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Abstract—This paper focuses on player modeling in multiplayer
adaptive games. While player modeling has received a significant
amount of attention, less is known about how to use player
modeling in multiplayer games, especially when an experience
management AI must make decisions on how to adapt the
experience for the group as a whole. Specifically, we present
a multi-armed bandit (MAB) approach for modeling groups of
multiple players. Our main contributions are a new MAB frame-
work for multiplayer modeling and techniques for addressing the
new challenges introduced by the multiplayer context, extending
previous work on MAB-based player modeling to account for new
group-generated phenomena not present in single-user models.
We evaluate our approach via simulation of virtual players in
the context of multiplayer adaptive exergames.

Index Terms—multi-armed bandit, multiplayer modeling, ma-
chine learning, linear regression, reinforcement learning

I. INTRODUCTION

Multi-armed bandits (MABs, or “bandits”) are a class of

sequential decision problem in which an agent must make

a selection from a group of options repeatedly, observing

rewards resulting from its choices and aiming to maximize the

total reward over the course of the selections [1], [2]. MAB

techniques can assist in addressing the exploration/exploitation

problem, where each selection must consider the utility of

exploring the options to gain information about their potential

rewards versus exploiting the option currently believed to be

the best. When deployed as the experience management (EM)

agent in an adaptive game, bandits have been shown to be

effective at modeling individuals based on their behavior [3],

and an MAB-based AI can serve as the basis for effective

interventions and game adaptation. However, previous research

on MAB-based player modeling (and player modeling at large)

has focused on adapting experiences for individuals rather than

groups of players.

In this paper, we explore the use of MAB-based models

in multiplayer environments, where such environments intro-

duce new design challenges over single-player experiences.

Specifically, we identify three main challenges in MAB-

based multiplayer modeling: best-choice estimation, explo-

ration strategies, and social fairness.

To illustrate these three challenges, we consider a scenario

in which the AI has some set of intervention options it
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can apply to the environment and wishes to maximize some

target metric for each player (e.g., amount of time playing).

In a single-player scenario, the best choice is simply the

intervention that is predicted to result in the highest value

for this metric. However, in a multiplayer scenario, the AI

must contend with multiple measurements of the target metric

from multiple players, and there may not be a single inter-

vention that is the best for all players. Moreover, the choice

of intervention may not necessarily correlate directly with

player experience due to dynamics among players, adding

complexity to the prediction of outcomes for each intervention.

Additionally, MABs often explore by choosing interventions

different from the one believed to be the best in order to

better understand their potential; however, typical exploration

strategies in MABs do not necessarily apply to multiplayer

settings due to player interactions, as we will elaborate later.

Thus, this prompts the following questions: how do we best

leverage multiple measurements from multiple players to make

the most accurate predictions when determining the best

choice? How do we ensure that our exploration considers an

exploration space that more accurately reflects the players’

experience? Finally, how do we maintain social fairness over

time with repeated selections?

We describe each of these problems in more detail in

Section IV. Solving these issues will be essential for the design

of MABs that aim to model group-based and social phenomena

in players. In this paper, we propose solutions to the first two

challenges and leave the third (social fairness) for future work.

Therefore, this paper has three main contributions. The

first is a framework for handling the additional complexity

of modeling multiple players in MAB-based approaches. Our

second contribution is a solution for managing the effect that

multiple rewards and predictions have on the bandit strategy’s

assessment of what the “best” choice means. Finally, our third

contribution is a first solution for handling exploration in

multiplayer scenarios, where we present a modified version

of forced exploration that considers not only the prior bandit

selections but also the previous experiences administered to

the players through those selections.

The remainder of this paper is structured as follows. First,

we discuss existing literature related to this research space.

Second, we introduce our motivating scenario in which we

aim to model player behavior related to social comparison in

an adaptive multiplayer game that encourages physical activity
978-1-6654-3886-5/21/$31.00 ©2021 IEEE



(PA). Next, we construct a simulation of this scenario with

virtual players and an MAB-based model for evaluating our

approach. We then discuss our approach in detail, describing

both our Multiplayer Regression Oracle (MRO) for multi-

player bandits as well as our Multiplayer Forced Exploration

(MFE) algorithm. Finally, we evaluate the performance of our

approach in the simulated environment.

