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ABSTRACT

We study the mixing time of the Swendsen—Wang dynamics for the
ferromagnetic Ising and Potts models on the integer lattice Z¢. This
dynamics is a widely used Markov chain that has largely resisted
sharp analysis because it is non-local, i.e., it changes the entire
configuration in one step. We prove that, whenever strong spatial
mixing (SSM) holds, the mixing time on any n-vertex cube in 74 is
O(log n), and we prove this is tight by establishing a matching lower
bound. The previous best known bound was O(n). SSM is a stan-
dard condition corresponding to exponential decay of correlations
with distance between spins on the lattice and is known to hold in
d = 2 dimensions throughout the high-temperature (single phase)
region. Our result follows from a modified log-Sobolev inequality,
which expresses the fact that the dynamics contracts relative en-
tropy at a constant rate at each step. The proof of this fact utilizes
a new factorization of the entropy in the joint probability space
over spins and edges that underlies the Swendsen-Wang dynamics,
which extends to general bipartite graphs of bounded degree. This
factorization leads to several additional results, including mixing
time bounds for a number of natural local and non-local Markov
chains on the joint space, as well as for the standard random-cluster
dynamics.
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1 INTRODUCTION

The ferromagnetic Potts model is a classical spin system in statis-
tical physics and theoretical computer science. It is specified by a
finite graph G = (V, E), a set of spins (or colors) [q] = {1,...,q},
and an edge weight or inverse temperature parameter > 0. A con-
figuration o € Q = {1,...,q}" of the model assigns a spin value
to each vertex v € V, and the probability of finding the system
in a given configuration ¢ is given by the Gibbs (or Boltzmann)
distribution

(o) = 4G, 5(0) = 7 exp(-HID(O)), 1y

where D(0) := {{v,w} € E : 0, # oW} is the set of edges whose
endpoints have disagreeing spins in ¢ and

Z:= ), exp(-fID(o))
geQ
is the normalizing factor or partition function. Note that this model
is ferromagnetic, in the sense that neighboring spins tend to align
with each other. The Ising model of ferromagnetism is exactly the
case q = 2.

We focus on the classical setting where G is a subgraph of the
infinite d-dimensional lattice Z¢. We will mostly restrict attention
to the case where V = {0, . .. ,é’}d is a cube, but our results can be
extended to more general subgraphs of Zd; see Remark 2.2. In fact,
our main technical contributions apply to general bipartite graphs
of bounded degree.

A popular Markov chain for sampling from the Gibbs distribution
(1.1) is the Swendsen—-Wang (SW) dynamics [45], which utilizes
the random-cluster representation of the Potts model to derive a
sophisticated non-local Markov chain in which every vertex can
update its spin in each step. From the current spin configuration
o(t) € Q, the SW dynamics generates o(t + 1) € Q as follows:

(1) Let M(a(2)) = E\ D(a(1)) = {{v,w} € E: 0p(t) = ow(D)}

be the set of monochromatic edges of G in o(t).
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(2) Independently for each edge e € M(o(t)), retain e with prob-
ability 1 — exp(—p) and delete it otherwise, resulting in the
subset A(t) € M(o(t)). (This is equivalent to performing
bond percolation with probability 1 — exp(—f) on the sub-
graph (V. M(a(1))).

(3) For each connected component C in the subgraph (V, A(t)),
independently choose a spin s¢ uniformly at random from
[q] and assign s¢ to all vertices in C, yielding o(t + 1) € Q.

The Swendsen-Wang dynamics is ergodic, and has (1.1) as its sta-
tionary distribution; see [19] for a proof.

This non-local dynamics was originally proposed as an algorithm
for sampling at low temperatures, where the space of configura-
tions is partitioned into g “phases” (in each of which one of the g
spins dominates). Unlike the standard Glauber dynamics, the local
Markov chain that updates the spin of a single, randomly chosen
vertex at each step, the SW dynamics can flip large regions of spins
in a single step allowing it to jump between phases. Even at high
temperatures, where the Glauber dynamics is fast, the SW dynam-
ics provides a powerful alternative sampling algorithm since one
can efficiently parallelize its global steps.

In this paper, we are interested in the speed of convergence
of the SW dynamics to stationarity, and in particular its mixing
time. The mixing time captures the convergence rate in total varia-
tion distance of a Markov chain from the worst possible starting
configuration and is the most standard measure of the speed of
convergence. Results proving tight bounds for the mixing time of
the SW dynamics are rare, and are limited to very special classes of
graphs, such as the complete graph and trees [8, 21, 29, 32], or to
very high temperatures [39, 43]. Most bounds for the mixing time
of the SW dynamics are derived by comparison with the Glauber
dynamics [46], and are consequently often very far from sharp. We
also know of multiple examples where the mixing time of the SW
dynamics is exponential in the number of vertices of the graph; see,
eg., [8, 11, 12, 21-23].

There is a long line of work studying the connection between
spatial mixing (i.e., decay of correlations) properties of Gibbs dis-
tributions and the speed of convergence of Markov chains (see,
e.g., [1, 14, 18, 28, 36, 37, 42, 44, 47]). These results focus on local
Markov chains, such as the Glauber dynamics, but there has also
been some recent progress in understanding this connection for
non-local Markov chains such as the SW dynamics [5, 6, 13]. In
particular, it was established in [5] that the strong spatial mixing
(SSM) property implies that the mixing time Tpjx(SW) of the SW
dynamics is O(n), where n := |V| is the number of vertices.

SSM is a standard formalization of decay of correlations in spin
systems and, roughly speaking, expresses the fact that the corre-
lation between spins at different vertices decreases exponentially
with the distance between them. More precisely, given a pair of
fixed configurations ¢ and ¥, on the boundary of V such that ¢
and 1, differ only in the spin of the vertex u, the effect on the
(conditional) marginal distribution at a set B C V decays exponen-
tially with the distance between B and the disagreement at u; see
Section 2 for a precise definition. Our main algorithmic result in
this paper is that the mixing time of the SW dynamics is in fact
O(log n) whenever SSM holds, and this is tight.
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TuEOREM 1.1. In an n-vertex cube of Z¢, for all integer g > 2, SSM
implies that for all boundary conditions Tyix(SW) = O(log n).

We recall that a boundary condition t for the Potts model is a
fixed assignment of spins to the boundary of V; in the presence
of a boundary condition, we consider the Gibbs distribution on V'
conditional on the assignment 7 on the boundary of V. The case
where there is no boundary condition is known as the free boundary
case and is also covered by our results.

In Z?2, SSM is known to hold for all g > 2and all § < B.(q), where
Bc(q) = In(1 + +/q) is the uniqueness threshold [2, 3, 38]. Therefore,
we obtain the following immediate corollary of Theorem 1.1.

COROLLARY 1.2. In an n-vertex square region onz,for allg > 2,
all p < Pc(q) and all boundary conditions, we have Tyix(SW) =
O(log n).

The best previous bound in the setting of Corollary 1.2 was
Tinix(SW) = O(n) and follows from the results in [5]. Nam and Sly
[43] recently proved an O(log n) mixing time bound (as well as
the cutoff phenomenon) for the periodic boundary condition for
sufficiently high temperatures (f < f.(q)), a stronger assumption
than SSM. In higher dimensions d > 3, SSM is not known to hold
up to the corresponding uniqueness threshold (it is only known for
sufficiently small f; see [35]), but we expect the SW dynamics to
be rapidly mixing throughout the high temperature regime for all
d>3.

