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RANDOM-CLUSTER DYNAMICS ON RANDOM REGULAR GRAPHS IN
TREE UNIQUENESS

ANTONIO BLANCA AND REZA GHEISSARI

ABSTRACT. We establish rapid mixing of the random-cluster Glauber dynamics on random A-regular graphs
forall ¢ > 1 and p < pu(q,A), where the threshold p. (g, A) corresponds to a uniqueness/non-uniqueness
phase transition for the random-cluster model on the (infinite) A-regular tree. It is expected that this threshold
is sharp, and for ¢ > 2 the Glauber dynamics on random A-regular graphs undergoes an exponential slowdown

atpu(q, A).

More precisely, we show that for every ¢ > 1, A > 3, and p < pu(q, A), with probability 1 — o(1) over
the choice of a random A-regular graph on n vertices, the Glauber dynamics for the random-cluster model has
O(nlogn) mixing time. As a corollary, we deduce fast mixing of the Swendsen—Wang dynamics for the Potts
model on random A-regular graphs for every ¢ > 2, in the tree uniqueness region. Our proof relies on a sharp
bound on the “shattering time”, i.e., the number of steps required to break up any configuration into O(log n)
sized clusters. This is established by analyzing a delicate and novel iterative scheme to simultaneously reveal
the underlying random graph with clusters of the Glauber dynamics configuration on it, at a given time.

1. INTRODUCTION

The random-cluster model is a random graph model, unifying the study of electrical networks, indepen-
dent bond percolation, and the ferromagnetic Ising/Potts model from statistical physics [21,31]. It is defined
on a graph G = (V, E') and parametrized by an edge probability p € (0, 1) and cluster weight ¢ > 0. Each
configuration consists of a subset of edges w C E (equivalently w € {0, 1}¥) and is assigned probability

TG pq(w) = —plI(1 = p)lFI-lge), (1.1)
G.pyq
where c(w) is the number of connected components in (V,w) and Z¢  , is a normalizing constant.

Aside from its inherent interest as a model of random networks, the random-cluster model provides an
elegant class of Markov Chain Monte Carlo (MCMC) algorithms for sampling from the Ising/Potts model.
For integer ¢ > 2, a sample w from (1.1) can be transformed into one for the g-state ferromagnetic Potts
model by independently assigning a random spin from {1,..., ¢} to each connected component of (V,w);
see, e.g., [18,31]. Random-cluster based sampling algorithms, which include the popular Swendsen—Wang
algorithm [50], are a widely-used alternative to the standard Ising/Potts Markov chains since the former are
often efficient at “low-temperatures” (large p) where the latter suffer exponential slowdowns (see [8, 33]).

Our focus here is on the Glauber dynamics of the random-cluster model. Specifically, we consider the fol-
lowing discrete-time Glauber dynamics chain, which we refer to as the FK-dynamics. From a configuration
wy C F, one step of the FK-dynamics transitions to a new configuration wyy1 C F as follows:

(1) Choose an edge e; € E uniformly at random;

=P ife isa “cut-edge” in (V,w);
(2) Set w1 = w; U {e;} with probability{ D= qizprp if erisatcut-edge”in (V,w)
P

otherwise;

(3) Otherwise set w1 = wy \ {et}.
We say e is a cut-edge in (V,w;) if changing the state of e; changes the number of connected components
c(wy) in (V, wy). This chain is, by design, reversible with respect to 7 5 4.

A central question in the study of Markov chains is how the mixing time—defined as the number of steps
until the Markov chain is close to stationarity starting from the worst possible initial configuration—grows
as the size of the graph G increases. Of particular interest in the context of random-cluster and Ising/Potts
dynamics is the relation of mixing times to the rich equilibrium phase transitions of the model.

We consider this question when G is a random A-regular graph on n vertices. The study of spin systems

and their dynamics on random graphs is quite active [12, 14—16,19,20,25,44,45]. Random A-regular graphs
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are a canonical example of graphs having exponential volume growth, with a non-trivial geometry, making
them an attractive alternative to lattices or trees. More generally, the study of spin systems on random graphs
yields insight into hard instances of the classical computational problems of sampling, counting, learning

and testing [2,23,48,49] and features in the study of random constraint satisfaction problems [32, 54].
The phase transition of the random-cluster model on random A-regular graphs is expected to involve three
critical points [11,34,39,41]. Most relevant to us would be the critical threshold p, (g, A) corresponding to

a uniqueness/non-uniqueness phase transition for the random-cluster model on the infinite A-regular wired
tree (in which the leaves are externally wired to be in the same connected component). Roughly speaking,
the uniqueness/non-uniqueness phase transition captures whether the wired boundary has an effect or not on
the configuration near the root of the tree (in the limit as the height of the tree grows). It is believed that the
mixing time slows down at p,,(¢q, A), either polynomially or exponentially depending on ¢ < 2 or ¢ > 2.

In this paper, we establish optimal mixing for the FK-dynamics on random A-regular graphs throughout
the uniqueness region p < p,(q, A) for all real ¢ > 1 and all A > 3.

Theorem 1.1. Fixany g > 1,A > 3, and p < py(q, A). Consider the FK-dynamics on a uniformly random
A-regular graph on n vertices. With probability 1 — o(1) over the choice of the random graph G, the mixing
time of the FK-dynamics on G is @(n log n)

The FK-dynamics are known to be resistant to sharp analysis with the known techniques for Markov
chains for spin systems. This is due, in part, to the fact that the random-cluster model presents highly non-
local interactions: an update on an edge e; depends on the entire configuration w;(E'\ {e;}). Indeed, the only
other setting where the speed of convergence of FK-dynamics is well-understood via direct analysis is in
square subsets of Z2 [6,8,26—29]. Other bounds to date have been obtained either indirectly, via comparison
with global Markov chains using the results of [52, 53] (and as a result, these bounds are off by polynomial
factors), or by taking either p very small (e.g., under a Dobrushin-type condition) or very large, or ¢ large.
This is the state of affairs even on the (geometrically trivial) complete graph [8, 30, 38].

Our results are tight in the sense that the FK-dynamics is expected to undergo a slowdown at p, (g, A),
as we describe next. The equilibrium phase transition of the random-cluster model on random A-regular
graphs should qualitatively resemble those on the A-regular tree and the complete graph. Based on this
relation, and understandings of those phase diagrams [11, 34, 39,41], it is expected to involve three crit-
ical points py,(q,A) < pe(q,A) < pi(g,A). The tree uniqueness/non-uniqueness phase transition at
pu(g, A) manifests on the finite A-regular tree in the form of existence/non-existence of root-to-leaf paths
under wired boundary conditions. The threshold p (g, A) corresponds to a (conjectured) second non-
uniqueness/uniqueness transition; above this point even the A-regular tree under free boundary conditions
has root-to-leaf connections (see [25,34,36,39] for more details). The threshold p.(q, A), on the other hand,
corresponds to an order-disorder transition captured by the emergence of a “giant component” of linear size
on the random graph (which, roughly, imposes “typical”” boundary conditions on its treelike balls).

When ¢ € (1,2] the phase transition is of second-order and these three thresholds coincide; namely
pu(q, A) = pe(q, A) = pi (g, A). On the other hand when ¢ > 2, the phase transition on random A-regular
graphs is conjectured to be of first-order and p,, (¢, A) < pc(gq, A) < pi (g, A). Here, the uniqueness thresh-
old p,(q, A) should mark the onset of the metastability phenomenon, and that should persist up to p} (g, A).
Metastability has been linked to an exponential slowdown for both random-cluster and Potts Glauber dy-
namics on the complete graph [7, 13, 24, 30], and the same slowdown is expected to occur on random
A-regular graphs. Namely, in the window (p,(q, A), pi (g, A)), the ordered and disordered phases should
each be “metastable” behaving locally (on treelike balls) like the configurations on wired and free trees,
respectively. The coexistence of these metastable phases with exponentially small boundaries, facilitates
states from which reversible Markov chains cannot easily escape (i.e., these sets have bad conductance). It
is thus expected that on random A-regular graphs, for every ¢ > 2, the FK-dynamics mixes exponentially
slowly throughout (p, (g, A), p} (g, A)). For g sufficiently large, such slowdown was established in [25] at

p=1c(q,A) € (pulg, A), py (g, A)).
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From Theorem 1.1 we obtain an efficient MCMC sampling algorithm, for both the random-cluster model
and the ferromagnetic Ising/Potts model on random A-regular graphs in the uniqueness regime.

Corollary 1.2. Fix any ¢ > 1,A > 3, p < pu(q,A) and any accuracy parameter 6 € (0,1). Then,
with probability 1 — o(1) over the choice of the random A-regular n-vertex graph G, there is a sampling
algorithm which, given the graph G, outputs a random-cluster configuration w whose distribution is within
total variation distance § of g p 4. The running time of the algorithm is O(n(log n)3log(1/4)).

The extra O((logn)?) factor in the running time of the algorithm comes from the (amortized) compu-
tational cost of checking whether the chosen edge is a cut-edge in each step of the FK-dynamics. This is
equivalent to the fully dynamic connectivity problem which has been thoroughly studied (see, e.g., [37,51]).

For integer ¢, the algorithm in Corollary 1.2 combined with the O(n) cost of translating between the
random-cluster and Potts configurations mentioned earlier yields a sampling algorithm for the ferromagnetic
g-state Potts model on random regular graphs up to the Potts uniqueness threshold (the uniqueness thresholds
of both these models coincide). This improves on the best previously known sampling algorithm for both
these models in [5], which runs in O(n5/%) time, and it is a “weak sampler” in the sense that it outputs
samples that are close in total variation distance to the target distribution but with a fixed accuracy. (See also
the recent work of [36] for a poly(n) sampler for all p € (0, 1) but provided q is sufficiently large.)

As another important corollary of Theorem 1.1, we deduce fast mixing of the standard Swendsen-Wang
(SW) algorithm for the ferromagnetic g-state Potts model [50]. This is an extensively-used global-update
Markov chain. The dynamics starts from a Potts configuration oy € {1,..., q}V, moves to a “joint”
spin/random-cluster configuration (o, w;) by including each monochromatic edge independently with prob-
ability p and then assigns to each connected component of (V, w;) a uniform at random spin from {1, ..., ¢}
to obtain a new Potts configuration o;41 (see [18,50]).

Corollary 1.3. Fix any integer ¢ > 2 and A > 3, and let p < py(q,A). Consider the Swendsen-Wang
dynamics on a uniformly random A-regular graph on n vertices. With probability 1 — o(1) over the choice
of the random graph G, the mixing time of the Swendsen—Wang dynamics on G is O (n2 log n)

Corollary 1.3 follows immediately from Theorem 1.1 and the comparison results of Ullrich [52,53]. Pre-
viously, our understanding of the speed of convergence of the SW dynamics on random A-regular graphs
was very limited. For the special case of ¢ = 2, which corresponds to the Ising model, it was established
in [4] that the spectral gap of the SW dynamics is £2(1) for all p < p, (2, A); this implies an O(n) mixing
time bound. In addition, Guo and Jerrum [33] established an O(nlo) mixing time bound for the SW dy-
namics that applies to any graph and any p € (0, 1). The methods in both of these works are specific to
the Ising model (¢ = 2) and do not generalize to other values of q. Beyond the special case of ¢ = 2, no
sub-exponential bound was previously known for either the FK-dynamics or the SW dynamics throughout
the uniqueness regime p < py(q, A).

Proof ideas. We comment briefly on the techniques and main innovations in our analysis next: for more
details and an extended proof sketch, we refer the reader to Section 3. The main ingredient in our proof
is an O(nlogn) bound on the “shattering time” of the FK-dynamics (Theorem 3.2); this is the number of
steps the chain requires to break up any configuration into connected components of size at most O(logn).
The bound on the shattering time uses a novel and delicate iterative scheme to simultaneously reveal the
underlying random graph and the connected components of the FK-dynamics configuration on it at a given
time: see Definition 4.11 and Figures 4.1-4.2. While revealing procedures are a standard tool in the study
of both random graphs and of the random-cluster model, their combined analysis is highly non-trivial, as
the law of the random-cluster configuration at an edge depends on the global geometry of the graph. To
our knowledge, this the first direct upper bound for the shattering time of the FK-dynamics in any setting.
In fact, understanding the shattering time is usually the main obstacle for proving rapid mixing of the FK-
dynamics on other graphs: e.g., on the complete graph, the shattering time is not known and only loose
mixing time bounds (off by ©(n?) factors) can be derived [7].
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Once the dynamics has shattered, we use standard methods (i.e., censoring [46]) to reduce the analysis of
the FK-dynamics to localized dynamics in balls of radius o(y/n) centered at each vertex, but with random
boundary conditions induced by the current state outside the ball. In random A-regular graphs, these balls
are “treelike” and, after shattering, their boundary conditions are “almost free”, in that only O(1) vertices
in their boundaries are connected through the external configuration. This implies that the FK-dynamics
mix quickly and satisfy a log-Sobolev inequality akin to a product measure in each of these balls. The last
ingredient in our proof is an exponential decay of correlation property (sometimes called spatial mixing)
between the root and boundary of such balls. A delicate point is that since these balls have radius ©(logn),
we need exact control on the rate of this exponential decay to sustain the union bound over the n balls.

Remark 1.4. We expect our methods for the analysis of the shattering phase to have applications to other
locally tree-like graphs, e.g., wired trees and Erd6s—Rényi random graphs. In the latter case, however,
the possibility of having a small number of vertices of large degree poses technical obstructions to direct
extension of our methods. Whereas this should not affect the equilibrium phase diagram of the model,
interestingly, in the case of the Glauber dynamics for the Ising model on an Erd6s—Rényi random graph, the

1
high maximum degree is known to slow down the high-temperature mixing time to n !t U ogtoan) [44].

Organization of paper. The rest of the paper is organized as follows. In Section 2, we provide a number
of preliminary definitions and notations we will use. In Section 3, we give a detailed proof overview high-
lighting some of the key novelties in our arguments. Our revealing procedures to bound the shattering time
are the focus of Section 4. In Section 5 we establish the sharp rate of spatial mixing on treelike graphs with
sparse boundary conditions. We combine these to conclude the proof of the upper bound of Theorem 1.1 in
Section 6. We prove the matching lower bound on the mixing time in Section 7.

2. PRELIMINARIES

In this section, we collect some standard definitions and properties that are necessary to present our
proofs, and to which the reader can refer throughout. See the standard texts [10], [31], and [40] for more
details on random graphs, the random-cluster model, and Markov chain mixing times, respectively.