II. BACKGROUND AND RELATED WORK

The following introduces related work around multi-armed

bandits and player modeling.

A. Multi-Armed Bandits

A multi-armed bandit (MAB) problem is a decision prob-

lem [1], [2] where an agent is faced with many opportunities,

each with an unknown potential reward (ρ) from which it

must make a selection. This decision is repeatedly requested

of the agent, usually over a limited number of iterations (in

practical cases) known as the horizon of the agent’s operation.

In keeping with an analogy of playing slot machines in a

casino, the agent is tasked with pulling one of the arms each

iteration until the horizon is reached.

In the most common formulation, the stochastic bandit

problem, the rewards offered by each of these arms are

modeled as independent, static distributions of potential reward

values, only discoverable by testing the arms repeatedly.

The agent’s goal is to maximize the total value of rewards

observed over the course of the horizon, where each pull

must consider the opportunity cost of exploiting the agent’s

current knowledge of the reward space to maximize return

versus exploring among the arms to gain a more accurate

understanding of the reward space. The agent’s design can be

conceptually divided into a policy that evaluates this trade-off

to guide exploration pulls and an oracle that predicts future

rewards to maximize exploitation pulls [4].

Variants of the MAB problem add features and constraints

that can better align the MAB problem and its techniques

with real-world problems. Relevant to the ideas discussed

in this research, contextual bandits introduce an external

context vector that describes additional information regarding

the bandit’s environment, potentially offering insight to the

agent [5]. Short-horizon bandits explore situations where the

agent is given very few opportunities to pull arms [4], and

restless bandits approach scenarios in which not every arm is

available on every pull [6].

B. Player Modeling

Player modeling refers to the practice of inferring and track-

ing individual characteristics of a player based on observations

of player qualities or behavior [7]. Adaptive games often

leverage player modeling to dynamically adjust difficulty,

manage user interface, or guide game narrative based on player

preference, performance, or behavior [8]–[12]. In this way,

player modeling can assist in managing the experience of a

player in a software environment by providing an experience

management (EM) AI agent with necessary insight into the

player’s needs so it can perform effective interventions on the

environment [13].

Multiplayer modeling, or the modeling of more than one

player simultaneously, is an understudied field that introduces

significant challenges over individual modeling [14]. When a

virtual environment is shared by multiple players and singular

EM game adaptations must affect those players simultane-

ously, additional concerns emerge for the AI. For instance, AI

predictions must incorporate multiple models, and when an AI

intervention benefits one player but negatively affects another,

the assessment of that intervention’s value must be reconsid-

ered. Additionally, the dynamics among players introduce new

phenomena not present in single-player environments (e.g.,

interpersonal skills, leadership, jealousy, etc.) that may provide

additional opportunities for modeling.

MABs have been shown to be effective in establishing

player models based on player behavior [3], [4]. When used

as the basis for an EM AI, an MAB strategy is distinctly

capable of exploring and exploiting a user’s response to

various intervention states while maximizing reward over time.

In this kind of MAB-based modeling approach where arms are

associated with player characteristics, the method becomes the

model [3], and the arm predictions provided by the MAB work

both to guide the intervention and to describe the system’s

estimation of the player’s underlying preferences or traits.

III. MOTIVATING SCENARIO

Our primary interest in multiplayer modeling is the oppor-

tunity to investigate phenomena that manifest only in group

environments. For example, while traditional single-player

scenarios might enable modeling of individual traits such as

player preferences or skill, multiplayer environments yield

opportunities to model social dynamics such as teamwork,

peer pressure, and so on. The following discusses our domain

of interest and the scenario we have devised to evaluate our

multiplayer modeling approach.

A. Social Comparison Orientation

In this paper, we consider the phenomenon of social com-

parison, the psychological processes by which individuals

compare themselves to others [15]. Social comparisons are

made by individuals, often subconsciously, to evaluate their

own performance (self-evaluation), to gather insight toward

their future success (self-improvement), or to improve their

self-confidence (self-enhancement) [16]. Current models hold

that individual characteristics, known as an individual’s social

comparison orientation (SCO) [17], [18], will determine their

frequency, purpose, and emotional reactions around these

comparisons. For example, some individuals may tend to seek

out (or prefer) comparisons to others doing better than them

(upward comparisons) for the purpose of self-improvement,

while some may prefer to seek out others doing worse than

they are (downward comparisons) for the purpose of finding

relief in their comparatively better performance.