The key to our improved mixing time analysis is a novel fac-
torization of entropy based on the joint probability space of spins
and edges that underlies the SW dynamics. This factorization im-
plies that the relative entropy decays at a constant rate, which
in turn implies a tight bound on the mixing time via a modified
log-Sobolev inequality. In contrast, previous bounds for the SW dy-
namics [5, 6, 9, 25, 46] have used the spectral gap, which inherently
loses a factor of O(n) when transferred to mixing time bounds and
cannot deliver a tight result. We discuss our new technique and its
ramifications in the next subsection.

A priori the correct order of the mixing time of the SW dynamics
is unclear. In some settings, such as on the complete graph (the
mean-field Potts model) for all § below the uniqueness threshold,
the dynamics mixes in ©(1) steps [21, 32]. In this paper, to comple-
ment our main result of an O(log n) upper bound, we also establish
a lower bound of Q(log n) for all boundary conditions whenever
SSM holds. To prove our lower bound, we follow the strategy intro-
duced by Hayes and Sinclair [26], who proved a tight lower bound
on the mixing time of the local Glauber dynamics. However, the
synchronicity and non-locality of the updates in the SW dynamics
presents a significant obstacle to the adaptation of their techniques
and some new ideas are required. The main novel ingredient in
our proof of the lower bound is an analysis of the speed of propa-
gation of disagreements under a coupling of the steps of the SW
dynamics, provided SSM holds. To establish this we use a recent
breakthrough result of Duminil-Copin, Raoufi, and Tassion [17]
establishing exponential decay of correlations (i.e., weak spatial
mixing) in the entire high-temperature phase for the Potts model
on Z4. We believe that our analysis of the speed of disagreement
propagation could be useful for establishing lower bounds for the
mixing time of SW dynamics in other settings.
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Our methods also provide new results for the low-temperature
regime > fBc(q) in Z? for specific boundary conditions. We say
that a boundary condition 7 is monochromatic if 7 fixes the spin of
every boundary vertex to the same color. One of the most funda-
mental open problems in the study of the Glauber dynamics for the
Ising and Potts model concerns the mixing time at low temperatures
with a monochromatic boundary [33, 40]. We provide new bounds
for the mixing time of the SW dynamics in this setting.

THEOREM 1.3. In an n-vertex square region of Z2, for all ¢ > 2
and all f > Pc(q) we have Tyix(SW) = O(nlogn) for the free or
monochromatic boundary condition.

The best previously known bound for the mixing time of the
SW dynamics in an n-vertex square region of Z? when f > fc(q)
was O(n?log? n), which follows from the results in [9, 46]; see
also [34] for better (sub-linear) bounds for the mixing time when
q =2 and f > Bc(q). The bound in Theorem 1.3 is likely not tight,
and establishing that the SW dynamics mixes in O(log n) steps in
7? throughout the low-temperature regime remains an important
open problem. Furthermore, our result for low temperature with a
monochromatic boundary does not extend to higher dimensions
d > 3, since it crucially uses the self-duality for the associated
random-cluster distribution on Z2. For the Ising model with d > 3,
the state of the art seems to be the results from [34] for § > f.(q).

1.1 A New Analytic Tool

A standard tool for the analysis of Markov chains are comparison
inequalities, which relate the spectral gap of a chain of interest to
that of some simpler chain that has already been analyzed. This
approach has proven particularly useful for analysis of the SW
dynamics; indeed, some of the currently best known upper bounds
on its mixing time are obtained in this manner [5, 6, 9, 25, 46]. As
mentioned earlier, this approach is unable to yield tight bounds on
the mixing time of the SW dynamics since bounds obtained via the
spectral gap inherently introduce a factor log(1/u.) = Q(n) into
the mixing time, where px = ming pi(o).

A potentially more powerful approach is to compare instead the
(classical) log-Sobolev constants (see Definition 2.6). This yields
mixing time bounds with only a loglog(1/p+) = O(logn) depen-
dence on 1., which is potentially tight. Unfortunately, however,
log-Sobolev inequalities are not tight for the SW dynamics, and
the best possible mixing time bound obtained in this way would
be O(n) (see Remark 3.2 for details).

A modified log-Sobolev inequality (which essentially bounds the
rate of decay of relative entropy; see again Definition 2.6) is a strictly
weaker (and hence easier to satisfy) inequality than the classical
log-Sobolev inequality, but still strong enough to establish mixing
time bounds with the same dependence on p.. There have been
several notable recent results bounding the modified log-Sobolev
constant for various Markov chains [15, 27]. However, there are
no prior results addressing the modified log-Sobolev constant for
the SW dynamics and, more generally, no comparison inequalities
are available for the modified log-Sobolev constant. In this paper,
we develop new machinery that essentially allows us to compare
the modified log-Sobolev constant of the SW dynamics with that
of a much simpler dynamics, and hence obtain tight mixing time
bounds. This comparison is at the level of entropy factorization
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rather than the modified log-Sobolev constant itself, as we now
describe.

Approximate factorization of the entropy of the Gibbs distribu-
tion p with constant C says that, for any nonnegative function
Q- R4,

Ent,(f) <C Z p[Enty ()],

veV

where 4lf] = oo u(0)f(0) and Enty(f) = ulf log(f/ul D]
are the expectation and entropy, respectively, of f with respect to p,
and Enty, is the entropy with respect to the conditional distribution
at vertex v given the spins of its neighbors. Note that necessarily
C > 1,and C = 1 when p is a product measure. (The term“constant”
here indicates that (1.2) holds for fixed C, independent of f. In most
applications, C will in fact be a constant independent of the size of
the underlying graph G; we will write C = O(1) to indicate this.)
Approximate factorization with C = O(1) played a central role in
classical results proving that SSM implies O(nlog n) mixing time
of the Glauber dynamics; see, e.g., [14, 37, 44, 47].

Until recently it was unclear how to apply this approach to more
general Markov chains. However, in a very recent paper, Caputo
and Parisi [13] took an important step in this direction by extending
the above factorization as follows:

(1.2)

DEFINITION 1.4. For a spin configuration o on a bipartite graph G,
let o (respectively, oo ) denote the spins on the even (respectively,
odd) side of the bipartition. We say that approximate even/odd fac-
torization with constant C holds if for all functions f : Q — Ry,

Enty (f) < C(u [Enty(flog)] + u [Entu(floo)].

To clarify the meaning of the inequality (1.3), we use the notation
Ent,(f|og) for the entropy of f with respect to the conditional
probability u(-|og), that is, the Gibbs measure conditioned on a
given realization of the even spins o, with similar notation for odd
spins. In particular, taking expectations one has

p [Enty(flog)| = ulf log(f/ulfloD],
# [Enty(floo)] = ulf log(f/ulflooD].

Caputo and Parisi [13] showed that for spin systems on 74, under
the SSM assumption, approximate even/odd factorization holds
with C = O(1), and used this fact to establish a tight mixing time
bound for “block dynamics” in Z¢, a generalization of Glauber
dynamics in which a randomly chosen block of spins (rather than
a single spin) is updated in each step.

