recurrent events.   

According to Xu et al [2], several models are utilized for 
recurrent event analysis of repairable systems. These models 
may use input data including both component replacement 
times and dynamic covariates such as historic system usage 
information. The models also take into account the quality of 
maintenance events.  Assumptions regarding the quality of 
maintenance events and the effective age of the repairable 
system vary depending upon which renewal model is used.  
Modeling of the maintenance and failure events enables failure 
prediction which subsequently can be used to improve 
prognostics and the scheduling of maintenance, as well as the 
provisioning of spare parts.  

Yanez et al [3] define the renewal process (RP) as a 
recurrent event analysis technique used on repairable systems 
which assumes perfect repair.  After a maintenance action is 
performed the system is assumed to be in an as good as new 
condition.  The RP model results in a best case scenario where 

repairing a component resets the repairable systems age to new.  
Other renewal models are more conservative resulting in 
marginally degraded repaired systems following a failure. 

Another renewal model, which is the opposite extreme of 
RP, is the nonhomogeneous Poisson process (NHPP).  Majeske 
[4] describes the NHPP as a minimal repair model.  After 
undergoing repair, the repairable system is treated as being as 
bad as old.  This model results in a repairable system age that is 
the same immediately after a repair as it was immediately 
before the accompanying failure.   

Yet other renewal models of maintenance events result in 
a remaining useful life estimation that is between the two 
extremes of as good as new and as bad as old. Kijuma [5] 
introduced recurrent event models, which incorporate virtual 
age through a partial reduction of the system’s age after each 
maintenance action, resulting in a system that is better than old 
while worse than new.  Additionally, Yang et al [7] discuss 
many other intermediate age models including: the modulated 
renewal process, inhomogeneous gamma process, modulated 
gamma process, modulated power law process, the Brown-
Proschan model, the arithmetic reduction of age model, and the 
arithmetic reduction of intensity model.  

Lindqvist [6] extended the work on intermediate age 
models by introducing the concept of a TRP for analysis of 
repairable systems. The TRP can accommodate both the general 
NHPP and the general renewal process (λ(t) = constant intensity 
function) as enveloping repair cases. These include perfect 
repair to an equivalent to new condition in the case of the 
general renewal process case and minimal repair to a state 
equivalent to as bad as old in the general NHPP case. 
Additionally, Lindqvist establishes that the TRP can 
accommodate a more general set of models with intensity 
functions which vary as a function of time (t). 

One scenario considered by Lindqvist, which TRP 
modeling is particularly well suited for, is the following. 
Suppose the primary failure mode of a system is due to a single 
component. That component is replaced at failure; however, no 
maintenance is performed on the other components of the 
system. A renewal model (perfect repair) is useful only when 
mechanical wear and fatigue are neglected. However, if wear 
and fatigue are included an increased failure frequency should 
be anticipated.  This increased failure rate is captured in the 
TRP model through the cumulative intensity function of λ(t),  
Λ(t) = ∫λ(u)du (integrated from 0 to t) which accounts for the 
cumulative mechanical wear and fatigue experienced by the 
components which have not been replaced up to time t.  

Yang et al [7] extended the TRP model by considering 
relative failure frequencies when multiple failure modes are 
observed within a repairable system. The highest frequency 
failure modes are essentially bottle necks for system reliability. 
Therefore, failure modes which statistically occur more 
frequently warrant additional resources and mitigations. 
Additional resources may include redundancy, smaller 
preventative maintenance intervals, higher reliability 
components, and sensors to detect degraded conditions.  Yang’s 
proposed general method to analyze failure frequencies with 
imperfect maintenance actions for a single repairable system is 



discussed in detail within the TRP Model section.    
Franz et al [8] study the RP through conducting simulations 

in order to compare the predicted failure times and failure 
intervals from an unknown renewal distribution with results 
from a TRP which incorporates a Weibull renewal distribution 
and a power law type trend function.  Qiuze et al [9] provide an 
alternative method to the simulation technique of Franz by 
proposing an analytical approach.  The analytical approach 
proposed by Qiuze can provide failure predictions as accurate 
as the alternative simulation technique. 

Additionally, the authors leverage and extend prior work 
performed by themselves in [10]. 