2.1. Random A-regular graphs. We begin by considering the underlying geometry we work on. Fix
A > 3 and consider the uniform distribution Pyrs over A-regular graphs on n vertices. (Let us always
assume 7 is such that An is even, so that such a graph exists.) We identify the vertices V' (G) with the
set {1,...,n}, and the randomness of Py will be over the edge-subset of {ij = ji : 1 < 4,5 < n}.
Throughout this paper, we set d := A — 1 for convenience.

Random graphs are treelike. A key ingredient in our proof is the fact that random A-regular graphs are
locally treelike. While this can be formalized in various ways, we use a notion that is most relevant to this
paper, and applies uniformly to all vertices (as opposed to a vertex chosen uniformly at random).

For a graph G = (V(G), E(G)) and a vertex v € V (G), we define the ball of radius R around v as:

Bgr(v) :={w € V(G) : d(w,v) < R},
where d(w, v) is the graph distance. For a vertex set, B C V(G), define E(B) = {v,w € B : vw € E(G)}.

Definition 2.1. We say that a graph G = (V, F) is L-Treelike if there is a set H C E with |H| < L such
that the graph (V, E'\ H) is a tree.

Definition 2.2. We say that a A-regular graph G = (V(G), E(G)) is (L, R)-Treelike if for every v € V(G)
the subgraph (Bg(v), E(Bgr(v)) is L-Treelike.

Fact 2.3. Fix any A > 3. For every 6 > 0, there exists L(0, A) such that if R = (% — ) logyn, we have
Prra (G is (L, R)-Treelike) =1 —o(n™ ).

We include a short proof of Fact 2.3 after introducing the configuration model in Section 4.1. It is known
that when R > %logd n, the number of cycles in every ball Br(v) goes to co with 7.
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2.2. The random-cluster model. For a graph G = (V, E), recall the definition of the random-cluster
model from (1.1). We say an edge e € E is open or wired if w(e) = 1 and closed or free if w(e) = 0.
We say two vertices are connected in w if they are in the same connected component of the sub-graph
(V,{e € E : w(e) = 1}). For a vertex set VV C V, denote by Cy(w) the union of connected components
(clusters) containing v € V in this sub-graph. For a configuration w and edge set A C F, we use w(A) for
the restriction of w to A.

Boundary conditions. To help study the random-cluster measure, we introduce boundary conditions.

Definition 2.4. A random-cluster boundary condition £ on G = (V, E) is a partition of V, such that the
vertices in each element of the partition are identified with one another. The random-cluster measure with
boundary conditions &, denoted ng’ . is the same as in (1.1) except the number of connected components
c(w) = c(w; &) would be counted with this vertex identification, i.e., if v, w are in the same element of
&, they are always counted as being in the same connected component of w in (1.1). In this manner, the
boundary condition can alternatively be seen as ghost “wirings” of the vertices in the same element of &.

The free boundary condition, £ = 0, is the one whose partition consists only of singletons. For a subset
0V C V, the wired boundary condition on 9V, denoted £ = 1, is the one whose partition has all vertices of
OV in the same element and all vertices of V' \ OV as singletons; i.e., £ = {OV} U J{v:v € V \ IV}.
For boundary conditions &, &’ we say that £ < £ if £ is a finer partition than £’. We have the following
important monotonicity in boundary conditions: for any two boundary conditions £ and ¢’ with £ > £/, we

13 ¢ . .
have Tepa = TGpa where >= denotes stochastic domination.

Uniqueness/non-uniqueness transition on the A-regular tree. As the geometry of the random graph is lo-
cally treelike, its dynamical transition point should be inherited from a transition on the A-regular tree.
Throughout this paper, we denote by 7, := Tp A = (V(T3), E(Tp)) the rooted (at p) A-regular complete
tree of depth A (the root has A children, and all other vertices have A — 1 children and one parent). Since the
tree has depth h < oo, evidently it is not actually A-regular, and has leaves 97, = {w € V(Ty) : d(p,w) =
h} (where d(-, -) denotes graph distance); observe that

h h
V(T =1+A> d7'<2Ad",  and  [E(Ty)|=A) d ' <2Ad", 2.1)
i=1 i=1
and |0T;,| = Ad"~!. The wired boundary condition “1” is the one that wires all vertices of 97}, together.
For every A > 3 and ¢ > 1, the random-cluster measure 77%—}1 P undergoes a transition at p,(q, A):
when p < p,(g,A) the probability that p is connected to 97, in w goes to 0 as h — oo, whereas when
p > pu(q,A) it stays bounded away from zero [34]. (While in general p,(q, A) does not have a closed

form, it can be expressed as the root of an explicit formula: see [5,34].) A key fact (see [34, Theorem 1.5])

we will use is that whenever p < p,(q, A) we have that p (the probability of a cut-edge being open) satisfies
1

pi= N < = where d=A-1. 2.2)

g1—p)+p ~d’
2.3. Markov chain mixing times. Consider a (discrete-time) Markov chain with transition matrix P on a
finite state space (2, reversible with respect to an invariant distribution 7; denote the chain initialized from
x by (X;°)¢>0. Its mixing time is given by

tMIX = tMIX(1/4) s Where tMIX(E) = mln{t . maé ||P(XI‘;EO c ) — 7T||TV § E},

zoE
where the total-variation distance between p and v is given by
1
— vVl =z|lp—v|1L = inf PU#V).
o= vl =gl —vii = nf B #V)

Here the infimum runs over all couplings of p, v. By this definition, to bound the mixing time, it suffices
to bound the coupling time of the dynamics; i.e., if we construct a coupling P of the steps of the chain
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such that for each xg,yo € €2, we have P(X70 # X%O) < 1/4, then tyyx < T. It is a standard fact that
taix (0) < tyix log(261). See chapters 45 of [40] for more details.

A coupling for the FK-dynamics. Recall the definition of the FK-dynamics from the introduction. Note that
in the presence of boundary conditions &, the only change is that in step (2) of the FK-dynamics transitions,
the status of e being a cut-edge is dictated by whether its presence changes c(wy; £).

For the FK-dynamics, there is a canonical choice of coupling known as the identity coupling. This is the
coupling that couples the evolution of two copies of the FK-dynamics, (X;°) and (X}"), by using the same
random edge e; and the same uniform random number Uk, ; to decide whether to add or remove e;. When
q > 1, the identity coupling is a monotone coupling, in the sense that if X;© < X} then X;"?; < X}, with
probability 1. The identity coupling can also be extended to a simultaneous coupling of all the Markov chains
(X[°) indexed by their initial configuration zp € {0, 1}F (i.e., a a grand coupling), so that if zo < yo we
have X;° < X/° forall t > 0. As a consequence, the coupling time starting from any pair of configurations
is bounded by the coupling time starting from the free zo = 0 and wired yo = 1 configurations.

3. EXTENDED PROOF SKETCH

In this section, we provide a detailed sketch of our proof of Theorem 1.1, outlining the structure of the
argument and highlighting some of the key technical difficulties we encountered. Most of the paper is
dedicated to upper bounding the mixing time of the FK-dynamics by O(n logn), so the sequel is dedicating
to sketching that proof. The matching lower bound follows from coupling a certain projection of the FK-
dynamics to a product chain and is derived in Section 7.

3.1. Proof outline. Let G = (V(G), E(G)) be an n-vertex graph. Let (X})¢>0 and (X}?);>0 be two real-
izations of the FK-dynamics started from the all-wired and all-free configurations, respectively, and coupled
via the identity coupling as defined in Section 2.

Our goal is to show that there exists ' = O(n log n) such that for every vertex v € V(G), with probability
1 — o(n™1), the configurations X} and X% agree on the A edges incident v, denoted

Ny:={e€EG):vee}. (3.1)

A union bound over the n vertices would then imply that under the identity coupling X%, = X% with
probability 1 — o(1). By the monotonicity of the FK-dynamics under the identity coupling, this would show
that the mixing time of the FK-dynamics is at most 7' = O(nlogn).

There are two key stages to establishing this coupling, each of which we describe next.

Stage L. In the first stage of the coupling, we show that after an initial burn-in period of T = O(nlogn)
steps, the configuration X } is shattered. That is, its connected components have constant size in expectation,
and every component is of size O(logn) with high probability; more precisely, we show that the size of the
connected components have exponential tails. Since X% > X%, the same holds for X%.

The intuition behind our proof of shattering after T steps goes as follows. Consider the balls B, (v)
for v € V(G) where r = O(1) is a sufficiently large constant. For each v € V(G), let (Z}) denote the
chain on B,.(v) with a fixed wired boundary condition outside of B,.(v). The evolution of (Z}) and (X})
can be coupled with the same identity coupling by ignoring the updates outside of B, (v) for (Z}); by
monotonicity, for every v € V(G) and t > 0, we have Z/ > X}(B,(v)). Consequently, we can even
take the minimum (intersection) of the chains Z} over v € V(G), to obtain a configuration w; by setting
we(e) = 1if ZY(e) = 1 forall v € V(G). Since all these chains are coupled using the same randomness,
we maintain the domination w; > th forall ¢t > 0.

We thus focus on showing the shattering property for wr. Notice that we can bound the connected
component of a vertex v in wy via an iterative exploration process. We initialize a set A as the connected
component C, of v in Z%(B,(v)) and initialize A to C,, N OB, (v). For each u € A (while JA # (), we

(1) Add to A the connected component C,, of u in Z}.(B;(u))
(2) Add to A all vertices in C,, N 9B, (u). Remove u from 0A.
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FIGURE 3.1. Left: Upon exposing the localized FK-dynamics Z%. on B;.(v), the connected
component of v (purple) reaches two boundary points of B, (v) (blue). Middle: The reveal-
ing procedure then exposes their localized configurations, in their balls of radius . Right:
The procedure continues in that manner until these connected components die out.

The procedure ends when 0 A is empty and outputs an edge set A necessarily containing the component of
v in wr. See the depiction in Figure 3.1. The nature of this exploration process lends itself naturally to
comparison with a branching process in which the “children” of u are the vertices connected to u through
Z. (It turns out that the revealing of these configurations can be done in such a way that although they are
all coupled, the dependencies between configurations Z (B, (u)) are negligible: we comment on this later.)
We will show that with high probability over G, the resulting branching process is sub-critical.

To see this, first note that since the mixing time on B,.(v) is O(1) (r is constant), after ' = O(nlogn)
steps, enough updates have occurred in each ball B, (v) so that the chains (Z}) have all mixed with high
probability. Hence, up to a small error, we can consider instead the branching process where the number of
children of v is given by the number of connections of v to the boundary of B, (v) in a sample from ﬂ]lgr(v).

Now, most O(1)-sized balls in a random A-regular graph are trees. A key characteristic of the uniqueness
regime p < pu(q, A) is that in the wired A-regular tree 7, the expected number of leaves connected to v
under 777— is less than 1 as long as 7 is large. As long as the role played by non-tree balls in G is bounded, this
would imply the desired sub-criticality of the dominating branching process. We in fact need concentration
bounds on the number of explored vertices in this branching process; towards this we show that p is the
actual exponential decay rate of root-to-leaf connectivities on A-regular (wired) trees.

Lemma 3.1. Let T}, denote the rooted A-regular complete tree of depth h and let p < p,(q, A). Let (1,0)
be the wired boundary condition on 97Ty, that additionally wires the root of Ty, to OT},. There exists a constant
C = C(p, q,A) such that for every h and every leaf u € 0Ty,

77%’0) (u is connected to the root of Tp) < Cp" .

Since there are O(d") leaves in 7, the lemma implies that the expected number of connections from v to
the boundary is O((pd)"), which is less than one for r large (as pd < 1 when p < p,(q, A)). The reason we
establish this decay for the boundary condition (1, (), instead of simply the wired one, is to eliminate the
potential dependencies between the chains (Z{*) through their roots.

To conclude our sketch of the ideas in Stage I, we mention two fundamental challenges to implementing
the above approach. First, since all the chains (Z}') are coupled via the identity coupling, revealing their
configurations while maintaining some independence is delicate (see Lemma 4.17). We perform this reveal-
ing by additionally wiring the root to the boundary as hinted by the (1, ), and for each u, only revealing
the new randomness needed to run the resulting chain on Bg(u) up to time 7. Roughly speaking, the wired
boundary conditions allow us to evolve the un-revealed configuration in B, (v) in isolation.

Secondly, not every ball B,(v) in G will be a tree, and there are strong correlations between the short
cycles of the underlying graph and the places where the random-cluster configuration is more wired. A key
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contribution of our work is to construct a simultaneous revealing procedure for the random graph G with
the overlayed random-cluster configuration of w7 in a manner that handles these dependencies and can be
approximated by the above sub-critical branching process; see Definition 4.11.

Putting all these ideas together, we establish the following exponential tail bound (shattering estimate) on
cluster sizes of X1, after a burn-in period of O(n logn) time.

Theorem 3.2. Let p < py(q,A) and suppose that G is sampled from Pggg, the uniform distribution over
A-regular graphs on n vertices. Then, for everyv € V(G), k > 1 and T > Cnlogn, where C > 0 is a
sufficiently large constant, with probability 1 — exp(—Q(k)) — O(n~?), the random graph G is such that

P(IC,(XH)] = k) < exp(~Q(k)) + O(n~).

(Recall that C,(X1+) denotes the component of vertex v in X+.) By a union bound, Theorem 3.2 implies
that all components of X% are of size at most O(log n) with high probability. Theorem 3.2 is proved in §4.
Using the above arguments, we can further show that for each v € V' (G) the boundary condition induced
on the ball Bg(v) of radius R = (1 — &) log, n by the configuration of X7. on the edges outside of Bg(v)
is typically K-sparse, i.e., the boundary condition induces only KX = O(1) many connections on 0Br(v).
Theorem 4.3 establishes that this property holds for all v € V(G) simultaneously with high probability.

Stage II. After the initial ' = O(n log n) steps of the burn-in phase, the configurations X:1F and X, % shatter
and induce sparse boundary conditions (with up to O(1) vertices wired through the boundary) on every
ball Bg(v) of radius R = (3 — 6)logyn with high probability. It remains to show that the copies of the
FK-dynamics will couple on NV, except with probability 1 — o(n~!) in an additional O(n logn) steps.

Starting at time 7", we consider localized copies of the FK-dynamics in each ball Br(v) with v € V(G).
This is done by ignoring (or censoring) the moves of the dynamics outside of Br(v) which has the effect of
“freezing” the two distinct boundary conditions induced by X1(E(G) \ Br(v)) and X%(E(G) \ Br(v)) on
the boundary of Br(v). With the sparse boundaries conditions frozen on 9Bg(v), the two coupled chains
continue to run inside Br(v), and we can more easily analyze their configurations near v. The censoring
technology of [46] implies that if these censored chains are coupled on M, then so are the original chains.