Our main analytic tool in this paper establishes that, on any
bounded degree bipartite graph, even/odd factorization is in fact
sufficient to ensure O(log n) mixing time for the much more com-
plex SW dynamics. Note that SW is very far from a block dynamics,
in that the configurations of multiple, dynamically changing clus-
ters of spins are updated simultaneously in each step.

1.3)

THEOREM 1.5. For all constant A, for any bipartite graph of maxi-
mum degree A, if the Gibbs distribution satisfies approximate even/odd
factorization with C = O(1) then the mixing time of the Swendsen—
Wang dynamics is O(log n).

We remark that Theorem 1.5 holds for arbitrary boundary con-
ditions (or pinnings of vertices) of the bipartite graph, and thus



STOC ’21, June 21-25, 2021, Virtual, Italy

Theorem 1.1 for the lattice Z¢ follows immediately from this theo-
rem and the above mentioned results in [13].

The main technical step in the proof of Theorem 1.5 is to show
that even/odd factorization implies a novel spin/edge factorization
of entropy (see Defintion (1.6) below), which is tailored to the SW
dynamics so that it implies O(log n) mixing fairly directly.

1.2 The Spin/Edge Factorization

Our new entropy factorization is based on the joint probability
space on spins and edges introduced by Edwards and Sokal [19],
that underlies the SW dynamics. Let Q; = Q X {0, 1}E be the set of
joint configurations (o, A) consisting of a spin assignment to the
vertices 0 € Q and a subset of edges A C E, where recall that E
is the set of edges with both endpoints in V. The Edwards-Sokal
distribution on G with parameters p € [0,1] and g € N, and free
boundary condition, is the probability measure on Q; given by

v(o, A) = Ziplf”(l - p) Bl ~ 4), (1.4)
7

where 0 ~ A means that A € M(o) (i.e., that every edge in A is
monochromatic in o) and Zj is the corresponding normalizing con-
stant or partition function. When p =1 — e P the “spin marginal”
of v is precisely the Potts distribution p and Z = Zj; the “edge mar-
ginal” of v corresponds to the well-known random-cluster measure;
see [20, 24]. The SW dynamics alternates between spin configu-
rations and joint spin/edge configurations in a manner consistent
with (1.4).

We note that a boundary condition on the joint space allows
fixing the state of both spins and edges and thus may introduce
more complex dependencies. While our results in the joint space
are stated here only for the free boundary condition, they actu-
ally extend to any spin-only boundary condition. By a “spin-only”
boundary condition we mean any boundary condition that fixes
the spins of a subset of vertices, and fixes no values for the edges.
In fact, in Z4, we can handle a slightly more general class of bound-
ary conditions we call admissible (see Definition 4.1) which will be
useful for proving Theorem 1.3 and our results for random-cluster
dynamics.

Our entropy factorization for the SW dynamics is defined as
follows.

DEFINITION 1.6. We say that approximate spin/edge factoriza-
tion with constant C holds if for all functions f : Q; — Ry,

Ent, (f) < C (v [Enty(f]o)] + v[Ent, (f]A)]) . (1.5)

Let us explain the terms in (1.5) in more detail. We write v(:|o)
for the probability obtained from v by conditioning the on whole
spin configuration being equal to a given o € Q and v(-|A) for the
probability obtained from v by conditioning on the whole edge
configuration being equal to a given A C E. With this notation,
Ent,(f|o) and Ent, (f]A) denote the entropy of f with respect to
the conditional measures v(-|o) and v(:|A), respectively. Therefore,
taking their expectations with respect to v one obtains

v[Enty(flo)] = v[f log(f/vlfla]],

v [Enty(F1A)] = vIf log(f /vI FIADI.

The main technical ingredient in proving Theorem 1.5 is the
following “comparison lemma” for entropy factorization.

(1.6)

1554

Antonio Blanca, Pietro Caputo, Daniel Parisi, Alistair Sinclair, and Eric Vigoda

LEMMA 1.7. For the Potts model at inverse temperature 5 on any
bipartite graph of maximum degree A, approximate even/odd factor-
ization with constant C implies approximate spin/edge factorization
with constant C' = C'(C, A, q, ).

To complete the proof of Theorem 1.5, we show that the spin/edge
factorization in (1.5) implies decay of entropy for the SW dynamics:
namely, there exists a constant § > 0 such that, for all functions
f: Q> R4, we have

Enty(Pswf) <(@- 5)Entﬂ(f)’

where Pgy denotes the transition matrix of the SW dynamics. As
we recall in Section 2.2, standard arguments then imply a modified
log-Sobolev inequality, and a bound of O(log n) on the mixing time
of the SW dynamics.

1.7)

LEMMA 1.8. For the Potts model on any n-vertex graph, approx-
imate spin/edge factorization with constant C = O(1) implies that
(1.7) holds with § = 1/C and hence Tyix(SW) = O(log n).

1.3 Further Results

Our new entropy factorization framework leads to several addi-
tional algorithmic results on 74 that hold under the condition of
SSM, which we briefly summarize here. First, we prove optimal
O(log n) mixing time for alternating systematic scan dynamics, a
natural non-local dynamics in which even and odd sides of the bipar-
tition are updated on alternate steps. Systematic scan dynamics, in
which updates are performed in a deterministic rather than random
sequence, are widely used in practice but are non-reversible and
typically much harder to analyze. Second, we are able to show that
various versions of the SW dynamics on the joint spin/edge space mix
in O(log n) time, as does the SW dynamics for the random-cluster
model. Finally, we show that a natural local Glauber dynamics in the
joint space has optimal mixing time ©(n log n). Formal statements
of all these results and their proofs can be found in the full version
of the paper [4].

Organization of the paper: In Section 2 we gather definitions of
various standard concepts used throughout the paper. Section 3
proves Lemma 1.8 showing that the spin/edge entropy factorization
implies O(log n) mixing for the SW dynamics. We prove Lemma 1.7
relating even/odd factorization to spin/edge factorization in Sec-
tion 4, and then combine Lemmas 1.7 and 1.8 to establish our main
technical tool (Theorem 1.5) and our main algorithmic result (Theo-
rem 1.1). Our lower bound on the mixing time is proved in Section 5.
The rest of our results and further applications are proved and dis-
cussed in the full version [4].

2 BACKGROUND

In this section, we formally define the spatial mixing property to
be used throughout the paper. We also recall some known relations
and prove some preliminary facts concerning entropy and mixing
times.

2.1 Strong Spatial Mixing (SSM)

We assume V C Z4 is a d-dimensional cube in Z9. That is, V =
{0,1,... ,t’}d where ¢ is a positive integer. We use dV C V to
denote the internal boundary of V; i.e., the set of vertices in V
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adjacent to at least one vertex in Z% \ V. A boundary condition
for V is an assignment of spins to some (or all) vertices in dV; i.e.,
/3 vv - [q] with UY c 4V. The boundary condition where
UY = 0 is called the free boundary condition. Given a boundary
condition /, each configuration o € Q that agrees with iy on U Vis
assigned probability

V(o) = L . ,~BID(©)|
1 (o) v ,

where ZV is the corresponding normalizing constant and D(c) :=
{{v,w} € E: 0y, # 04 }. We define y‘/’(cr) = 0 for o € Q that does
not agree with ¢.