3 MODEL DEVELOPMENT 

3.1 System Description 

By definition a failure of a vacuum circuit breaker occurs 
during two situations, first when a breaker is commanded to 
close a circuit but fails to do so, and second when a breaker is 
commanded to open a circuit but fails to do so.  Both of these 
events are logged by maintenance technicians when they occur.  
In some instances of breaker failure, nominal functioning is 
regained by issuing a second command to either open or close. 
This type of failure, which does not require subsequent repair, 
is omitted from further analysis and discussion. Other more 
significant failures require corrective maintenance actions to 
repair misaligned or failed components.  These actions are 
grouped into two sets.  Failures which involve adjustment, 
alignment and minimal component replacement are defined as 
type 1 failures.  This type of failure is repaired in place and does 
not warrant the use of a spare circuit breaker.  Failures which 
require significant component replacement as well as 
adjustment and alignment are defined as type 2 failures.  This 
type of failure results in using a spare circuit breaker while 
repair actions are performed. The previous failure descriptions 
contain all failures which the repairable system experiences.   

Failure times and maintenance records for sixteen circuit 
breakers are available (twelve primary and four spares).  This 
data encompass a total of roughly ten years of operations and 
55,135 cumulative operating cycles. The failure times are 
recorded as functions of time and cumulative number of cycles 
at time of failure.  Each breaker undergoes recurrent failure 
events and subsequent corrective maintenance repairs through 
its lifetime.  Failures of type 1 and 2 require corrective 
maintenance which results in a better than old while worse than 
new condition.  This intermediate age condition is modeled 
using the TRP.  The TRP model is suited for repairable systems 
with multiple failure modes when recurrent event data is 
available.  Each failure type is modeled independently, since 
type 2 failures by definition involve significantly more 
corrective maintenance than type 1 failures. Additionally, the 
TRP model could be modified to model component and system 
enhancements which result in a better than new condition, due 
to the increased reliability of enhanced components.    

 

3.2 TRP Model 

According to Yang et al [7], the primary concept behind 
the TRP is to generalize a property of the NHPP.  Let the failure 
times of a repairable system be T1 , T2 , … be modeled with a 
NHPP with intensity function, λ(t) , then the corresponding 
time-transformed process (Λ(T1) , Λ(T2) , …) is a 
homogeneous Poisson process (HPP) with an event rate equal 
to 1, denoted as HPP(1).   HPP(1) is expanded by the TRP to be 
any renewal process RP(F).  Here F is a cumulative distribution 
function (CDF).  The characterization of a TRP therefore 

includes Λ(t ; θλ), and F(z ; θF) where: t is the total time since 
observation began, θλ is the vector containing the parameters of 
the trend function, z is the inter-event time, and θF is the vector 
containing the parameters of the renewal function.  Figure 1 
illustrates the TRP definition.  

 
  
Figure 1. TRP model illustration. 
The TRP model requires two components, a trend function 

used to model failures and a renewal function used to model the 
quality of repair after a failure.  The formal TRP definition, 
according to Yang [7], places four constraints on the CDF of 
the trend function, Λ(t ; θλ):  

1. Must be a nonnegative, monotonic increasing function 
of t     

2. Λ(t ; θλ) <  ∞ for each t ≥ 0 , the cumulative of 
observed failures is finite, if t is finite 

3. Λ(∞ ; θλ) = ∞ , the cumulative number of failures 
approaches infinity as t approaches infinity  

4. Λ(0 ; θλ) = 0, at t equal to 0, no failures have occurred 
If T1, T2, …, are independent and identically distributed 

(iid), T0 = 0 and  i = 1, 2, …, then Zi = Λ(Ti ; θλ) - Λ(Ti-1 ; θλ) 
is a TRP with a CDF equal to F(z ; θλ).  

Additionally, the formal TRP definition places two 
constraints on the CDF of the renewal process F(z ; θF): 

1. The CDF must be a positive random variable with  F(0 
; θF) = 0   

2. The expected value of the CDF must equal 1 
The probability density function (PDF) of the renewal 

function is f (z ; θF).  The hazard function of the renewal 
function is h (z ; θF) = f (z ; θF) / [1 -  F(z ; θF)] and the 
cumulative hazard function is H(z ; θF) = ∫ h (s ; θF) ds 
(integrated from 0 to z).    

The power law function is used as the trend function within 
this model in the format provided below in (1):  

                                            
 
 
Here θλ = (β / η)T is the parameter vector.   