In Lemma 6.5, we show that if X}-(E(G) \ Br(v)) and X%(E(G) \ Br(v)) induce sparse boundary con-
ditions on Bg(v), and G is (L, R)-Treelike with L = O(1) (see Definition 2.2), the mixing time of the FK-
dynamics on Bg(v) is O(d™log(d?)). In fact, we can establish a tight bound on the log-Sobolev constant
of the FK-dynamics on B,.(v) under sparse boundary conditions, showing that tyx (¢) = O(dlog(d®/e)).
This slightly stronger fact turns out to be crucial for deducing the tight O(n log n) bound on the mixing time
of the FK-dynamics on G, i.e., without an additional polylog(n) factor.

With this optimal bound on the local mixing on treelike balls, we know that the localized chains have
all mixed after O(nlogn) steps of the FK-dynamics. Therefore, the probability that two instances of the
FK-dynamics on Br(v) with distinct sparse boundary conditions £ and &’ are not coupled on N, is given by

!
the total variation distance between 7T$BR () and 7T£BR (v) O N,. We show that this distance is O(p?%).

Proposition 3.3. Consider a vertex v in a A-regular graph G. If Br(v) is L-Treelike and £, &' are any two
K -sparse boundary conditions on 0 Bg(v), there exists a constant C = C(p,q, A, L, K) such that

17y (9Ne) € ) = 7y ) (WAL € v < CPR.

(Recall that we say a boundary condition is K -sparse when there are only K boundary wirings.) We stress
the importance of obtaining the sharp $? decay rate here for the spatial mixing to support a union bound
over n vertices. Since p < 1/d and R = (1 — ) logyn, we have p?# = o(n~!), but any weaker bound on
the decay rate would force us to choose a larger R, which would cross the threshold at which point balls of
G are no longer (L, R)-Treelike for L = O(1), and we would lose control over the mixing time on Br(v).
The proof of this spatial mixing property is based on the fact that in order for information to travel from
the boundary of Br(v) to N, there must be mwo disjoint open paths from N, to non-singleton elements
of £ in 0BR(v). We contrast this to the more traditional bound on influence by the existence of a single
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connection from the center of a ball to its boundary, which in our setting would only yield a bound of p’.
(Such a bound by a single connectivity event is the one traditionally used on amenable graphs like Z to go
from spatial mixing with any positive rate of exponential decay to fast mixing: see [1, 8,42].)

4. THE FK-DYNAMICS SHATTERS QUICKLY ON RANDOM GRAPHS

Our first goal in this section is to prove Theorem 3.2 establishing existence of Tpyry = O(nlogn) such
that for ¢ > Tyugrn, the configuration X é’t is shattered. We will then use this to conclude that the boundary

conditions X é’t induces on any ball of volume o(+/n) are O(1)-sparse. Let us now be more precise.

Definition 4.1. A random-cluster boundary condition & on an edge-subset H C E(G) is said to be K-Sparse
if the number of vertices in non-trivial (non-singleton) boundary components of ¢ is at most K.

Definition 4.2. A random-cluster configuration w on G = (V(G), E(G)) is (K, R)-Sparse if, for every
v € V(G), the boundary conditions induced on Br(v) by w(E(G) \ E(B,(v))) are K-Sparse.

The following key result asserts that the boundary of every ball about a vertex is O(1)-Sparse with high
probability after an O(n logn) burn-in time: this is proven in Section 4.5.

Theorem 4.3. Fix p < py(q,A). There exists C(p, q, A) such that for every t > Cnlogn, the following
holds. For every § > 0, if R := (% — 9) log, n, there exists K(p,q, A, ) such that with Pygg-probability
1 —o0(1), G is such that

P(X§,is (K, R)-Sparse) > 1 —O0(n"?). 4.1)

Remark 4.4. By monotonicity of the FK-dynamics, for every G, we have that X} gt = mg, from which it
follows that both Theorem 4.3, and the exponential tails of Theorem 3.2, hold under 7g, i.e., if one replaces
Xt g,r by an equilibrium configuration w ~ 7g.

In Section 4.1, we construct the relevant revealing procedures for FK-dynamics clusters on random
graphs, and define the branching process we dominate it by. In Sections 4.2—4.4, we analyze these pro-
cesses, and in Section 4.5, we complete the proofs of Theorems 3.2 and 4.3.

4.1. Couplings and revealing schemes for the FK-dynamics on random graphs. In this section, we
summarize the key couplings and revealing schemes for the connected components of Xé ;- These are

fundamental to the proof of shattering for X é , in the uniqueness region after an O(n log n) burn-in time.

4.1.1. The configuration model. The configuration model Py, is a distribution over multigraphs on n ver-
tices and fixed degree distribution, which we take to be A for every vertex, defined as follows [9]. Give every
vertex v € {1,...,n} A-half-edges and select a matching on the An many half-edges uniformly at random
to form the An/2 edges of the graph. Let 90t,, be the set of possible edges (the set of pairs of half-edges).

The configuration model is a useful tool for studying the random A-regular graph, as the distribution
Pgro is equal to the distribution Pey (- | G € T'rrg) Where I'ggg is the event that the graph G is simple (i.e.,
has no self-loops or multi-edges). In particular, it is standard (see e.g., [9]) that Pcy(I'rrg) > ¢ for some
¢(A) > 0, and therefore for any event I,

Prro(T) = Pem(T, Trro) (PCM (FRRG))_l < C_IPCM(F) . (4.2)

Refer to the book [22] for more on the configuration model. We will use (4.2), with an iterative revealing
scheme of a matching of the An half-edges, to analyze the random A-regular graph.

The configuration model lends itself to revealing procedures. Towards introducing the joint revealing
procedure for the random graph G ~ Py and the configuration X é’t, let us first recall a standard revealing
procedure for random A-regular graphs according to Py on its own. This procedure is useful to proving
random graph estimates for the configuration model and A-regular random graph. It also serves as a building
block for the revealing procedure of the random graph together with the FK-dynamics configuration.
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The following iterative algorithm is a way to sample from the configuration model for a given degree
sequence. The fact that this gives a valid sample from Py, is straightforward after naturally identifying
samples from Py with samples from the uniform distribution over matchings on An.

Definition 4.5. Assign every v € {1,...,n}, A half-edges. Suppose f is a (possibly random) function from
edge-sets A C I, (a set of matched pairs of half-edges) to a half-edge not matched in .A.
(1) Initialize the set of exposed edges as Ay = ().
(2) For every 1 < m < 4% match f(A,,_1) to a half-edge selected uniformly at random from the
remaining un-matched ones to form the edge e,,. Let A, :== A;,—1 U {en}.

Observe, importantly, that the choice of next half-edge to match (given by the function f) can be adaptive,
specifically, adapted to the filtration generated by (Ao, ..., Ayn—1).

Definition 4.5 provides an adaptive sampling method from the configuration model distribution Py (see
e.g., [43]) and can be used to prove myriad properties of random A-regular graphs. In particular, it yields a

simple proof of Fact 2.3 that G ~ Pgyg is (L, R)-Treelike for R < nz%and L = O(1); see Section 4.2.

Remark 4.6. The definitions of the random-cluster model (1.1), and the FK-dynamics extend naturally to
multigraphs, where G = (V, E) is such that V' is identified with {1,...,n} and E C 90, is a multiset. The
random-cluster model and FK-dynamics then live over subsets of E, identified with w : E — {0, 1}, and
connectivity components of a configuration w are understood naturally.

4.1.2. A coupling of localized FK-dynamics chains. Our goal is to simultaneously expose edges of G ~
Py while revealing the FK-dynamics configuration X, ét at time t on G. We show that under their joint
distribution the size of the connected components of X, é,t have exponential tails; this in turn implies that the
boundary condition on B, (v) is O(1)-Sparse (see Definition 4.1).

Note that a ball of radius O(logn) about a vertex v may have many cycles—indeed it may encompass
the entire graph G—but a typical FK cluster of size O(logn) does not use most of these cycles. Thus, we
expose the edges of Py guided by the revealing of the random-cluster component of a vertex v in X, é,t; in
this way, to expose the C, (Xéﬂf) we will not have to reveal much of the random graph.

There are two key difficulties to consider when constructing a joint revealing process for (G, X, é,t):

(1) Under either of X, é,t or e.g., the random-cluster measure 7g, the value w(e) on an edge e shown to
belong to E(G), affects the distribution of the remainder of the underlying random graph.

(2) Unlike the random-cluster measure g, the law of Xét does not satisfy any domain Markov prop-

erty. Indeed, the distribution of X é’t(e) conditionally on some X _Cl,,t(A) is quite difficult to analyze.

The key to overcoming these obstructions will be to reveal the configurations of a family of FK-dynamics

chains that are localized (in the sense that their distribution only depends on a small O(1) sized subset of

edges of the graph) and whose concatenation stochastically dominates the distribution of X é’t. Let us be
more precise next and explicitly construct a coupling of a family of localized FK-dynamics chains.

Definition 4.7. For a graph G and edge subset A C FE(G), let DA be the set of vertices in V' (A) that are
adjacent to vertices of V(G) \ V(A), and let 7}, be the random-cluster measure on A with wired boundary
conditions on 0A. Let (X}X,t)tZU be the FK-dynamics chain that starts from all wired on E(G), censors

(ignores) all updates in £(G) \ A, and makes FK-dynamics updates w.r.t. 77}1 when it updates edges in A.

Importantly, the wiring on JA ensures that the law of X}Lt does not depend on E(G) \ A.

Definition 4.8. For any graph G, we can construct (X});>0 = {(X} )0} ACE(G) grand monotone

gy
coupling of the ensemble of FK-dynamics chains (X}Lt)tEO for A C E(G) as follows:)
(1) Initialize X} o = lforall A C E(G);i.e., the all wired configuration on A.
(2) Let (et)¢>1 = (e1, €2, ...) be drawn i.i.d. from E(G).
(3) Let (Ue,t)ecE(g),t>1 be a sequence of i.i.d. uniform random variables on [0, 1].
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For A C E(G), construct (Xfll,t)tzl as follows: for each ¢ > 1, set Xi?t(e) = X}Lt_l(e) for e # e; and

1 if €t ¢ A7
Xhler) =41 ife,€ Aand U, < o;
0 if e € A and Uet,t > 0;

for o = my(wler) = 1| w(A\ {er}) = X}, 1(A\ {er})); i, if e; € A, we resample e; given the
remainder of the configuration on A, together with the wired boundary condition on A, using the same
uniform random variable Uk, ; for every X }l,t such that e; € A.

As in the grand coupling for different initializations, this is a monotone coupling. In particular, we have
X5, < X}y, forall AC E(G) and thus X, < MNacpg) Xhs
A key observation for our revealing process is that for every A, the configuration X}X,t depends only on:

(1) the number of updates amongst (e5)s<; that belong to A, which we denote by x4 +;
(2) the choice of edges to be updated on A on those x4+ updates; we denote such set by Oy4 4, ,; and
(3) the family of uniform random variables on those edges, (Ue,s)eca s<t-

With this observation in hand, we can extend this to a coupling of (X}1 ;) averaged over G ~ Py

Definition 4.9. Let P} be the distribution over pairs (G, w;) where w; is a random-cluster configuration on
G that results by first drawing G ~ Py, then drawing w; ~ P(X é,t € ). Likewise, for every set A C I,,,
let P}él,t be the distribution over pairs (G, wang(g)+) Where way ~ P(X) | Bt € -). Couple, under the
distribution [P, the family of distributions (}P’i"t) Acon, t>1 by selecting the same random graph G ~ Py, for
all of them, then using the coupling of Definition 4.8 of the family (X}Lt) At

In this manner, we have constructed a monotone coupling of the family (G, (X}x,t)tzl) Acon,,- Note that
we use this coupling for sets A which we know have F(G) N A = A, so that the averaging is only over
the edges of F(G) \ A, which we earlier noted X}Lt is independent of; thus the role of this coupling is
only to put the random graphs with their random-cluster configurations on the same probability space. We
defer detailed discussion of the properties of the coupling to Section 4.2 (after constructing the revealing
procedure in the sequel) but emphasize that by construction, if AN B = (), the only dependency of X}Lt and

Xllg , 1s through the distributions of the binomial random variables x4 ; and K .

4.1.3. The joint revealing procedure. We now construct a revealing procedure for G and a configuration @,
on G that stochastically dominates Xé .- Fix r to be chosen as a large constant (depending on p, ¢, A) later.

Definition 4.10. Given an exposed set of edges A of the random graph G ~ Py, we define B2 (v) =
B (v; A) as the ball of radius r in E(G) \ N, (A) where N,,(A) is the set of edges in A incident to v. We
drop the A from the notation when understood contextually.

For an edge-set 4y C 9, revealed to be part of E£(G) and a vertex set Vy C V(G), we construct a
joint iterative procedure to expose (a set containing) the connected components Cy, (X, ét(E (G)\Ap)). The
examples to have in mind are (1) Ag = () and Vy = {v} and (2) Ayg = E(Bgr(v)) and Vy = dBg(v).

Through this process we will keep track of the following variables at each step:

o A,,: the set of edges of the random graph that have been revealed by step m;

e V;.: the set of vertices in the k-th generation we want to explore out of;

® (. the random-cluster configuration revealed up to step m;

e F,,: elements of the filtration with respect to which the configuration &, on A,, is measurable.

The process is defined as follows (see Figures 4.1 and 4.2 for a depiction of several steps of this process):
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Definition 4.11. Initialize: k

for each & > 0 while V), # 0
for each v € V.

I
=
3
I
i
I
=

Ay C E(G); Vo C V(G);

1. Set vy, = v. Conditionally on A,,_1, reveal the edges of the random graph in B%“(v,,) and set
A = Ap—1 U E(Bﬁ"t(vm));
Let A, := Ay, \ A;,—1 be the set of new edges revealed in G.
2. Reveal the triplet Ha,, ¢ := {KA,, ¢, OAnka,, o (Uess)ecA,, s<t} conditionally on F, 1. Recall
that k4, + is the number of updates of the FK-dynamics in A,,, O4,, x A is the sequence of

edges to be updated in A,,, and (Ue s)ce A, s<¢ i the family of uniform random variables used
for the edges updates in A,,.

3. Construct the random-cluster configuration X }lm +(Ap,) from the triplet H 4, + by simulating the
steps of the FK-dynamics on A,,, with wired boundary conditions. Concatenate X km (Ap) with
Wm—1 to obtain a new configuration @,, on A,, \ Ay.

4. Add to Vi1 all vertices of 9(A,, \ Ap) that are in the component of Vy in @&y, (A, \ Ap) and are
not in (Jy<y, Ve

5. Let Frp, = (Fm—1,Ha,, ) and increase m by 1.

Let £ be the first & such that Vj, = () and let my,, = ZZ‘D:O |Vi|. Let oy = @t(Amkm \ Ap) be the random-
cluster configuration revealed when the process terminates. The key observation about the above process is
that we can control the cluster of Vy in X} (E(G) \ Ap) by the set Amkm; the size of this set will then be
approximately controlled by comparison to a sub-critical branching process in the following subsection.