Let C(V, a, b) be the property that, for all B c V, allu € 9V and
any pair of boundary conditions ¢/, {, on dV that differ only in the
spin of the vertex u, we have

<

||,U£ - ”gu”w b exp(—a - dist(u, B)), (2.1)

where yg and pg* are the probability measures induced in B by
the Potts distribution with boundary conditions ¢ and i, respec-
tively, || - |lrv denotes total variation distance and dist(u, B) =
ming e [lu - vl

u

DEFINITION 2.1. We say that strong spatial mixing (SSM) holds if
there exist a, b > 0 such that C(V, a, b) holds for every cube V C 74,

We note that the definition of SSM varies in the literature, but we
work here with one of the weakest (easiest to satisfy) versions. In Z2,
this form of SSM has been established for all ¢ > 2 and § < f¢(q),
where f:(q) = In(1 + 4/g) is the uniqueness threshold [2, 3, 38].
Finally, we stress that the SSM property is determined only by
the values of the parameters g and p = 1 — ¢~#, and not by any
particular boundary condition.

REMARK 2.2. For definiteness, we have stated all of our results
for n-vertex d-dimensional cubes but they extend to more general
regions ond. In particular, we can consider regions which are the
union of disjoint translates of a given large enough cube. The variant
of the SSM condition that requires C(U, a, b) to hold for every such
region U is equivalent to the one in Definition 2.1 (see [36, Theorem
2.6]). As noted in [36], a version of SSM which requires C(V, a, b) to
hold for arbitrarily shaped regions V does not hold all the way to the
uniqueness threshold.

2.2 Mixing Time, Entropy and Log-Sobolev
Inequalities

Let P be the transition matrix of an ergodic Markov chain with finite

state space I' and stationary distribution 7. Let P*(X, -) denote the

distribution of the chain after t steps starting from the initial state

Xo € T. The mixing time Tyyix(P) of the chain is defined as

Thix(P) = )r(nagf min {t >0:||P'(Xo,-) - 7|y < 1/4} .
0

To prove upper bounds on the mixing time, in this paper we mostly
rely on functional inequalities related to entropy.

For a function f : T +— R, let 7[f] = Y eq 7(0)f(0o) and
Var(f) = [ f2]-z[f]? denote its mean and variance with respect
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to 7. Likewise, for f positive, the entropy of f with respect to x is
defined as

Ent,(f)=7n [flog(”[f]

We often consider these functionals and their conditional ver-
sions with respect to the Potts measure y or the joint measure v (as
defined in (1.1) and (1.4) respectively). In particular, if the function
fis such that f : Q; — Ry, for fixed ¢ € Q and A C E, we write

v[flol = Xacge v(Alo)f (o, A). v[f1A] = Xgeq v(a]lA)f(o, A) and

w11 |

Entv(f|A):v[f~log( f )A

v[flA]
Note that Ent,(f|o) and Ent, (f|A) are functions of o € Q and
A C E, respectively, and with slight abuse of notation, we write
v [Ent, (f|o)] and v [Ent, (f|A)] for the corresponding expectations
with respect to v; see (1.6). The following identities hold:

Ent,(f) = Ent, (v[f|A]) + v[Ent, (f|A)];
Ent, (f) = Enty (v[f|o]) + v[Ent,(f]0)].

Indeed, both statements follow from the general decomposition

Enty (f) = Entr (z[f|F]) + 7[Ent, (f]5)], (2.5)

valid for any distribution 7, and any sub o-algebra ¥, which follows
by adding and subtracting the term z(f log z[f|F]) in (2.2). An-
other basic property of entropy that we shall use is the variational
principle

f

= n[flog f] = x[fllog x[f]. (2.2)

(2.3)
(2.4)

Ent,(f) = sup {ﬁ[f(p], r[e?] < 1} , (2.6)
valid for any distribution 7, and any f > 0, where the supremum
ranges over all functions ¢ : I' — R such that n[e?] < 1, see e.g.
Proposition 2.2 in [31].

When f > 0 is such that #[f] = 1, then Ent,(f) = H(fr | 7)
corresponds to the relative entropy, or Kullback-Leibler divergence,
between the distribution f7 and .

DEFINITION 2.3. A Markov chain with transition matrix P and
stationary distribution 5 is said to satisfy the (discrete time) relative
entropy decay with rate § > 0 if for all distributions {,

H({P|r) < (1= 8)H({|m). (2.7)

We recall a well known consequence of entropy decay for the
mixing time. For completeness, we include a proofin the full version
of our paper [4].

LEMMA 2.4. If a Markov chain with transition matrix P and sta-
tionary distribution & satisfies relative entropy decay with rate § > 0,
then its mixing time Ty,ix(P) satisfies

Tmix(P) < 1+ 5™ '[log(8) + loglog(1/.)],

where . = ming 7(0).

REMARK 2.5. If { has density f with respect to « (i.e, { = fx),
then (P has density P* f with respect to &, where P* is the adjoint

”(0/)P(0’, o). Thus, (2.7) is

(o)

or time-reversal matrix P*(c,0’) =

equivalent to

Ent,(P*f) < (1 - §)Ent.(f), (2.8)
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forall f > 0 such that [ f] = 1. By homogeneity, this is equivalent
to (2.8) for all f > 0. When P is reversible, that is when P = P*, (2.7)
is equivalent to Ent; (Pf) < (1 — 8)Ent,(f) forall f > 0.

The inequality (2.8) can be considered as a discrete time analogue
of the so-called modified log-Sobolev inequality characterizing
the relative entropy decay for continuous time Markov chains;
see, e.g. [10]. Below we discuss some basic relations among (2.8),
the standard log-Sobolev inequality and the modified log-Sobolev
inequality.

Consider a transition matrix P with stationary distribution 7.
The Dirichlet form associated to the pair (P, ) is defined as

Dp(f.9) = {f.(1=P)g),

where f, g are real functions on T, (f, g) = 7| fg] denotes the scalar
product in L?(r) and 1 is the identity matrix. Since f is real we also
have

Dp(f. ) = (1= Q). f) = 5 2 7 9)(f) - fw)

X,y

where Q = %(P + P*). Moreover, if P = P* one has

Dp(f.9) = 5 3 7P 00) ~ F@Ngx) - glw))

xY
forall f,g.

DEFINITION 2.6. The pair (P, r) is said to satisfy the (standard)
log-Sobolev inequality (LSI) with constant « if for all f > 0:

Dp(VF\f) = aEnt(f).

It is said to satisfy the modified log-Sobolev inequality (MLSI) with
constant § if for all f > 0:

Dp(f,log f) = 6 Entr(f).

It is well known that the Log-Sobolev inequality is equivalent to
the so-called hypercontractivity (see [16, Theorem 3.5]), while the
modified Log-Sobolev inequality (2.9) is equivalent to exponential
decay of the relative entropy with rate § for the continuous time
kernel K; = (P=D? (see [16, Theorem 3.6]). Note that we are not
assuming reversibility. To see the relation between the MLSI and
the entropy decay in continuous time, note that if K; = eP~Dt and
f has mean 7[f] = 1 then using K} = eP"=Dt one checks that the
time derivative of the relative entropy satisfies

(2.9)

d d
T H(K;|m) = ZEn(K; ) = ~Dp(K; f.log K} f)

where { = f - n. Therefore (2.9) implies, for all t > 0:
H(K:|r) < HE|m)e™®".