The Weibull distribution is used by the model as the 
renewal function.  The Weibull distribution PDF is provided in 
(2) and the CDF is provided in (3):   

 
 
 
 
 
Here the Weibull shape parameter is μ and the Weibull 

scale parameter is σ.  By definition the expected value of the 
renewal distribution is 1.  Therefore, the shape parameter, μ is 
determined by setting the expectation of the Weibull 
distribution to 1.  This constraint results in a shape parameter, 
estimated by μ = - log [Gamma (1 + σ)].  Subsequently, only 1 
parameter, θF = σ is required in (2) and (3). 

3.3 Reliability Model  

     The following definition applies to a single repairable 
system which is instantly repaired upon failure (assume repair 
time is negligible).  The system has K different types of s, 
independent failure modes.  The system observation time starts 
at t = 0 and ends at a predetermined time t = τ. The failure count 
is defined thusly: Nk(t) is the cumulative number of k type 
failures observed in the time interval (0, t ] where k = 1,2, …,K.  
N(t) is the cumulative number of failures of all types observed 
in the time interval (0, t ] calculated by N(t) = ∑ Nk(t) 
(evaluated from k = 1 to k = K).  Observed failure times are 
defined by Tk,i where i = 1, 2, …, Nk(τ) such that the ordered 
failure times for a particular failure type k are always 
increasing, 0 <  Tk,1 <  Tk,2 < , …, <  Tk,N(t) < τ.    

     The failure time-history from the start of observations 
up to but not including time t, (0, t ] is defined as Ƒt- = { Tk,i ; 
i = 1, 2, … , Nk(t-) and k = 1, 2, … , K}. Nk(t-) represents the 
number of type k failures which occur prior to time t.  All failure 
times for all failure types which occur prior to time t are 
contained within Ƒt- .    

     The failure counting process Nk(t) has a condition 
intensity function denoted as γk (t ; θk)  where θk is the vector 
containing parameters for failure type k as illustrated in (4) 
below:  

 
     Given Ƒt- the failure history, the term γk (t ; θk)Δt 

provides an approximation of the probability of an occurrence 
of failure type k during [t, t + Δt).  Additionally, when 
considering failure of all types 1 through K, let γ (t ; θ) =  ∑ γk 
(t ; θk) where the vector containing parameters for all failure 
types is θ = ( θ1T , … , θKT )T.  Therefore the term γ (t ; θ)Δt 
provides an approximation of the probability of an occurrence 
of failure of any type [t, t + Δt).         

 
     Utilizing (4) the cumulative expected number of type k 

failures during the time interval (t1 , t2] is denoted by Γk ( t1 , 
t2 ; θk) which is a deterministic function of unknown failure 
type k parameters, and determined by (5) and (6): 

 
 

      
    where: 
 
 
 
Additionally, let the summation from k = 1 to k = K of the 

expected individual failures equal the expected total failures 
such that ∑ Γk ( t1 , t2 ; θk) = Γ ( t1 , t2 ; θk).  Here Γ ( t1 , t2 ; 
θk) is the expected total number of failures during time interval 
(t1 , t2].  The failure profile for a single repairable system with 
K types of failures within time interval (t1 , t2] is a vector,  R( 
t1 , t2 ; θk) defined by (7): 

 

Here the relative failure frequency of failure type k is 
denoted by Rk ( t1 , t2 ; θk). 

3.4 Parameter Estimation 

This paper applies the TRP to a single repairable system 
with multiple failure types.  Each failure type is assumed to be 
independent and each is modeled separately using a TRP.  The 
conditional intensity function described in (4) for a particular 
failure type k is provided in (8):   

 

Within this model the forms of h and Λ are the same for all 
failure types.  However, the failure parameters vary as a 
function of failure type. The conditional cumulative intensity 
function term defined in (6) is calculated using (9):  

   

 
Maximum likelihood is utilized to estimate the model 

parameters.  Equation (10) is used to estimate the likelihood of 
parameter θ from the general model in (4):   

 

     The likelihood function for parameter θ is determined 



through substituting (8) into (10) which results in (11):  

 
     The maximum likelihood estimation of parameter θ 

is the value of θ which maximizes L(θ | DATA) from (11).  
Since each failure type is assumed to be independent (11) 
can be maximized separately for each failure type as shown 
in (12) where L(θ) = log[ L(θ | DATA)]:   

 
 
 
 
The estimated parameter values for each failure type is 

substituted into (7) in order to obtain the individual failure 
profiles.  This substitution is shown in (13). 