Observation 4.12. The connected components of Vo in X} (E(G) \ Ao) are a subset of the connected
components of Vo in 0t (E(G) \ Ao). In particular, the number of vertices in non-trivial (i.e., non-singleton)
components of the boundary condition X} (E(G) \ Ao) induces on Ay is less than the number of vertices in
non-trivial components of the boundary condition & (E(G) \ Ao) induces on Ay. The edges in both of these
sets of connected components are subsets of the edge-set A‘“kw \ Ap.

With Observation 4.12 in hand, we focus on obtaining the exponential tail bound of Theorem 3.2 for
Cy(@¢) (the component of v in &;) and likewise, the sparsity bound of Proposition 4.21 for U, () (@)

4.1.4. Constructing a dominating branching process. Towards proving Proposition 4.21, we construct a
(non-Markovian, size-dependent) branching process which we will show stochastically dominates the se-
quence (Vi)x>0 of our joint reveleaing process. This process (Z);>o will then be shown to be sub-critical
and satisfy exponential tail bounds on its total population, implying the same for the cluster of Vj in wy.

Definition 4.13. Initialize Zy = |Vy|, and let (Z;);>1 be the (size-dependent) branching process, which for
each k, has progeny (x; x)i<z, drawn i.i.d. from the following distribution:

(1) With probability n='/2, let x; . = |V(7)| <), Z¢ and say the progeny number Y; ;, is Bad.

(2) Otherwise, sample ; ;, from the distribution of the number of leaves in the connected component
of the root under W% ©) (the random-cluster measure on the A-regular tree of depth r with a wired
boundary condition and with the root also wired to 07,).

Let Zpi1 =, <7, Xisk' that is, the -th member of the £’th generation gets x; , many children.
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FIGURE 4\1. Left: We initialize the process with r = 5 from V)
and incidept edge Ag (black). Theprocess begins by re(v)?lmg
X,

1} (dark purple)
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in gray. Righ: The process then reveals the configurati , f/gi Y Kjapesteps of
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FIGURE 4.2. Left: Proceeding from above, in the next generation, starting from vo € Vy,
reveal the edges of B"“t(vg) in G; in this case, this is not a tree, but is disjoint from A,
so that Ay = B%“(vy). The configuration X}l%t is generated and concatenated with g
to form @y. Right: For v € Vy, B2 (v3) is a tree, but it intersects As. As such, A3 =
B2U*(v3)\As. Running the FK-dynamics on A3 with all-wired boundary conditions ensures
that X }‘N is nonetheless independent of the configuration we had revealed in ws. The light
purple vertices are connected to V) in w3 and are added to Vs to form the next generation.

Note that this is not a branching process in the traditional sense, since the progeny distribution is not
i.i.d. and depends on the population up to that generation. Nonetheless, we will show good tail bounds on
(Zk) k>0 by dominating it by sub-critical branching processes between the Bad steps.

To justify the above construction, let us formalize the relation between (Z ), and the revealed vertices of
the process in Definition 4.11, (V). Intuitively, we want to identify vertices vy, € Vj, with those of gener-
ation k in (Zy,); the progeny of v,, will then be those vertices added to Vi1 in step (4) of Definition 4.11.
Item (1) from the progeny distribution of Definition 4.13 corresponds to situations where:

(1) B2“*(v,,) intersects A, _1;
(2) B%“*(v,,) is not a tree; or
(3) There are an insufficient number of updates on B2“(v,,) for X114m7t to mix.
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Examples of situations (1)—(2) were depicted in Figure 4.2. The n~/2 probability assigned to these bad
situations by the dominating branching process comes from the fact that Theorem 4.3 requires us to con-
sider |Ag| of size n~1/2%9, and thus any edge has at least probability n=279 of intersecting Ag. On the
complement of situations (1)—(3) above, X}lm,t is mixed, and is comparable to the (1, O)-tree of depth .

4.1.5. Comparing the revealing procedure and branching process. We conclude the section by stating the
main two lemmas comparing the revealing procedure to the branching process defined above. Towards stat-
ing these, denote by tyix (77, (1, ©) the mixing time of FK-dynamics on 7, with (1, () boundary conditions,
and define the burn-in time

tMIX(’ﬁW (17 O))

Tsurn = Turn(Co, 1) := Conlogn - \E(T)] 4.3)
Recall, the definition of the update numbers (k 4,, +)m and define, for every ¢ > Tyyry, the event
m
AlE(T,)]
¢ =€  where €& := {(6s)s<t : ﬂ {ml,t < Tn”t} . (4.4)

=1
Standard tail estimates for binomial random variables will imply that &, holds with high probability.

Let mp = 0 and for each k > 0, let mp1 = my + |Vi], i.e., the total number of exposed vertices on
the boundaries of explored balls, and in the same connected component as V) before the exploration for the
(k + 1)-th generation begins. This will be the quantity which we compare to the population of the branching
process of Definition 4.13. More precisely, on the event &;, by construction of (Z), and the choice of
Tsurn, We are able to show the following stochastic domination.

Lemma 4.14. There exists Cy(p,q, A) in the definition of (4.3) such that the following holds for every
t > Tyurn- For every Ay, Vo such that | Agl, |Vo| < n%_‘sfor 0 > 0, every K > 0 fixed, and every £ > 1,

(IVil{e y 1 {mj1 < P70}, < (Z)) <0

In this manner, we will have reduced the analysis of the set of exposed vertices through the revealing
process of (G, &), and thus, the clusters of Xé’t, to the analysis of the process (Zj), which except on
some rare Bad increments, is a simple branching process with subcritical progeny distribution dictated by
connectivity probabilities in the wired measure 77%2’0)

T

. We will establish the following tail estimate for (Zy).

Lemma 4.15. Suppose p < py(q, A) and fix any 6 > 0, any M > 1, and any 1 < Zy < n3=°. There exist
ro(p,q, A),C(p,q, A, M), Ko(p, q, A, M) such that for every r > rq fixed and every 0 < A < n3=s,

]P’(ZZk > KoZy + )x) < Cexp(=A/C) + CeMp=oM
k>0

4.1.6. Outline of remainder of section. Having sketched the key revealing procedures and the way they fit
together to provide the desired bounds on the clusters of X é,t’ let us prove the various relations and bounds
claimed above. In Section 4.2, we prove various key properties of the configuration model revealing process
of Definition 4.5 and the coupling of Definition 4.8 that will be central to the analysis of the revealing
procedure of Definition 4.11. Then in Section 4.3, we show that the size-dependent branching process (Z,)
of Definition 4.13 stochastically dominates the FK process (V) of Definition 4.11 on a high-probability
event, proving Lemma 4.14. In Section 4.4, we analyze the process (Z) by comparing its population to
the sum of O(1) many sub-critical branching processes to deduce Lemma 4.15. In Section 4.5, we combine
these ingredients to conclude Theorem 3.2 and Proposition 4.21, and from that Theorem 4.3.

4.2. Key properties of the revealing procedure for (G, w;). In this section, we describe some of the key
properties of the coupling constructed in Definition 4.8, and the revealing procedure constructed for the
clusters of Vg in @, in Definition 4.11. The following preliminary lemmas describe the law of the random
graph edges and overlaying FK configurations through the revealing process.
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4.2.1. Properties of the configuration model revealing procedure. We begin with the following lemma on
the law of the random graph G conditionally on a set .4,,, which we have revealed to be a subset of E(G).
Recall the configuration model’s revealing procedure from Definition 4.5 and say a vertex is discovered if at
least one of its half-edges has been matched, and exhausted if all of its half-edges have been matched.

Lemma 4.16. Ler A be any set of edges (pairing of half-edges) revealed to belong to E(G). For every r,

. 2Ad"(|V(A)| +d)
sup  Pey (B2 (v)NA# D or B (v)isnotatree| A) < .
By T BN A v A S )

Proof. Fix any edge-set .A. We can sample from the conditional distribution Pcy (- | A) by defining the
adaptive scheme f in Definition 4.5 so that it first matches the half-edges belonging to A, yielding the set
A|4/2 = Aafter |A|/2 steps, then setting f to do a breadth-first search (BES) of BZ"(v): this latter part is
done by choosing f so that it first exhausts v, then exhausts each of the neighbors of v, and so on.

Revealing the entire set B%“(v) takes at most |E(7,)| many steps beyond |.A|/2. If for every m €
{JA|/2+1, ..., |A|/2+d"} the half-edge from f(.A,,—1) is not matched to a half-edge belonging to a vertex
in V(Ap,_1), then evidently B“(v) N A = () and B%“(v) is a tree.

Since on each of these steps, the half-edge f(A,,) is being matched to a u.a.r. un-matched half-edge,
uniformly over the at most |F(7,)| steps it takes to reveal B2“(v), the probability that the half-edge it is
matched to belongs to A4,,,_1 is at most

dVAI+d) VA +d
An— dV(A)|+d) —n—(V(A)|+d)’
(The first inequality here uses the fact that in the BFS of B2“!(v), there are at most d” vertices of the ball that

have been discovered but not exhausted.) Union bounding over the at most | E(7;)| < 2Ad" such attempts
yields the desired bound. 0

We can use a similar reasoning as the proof above to deduce a proof of Fact 2.3 as follows.

Proof of Fact 2.3. Fix any v and choose f so that the revealing scheme performs a BFS revealing of Br(v).
In order for Br(v) to not be L-Treelike, it must be the case that for more than L different m’s in the first
|E(Tr)| steps, the half-edge f(A,,—1) is being matched to a half-edge belonging to A,,_1. (If there were
at most L such steps, then the removal of the at-most L edges formed by those at-most L matchings in the
revealing scheme, evidently leaves a tree, so that Br(v) would be L-Treelike.) Uniformly over A,,_1, the
probability of this in the m th step is at most d**1/(A(n — m)). Summing over the at most | F(7g)| many
such attempts while revealing Br(v), we find that for every £ > 1,

R
Pcu(Br(v) is not £-Treelike) < ]P(Bin (|E(Tr)|, n—ﬁﬂ(TRﬂ) > Z) . 4.5)

Recall that the standard Chernoff bound applied to a Poisson binomial distribution with mean p = Np says
that for every s > pu,

P(Bin(N,p) > 5) < eS*u(f) - (4.6)
L
With the choice R = (3 — ) log,n, so that d® = nz~0 and |E(Tr)| < 2AdE, (4.6) implies that the
right-hand side of (4.5) is at most (C'n %)’ for some C'(A) and large enough n. As a consequence, choosing
L > 2671, we would find

sup  Pcu(Bgr(v) is not L-Treelike) < o(n™2). (4.7

ve{l,...,n}
It remains to translate this to a bound under Pgy;. This follows by the following standard comparison
argument. Let ['zzg be the event that the graph G ~ Py has no self-loops or double edges (i.e., it is a
simple graph). Taking I' = {G : G isnot (L, R)-Treelike} in (4.2) and union bounding (4.7) over the n
vertices yields the desired bound. U
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4.2.2. Properties of the coupling of localized Markov chains. The following lemma is the key fact about
the construction of the grand coupling of FK dynamics, Definition 4.8, whereby after revealing some X}Lt,
we can control the influence that revealing has on X é,t for AN B = (). In this manner, through the revealing
procedure of Definition 4.11, which reveals different localized configurations X}4m7t iteratively, as long as
t > Tyurn these are each close to their respective stationary distributions of 7r114m, so that it is approximately
a concatenation of localized FK models on treelike graphs, inducing an exponential decay of connectivities.

Lemma 4.17. Recall the coupling of Definitions 4.8—4.9 of the distributions (P}Ll,t) ACOM,,t>1- Suppose we
have revealed edges in E(G) showing E(G) N A = A.

(1) The configuration X}‘,t(A) is measurable with respect to k 4 (the number of edge-updates in A),
the edges chosen to update O4 ., ,, and the uniform random variables (Ue s)cca s<t on those
edges. The number k4 is distributed as Bin(t,2|A[/An); the sequence Oay, , is distributed
as (€)j<r,, drawn i.id. from A. The values (U,,s)ecA,s<t are distributed as i.i.d. Unif]0, 1].

(2) Suppose B is such that E(G) N B = B and AN B = (). Conditionally on k44, Oakp, and
(Ue,s)ecA,s<t the distribution of Xﬁt(B) is given as follows. The number of updates kp 1 is drawn
from Bin(t — kay,2|B|/(An — 2|A|)), and the edges chosen are distributed as (€;)j<yy , drawn
i.i.d. amongst B. The random variables (U, s)cc B s<t are distributed as i.i.d. Unif{0, 1].

Proof. Let G be any graph having F(G)N A = A. We claim that uniformly over G, items (1)—(2) above hold.
Observe first that | E(G)| = An/2 necessarily, and therefore uniformly over such G, the number of updates
on edges in A by time ¢ in the update sequence (es)s<¢ is distributed as Bin(¢, 2|A|/(An)). Evidently, the
distribution of O4 4, , only depends on 4 and not on the times these updates were; in particular, given
that e; € A for some j, the law of ¢; is clearly uniform at random on A. Finally, notice that for every e, the
sequence (U, s)s<¢ is independent of all other sources of randomness, implying the desired item (1).
Turning to item (2), we fix a k4,1, Oa x4, and family (Ues)eca,s<t- We can condition further on the
exact times of the updates in A, i.e., (es)s<¢ N A. Conditionally on that set of updates, the distribution on
the remaining updates is evidently ¢t — x4 i.i.d. draws from E(G) \ A. It is then clear that kp; counts
the number of times, amongst these remaining draws, that the update is in B. As in item (1), the induced
distribution on Op B is then the same as xp; 1.i.d. draws from the edges of . Finally, for every e € B,
the uniform random variables (U, s)s<; are independent of all other sources of randomness. ]

4.3. Domination by the modified branching process (Z;). In this section, we establish the stochastic
domination of the sequence (V};)x>o from Definition 4.11 by the branching process (Z},) of Definition 4.13.