Next, we observe that the bound (2.8) is stronger than the MLSI in
(2.9).

LEMMA 2.7. If the entropy decay holds with rate § in discrete time
then it holds with the same rate in continuous time. That is, (2.8)
implies the MLSI with constant §.

A proof of this fact is given in the full version of the paper [4].
It is also well known that the standard LSI with constant & im-
plies entropy decay in continuous time with rate § = 2a, since
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Dp(f,log f) = 2Dp(y/f,[f) for all £ > 0, and this can be im-
proved to § = 4« in the reversible case; see [16, Lemma 2.7]. Here
we recall a result of Miclo [41] showing in what sense the LSI
implies the discrete time entropy decay.

LEMMA 2.8. If the pair (P*P, rr) satisfies the standard LSI with
constant o, then the discrete time entropy decay holds for (P, m) with
constant § = a. In particular, if P is reversible and (P, rr) satisfies the
LSI with constant a, then for all f > 0:

Ent;Pf < (1 - a)Ent,f.

3 SPIN/EDGE FACTORIZATION IMPLIES FAST

MIXING: PROOF OF LEMMA 1.8
As mentioned in the introduction, the proof of our main new an-
alytic tool (Theorem 1.5) has two components. We show that ap-
proximate even/odd factorization implies spin/edge factorization
(Lemma 1.7), and then that spin/edge factorization implies O(log n)
mixing for the SW dynamics (Lemma 1.8). In this section, we pro-
vide the proof of the latter result, whereas Lemma 1.7 is proved in
the subsequent section.

Proor oF LEMMA 1.8. We show that the spin/edge factorization
with constant C implies that for all functions f > 0 with y[f] =1,
one has

Ent,,(Pow f) < (1 - 8)Ent,(f), (3.1)

with § = 1/C. Since the SW dynamics is reversible with respect to
u, we have Pgyw = Pgy,, and the desired mixing time bound follows
from Lemma 2.4 and Remark 2.5.

The transition matrix of the SW dynamics satisfies Psw(o, 7) =
2 acM(o) V(Alo)v(r|A), where we recall that M(o) is the set of
monochromatic edges in o. Hence,

Powf(0) = ) Pawlo,n)f(m)= ). > vAlow(rlA)f(z,A),

T€Q T€Q ACM(o)

where the function f : Q; — Ry is the “lift” of f to the joint space,
ie, f(o, A) = f(o) for every (0,A) € Q). Recalling that we write
v[f], v[flAl, v[f|o] for the expectations of f with respect to the
measures v(-), v(- | A), v(- | o), respectively, we obtain

Poef(0)= > wAlowIf | Al =vviflAlle] = viglol,
ACM(o)

where for ease of notation we set g := v[f|A]. Since p[f] =1, we
have p[Psw f] =1 and

Enty (Psw f) = pl(Psw f) log(Psw )] = p[v [glo]log(v [gla])] .

The convexity of the function x - log x and Jensen’s inequality imply

v[glo]log(v[glo]) < v[glogg | o],

and then, since v[g] = v[f] = p[f] = 1, we have
Enty(Pswf) < pu[vlglogg | o]l = v[vlglogg] | o]
=v[glogg] = Ent,(g).

For any function h : Q; — Ry, we have by (2.3) that Ent, (h) =
Ent, (v[h|A]) + v[Ent, (h|A)]. Hence,

Ent, (f) = Ent, (g) + v[Ent,(f]A)],

(3.2)
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which by (3.2) gives Ent, (Psw f) < Ent,(f) - v[Ent, (f|A)]. The
function f depends on o only, so Entv(fl(f) = 0. Therefore,

Enty (Pow f) < Bnty(f) = v [Enty(F14) + Bnt, (flo)]
The assumed spin/edge factorization (1.5) then implies that
Enty, (Pow f) < (1 - 8)Ent, (f),

with § = 1/C. Inequality (3.1) follows from the fact that Ent, (f) =
Ent,(f). O

REMARK 3.1. We do not assume anything about the underlying
graph in the previous proof, so Lemma 1.8 holds for any graph G. In
addition, our proof as stated applies to the Potts measure y obtained
as the marginal on spins of the joint measure v. If v is as in (1.4), this
yields only the Potts measure on V with the free boundary condition.
However, the proof extends to the Potts measure with any boundary
condition (or pinning of vertices) by choosing a spin-only boundary
condition forv. In particular, Theorem 1.1 holds for arbitrary boundary
conditions, as stated in the introduction. For the special case when G
is a cube ond, we allow a slightly more general class of boundary
conditions, involving both spin and edges, which we call admissible;
see Definition 4.1 and the examples immediately following it.

REMARK 3.2. The entropy contraction established in (3.1) implies
a modified log-Sobolev inequality, and can be viewed as a discrete
time version of it; see Section 2.2. The classical log-Sobolev constant,
however, is not tight for the SW dynamics. Indeed, the remark in [35,
Section 3.7] shows a test function f such that Var”(\/]_‘)/Entﬂ(f) =

O(n™Y). Since Z)psw(\/]_‘, \/7) = v[Var(\/flA)], it follows from mono-

tonicity of variance functional that ﬂpsw(\/?, \/]_C) < Varﬂ(\/]_‘)
DPSW(\/J?’\/.?)

and so Ent, () - O(n™Y) for this function.
4 FACTORIZATION OF ENTROPY IN THE
JOINT SPACE

In this section, we prove our main technical result, Lemma 1.7,
which states that approximate even/odd factorization implies ap-
proximate spin/edge factorization for the Potts measure on bipartite
graphs. For clarity of notation, and to simplify the proofs, we will
restrict attention to n-vertex cubes in Zd, but it should be clear that
everything extends to arbitrary bipartite graphs of constant degree
with any spin-only boundary condition. In addition, on Z4 we are
able to extend our results to a more general class of boundary con-
ditions in the joint space, involving both edges and vertices, that
we call admissible.

Admissible boundary conditions. Let dV be the set of vertices
of V with a neighbor in Z¢ \ V. Let dE denote the set of edges in E
with at least one endpoint in V. (Recall that E is the set of edges
with both endpoints in V.) We consider boundary conditions for
the joint space on subsets Vy € 0V and Eq C JE. Specifically, we
let ¢ : Vo — [g] and ¢ : Eg — {0, 1} and define

VW0 (o, A) = Z#p'A‘(l —p)E1Al1(6 ~ AYi(o ~ P)1(A ~ 9).

Vs
(4.1)
where ¢ ~ A means that A € M(o), 0 ~ ¢ that o and ¢ agree on
the spins in Vp, and A ~ ¢ that A and ¢ agree on the edges in Ey.
As usual, Z¥> is the corresponding partition function.
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DEFINITION 4.1. We call the boundary condition admissible if
Eo € {{u,v} € IE : u € Wp}; that is, if all edges in Ey have at least
one endpoint in V.

Notice that the free boundary condition (Vp = 0 and Ey = 0) is
admissible, and all spin-only boundary conditions (Vy ¢ dV and
Eo = 0) are also admissible. In this case, the marginal on spins is
just the Potts measure with ¢ as the boundary condition on 9V with
UY = V. For some additional examples of admissible boundary
conditions the reader is referred to the full version [4].