In this research, we construct predictive models of player

SCO based on their behavior when introduced to various





simulator generates steps for the virtual players that conform

overall to the gamma distribution while also maintaining the

associative relationships among days within players via the

process described in our previous work [4].

Finally, in order for our virtual players to be amenable to

the intervention and react to comparison opportunities, we

adopt a model for SCO that can impart individual differences

among virtual players. Reflecting the design of the Iowa-

Netherlands Comparison Orientation Measure (INCOM) [17],

the psychology instrument commonly used to evaluate SCO,

this model consists of two integers (0 ≤ u ≤ 1, 0 ≤ d ≤ 1)
that respectively represent the virtual player’s propensity to

seek out upward and downward comparisons.

In our simulation, the virtual players are equipped to make

all the participant player decisions earlier discussed in the mul-

tiplayer exercise, including selecting a profile for comparison

based on the virtual player’s (u, d) model. The values and

relative magnitude of these variables determine the likelihood

that a virtual player will select a profile in a particular direction

and will react positively or negatively to these comparisons

(i.e., increase or decrease their daily steps that day following

the session), as demonstrated in our previous work [3].

IV. MULTIPLAYER MODELING VIA MABS

The inclusion of multiple players in a shared environment

may enable new player characteristics to model, but it also

introduces new challenges to the construction of those mod-

els [14]. Specifically, we identify the three main challenges

as 1) best-choice estimation, where multiple rewards from

multiple players must be considered in MAB exploitation, 2)

exploration strategies, which must now consider more than

arm selection history when assessing the exploration space

of player experiences, and 3) social fairness, where single

decisions made by the AI can affect an experience or virtual

environment shared by multiple individuals.

Regarding best-choice estimation, we consider a scenario in

which an AI aims to maximize a particular metric in players

that it can measure directly (e.g., frequency of feature use) and

provides interventions that adapt the game toward increasing

this metric. As the MAB applies its interventions (based on

arm selections) over time, it can observe how the metric

changes among the players and adjust accordingly. One way

to manage metrics from multiple players might be to simply

work with the average, but this approach may yield lower

rewards; aggregating each player’s metric into a combined

value requires a loss of resolution on the data that might have

been useful toward the MAB’s understanding of the players.

As for exploration strategies, when adapting an MAB-

based approach to a multiplayer context, the nature of both

exploitation and exploration must be reconsidered because the

arms of the bandit no longer necessarily share a one-to-one

relationship with the experience provided to a player. Instead,

observed rewards belong to a collection of players, predictions

and exploitative arm pulls affect multiple individuals, and

arms alone can no longer be used as a proxy for explored

intervention states.

Finally, with regard to social fairness, where each of the

AI’s decisions will affect an experience shared by multiple

players, we must consider how the right choice for the AI

may not always be the arm that predicts the greatest reward.

In sole pursuit of maximizing results, if over time the MAB

continually favors a choice that benefits certain players, other

players may be ignored or marginalized. In the worst case,

a choice that favors certain players might work against or at

the expense of others repeatedly. As the experience of all the

players is placed in the care of the AI, the question is raised

regarding the responsibility the AI has in ensuring that players

receive equitable consideration. However, though we identify

social fairness as a key challenge in multiplayer modeling,

we do not address this challenge in this research but aim to

explore it in our future work.

Therefore, we present the following two approaches toward

addressing (respectively) challenges 1 and 2 above. The first

addresses multiplayer best-choice estimation, exploring how a

bandit strategy might interpret rewards and combine predic-

tions for multiple players to determine the best overall choice.

The second addresses multiplayer exploration strategies, in-

vestigating how explorative arm selections should consider not

only the distribution of past selections but also the distribution

of player experience that those selections have rendered.