Proof of Lemma 4.14. We prove the desired stochastic domination by induction over £. The base case,
Zy = |Vo|, is by construction. Now fix £ > 1 and suppose by way of induction that the following stochastic
domination holds:

(VilLem Lim, s <prz-sr2y)j<e—1 < (Z5)j<e-1-
Thus there exists a monotone coupling of the sequence on the left-hand side, such that it is below the
sequence (Z;)j<¢—1 in the natural element-wise ordering on the sequence. Working on that coupling, it suf-
fices for us to then show that on the intersection €;"‘N{m;_; < n1/2_5/2}, foreverym € {my_1+1,...,my},
the distribution of the children of v, is stochastically below the progeny distribution of Definition 4.13.
Observe, first of all, that for every m € {my_; + 1,...,mg}, on & N {m,;_; < n1/2_5/2}, deterministi-
cally the number of children of vy, is bounded by

V(A \ Al < [V(To)lmey < V(T Y WIS IVITL Y 2,

j<e-1 j<t-1

where the last inequality is by the inductive hypothesis, and the fact that ¢ N {m,_; < n!/279/2} implies
¢ N{mj_q1 <n'/279/2} forall j < L.
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Now, for every set of revealed edges (A;);<pm—1, define the following events on F,,_; consisting of

(KA, t)i<m—1, edge-values (OAz,HAZ,t)ZSmfl’ uniform random variables ((Ue,s)ec A, s<t)i<m—1:

(1) Let I'rrgem be the event that B2 (v,,) N A1 = 0 and Ay, = Ay, \ Ap—1 is a tree.

(2) Let FUPD,m be the event that /ﬁ;ATr“t Z dTTBURN/<2An)
We first claim that these two events each happen with probability 1 — %n‘l/ 2, uniformly over (A4;) 1<m—1
and elements of 7, 1 such that &/ holds and my_; < n'/279/2, Given v,,, the law of A,, is independent
of F,,,_1, and only depends on A,,_1. (This can be seen from the explicit construction of the law of F,,, 1
in Lemma 4.17 as independent of E(G) \ A,,_1.) Notice that if m,_; < n'/27%/2 and | Ag| < n'/>79 then
[V (Am—1)| < (1 + |V (T;)|)n'/279/2. As such, by Lemma 4.16, for every Ag, V, such that | Ag| < n'/279,

Sup PCM(F”CFREE,m | Am*lv]:mfl)
(Am—l7Fm—1)€€?[ﬂ{mg_1§n%_%}
< Sup sup Pey (B2 (vp) N A1 # 0 or B2 (v,,) is not a tree | A,,_1)
Am—1: Um

V(Am_1)<2|V(T5)[n2~ %
T T 2 2r, -9
< sup 2Ad" (|V (Am—1)| +d") < 10A%d*™'n2~2

Am—1: n—(V(An-1)|+d") = 5 _5Adrns—3
V(Am_1)<4Adn3 %

>

Thus, for n large enough and r = o(log n), the above is at most %n_l/Q as desired.

We next turn to the probability of FﬁPD’mﬁFTREE,m. Recall from item (2) of Lemma 4.17 that conditionally
on F,,_1, the distribution of K 4,, ¢ is

. 2|Am|
KAt ~ Bin (t — Z KAt ) .
I<m-—1 An
Since we are on the event &} and thus ¢!, we have that Yi<m—1 KAt < 4m|E(T;)[t/(An), from

which we deduce, using m < m; < |[V(T,)|me_; < |V(T;)|n'/>79/2, that the number of trials in the
binomial is at least L

t(1 —16Ad* n"272) > t/2,
as long as r = o(logn). Since we are on the event I'rggg 1, We have d” < |A,,| < |E(7,)| < 2Ad", and
we see from lower tail estimates on binomial random variables that

Sup ]P)(F%PD,m m PTREEvm | Am—17 ‘Fm_l)
(_Am_l7]:m_1)€@;"71ﬁ{m271§n1/276/2}

< P(Bin(Thurn/2, 24" /(An)) < d" Tyurn/(240)) < S0 1/2,

W =

as long as Cj in (4.3) is sufficiently large (depending on r, A).
By item (2) of Lemma 4.17, conditionally on any (A;);<m—1 and F,,—1, and any A,, € I'rgee s and
KAmt € L'upp,m, the conditional distribution of X}lm,t(Am) is equivalent (up to relabeling of edges) to

that of r 4,, + updates of a heat-bath chain (Y!); on a subtree 7, of the complete tree 7, with (1, ©)-wired
boundary conditions, initialized from YO1 = 1. Notice that the equivalent sub-tree 7} consists of some k < d
of the children of the root, together with their complete sub-trees. In particular, the random-cluster model
on A, with wired boundary conditions is stochastically below the FK model on the corresponding subset
of 7, with its (1, ) boundary conditions. In particular, the number of leaves in the FK cluster of the root
under 7[',(7370) is stochastically below the same quantity under 77% ©)
as long as Ay, is a tree disjoint from A, and k4,, + > d"Tyyrn/(2An), we have

1 _
HP(Y/S;S,{ € ) - W%,O)HTV B gn 1/2'

. It therefore suffices for us to show that
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This follows as long as Cj is sufficiently large (depending on A), from the fact that

drTBURN C(jdr C d’l’
> . >
2hn = 2A[E(T) " T (1O)

0 N
= m logn - tMIX(ﬁv (17 Q)) )

and |E(7,)| < 2Ad", together with the sub-multiplicativity of total-variation distance. O

4.4. Sub-criticality and tail bounds for the dominating branching process. We now analyze the process
(Zy,) of Definition 4.13, and show that it indeed is sub-critical, and satisfies good tails on its total population.
For ease of notation, let P, = >, Z; be the total population after k& generations.

Proof of Lemma 4.15. Since (Z}) is a size-dependent, non-Markov process, we cannot directly use results
on branching processes to control its growth. Instead, to control the population of the process (Zy), we
compare it to a sum of branching processes in the following manner. Consider the stopping generation &)
for exceeding population KoZy + A, i.e.,

Ky = mf{k P > KoZy + A} .

Our aim is to control the probability that k) < oo. Let I'y7; be the event that no more than M of the
progeny counts ((x;¢)i<z,)e<k—1 were Bad. By (4.6), we get

P(T,,) < P(Bin(KoZo + A\,n"2) > M) < exp (M —  — Mlog )

where 4 is the mean of the Binomial, i.e., u = (KoZy + )\)n_%. As long as n is sufficiently large and

Zo, A < n%_‘s for § > 0, so that u < 2Kon~°, this implies for some C' > 0,
P9 ) < CeMp=—oM
Next consider the event that £ < oo on the event I'y ;. On I'js ., we dominate the population Py, by the
following sum of sub-critical branching processes with bounded progeny distributions.
Define (Z,il)) & to be the branching process initialized at Zél) = Zy with progeny ()Zgl)), distributed

i.i.d. from the distribution of the number of leaves connected to the root, in a sample from w%fo), i.e., the

distribution of (x; ) conditionally on the progeny number not being Bad. Let 75,21) => <k Z ,gl). For each

1 <7 < M, iteratively let Z ,gj ) be an independent branching process with the same progeny distribution,

initialized from Z{) = |V (T;)|PL ™", where we recall |V (T;)| < 2Ad".

The following stochastic domination is clear by construction if we decompose the process (Zj) revealed
in a breadth-first manner, into its excursions between the at most M times (on the event I"y; ;) when the
progeny number ;  was Bad.

Claim 4.18. Fix any k > 1. We have the stochastic domination

Pel{Tai} < > PY).

<M

With this domination in hand, notice that in order for k < oo while I'y; ,; holds, there must exist some
k < KoZo + A such that I' 7 j, holds and Py, > K¢Zy + A. Therefore, by a union bound,

P(Poa > KoZo+ A\ Taie) < S (P> KoZo+ A Tar)
k<KoZo+A

< (KoZo + NP( (Y. P = KoZo+ ).
j<M

We claim that if Y2, P > KoZo + A holds, there must exist j < M for which Z§) < KoZy + A, and

~ /M .. .
PY) > yv<7;)|*1(%) M9 4 kM0 = Cpa g KM (Z9) 1 K IM2).
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Indeed, if no such j existed, as long as K is sufficiently large, we could bound <M ﬁé%) by
oy Ky -~ K
3" Cramky™(Z + ) < M[MOZéI) + Ky MUAL 22| < KoZo A
J<M
Now fix any 7 < M, any Z(()j ) and consider the branching process Z,gj ). This is a branching process
with progeny distribution having mean m = A(pd)" for some A(p, q) per Lemma 5.1. Since p < d~! when
p < pu(q, A), as long as r is greater than some ro(p, ¢, A), for n sufficiently large we have m < 1, and Z,E,])
is sub-critical. Additionally, the progeny distribution of Z ,g] ) is almost surely bounded by |07,| < Ad"~1.
As such, using the standard breadth-first exploration of the total population of the branching process Z ,gj )
(through which 7515,] ) is expressed as the random walk Zéy ) + > o<k Zl <5 ()ZEJIE — 1)), we can bound
= 4y )
P(PO=N) <P(( > >N = 20) for N = Coan oM (2 + KM,
i<N{)

where ; are i.i.d. copies of )25]]3 Now observe that if Ko (p, ¢, A, M) is sufficiently large, the right-hand in

the probability above exceeds the mean mN )(\j ) by some cN )(\j ) for ¢ = c(p,q, A, M, Kgy) > 0. As this is a
tail probability for a sum of i.i.d. random variables, by Hoeffding’s inequality, it is at most

exp (= (N2 /(AN ")) < exp(—¢ N
for some ¢/(r, A, M) > 0. Taking a union bound over the M possible values of j < M, we altogether find

Z P<P’f 2 KOZO“‘)\’FM,I@) < (KoZo—i-)\)MeXp(—c’N/gj)) )
k<KoZo+X\

It follows from this, and the definition of N /(\j ), that for some C'(p, ¢, A, M, K) large enough,

P(s<o00) P50+ 3 (P> KoZo+\Targ) < Cn M + Cexp (= (Zo +1)/C),
k<KoZo+X\
concluding the proof. (]
4.5. Proof of exponential tail on cluster sizes and shattering. We are now in position to conclude the
proof of the exponential tail bound on clusters of Xé +» and use that to deduce that Xé . is (K, R)-Sparse,

except with probability o(n~2). We begin by using Lemmas 4.14—4.15 to prove the following tail bound on
the sequence (V), which are the roots of the balls revealed through the revealing process of Definition 4.11.

Lemma 4.19. Fix 5 > 0 and consider the revealing procedure for any initial subsets Ay and Vy having
1

| Ao, Vo| < n270. For every M > 1, there exist C(p,q, A, M), Ko(p,q, A, M) and Co(p,q, A, 8, M)
r(p, q, A) in the definition of Tgyry in (4.3) such that for all t > Tyyrx and all 0 < X < n%_‘s,

]P’( > Vil = Kool + /\> < Cexp(—=A/C) +Cn~*M,

0<k<kg
Proof. Fix Ky large to be chosen later, and define the following stopping generation
¢ =inf{l:my_1 > Ko|Vo| + A} .

Recall &; from (4.4). Since for every ¢ < ¢, we have from Lemma 4.14, that (|Vo|1{&;}),</ < (Z;);<e
we have that if Cy in (4.3) is sufficiently large, the probability of {¢ < co} is bounded by the probability of
Poo = Zkzo Zy > KoZy + \. By Lemma 4.14, we obtain

P( Z [Vi| > Ko Vo +>\> < P(ZZk > KoZo + )\) + P(€;).
k<ky k>0
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Lemma 4.15 implies the existence of 7(p, ¢, A) such that the first-term above is at most C exp(—\/C1) +
C1n~M for some C(p, q, A, M).

Next, consider P(&{). By a union bound and item (1) of Lemma 4.17, with the trivial observations that
mg, < nand[A,| < |E(T;)| < 2Ad" necessarily, we get for every t > Tyugn,

P(&f) < nP(Bin (t, Q‘EA(ZL;)') > 4|EA(Z;)|t) :

The above entails a deviation of at least 4¢d"n~! from its mean; as such, by standard tail estimates for
binomials, for every ¢ > Tyyrn,

P(€f) < nexp(—td'n™ '), 4.8)
which is at most n=®M for n large, as long as Cy in (4.3) is sufficiently large (depending on §A1). The
desired bound then follows up to a change of the constant C. ([l

Before proceeding to prove Proposition 4.21, let us translate the tail bound of Lemma 4.19 on ), [V
to a tail bound on the FK cluster of a single vertex under X} g+ and mg. Notice that towards the proofs of
Theorem 3.2 and Proposition 4.21, it suffices to show these for t > Tgygry for some fixed choices of Cp, r
in (4.3) depending on p, g, A (as tyux (7, (1,0)) is of course independent of n).

Proof of Theorem 3.2. Fix any v € {1,...,n}, let A9 = () and let Vy = {v} in Definition 4.11. By
Observation 4.12, for each G ~ Py, the cluster of v in the configuration Xé’t, denoted C, (X, ét) is a subset
of C, (@), which in turn is a subset of V' (Ap,), so that

Co(Xg )l < 1Co(@)] < V(To)l D il <28d7 Y Wil
k<kg k<kg
By Lemma 4.19 and the above, we find that for each M, there exists C'(p, ¢, A, M) such that
P((G, X} 4) : [Co(XE )| = 2Ad" (1 4 X)) < Cexp(—A/C) + Cn =M.,
Observing that P(X} , € -) = Ecu[P(X{, € )], we can use Markov’s inequality to write

Pey <g : P(th D [Co(X§ )| = 2Ad7 (1 + )\)) >\/Ce=>C 4 Cp—M )

< \/CeMC { On—9M

We can obtain the same bound for Pgrg by (4.2), up to a multiplicative ¢(A)~! on the right-hand side.
Taking M such that 6M > 2K and using the fact that va + b < \/a + Vb for all a,b > 0, we deduce the
desired tail bound on |C, (X, ét)] up to the change of constant C' to 2C. Using the monotonicity Xé’t = g
implies the analogous bound for |C, (w)| where w ~ mg. O

We now turn to proving that for typical random graphs, the configuration X é’t is (K, R)-Sparse with high
probability for all ¢ > Tyygn. This allows us to localize to treelike balls with sparse boundary conditions. Let
us define the following subset of the boundary of a set H, which we will apply with the choice H = Br(v).

Definition 4.20. For a subgraph H = (V(H), E(H)) of G and a configuration w on E(G), let us define
U (w) as the subset of vertices in V' (H) in non-trivial components in the boundary condition induced on
Hbyw(E(G) \ E(H)) (a connected component is non-trivial when it has at least two vertices).

We first prove the following proposition, giving a tail bound on Up,, (,)(X, é}t); after proving this propo-
sition, we straightforwardly use it to conclude (K, R)-sparsity of X, é}t, i.e., Theorem 4.3.

Proposition 4.21. Let p, q, A be such that p < p,(q, A). Fix§ > 0and let R = (% — ) logyn. There exists
K(p,q, A, 8) such that if G ~ Py, with probability 1 — O(n=2), G is such that for all t > Tyurx

sup P(th ]Q]BR (Xét)| > K) < O(n*Q).
veV(G)
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Proof of Proposition 4.21. Fix v € {1,...,n} and § > 0, and let R = (5 — &) logy n.