The main motivation for introducing the notion of admissible
boundary conditions is that it guarantees that the spin marginal
of v¥+% has the desired exponential decay of correlations if the
parameters g and f are such that SSM holds. We shall see that all
of our results concerning the joint measure and its dynamics on
74 extend to the more general class of admissible boundary condi-
tions. We can therefore restate Lemma 1.7 from the introduction
for the special case of zd allowing arbitrary admissible boundary
conditions.

LEMMA 4.2. Let v := v¥>? be the joint distribution with an admis-
sible boundary condition (/, ). Approximate even/odd factorization
with constant C of the spin marginal of v implies that approximate
spin/edge factorization holds with constant C' = C'(C, d, q, ).

For simplicity, we will continue to write v for the joint measure
v¥>® and i for its marginal on spins. We shall see that our proofs in
this section are largely oblivious to the boundary condition or the
geometry of 74 (in fact, we only require the underlying graph to be
bipartite). We also remark that, while we could allow a slightly more
general family of boundary conditions than the admissible ones,
some limitations are needed. For instance, arbitrary edge boundary
conditions may cause long-range dependencies; see, e.g., [7, 9]. We
proceed next with the proof of Lemma 4.2.

4.1 Proof of Lemma 4.2

Overview. The following high level observations might be of help
before entering the technical details of the proof. First, notice that
the conclusion in the theorem would trivially hold true with con-
stant C = 1 if v were a product measure with respect to the two
sets of variables (o, A). This is a consequence of standard factoriza-
tion properties of product measures. Thus, the minimal constant
C for which that statement holds is a measure of the “cost" for
“separating” the two sets of variables.

When the dependencies between the two sets of variables are
very weak, a factorization statement could be obtained as in [14].
However, in our case the dependencies are not weak, since the spin
variables interact locally with the edge variable in a strong way. For
instance, the presence of the edge xy in A forces deterministically
the condition o = oy. Thus, the fact that our statement holds with
a constant C independent of n is highly nontrivial.

On the other hand, for every x € V one can separate locally the
two variables (o, Ax), where Ay denotes the set of edge variables
for edges incident to x, by paying a finite cost C; this is the content
of Lemma 4.7 below. We can then lift this local factorization to a
global factorization statement for the conditional measure v(-|og),
respectively v(-|op), obtained by conditioning on the spin variables
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of all even vertices E C V, respectively of all odd vertices O C V.
This is the content of Lemma 4.4.

Lemma 4.4 is the heart of the proof and relies crucially on the fact
that v(-|og) is a product measure with respect to {(ox, Ax), x € O},
and v(-|op) is a product measure with respect to {(ox, Ax),x € E}.
Thus, we reduce the problem of separating the spin/edge variables
(0, A) to the problem of separating the even/odd spin variables
(oE, 00) for the joint distribution v. We then conclude by showing
that even/odd factorization for the Potts measure p implies the
even/odd factorization for v. This is the content of Lemma 4.5.

We now turn to the actual proof. Let v(-|og, A) denote the mea-
sure v conditioned on o = {0y, v € E} and A C E. Similarly,
v(:|oo, A) denotes the measure v conditioned on op = {0y, v € O}
and A. We use Ent, (f|og, A) and Ent, (f|oo, A) to denote the cor-
responding conditional entropies; for their expectations with re-
spect to v we use v [Ent, (f|og, A)] and v [Ent, (f|oo, A)]. The next
lemma shows that conditioning on the spin configuration of the
even or the odd sub-lattice can only decrease the entropy of a
function with respect to v(: | A).

LEmMA 4.3. For all functions f : Q; — Ry we have
v [Ent,(f]A)] > v[Ent,(f|og, A)]; and
v[Ent, (f4)] > v [Ent, (floo, A)].

ProoF. We can write

v[Ent, (flA)]

:v[flog( f

vf1A]

|

;)
v[flog, Al
= v[Ent,(f|og, A)] + v

vflog, Al )]
v[f1A]
viflogs, Al

v[flog, Al log( VLFIA]

v [Enty (flog, A)] + v [Ent, (v[flog, Al|A)]
> v [Enty,(flog, A)].

The same argument applies to the odd sites, so we also deduce that
v[Enty (f1A4)] = v [Enty(floo, A)] - o

The advantage of working with v(:|op, A) or v(-|og, A) instead
of v(-|A) is that once we condition on the spins on all odd (resp.
even) sites the measure becomes a product over the even (resp. odd)
vertices, and we can exploit tensorization properties of entropy for
product measures. The next lemma is a key step in the proof.

+v

:v[flog( flog(

LEMMA 4.4. There exists a constant §; > 0 depending only on
d, B, q such that, for all functions f : Q; — Ry,

v[Enty(flo)] + v [Ent,(floo, A)] > 61 v [Enty(floo)],  (4.2)
v[Enty(flo)] + v [Ent,(flog, A)] = 61 v [Enty(flop)].  (4.3)

We defer the proof of Lemma 4.4 to later. Adding up (4.2) and
(4.3) and using Lemma 4.3 we obtain the estimate

6
v [Ent,(f|o) + Ent, (f|A)] > El v[Ent,(flog) + Enty(floo)] .
(4.4)
We then use a generalization of the entropy factorization from [13]

to reconstruct, in the presence of approximate even/odd factor-
ization, the global entropy Ent, (f) from the conditional average
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entropies v [Ent, (f|og)] and v [Ent, (f|oo)] on the right hand side
of (4.4).

LEMMA 4.5. Approximate even/odd factorization with consant C
implies that for all functions f : Q; — R4,
v [Enty(flog) + Ent, (floo)] = 82Ent, (f),
where 5 = 1/C.

Proor. We need the following observations:

Ent,(floo) = Enty (v[flo]loo) + v[Enty(flo)loo],  (4.5)
Ent,(flog) = Enty (v[flo]log) + v[Enty(flo)log] .  (4.6)

Indeed, to establish (4.5) note that from the definition of conditional
entropy we get

Ent,(f|oo)

- |r 1°g(v[f{ao]) %0

=Vif1°g(m oo|+v flog(%) o0
S PRV e A

= v[Enty(flo)loo] + Enty (v[flo]loo),

where we also use the fact that v[-|og, 00]
argument applies to (4.6).

Now, since the function v [ f|o] depends only on the spin config-
uration o,

v[:|o]. The same

v[Enty (v[flo]log) + Enty (v flo]loo)] =
p [Enty(vIflollop) + Entu(v[flolloo)] ;

and we may apply the approximate even/odd factorization to the
function v [ f|o]. Then, there exists a constant d, € (0, 1] such that

pt [Ent, (v[flo]log) + Ent,(v[flolloo)| = 82 Ent, (v[flo]).
(4.7)

Therefore, observing that
v[v[Enty(flo)loo] + v [Enty(flo)log]] = 2v [Ent, (f]o)],
we obtain from (4.5), (4.6) and (4.7)
v[Ent, (f|og)+Ent,(floo)]
2 6, Enty (v[flo]) + 2 v [Enty(f]o)].
Since J2 < 1, the standard decomposition in (2.4) implies
v[Enty(flog) + Ent,(floo)] = 82 Enty(f),

as claimed.

4.2 Proofs of Main Results

The proofs of Lemma 1.7 and Theorems 1.1 and 1.5 are now imme-
diate.