 

3.5 Time Based Preventative Maintenance Model  

 
In this application circuit breakers have two defined failure 

modes, which require different types of maintenance.  It is 
desirable to develop an availability maximizing maintenance 
strategy for the circuit breakers.  In this paper, we consider age-
based maintenance policy for flowmeters based on the 
estimated reliability model.  To address both failure modes, 
three different types of maintenance are defined as follows.  

• Preventive maintenance (PM).  PM is a periodic 
practice and is scheduled after every τ units of time.  It is 
performed with a fixed cost cPM, which instantly returns the 
circuit breaker to a like-new condition. 

• Corrective maintenance (CM1).  When a critical part 
fails (i.e., failure mode 1), and the repair warrants the use of a 
spare. 

• Corrective maintenance (CM2).  When a critical part 
fails (i.e., failure mode 2), and the repair is performed in place 
and does not warrant the use of a spare. 

 
All types of maintenance are assumed to be performed 

instantaneously since the maintenance times are negligible in 
one renewal cycle.  Each renewal cycle ends with either a PM 
or a CM. 

The expected cycle length, denoted by μ, is derived as 

 
The expected cost for each renewal cycle is given by 

 
Finally, the long-run expected cost rate is given by  

The optimal age-based PM policy τ* is then obtained by 
minimizing η. 

4 CASE STUDY 

This study models circuit breaker failures using a TRP with 
a power law trend function and a Weibull renewal distribution.  
The failures are divided into two types; type 1 which requires 
minor repair and type two which requires more significant 
repair.  The data analyzed was collected from sixteen circuit 
breakers.  Each circuit breaker is modeled separately as an 
individual repairable system.  Figure 2 illustrates the type 1, 
type 2 and combined total failure rate as a function of the 
cumulative number of cycles which an individual circuit 
breaker has been subjected to.  Additionally, figure 2 provides 
the predicted total failure rate generated by the TRP model. 

 
  



Figure 2. TRP model fitting results with power law trend 
function and Weibull renewal distribution. 

 
Throughout the period of observation 193 failures occurred 

including 125 type 1 failures, representing 65% of total failures, 
and 67 type 2 failures, representing the remaining 35% of total 
failures. Data from these failure times was used as an input to 
the TRP model through the failure-time history variable, Ƒt- 
.within (1). Subsequently maximum likelihood estimation of 
the parameters within (11) was performed.  Table 1 provides 
the maximum likelihood parameter estimates for 1 of the circuit 
breakers which include σ for the Weibull renewal distribution 
as well as β and η for the power law trend function.  These 
parameter estimates were utilized to generate the Model curve 
fit provided within Figure 2.   The results indicate that initially 
failure type 1 occurs more frequently.  However, towards the 
end of the observation period failure type 2 increases in 
frequency. 

 

Table 1 – Parameter estimates for type 1 & 2 failures 

Failure 
Type 

 
Parameter 

 
Estimates 

1 
 

β 1.884 
η 
 

23.308 

σ 
 

0.565 

2 
 

β 3.150 
η 
 

44.454 

σ 
 

4.948 

 
 
This study encountered several issues with available data.  

The majority of events were recorded as a function of calendar 
date without an accompanying cumulative cycle count.  When 
this occurred, a linear interpolation is performed from the 
nearest known cycle number.  This assumes that the date and 
cycle count are linear functions of one another.  Another 
observed data issue is that a record of when functional breakers 
are replaced with freshly repaired spare breakers is not 
available.  These replacement actions are performed without an 
accompanying failure occurring and subsequently are not 
captured within the model.   

 

5 CONCLUSIONS 

The trend renewal process using the power law function as 
the trend process and the Weibull distribution as the renewal 
process is an appropriate model for predicting future failure 
rates for repairable systems with multiple failure modes.  The 
contribution of this paper is the application of the TRP to a data 
set of component failure times as a function of cycle number 

with two unique failure types.  Areas of future study for this 
application include incorporating covariate data to increase the 
robustness of the model. Maximizing availability is a useful 
proxy for costs minimization when cost data is not available. 
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