We apply the revealing procedure of Definition 4.11 with the choices Ay = E(Bgr(v)) and Vy = 0Bg(v).
Recall from Observation 4.12 that the FK-clusters of Vy induced by @:(E(G) \ Ap) (@ was extended to be
all wired off of Amk@ \ Ap) are confined to the set Amk@ \ Ay, and the extended configuration &, satisfies
Wy > Xgl,,t- Thus, the sets U, () (@) and in turn Vg, () (Xé,t), are below the number of vertices in V)
that share a connected component of Amk@ \ Ap with another vertex of V.

Suppose that through the revealing process of Definition 4.11, for each m, the edges of B2“(uv,,) are
revealed one at a time per Definition 4.5. Notice then, that [V, () (‘Amko \ Ap)| is bounded by the number
of times through the revealing of .Amk@, that a half-edge is matched up to a half-edge belonging to a vertex
that has been discovered at that point. Throughout this process, conditionally on an exposed edge-set A
(and the edge-update sequence, and uniform random variables given by the filtration up to that step of the
revealing, but £(G) \ A is independent of these), the law of the next half-edge to be matched is uniform

amongst un-matched half-edges. Thus on any such edge-revealing, uniformly on the history of the revealing,
IV (Amy, )l

n—2|V(Amk® )|

By a union bound, we obtain for A a sufficiently large constant (depending on p, ¢, A, r), forall k£ > 1,

the probability that it matches with a half-edge belonging to a discovered vertex is at most

P((g,d}t) . |Q]v’R(Xéyt)| > k) < ]p(|v(,4mk@)y > A2|Vo|) —i—]P’(Bin (A2|Vo\, 2[\2%) > k)

< p( A A\V()]) —HP’(Bin <A2yvoy, WWO') > k) .

n
k<ky

By Lemma 4.19 and the fact that A|Vy| < n3=3 forn large, as long as A is large enough, the first term is at
most n~5. Using the fact that [Vo| < n2 %, we see that the mean of the binomial is at most n~39/2, so that
by (4.6), for every fixed k > 1,

P((G, X40) + D0 n(XE )] > k) <0004, 4.9)

for n large enough. Choosing k£ = K sufficiently large (depending on J), we can make the right-hand side
at most n 4. We deduce the proposition by using Markov’s inequality to write

Po (G P(Xb, + [Bp,0)(X6)| = K) > n72) < n®Be[P(XS, : [Bp,0)(X4,)| = K)].
and noticing that the expectation on the right equals the probability bounded in (4.9). O

Proof of Theorem 4.3. First of all, a union bound of Proposition 4.21 over v € {1,...,n}, with Pcy-
probability 1 — O(n~1), G is such that

P(Xr: U {100 (Xg01 > K}) <n
veV(G)
We now translate this to a bound under Pggg. Taking
r={g:P(xb,: U (Vs (X4l > K}) >0},
veV(G)
in (4.2), we deduce that Pygs(T') < ¢ Py (T) < ¢ 1n~! for some ¢(A) > 0, as needed. O

5. SHARP RATES OF CORRELATION DECAY IN TREES AND TREELIKE GRAPHS

In this section we establish the precise exponential decay rate of influence from an O(1)-Sparse boundary
condition on the root of an O(1)-Treelike ball. We recall from Section 3, that getting the right decay rate,
(as opposed to e.g., using the decay rate of connectivity from the root to the boundary) is central to pushing
our argument through for all p < p,,. In particular, the decay rate of influence will be inherited from twice
the exponential decay rate of the wired tree.
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Recall that the uniqueness point p, (g, A) is defined by a transition on the wired A-regular tree, where
the measure 7T%-h transitions between exponentially small (in h) probability of a root-to-leaf connection, to
giving this event uniformly positive probability. A recursion for this connectivity probability was calculated
in [5, Lemma 33]. A careful examination of this recursion will yield the following identification of the rate

of the exponential decay with p of (2.2).
Lemma 5.1. Let p < py(q, A). There exists C(p, q, A) such that for every h and every leaf u € 0Ty,

1,0 .
W%Lb)(w tu € Cp(w)) < O
In particular, the probability of the root being connected to 9T, in w is at most C(pd)".

In Section 5.1, we establish Lemma 5.1. In Section 5.2, we show that influence in the random-cluster
model travels through the existence of rwo distinct connections; thus on Treelike graphs, influence has twice
the exponential decay rate of root-to-leaf connectivities on the wired tree. This will yield Proposition 3.3.

5.1. Exponential decay rate in the wired A-regular tree. Because of its recursive structure, connectivity
properties of the random-cluster measure on the wired tree can be analyzed sharply. In this section, we
pursue this and show that in the uniqueness regime of p < p,, the probability of a connection from the root
to a leaf at depth h is O(p"), as one would have for the free tree (corresponding to i.i.d. Ber(p) percolation
on Tp). We first show that the probability of a root-to-boundary connection decays exponentially in h.

Let T3, be the complete A-regular tree of height /i rooted at p. The wired “1” boundary conditions on 7,
are those that wire all leaves of 7}, (all vertices in d73). Define the probability

©op 1= 7rf1rh(w :Co(w)NOT, #0),

that the root is connected to a leaf of ;. Using the recursive structure of the tree, it was shown in [5, Lemma
33] that if we define p := % + 1 — p, for every h, we have

d d
(n+p(l—g)z)" = (n—tz)
w1 = Flon),  where  f(z) = T a6
(b +p(1—g)x)" + (=1 (p— )
and for every p < py(q,A), this satisfies limj,_,o, 5, = 0. The following lemma establishes that this
convergence is exponentially fast.

Lemma 5.2. Let p < p,(q, A). We have limy,_, oo 241 = pd. Moreover, py, < (pd)"+oM),

Ph
f(x)

Proof. Consider the recursion of (5.1) for ¢p. Since limy, ;o pp = 0, if lim, 0 =~ exists, we would have

1-1 d_ _ .\
i 22 i 70 (et 2= )" = (= go) . (5.2)

h—oo 220 T 220 (g 4p(1 — %)x)d +x(qg—1)(p— %x)d

Since both the numerator and denominator of (5.2) are differentiable and have limit 0 as x — 0, using
L’Hopital’s rule we get
d d
N 0 [ (p+p(1 = L))" = (4 — 22)"]
lim —— = lim T d 7
e=0 o 2=0 g [x(u +p(1—g)x)" +x(g—1)(u— Lx) }
1y,,d—1 d—1
_dp(l— )p +dEp _dp _ dp _
pt+ (g — 1)pd au  p+q(l—p)
Recall that for every 0 < p < py, we have 0 < dp < 1. Thus, there exists a sequence {c;} such that
limy,_, 0 €5, = 0 and for every h,

h

Yh P2 .
Ph = P1° ---*Z%-H(pd%—si).
Ph—1 1 o
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Expanding this out, we deduce the desired
h h
e
= pd)" ex In{1+ f) < pd)" ex pd) ! g | = (pa)itet) [l
on = 1(pd) p(; < 5d) | S er0d)" e { () ;z (pd)
Our aim is to now prove Lemma 5.1, bounding connectivities of the root to a single leaf.

Proof of Lemma 5.1. To prove Lemma 5.1, we write a recursion for the root-to-leaf connection probability.
Let ¢}, be the probability under 7T%-h that the root is connected to the left-most leaf of depth h. Let 19;\3 be the

probability of the same event, under 7'['% *“) where we recall that the (1, ©) boundary conditions additionally

wire the leaves of 7}, to the root. By monotonicity we have 9;, < 19;‘3 and by Lemma 6.3, we have 19}3 < ¢%p,.
Let (I;)i<a be the indicator function of the event that there is a root-to-boundary path going through the
i-th child of the root; set I = Z@A: o I;. Then, we can write

Op <p-my (I>1)-95_ +ph_1 < Opq [pd® 73 (I > 1) +p] |

where in the first inequality we used the fact that in order for the root to be connected to the left-most leaf,
it is required that the root is connected to its left-most child w;, and that w; is connected to the left-most
leaf of its sub-tree. The former event occurs with probability p or p, depending on whether or not the root is

connected to 07}, through any child besides w; .

By monotonicity, for every ¢ = 2, ..., A, the law of I; under 7rlTh is below its law under w%’o) and the
same holds for I. Since, by Lemma 6.3 a single external wiring may distort the distribution by at most a ¢>
factor, we get W%L’O)(Ii = 1) < pqg?yy, for all i. Hence, under W%;O), 1 is stochastically below (), where

Q ~ Bin(d, p¢*pp,). A union bound and Lemma 5.2 then imply
TN > 1) < PQ > 1) < dpg?(pd)" ") < O(pd)—)",

for all h; note that £ can be chosen as small as needed provided the constant C'(p, ¢, A, €) is large enough.
Thus, setting a = C'pg?p~! we obtain

I < o |1+ apd) | < p ﬁ |1+ a(pa) =]
=1

by continuing the recursion. Now, observe that since pd < 1 when p < py,,

ﬁ [1 + a(pd)ﬂ—a)i] = exp [Zﬁ; log (1 + a(ﬁd)(l‘e)”)] < exp [a Zh:(ﬁd)”‘g”] < exp [@;_5] :

i=1 1=1
Combining the above two bounds, there exists an absolute constant A = A(p, ¢, A) such that for every h
we have 95, < Ap" and thus 19}3 < Ag?p". The first inequality in the lemma follows by noticing that all the
leaves in T}, are equivalent, and the second follows from a union bound over the Ad"~ 1. U

5.2. Exponential decay rate in (L, R)-Treelike graphs. Let G = (V, E) be an (L, R)-Treelike graph. For
v € V, let B := Bg(v) denote the ball of radius R around the vertex v. Recall that we use N, C F for the
set of edges incident to v. Foreach 1 < ¢ < R,let Q; = {u € B : d(u,v) > {}.

For a boundary condition £ on 0B, recall the set U g ¢ of vertices in non-trivial boundary components of

¢ from Definition 4.20. For any u € B such that d(u,v) = ¢, let u & U ¢ denote the event that u is
connected to Up ¢ by a path of open edges fully contained in () i.e.,

(15 Vet = {w: Cu(w(Qr) N DVpe £ 0}

Define the event

Tpe ={we {0,137B): fu e B : d(u,v) = ¢, u&‘ﬁg,g}] >2foralll </ < R}.
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Notice that Y g ¢ is an increasing event. We claim that T g ¢ controls the propagation of influence from 0B.

Lemma 5.3. Fix a graph G = (V, E), a vertex v € V and consider the ball Br(v); let £ > T denote two
boundary conditions on 0Bgr(v) = {w € Br(v) : d(v,w) = R}. Then,

1780 @NL) € ) = 7y WG € oy < 78y ) (Tone)-

Proof of Lemma 5.3. For ease of notation let B := Br(v), Y¢ = YTp¢ and Ve = Yp . We construct a

monotone coupling P of wé ~ 77% and w™ ~ 7. The coupling IP reveals the configurations wé ~ W% and

w” ~ 7 on B one edge at a time using i.i.d. uniform random variables U, € [0, 1] for each e € E(B).
The same U, is used to reveal the values w®(e) and w7 (e) from the corresponding conditional measures.
The order in which the uniform variables are revealed is irrelevant and can be adaptive; this will allow us to
reveal the boundary components. (For more details on the process of revealing random-cluster components
under the monotone coupling, see below, as well as e.g., [0, 8].)

We construct an adaptive revealing scheme that ensures that on the event Tg for the top sample w®, the

samples w® and w” agree on A,,. This implies the desired result as one would then have by the definition of
total-variation distance,

75 (WA € ) = ThWANL) € v < PWENG) # w7 (M) < 7(Trge) -

We construct P with the following iterative scheme which proceeds level-by-level from the leaves of B.
Recall that for each ¢ > 1, we let Qy = {u € B : d(u,v) > ¢} and E(Qy) is the set of edges with both
endpoints in (). At any time in the revealment process, we say that a vertex u € () is unsaturated in )y if
there exists w € Q, such that the edge-values (w®(uw),w” (uw)) have not been revealed. Let (U).c E(B)

be a family of i.i.d. uniform random variables on [0, 1] and reveal the configuration w® as follows:

Definition 5.4. Initialize V; = U, and & = 0);
fori=1,2,.... Rdo
while Ju € V¢ such that u is unsaturated in Qr—;
for each vertex w € Qr—; : uw € E(Qr—;)
1. Reveal w® (uw) from 7T£B(- | w(&)) using Uy, i.e., set

) = 41 ErB@ww) = 1]@(E)) = Uu
0 else

2. Add the edge uw to the set &;

3. If w®(uw) = 1, add the vertex w to V;

Note that we can use the same family (Ue).c g(B) 1n this process to generate coupled samples of w¢ and
w”. Notice that this coupling is monotone, so that because £ > T, wé > W™ almost surely. Let C%(wg )
denote the set of open edges revealed up to the i-th iteration of the procedure; we observe that C%(wg) is
not necessarily equal to the intersection of Cyg(w®) with E(Qr_;), but it is a subset of Cyg(w®) N E(Qr_).
Refer to Figure 5.1 for a depiction of the above revealing procedure.

Through this revealing process, we see that w¢ is open on the edges in the random set C,iB (wf) and free
on the edges in its outer (edge) boundary in Qg—;. Let Cj;(w®) be the union Cj;(w*) with its outer (edge)
boundary in ) z—;, and note that this corresponds to the state of & after the 7’th iteration. The random set
Cl(w®) is measurable with respect to the uniform random variables assigned to edges of Cjy(w*).

For each Cj;(w*), let V(w®) be the vertices in Cy(w*®) at distance exactly R — i from v. Then,

V() € C(w®) N {w : d(w,v) = R — i}
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FIGURE 5.1. Top: The ball Br(v) for R = 5, with a K -sparse boundary condition 7 for
K = 4 (left), and the free boundary condition { = 0 (right). Bottom: The configurations
revealed by the procedure of Definition 5.4, showing Cg (w”) (red, left) along with its outer
edge boundary in @);, (light blue), revealing the dotted line (depth %¢) to be the largest ¢
for which the set V); is a singleton. The vertices that would have been exposed for larger
values of ¢ are colored in different colors. The coupled edge configuration wO(Cé? (wT)) is
depicted on the right (open edges in red, closed edges in blue). The exposed configurations
on C;? (w7) induce free boundary conditions on E(B) \ C?g (wT).