ProoF oF LEMMA 1.7. We note that inequality (4.4) and Lemma
4.5 are valid for any bipartite graph of bounded degree; the result
follows by taking C = 2/81 5. O

Proor oF THEOREM 1.5. It follows immediately from Lemmas
1.7 and 1.8. o
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We now also prove our main theorem (Theorem 1.1). We use the
following result of [13] that under SSM the even/odd factorization
holds.

THEOREM 4.6 (THEOREM 4.3 IN [13]). SSM implies that there exists
a constant § > 0 such that for all cubes ond, all boundary conditions,
and for all functions f : Q — Ry,

[ [Ent”(flaE) + Entl,(f|(ro)] > §Enty, (f).

ProoF oF THEOREM 1.1. Theorem 4.6 [13, Theorem 4.3] implies
that the even/odd factorization holds for any boundary condition
whenever SSM holds. Then, from Lemma 4.2 we know that approx-
imate spin/edge factorization holds; the result then follows from
applying Lemmas 1.7 and 1.8. O

It remains for us to provide the proof of Lemma 4.4, which we
do in the next subsection.

4.3 Proof of Lemma 4.4

Before giving the proof of Lemma 4.4, we mention several useful
facts about the joint distribution v. The first key fact is that, for
any fixed configuration op of spins on the odd sub-lattice, the
conditional probability v(:|op) is a product measure. That is,

v(loo) = (X) vx(loo),

x€E

(4.8)

where, for each x € E, vx(:|op) is the probability measure on
{1,...,q} x {0, 1}de8(¥)| where deg(x) denotes the degree of x, de-
scribed as follows: pick the spin of site x according to the Potts
measure on x conditioned on the spin of its neighbors in op; then,
independently for every edge xy € E incident to the vertex x, if
ox = oy set Axy = 1 with probability p and set Axy = 0 otherwise;
if ox # oy, set Axy = 0. (Note that in this section, to simplify
notation, we shall use xy to denote the edge {x, y}, and view the
edge configuration A as a vector in {0, 1}%.)

Consider now the measure v(-|0p, A) obtained by further con-
ditioning on a valid configuration of all edge variables A. Here A
is valid if it is compatible with the fixed spins 0. This is again a
product measure; namely

v(l60,4) = (X) vx (00, A), (4.9)
x€E
where vx(:|0p, A) is the probability measure on {1, ..., g} thatis

uniform if x has no incident edges in A, and is concentrated on the
unique admissible value given oo and A otherwise.

Next, we note that v(-|o) is a product of Bernoulli(p) random
variables over all monochromatic edges in o, while it is concentrated
on A, = 0 on all remaining edges. Therefore we may write

v(lo) = @) ve(-lo),

x€E

(4.10)

where v, (-|o) is the probability measure on {0, 1}9¢8%) given by
the product of Bernoulli(p) variables on all edges xy incident to x
such that ox = oy and is concentrated on Ayxy = 0 if ox # oy.

We write Entx(-|op), Entx(-|c0, A), Entx(:|o) for the entropies
with respect to the distributions vx(-|60), vx(-|o0, A), vx(-|o) re-
spectively. The first observation is that, for every site x, there is a
local factorization of entropies in the following sense.
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LEmMA 4.7. There exists a constant 51 > 0 such that, for all func-
tions f > 0 and all x € E,

vx [Entx(flo)|loo] + vx [Entx(floo, A)loo] = 81 Entx(flo0).
(4.11)

Proor. For x € V, let Ay be random variable in {0, 1}d¢8(*)
corresponding to the configuration of the edges incident to x in
A. If we replace entropy by variance, then (4.11) is a spectral gap
inequality for the Markov chain where the variable (ox, Ax) €
[q]x {0, 1}4¢8*) =: S is updated as follows. At each step, with prob-
ability 1/2 the spin oy is updated with a sample from v« (:|op, A),
and with probability 1/2 the edges Ay incident to x are simultane-
ously updated with a sample from vy (-|0). Let Py = % denote
the transition matrix of this Markov chain, where Qx, Sy are the
stochastic matrices corresponding to the spin and edge moves at
x, respectively. Let Dp_, Do and Dg,_ denote the corresponding
Dirichlet forms. Observe that, by updating first the edges with an
empty configuration and then the spin, two arbitrary initial con-
figurations can be coupled after two steps with probability at least
71(1 — )24 and thus for any function f : S - Ry

Do (f, )+ Ds (f. )
2
where o > 0 is a constant depending only on p and d. Using the
standard facts that
DQx(f, f) = vx [Varx(flo)loo], and
Ds (f. f) = vx [Varx(floo, Aloo].,

we arrive at the inequality

vx [Varx(flo)loo] + vx [Varx(floo, A)loo]
2

= Dp (f, f) 2 d Varx(floo),

> 8y Varx(floo).
(4.12)

A well known general relation between entropy and variance
(see, e.g., Theorem A.1 and Corollary A.4 in [16]) shows that, for
all f >0,

Entx(floo) < C1 Varx(v/floo),

where C; = Ci(q,p,d) is a constant independent of n, since we
are considering the conditional measure at the single site x. Thus,
applying (4.12) to \/]_‘ instead of f, we obtain

(4.13)

&

cl Entx(floo)

e [VarsFloloo | + vx |Varx(YFloo, Alloo |
< - . (4.14)

The conclusion (4.11) follows by recalling that for any f > 0 the
variance of \/17 is at most the entropy of f for any underlying proba-

bility measure; see, e.g., [30, Lemma 1]. In particular, Varx(\/]_c lo) <
Enty(f|o) and Varyx(y/flo0, A) < Enty(floo, A). o

To prove Lemma 4.4, we need to lift the inequality of Lemma 4.7
to the product measure v(-|op) = QxerVvx(-|00).

ProoF OoF LEMMA 4.4. We will prove (4.2); exactly the same argu-
ment applies to (4.3). Let x = 1,..., w denote an arbitrary ordering
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of the even sites x € E. Let Ay € {0, 1}9¢8) be the random vari-
able corresponding to the state of the edges incident to x. We write
& = (ox, Ax) for the pair of variables at x. We first observe that

Ent,(floo) = ) | v[Entx(gx-1lo0)loo], (4.15)
x=1

where gx = v[floo,Ex+1,- -5 Ew], so that g = f and gy, =
v[floo]. To prove (4.15) note that since v(-|ocp) = ®xeE Vx(-|00),
one has vx[gx—1|c0] = gx. Therefore,

Ent, (f|o0)

v[golog(g0/9w) loo]

D vlgolog(gx-1/9x) o0l

x=

—_

Since the gy are (conditional) expectations, we deduce

w
Ent,(flo0) = ) v[gx-110g (9x-1/9x) l00]
x=1
w
= > vIvx [gx-110g (9x-1/9x) l00] o0]
x=1
w
= > v[Ente(gx-1l00)lo0] (4.16)
x=1
From (4.16), using Lemma 4.7 we obtain
w
81Enty(floo) < ) vIvx [Ente(gx-1lo)loo] loo] +
x=1
w
D v [vx [Ent(gx-1l00, A)loo] loo]
x=1
w
= > vI[Enty(gx-il0)loo] +
x=1
w
D" v[Entx(ge-1lo0, Aloo] (4.17)

—_

%

The two sums in (4.17) are “tensorized” versions of v [Ent, (f|o)|o0o ]
and v [Ent, (f|oo, A)], respectively, which are the terms on the right
hand side of (4.2). Using similar but somewhat more involved ideas
to those used to derive (4.16), we can establish the following.