A. Multiplayer Best-Choice Estimation

The MAB-based AI is driven by both its oracle, the pre-

dictive model built from observations of player behavior that

predicts future rewards, and its policy, the decision process

that determines when the MAB should explore choices (i.e., to

improve the training data the oracle uses to make predictions)

versus exploit the choices that the oracle currently believes

will maximize results. For our policy, we use a standard ε-
greedy (“epsilon greedy”) strategy in which a parameter ε
determines the percentage of time in which the policy will

explore randomly among the choices not predicted by the

oracle to be the best (0 < ε < 1).

As for the contribution of this work, our Multiplayer Re-

gression Oracle (MRO) maintains a separate linear regression

for each player. Because there are multiple players to consider

in each arm pull, the regressions modeling each are combined

into a multi-part oracle when a decision must be made by

the AI. We also extend our previous work in regression-based

oracles [4] by replacing the arbitrary oracle value as a feature

in the regression with a representation of the arm that reflects

the actual state of the intervention. Specifically, instead of as-

signing a numerical value to each arm (e.g., A = 0, B = 1, ...)
and submitting those values to the regression, we provide

the difference between the player’s steps and the other two

teammates as the value for the regression’s arm feature.

Additionally, with insights regarding human step behavior

resulting from our analysis of data from the Furberg et al.

dataset [19], we also include in the regression oracle the

observed daily steps for that virtual player over the past seven

days [4]. Note that although the step data analysis did not

indicate the steps five days prior (St−5) to be statistically









Second, our regression oracle enables the introduction of

additional features, such as a player’s previous output, which

enables the oracle’s predictions to exploit any inherent patterns

that exist in that output (e.g., an individual’s daily step

behavior). It is worth noting that while the simulation was con-

structed to explicitly model these patterns in its step generation

process, we expect such patterns to emerge organically in other

real-world contexts where the MAB is repeatedly observing

the same human player over time.

Third, because the MRO internally tracks players using

separate models, it is able to maintain a higher level of

resolution on each player during predictions. In contrast, the

traditional strategies and the single-model regression strategy,

which average the rewards across players at the time of

observation, lose this resolution in the aggregation process. We

expect there is advantage in waiting until the time of prediction

to perform this aggregation as demonstrated in our approach,

and we intend to investigate this further in our future work.

As for our MFE approach, we found that consideration for

the C (intervention case) array (i.e., WC > 0) outperformed

traditional forced exploration that emphasized the P (pull

frequency) array. While it does appear that both factors are

important for maximizing performance, we believe a threshold

exists for multiplayer scenarios regarding the WC/WP ratio

beneath which strategies may underperform. This threshold is

likely variable and dependent on the specifics of the scenario.

The experimental support for a non-zero WC confirms our

intuition that MAB-based models for multiplayer scenarios

should reconsider their definition of exploration. When the arm

selection merely reflects an aspect of the intervention state’s

construction, a player’s actual behavioral responses to inter-

vention states may derive more directly from their individual

differences and the group dynamics. Therefore, we believe that

tracking salient aspects of the intervention state for each player

is, if not a more effective way to engage exploration, then at

least an essential component for consideration.

VII. CONCLUSION

This paper focused on the understudied field of multi-

player modeling and presented an MAB-based multiplayer

modeling approach. We identified the three main challenges

for MAB-based multiplayer modeling that include best-choice

estimation, exploration strategies, and social fairness; we

addressed the first two by introducing a new oracle toward

better predictions of player impact during exploitation pulls

and a new forced exploration approach toward more accurate

assessment of player experiences during exploration pulls.

Our experiments demonstrated that our Multiplayer Regres-

sion Oracle, which allows for players to be tracked separately

and combined during predictions, significantly outperformed

traditional and single-model regression strategies when applied

to our multiplayer scenario. Our results also validated our

Multiplayer Forced Exploration approach, supporting our intu-

ition that exploration in multiplayer scenarios should consider

player experience history as rendered in the game environment

rather than the history of pulled arms alone.

As part of our future work, we would like to extend our

analysis of multiplayer scenarios beyond two players, where

we expect the discussed concerns will be further amplified. We

also plan to examine the third challenge, namely that of social

fairness, where the oracle might use alternative calculations

(besides averaging) when making predictions for the group

that consider outcomes beyond strict performance. Finally, in

our current work, we are examining the potential for these

techniques in human user studies in the context of exergames.
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