On Y%, there must be some 7 for which |Cy(w®) N {w : d(w,v) = R—i}| < 1, and therefore |V (w®)| < 1.
Let i be the first i for which [V (w€)| < 1, and for ease of notation set Vy = V0 (w®), Cyy 9 = Cy3 (w¢) and
set Cyy o = E(B) \ Cy 0. Notice the inclusion

Cy(w®) € Cy ' (w9),

and from that deduce that ¢y is measurable with respect to the uniform random variables assigned to edges
of @é‘; (w®). By the domain Markov property (see e.g., [31]), conditionally on w®(Cy o), the configuration
wt (0_%70) (respectively, wT(C_%’O)) is distributed according to the random-cluster distribution on C_%,o with
boundary conditions induced by ¢ and w®(Cy o), respectively 7 and w™ (Cy ).

To conclude the proof, it suffices to see that because [Vy| < 1, both w®(Cy,) and w™(Cy ) induce
the free boundary conditions on C In that case w® and w” would agree on C% o and in particular on
N,. By monotonicity, it suffices for us to show that the boundary conditions induced by ¢ and w® (Cyp)
on C_%,O are free. Since the wirings of { are only on vertices of U, C émp, the only way for the boundary
conditions on é%,o to be not free is if multiple vertices on its boundary are incident to open edges of w¢ (Cfmyo).
By construction, the only vertices in Cy, o which can be incident to an open edge of wf(@m) must be at

distance exactly R — i from v. By the assumption that [Vp| < 1, there can be at most one such vertex,
and therefore there are no non-trivial (i.e., non-singleton) boundary components induced on Cg; , by the

boundary condition (£, w*(Cy)), implying the desired conclusion. O
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Proof of Proposition 3.3. With Lemma 5.3 in hand, it suffices for us to prove the following: there exists
C(p,q, K,L) > 0 such that if G = (V, E) is an (L, R)-Treelike graph and ¢ is a K-Sparse boundary
condition for the L-Treelike ball B := Br(v) about some v € V, we have

5 (Tre) < O (5.3)

Let H C E(B) be a set of at most L edges such that the subgraph (V, E(B) \ H) is a tree; the existence
of such a set is guaranteed by the fact that Br(v) is L-Treelike. Let Z = {dj,...,d}} be the subset of
distances (from v) which H intersects, i.e., Z = {1 </ < R: 3w € V(H) : d(w,v) = (}. See Figure 5.2
for a depiction. Observe that each edge of H intersects either one or two consecutive depths in Z. Since B
Is L-Treelike, we clearly have |Z| < 2L. Letting dy = 0 and di1 = R, fori = 0,.. ., k we define:

Fi={ue€ B:d; <d(u,v) <diy1}.

For each 0 < i < k, the graph F; = (F;, E(F;)) is a forest. For each 4, let 7;; = (74, E(7;5)) for
j =0,1,... denote the distinct connected components (subtrees) of F; so that F; = >0 7i;. (For some
1, this may be empty, and for other 7, this may be a single vertex.)

Now, in order for T ¢ to hold, it must be the case that in each F;, every depth / is intersected by at
least two sites in the FK cluster of Up ¢ in ;. Specifically, for each 4, at distance d; + 1 from v there
must be at least two distinct vertices connected to U p ¢ with paths in ()4, 1. Thus, for each ¢ there must
exist two open monotone paths (each intersecting each height in F; at exactly one vertex), v; C £(7;;) and
vi C E(T;;) with j # j' such that y; (resp., y;) connects the root of 7;; (resp., 7;;/) to one of its leaves. If
there are multiple such paths, choose according to some predetermined ordering, and call the sequences of
paths ' = 7o, ...,yx and IV = 7, ..., ;. See Figure 5.3 for a depiction.

We enumerate over the choices of such sequences of paths and then show that for any two fixed sequences
of paths, the probability that they are both open is bounded by C'p?# for some C(p,q, A, K, L). (We say
that a sequence of paths is open if all of its paths are.)

In order to enumerate over the choices of sequences of paths, for each monotone path -;, let z; be its
bottom endpoint, and define z for ~/ similarly. Since & is K -Sparse, there are evidently at most K many
choices of z, and K choices of (. Now observe that since ; is a monotone path on a tree, for each i, the
bottom endpoint x; determines the entire path ;. Since these paths form parts of the connections to Up ¢
the sequence of paths can be required to have endpoints at depths d; 1 — 1 that are either an ancestor of x,
or an ancestor of V/(H) . Here, at each height h ¢ Z an ancestor of a vertex u at height h is a vertex along
the geodesic from v to u. We make the following observation.

Claim 5.5. If Bg(v) is L-Treelike, if u is such that d(u,v) = h, for every h' < h, u has at most 2 many
ancestors at height h'.

Indeed, except along the edges in H, every vertex has a unique parent which is an ancestor of that vertex
at one smaller depth. Thus, the geodesics of B are uniquely determined by their endpoints together, possibly,
with a subset of edges of H traversed along the geodesic, yielding the at most 2% available choices.

Returning to the enumeration over I', I”, the heights of the endpoints x;, z; are predetermined by ¢, and
therefore, having chosen x, z, for each 7, there are at most 2L many choices of bottom end-point z;, and
likewise of ,, and therefore at most 2L - 2% many choices of ; and ..

Hence, a union bound implies

m5(Ype) < K2(20)2F(28)2E sup S (w@UT) =1). (5.4)

Now fix any two such sequences of paths I', T, and consider the probability that w(I' UT") = 1. Observe
that I" and I are vertex-disjoint by construction. Our aim is to make the events that I and I are open in w
independent. For this, let p; be the set of roots of the trees in F;. We introduce auxiliary wirings (as shown
in Figures 5.2-5.3) for all vertices at depths {d : min;—o__x+1 |d — d;| < 1}. Call the resulting distribution



RANDOM-CLUSTER DYNAMICS ON RANDOM REGULAR GRAPHS 27

/I\ /T\
—-1 1 | — 1 T

FIGURE 5.2. Left: An L-Treelike ball with K -Sparse boundary conditions is depicted for
L = K = 6: the L edges that need to be removed to leave a tree are indicated in blue.
Right: We modify the boundary conditions to be all wired (the wired component is depicted
in purple) at or one away from heights in Z (marked by red dashes).

i /
1 ! 1

FIGURE 5.3. Left: Two disjoint components (red) of the vertices in U g ¢, together intersect
every depth in the ball and satisfy the event T ¢. Right: The two components contain
corresponding sequences of open leaf-to-root paths (red) in independent wired subtrees
(shaded, orange) whose endpoints are amongst the ancestors of vertices of H or Up ¢.

|

7 g; by monotonicity,
5w UT) =1) < 7w UT) =1). (5.5)

The distribution 7 p is a product measure over the 7;;’s with boundary condition (1, ) in each 7;; (recall
that this boundary condition wires all leaves 07;; together with the root of 7;;). Hence, since I" and I" are
such that, for each 7 > 0, v; and fyl’- belong to distinct subtrees ﬂjw 7;]-4 of the forest F;, and we have

k k
FpWTUr) =1) = [Tn o [T =5, ().
i=0 i=0 ¢

Let h; = d;41 —d; be the height of the trees in F;. We deduce from Lemma 5.1 that there exists a constant
A(p,q,A) > 0 such that uniformly over I", T”,

k
apw@ UT) =1) < A2 ] p* < A2Ep2Ral)
=0

Plugging this bound into (5.4)—(5.5), we obtain
75 (The) < KX((2L)(2")p AP 5",
from which the required (5.3) follows. ]
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Remark 5.6. A matching lower bound of Q(p??) for the decay rate in Proposition 3.3 is easy to construct
by e.g., taking the K-Sparse boundary conditions £ that wires two leaves wy, ws on distinct sub-trees of
v, and the free boundary conditions ¢’ = 0 on 7z. The event that the root is connected to w; and its
corresponding child is connected to w- has probability at least Cp*®* by Lemma 5.1 and the FKG inequality
(see e.g., [31]). On this event, the probability that the edge incident v down towards ws is open is p under
the boundary condition £ and p under £ = 0.

6. PROOF OF FAST MIXING

In this section, we combine the results of Sections 4-5 to conclude the proof of Theorem 1.1. As indicated
in Section 3, the analysis of Sections 4-5 reduce the mixing time of the FK-dynamics on a random graph
to understanding the convergence to equilibrium on O(1)-Treelike balls of volume O(n%_‘s) with O(1)-
Sparse boundary conditions. In Section 6.1, we recall the log-Sobolev inequality and comparison bounds
for the log-Sobolev constant under different boundary conditions. In Section 6.2, we bound this log-Sobolev
constant via straightforward comparison to a product chain. Then in Section 6.3, we proceed to combine all
of the above ingredients to deduce the proof of Theorem 1.1 using the censoring inequalities of [46].

6.1. Mixing time preliminaries. Let us recall some standard tools to help us bound the rate of convergence
to equilibrium of the FK-dynamics on treelike balls with sparse boundary conditions.

Log-Sobolev inequalities. Recall, for a Markov chain with transition matrix P, the Dirichlet form

N =y Y w@)PW)(f) — W), 6.1)

w,w'€{0,1}F

for f : 2 — R. Then the log-Sobolev constant is given by

a(P):= _min EUS) where Ent.[f?] =E.|f?log

 7Ent, [f2]0 Entr[f2]

f2
cargl)

As such, a log-Sobolev inequality takes the form £(f, f) > ~-Ent.[f?] for all f. A log-Sobolev inequality
is stronger than a mixing time bound, in the sense that it implies exponential convergence with rate -y in total-

variation distance from the stationary distribution. This is captured by the following standard fact (e.g., a
proof in the discrete time setting we consider follows immediately from Lemma 2.8 and Eq. (2.10) of [3]).

(6.2)

Fact 6.1. Consider an ergodic finite state Markov chain (X;)¢>o with transition matrix P reversible with
respect to stationary measure 7. If the chain has a log-Sobolev constant « = «(P), then for every v < a,

max ||[P(X;° € ) — 7ty < e_Vt/2<log;)l/2
20€Q t = mingeq () '

Boundary condition comparisons for the FK-dynamics. The following formalizes the notion that sparse
boundary conditions are “close to free”, and allows us to compare the induced mixing time on balls with
sparse boundary to those with free boundary.

Definition 6.2 (Definition 2.1 of [6]). For two boundary conditions (partitions) ¢ < ¢', define D(¢, ¢') :=
c(¢) — c(¢") where ¢(¢) is the number of components in ¢. For two partitions ¢, ¢’ that are not comparable,
let ¢ be the smallest partition such that ¢” > ¢ and ¢" > ¢" and set D(¢, ¢') = c(¢p)—c(¢”)+c(¢')—c(d”).

Lemma 6.3 (Lemma 2.2 of [0]). Let G = (V, E) be an arbitrary graph, p € (0,1) and ¢ > 0. Let ¢ and
@' be two partitions of V encoding two distinct external wirings on the vertices of G. Let Wg, Trg be the
resulting random-cluster measures. Then, for all FK configurations w € {0, 1}E, we have

q—2D(¢7¢')7r2 (w) < wg(w) < q2D(¢’¢l)7r?: (w).

From Lemma 6.3, and the definition of the Dirichlet form, (6.1), we deduce the following.
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Corollary 6.4. Let G = (V, E) be an arbitrary graph, p € (0, 1) and q > 0. Consider the FK-dynamics on
G with boundary conditions ¢ and ¢/, and let Ego, £y denote their Dirichlet forms, respectively. Then

g APOINE W (f, f) < Eqo(fo F) < POV (f, ), forall f:{0,1}F - R.

Together with Corollary 6.4 and Lemma 6.3 again, this controls the change in both log-Sobolev con-
stant (6.2), and mixing time, under two boundary conditions with distance D(¢, ¢').

6.2. Local mixing: fast mixing on treelike graphs with sparse boundary conditions. In this section
we establish a bound for the speed of convergence of the FK-dynamics on L-Treelike balls with K-Sparse
boundary conditions (see Definitions 2.1 and 4.1). Our goal is to prove the following lemma.

Lemma 6.5. Suppose Br(v) is L-Treelike. Let & be a K -Sparse boundary condition on 0 Bgr(v). For every
p € (0,1) and q > 0, the log-Sobolev constant of the FK-dynamics on Br(v) with boundary condition & is
Q| E(Br(v))|") = Q(d~").

Lemma 6.5 follows by comparing log-Sobolev on an L-Treelike ball with K -Sparse boundary to a tree
with K -Sparse boundary conditions, whose log-Sobolev constant is bounded by comparison to a product
chain. We first note the following bound on the log-Sobolev constant on trees with sparse boundaries.

Corollary 6.6. There exists c(p,q) > 0 such that the following holds. For every rooted (not necessarily
complete) tree T, = (V(Ty), E(Ty,)) of depth h and degree at most A, and every K-Sparse boundary
condition ¢ on Ty, the log-Sobolev constant of the FK-dynamics on Ty, with boundary conditions ¢ is at
least cq6K|E(7A71)|71.

Proof. Consider the FK-dynamics on 75, under the free boundary conditions. In this case, the random-cluster

measure is a Ber(p) product measure and thus the log-Sobolev constant of the FK-dynamics is ¢|E(75)] -

for some ¢(p, q) > 0; see, e.g., [17]. The result then follows from Lemma 6.3 and Corollary 6.4. ]

To move from mixing on an L-Treelike ball to mixing on a tree, the following fact will be useful.

Fact 6.7. Let G be a subgraph of G' such that V(G) = V(G') and E(G) C E(G'); let H = E(G')\ E(Q).
Suppose ¢ is a boundary condition on G, G’ such that for every e € H, the endpoints of e are wired in ¢.
Foreveryp € (0,1) and q > 0, let P and Pgy be the transition matrices of the FK-dynamics on G and G',
respectively, with boundary conditions ¢, and let a(Pg) and o(Pgr) be their log-Sobolev constants. There
exists a constant ¢(p) > 0 such that

. |E(G)] c|H|
oPer) 2 mm{mw | “<PG>’w<G>r+|H|} |

Proof. The FK-dynamics on G is a product Markov chain on {0, 1}(%) x {0, 1} with stationary distri-

bution wg, = Wé ® HLﬂ v, where (v;)1<;<| g are independent Ber(p) distributions over edges in H. The
result then follows from the tensorization of the log-Sobolev inequality (e.g., [47, Lemma 2.2.11]). g

We can now combine the above ingredients to deduce the bound of Lemma 6.5.

Proof of Lemma 6.5. Let B = Br(v) and let H C E(B) be a set of at most L edges such that (B, E(B) \
H) is a tree. Consider the tree Tz = (V(B), E(B) \ H) and let ¢ be the boundary condition that includes
all the connections from £ and adds wirings between w and w’ for every edge ww’ € H.

Corollary 6.6 implies that the log-Sobolev constant for the FK-dynamics on Tr with boundary condition
¢ is at least cqfs(KﬁLL)]E(’f‘R)F1 for some ¢(p,q) > 0. We then get from Fact 6.7 that the log-Sobolev
constant for the FK-dynamics on B with boundary condition ¢ is at least ¢c¢®**+5)|E(B)|™!. Lemma 6.3

and Corollary 6.4 then imply that the log-Sobolev constant on B with boundary conditions £ is at least
cq6K+12L\E(B)|_1. U
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6.3. Proof of Theorem 1.1: upper bound. Fix p < p,(q,A), lete = 1 — pd (positive when p < p,,) and
fix 4 > 0 small enough (depending on &, A) such that

20+ (1 —26)logy(l —¢) <0,
in which case the following is polynomially decaying in n:
nﬁ(1725) loggn _ nd(*1+25) logdn(l _ E)(1726) loggn _ n25(1 - 6)(1725) logyn ) 6.3)

Let R = (% — d)log,n and let K be a constant sufficiently large (depending on p, ¢, A) that both Fact 2.3
and Theorem 4.3 hold for (K, R). For each ¢, let I'; be the set of A-regular graphs on n vertices having

'y ={G:Gis (K, R)-Treelike} N {G : P(Xét is (K, R)-Sparse) > 1 —n"2}.

By Fact 2.3 and Theorem 4.3, there exists Co(p, ¢, A) such that if 7" = Cynlogn, then Prrg(I'7) < o(1).
It suffices for us to prove that the mixing time of the FK-dynamics on any G € T'r is O(nlogn).

Fix any G € I'r and for every configuration w on E(G), let Xj’ = X¢, be the FK-dynamics chain on G
initialized from X§ = w. Couple the family of chains ((X}");>0),,c {0,1}E(©) using the grand coupling as in
Definition 4.8: recall that this is the coupling that in each step picks the same random e € E(G) to update,
and the same uniform random variable U, ; on [0, 1] to decide the next state on the edge e. As mentioned
earlier, this coupling is monotone when ¢ > 1 so that for every ¢ > 0, if X¢ < X', then X "1 < th+1

It follows from the definition of taix and monotonicity of the grand couphng (see e.g., [40]), that it
suffices for us to show that there exists C (p, q, A) such that if T =T+ Cnlogn,

P(X} # X2) < i.

By a union bound over the n edge-neighborhoods N,, (edges of G incident v), this reduces to showing

sup P(X1(NL) # X2(N)) < 4i (6.4)
veV(G)
Now fix any such v and consider the probability above. For ease of notation, let B, = Bg(v) and BS =
E(G)\ B,. Introduce two new Markov chains Y;! and Y,° that are coupled via the grand coupling to X}, X}
except that they censor (ignore) all updates on edges of B after time 7' = Cynlogn. The censoring
inequality [46, Lemma 2.3] implies the stochastic relations Y;' = X} and ;" < X} for all t > 0 and thus

P(XHNG) # XPVG)) < & sup B(X ) # XP(e)) < A sup [P(¥(¢) = 1) ~ B((e) = 1))

Fix any e € N, and consider the dlfference in probabilities on the right-hand side. Let & be the event
(measurable with respect to the first 7" steps of the Markov chain) that the boundary conditions induced by
X:},(Bg) are K -Sparse. Observe that K -sparsity of a boundary condition is a decreasing event, so that on
&r, the boundary conditions induced by X%(Bf)) are also K -Sparse. As such, forall ¢t > T,

P(Y!(e) =1) =P(Y(e) = 1) (6.5)

<P(&) + sup P(Y)!(e) = 1| Y7(B}) = ¢') = P(Y(e) = 1 | YP(B]) = ¢°).

#0061 €{0,1} B
¢l is K—Sparse; o9 <!

Since G € I'p, and le = X%, the first term is at most n 2. Turning to the second term, fix any two

configurations ¢!, ¢ on B¢ such that ¢° < ¢! and ¢! (and therefore also ¢°) induce K-Sparse boundary
conditions on B,,, and consider the difference

P(Yryo(e) = 1] Yp(B)) = ¢') — P(Yp,(e) = 1| Yp(Bg) = ¢")
< [P(Y7i4(e) =1 Y7(B)) = ¢') —mg(w(e) =1 |w(B]) =¢')| (6.0
+mg(w(e) = 1| w(Bg) = ¢') — mg(w(e) = 1 | w(B}) = ¢°)] (6.7)
+[P(Y7 u(e) = 1| Y7(B)) = ¢°) — mg(w(e) =1 | w(B;) = ¢")]. (6.8)
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Observe that Y7} +5(By) is distributed as a lazy FK-dynamics chain Z! on B, with boundary conditions
induced by ¢!, initialized from the random configuration Z}(B,) = Y} (B,): the laziness is in the choice
that at each step, Z. makes an FK-dynamics update on B, with probability |E(B,)|/|E(G)| and makes no
update otherwise. The analogous statement holds for ng . 4(By) with respect to some lazy chain Z9. The
invariant measure of Z! is easily seen to be

g(W(By) € - | w(BS) = ¢Y) =74,

and the analogous statement holds for Z0.
Now let T' = T+ S where S = Cnlogn for a constant C' to be chosen sufficiently large depending on
D, q, A. The expected number of updates in B, between time T and T 4 S is

- |E(By)|
1 .
Cnlogn E(Q)]

Let C1(p, g, A, K) be a constant such that the 2(d~) bound on the log-Sobolev constant guaranteed by
Lemma 6.5 (with the choice of L = K) is at least C'; Lq—R_ For any Co, if Cis sufficiently large, a Chernoff
bound (namely (4.6) applied to Bin(S, |E(B,)|/|E(G)|)) implies that with probability 1 — o(n2), at least
C1C,|E(B,)|log n updates are made in E(B,) between times T’ and 7. By K -sparsity of ¢!, Lemma 6.5,
and Fact 6.1, the term in (6.6) is bounded by

> 2ALC|E(B,)|logn.

1 exp ( - C102|E(BU)| 10g’l’L>
log min, 7(w) 2C3|E(By)|
< O(\/ﬁ) . e—Cng logn/(2C3) + O(TL_2),

1 —
IP(ZL(By) € ) — 75 v < o(n~2)

for some C5(p, g, A); we thus have for Cy sufficiently large (and therefore C sufficiently large), that this is
at most o(n~2). By the same reasoning, by K -sparsity of ¢°, the same bound applies to (6.8).
Finally, since both ¢! and ¢ induce K -Sparse boundary conditions on B,,, by Proposition 3.3 there exists
a constant C'(p, ¢, A, K') > 0 such that (6.7) is at most
1 0 .
75, (@WNL) € ) = 75, (w(No) € )y < PR,
which is o(n 1) by our choice of § and (6.3). Putting these three bounds together we see that as long as C
is sufficiently large (depending on p, ¢, A) the difference in (6.5) is o(n‘l), from which the bound of (6.4)
follows for n sufficiently large, concluding the proof. (|

7. MATCHING LOWER BOUND ON THE MIXING TIME

In this section, we show a matching Q(n logn) lower bound on the mixing time of the FK-dynamics on
a random A-regular graph and thus complete the proof of Theorem 1.1 from the introduction. A general
lower bound for the mixing time of the Glauber dynamics on spin systems was show in [35]. However, the
non-locality of the FK-dynamics complicates extending the ideas from [35] to the random-cluster setting.
In [8], the argument from [35] was adapted to the random-cluster model on Z? when p # p.(q), but the
amenability of Z? together with the exponential decay of connectivities at p < p.. was key to this extension.

In our setting, the non-amenability of the random A-regular graph prevents us from bounding the speed
of disagreement percolation under couplings of the FK-dynamics and implementing the argument of [35]
directly. Instead, we use the locally treelike structure of the random A-regular graph to directly couple a
projection of the model on a certain set of n® edges to a product measure on n® edges, for which the coupon
collector problem gives an immediate lower bound.

Claim 7.1. With Pygg-probability 1 — o(1), G is such that there exist n/5 vertices whose balls of radius
% log, n are disjoint, and are trees.
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Proof. Per (4.2), it suffices to prove the above under P¢y. We prove the claim by repeated application of
Lemma 4.16. Namely, consider the procedure where we repeatedly take an arbitrary vertex v that has not
been discovered yet, and reveal its ball of radius R. Let v; be the ¢’th vertex to be selected in this procedure,
and let A; be |J;<; E(Bg(v;)). Then, for integer m < n the probability that (Bg(v1), ..., Br(vn)) are
disjoint trees, is at least

m
1— ZPCM(BR(W) N Ai—1 =0 or Br(v;)isnotatree | A;i_1) .
i=1
By Lemma 4.16 (using the fact that each v; ¢ V (A;_1) so that B%*(v;) = Br(v;)) each of the summands

is at most O(md?f/(n — O(md®))). Taking R = dlog,n and m = n’, we see that the sum above is at
most O(n* /(n — O(n*)) which is o(1) as long as § < 1. O

Fix ¢ € (0,1/5) to be taken sufficiently small later. For every G having nl/b many vertices whose balls
of radius % log; n are disjoint trees, choose arbitrarily some n® vertices amongst the n1/5 of Claim 7.1, and
for each vertex collect a representative edge incident to it to form the set C = C.(G). Our proof will rely on
a coupling of the restrictions of X; g and 7g to C to Ber(p) product chains. For this, let:

(1) Xy = X; g be arealization of the FK-dynamics;
(2) Y; = Y; g be a realization of the FK-dynamics that censors all updates in E(G) \ C;
(3) v as the product measure over |C| many Ber(p) random variables.

As before, let Y;O be the chain Y} initialized from the all-0 configuration.

Lemma 7.2. Let G be a graph with at least nl/> vertices whose balls of radius % log, n are disjoint trees.
For every q > 1, integer A > 3, and p < py(q, D), there exists € > 0 sufficiently small such that we have
the following for C = C.(G):

(1) Forallt <T = O(nlogn),

IP(X7(C) € ) = P(Y(C) € )llv < o(1).

(2) [Img(w(C) € ) = vllrv < o(1).
Proof. We start with part (1). Our aim is to show that under the grand coupling of X and Y,?, for every
t <T = O(nlogn), we have P(X? # Y,”) < o(1). Under the grand coupling, let 77 = (t1,2, ..., ts(1))

denote the sequence of times on which the updated edge is in C, so that s(7") counts the number of updates
in C by time T". We can then bound

(XD # Y7) < B(s(T) > n*) + P(X{ # Y2, s(T) < n*).

The first term on the right-hand side is at most the probability that Binom(7',|C|/|E(G)|) > n? which is
0(1) by the Chernoff bound (4.6). It thus suffices to work on the event s(T) < n?.

Let R := %logd n and let Z; be the FK-dynamics chain (coupled to X, Y¥; through the grand coupling)
that freezes the configuration on CU (E(G) \ U, E(Br(€))) to be all-1. Let Z{ be the chain Z; initialized
from the configuration that is all-0 on | J,.. E(Bg(e)) (but all-1 on the frozen edges). Observe, trivially,
that X < Z? for all t > 0. Also, observe that the updates of Z) are stochastically dominated by Glauber
updates on the union of 2|C| many d-ary trees (7¢.1, Tc,2)eec of depth R, rooted at the endpoints of the edges
of C, and each having (1, ©) boundary conditions. By the monotonicity of the FK-dynamics, for all ¢ > 0,

we have that
P(Z?( U {EBr(e)\ {e}}) € ) =R Q 7.1)
ecC

e€C ic{1,2}

For each time ¢; € J7, when an edge e;, € C is updated, Y;?(eti) is drawn from Ber(p). At the same
time, X? (e,) is drawn from Ber(p) if the endpoints of e;, are not connected in X7, which in turn must
occur if none of (7¢,1, 7¢,2)ecc have an open root-to-leaf path in Z9, as X,? < Zto.
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By the stochastic domination of (7.1) on Z7, and Lemma 5.1, the probability that the endpoints of e;, are
connected in Z is at most 2C(pd)”; for ¢ sufficiently small (depending on p, ¢, d), the above is O(n~3).
On the event that {s(7T") < n?*}, we can union bound the above probability over the s(T’) times in 7, to
find that P(X) # Y}, s(T) < n?®) is at most O(n~%) = o(1) as desired.

For part (2), consider the 2|C| many d-ary trees (7c 1, 7c2)ccc emanating from the endpoints of the
edges of C. Notice that if none of (7 1,7c2)cec have an open root-to-leaf path, then the values w(C)
are conditionally distributed as a product of Ber(p) random variables, i.e., w(C) would conditionally be
distributed as v(A).

As such, the total-variation distance ||7g(w(C) € -) — v||rv is bounded by the mg-probability that one of
(Te1, Te2)ecc has an open root-to-leaf path. By the stochastic domination

row(JTaUTen) €) 2@ @ .

ecC ecC ie{1,2}

By a union bound, the mg-probability that one of (7¢ 1, 7¢,2)cec has an open root-to-leaf path is at most

> 2 m ew 0Ty,

ecC ic{1,2}

which by Lemma 5.1 is at most 2n° - C'(pd) . For ¢ sufficiently small (depending on p, ¢, d) this is o(1). O

Proof of Theorem 1.1: lower bound. Take any n-vertex graph G with n/5 many vertices whose balls of
radius % log; n are disjoint trees. Note that by Claim 7.1, such graphs have Prgg-probability 1 — o(1). Take

¢ sufficiently small per Lemma 7.2. Consider the event AT C {0, 1}€ that at least pn° — n2e/3 of the edges

in C are open. Let (Y5) be the standard product chain over |C| = n° many i.i.d. Ber(p) random variables,
coupled to Y;(C) via Y,y = Y;(C) for all ¢, where s(t) counts the number of updates in C by time ¢. By
item (1) of Lemma 7.2, for every T' = O(nlogn),

P(X2(C) € AT) <P(s(T) > enlogn®) + P(Y2 € AT, s(T) < enflogn®) + o(1)

<P(s(T) > en®logn) +  sup P(?g € AT) +o(1).

s<cnflogn

Taking 7' := c?>nlogn® = O(nlogn) for ¢ > 0 sufficiently small, the probability that s(7") is more than
enf logn® is o(1) by the Chernoff bound (4.6). Turning to the middle term above, by the standard coupon
collector bound, for every ¢ > 0 sufficiently small,

sup P(Ye AT) <o(1).

s<cns logn®
Combining the above, we obtain
P(X2(C) € AT) = o(1).
At the same time, by a Chernoff bound,
V(AT) = P(Bin(n®,p) > pn° —n*/3) =1 - 0(1),
so that by item (2) of Lemma 7.2, we have mg(A") = 1 — o(1). This implies the mixing time is at least

T = Q(nlogn) as claimed. H
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