LEmMA 4.8.
(1) Y- vI[Entx(gx-1l0)loo] < v[Enty(flo)loo];
(2) XY, v[Entx(gx-1l00, A)loo] < v[Enty(floo, A)loo].

Before providing the proof of this lemma, we finish the proof
of Lemma 4.4. Inequality (4.17) together with parts 1 and 2 of
Lemma 4.8 show that

81 Enty(floo) < v[Enty(f|o)loo] + v [Enty(fl|oo, A)loo] -
(4.18)

Taking expectations with respect to v in (4.18) we arrive at (4.2)
and the proof is complete. O

We finish the proof of Lemma 4.4 by providing the proof of
Lemma 4.8.
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PRrROOF OF LEMMA 4.8. We start with part 2. Let

hyx = V[f|UO,Ux+ly~-~,0'w,A],

so that hy = f and h,, = v[f|oo, A]. Since v(-|op, A) is a product
measure, Vx[hyx—1]|00,A] = hx. Therefore, reasoning as in (4.15)
we obtain

w
Ent, (floo, 4) = ) | v[Enty(hx-1lo0, Aloo, Al (4.19)
x=1

Taking expectations with respect to v(:|op) in (4.19) we see that it
is sufficient to show that, for all x,

v [Entx(gx-1l00,A)loo] < v [Entx(hx-1lo0, A)loo].  (4.20)

To prove (4.20), we introduce the measures p; = ®];:1vx(-|0'o)
and pf = ®];:1vx(-|0'0,A). Then we have gx = pux[f], hx =
p21f1, and gy = px[hy]. Also, we simplify the notation by writing
vx(-loo, A) =: vj?. Now the product structure implies the commu-
tation relation between expectations

V2 gx—1 = Vi px—1hx-1 = px-1vEhx_1. (4.21)
Therefore,
v [Entx(gx-1lo0, A)loo] (4.22)
=v [gx-1 log (gx—l/v;‘gx—l) |GO]
=v [,ux—lhx—l log (Hx—lhx—l/ﬂx—lvfhxﬁ) |Uo]
=v [hxfl log (,Uxflhxfl/ﬂxflv;?hxfl) Iffo]
= v v (-1 Tog (9x-1/729x1)) oo - (4.23)

From the variational principle (2.6) it follows that

v Bt 10g (gr-1/v21gx11) | < Enta(h-rloo. 4, (429)

which combined with (4.23) proves (4.20). This completes the proof
of part 2.
We use a similar argument for part 1. Let

Ux = v(flo,Ax+1, ..., Aw),

so that p = f and ¢, = v(f|o). Notice that vx[¢x—1]|0]
Therefore, as in (4.15),

Y-

w

Ent,(flo) = > v[Enty(yx-1lo)lo].

x=1

Taking expectations with respect to v(-|cp) we see that it is suffi-
cient to show that, for all x € E,

v [Entx(gx-1|0)loo] < v [Entx(¥x—1l0)|o0] - (4.25)

Introducing the measures yp = ®I;:1vx(-|ao), My = ®];:1vx(-|0'),

and v = vx(:|o), we have gx = px[f], ¥x = pZ[f], and gx =
Ux[Ux]. As in (4.21), we have the commutation relation

o o o
Vi Gx—1 = Vi Px—1Yx—1 = Px—1Vx Yx—1-
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Therefore, as in (4.23)-(4.24) we obtain

v[Entyx(gx-1l0)loo]
= v [gx-110g (gx-1/v{ gx-1) loo |

= v [ p—19x—110g (px-1Vx-1/px-1VZ Yx-1) lo0 |

= v [¢x—110g (ux-1¥x-1/px-1vZ ¥x-1) loo]
[v¢
[

14 ';bx 110g Ix— l/ngx 1))|GO]

< v [Enty(Yx-1l0)|oo] .

This proves (4.25) and completes the proof of part 1. O

5 A LOWER BOUND FOR THE SW DYNAMICS

In this section we establish an asymptotically tight lower bound for
the mixing time of SW dynamics whenever SSM holds; this result
implies the lower bound in Theorem 1.1 from the introduction.

THEOREM 5.1. In an n-vertex cube of Z%, for all integer q > 2 and
all B > 0, SSM implies that for all boundary conditions Tpix(SW) =
Q(logn).

The main new ingredient in the proof of this result is a bound
on the speed of propagation of disagreements under a coupling of
the steps of the SW dynamics provided SSM holds. With this new
tool, we are able to adapt the lower bound framework of Hayes and
Sinclair [26] for the Glauber dynamics to the SW setting. We also
use a recently established fact about concentration properties of
the Potts measure due to [17].

SW coupling. Consider two copies of the SW dynamics on the
graph G = (V, E), where V is an n-vertex cube of 74 Let X; and Yy
be the configurations of these copies at time ¢ > 0. We can couple
the steps of the SW dynamics as follows:

(1) Draw |E| independent, uniform random numbers from [0, 1],
one for each edge. Let r.(t) € [0,1] denote the random
number corresponding to the edge e € E.

(2) Draw |V| independent, uniform random numbers from the
set{1, ..., ¢}, one for each vertex. Let s, (t) € {1, ..., q} denote
the random number for v € V.

(3) Let Ax = {e € M(X}) : re(t) < p} and Ay = {e € M(Y;) :

re(t) < p}, where recall that M(X;) and M(Y;) denote the

set of monochromatic edges in X; and Y, respectively

For each connected component C of (V, Ax) or (V, Ay), we

let s¢ = sy (t), where v is the vertex in C with the smallest

coordinate sum. (If two or more vertices in C have the same
coordinate sum, we break ties “lexicographically” using the
coordinates.) Then, every vertex of C is assigned the spin

SC-

The key property of the SW coupling is that, after assigning
the edges, two identical connected components in Ay and Ay will
be assigned the same spin (namely, the spin s, of their common
vertex v with smallest coordinate sum). We show that, under SSM,
the SW coupling propagates disagreements slowly for a suitable
starting condition.

To describe our starting condition we introduce the notion of
L-shattered configurations.

©
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DEFINITION 5.2. Consider the graph G = (V,E), where V is an
n-vertex cube of Z%. For a configuration o onV, let Ay € M(c) be the
configuration that results from keeping each monochromatic edge in
M(o) independently with probability p = 1— exp(—p). We say that o
is L-shattered in V if, with probability at least 1— |V | exp(—yL) where
y > 0 is a fixed constant we choose later, for everyv € |V| at distance
at least 2L from the boundary of |V|, the connected component of v
in As does not reach the boundary of the cube A, (L) centered at v of
side length L.

Note that the above defined notion involves a probability that
decays exponentially with L, so the dimension of the cube V will not
be as significant as long as logn < L < n. The following lemma
establishes a concentration of the probability mass on shattered
configurations under SSM (for the monochromatic “all 1” boundary
condition).

LEMMA 5.3. Let S be the set of L-shattered configurations of the
n-vertex cube G = (V,E) ond. There exists a constant ¢ > 0 such
that for all integers q > 2 and L > 1, SSM implies that p*(S) >
1 - exp(—cL).

The proof of this lemma, which follows straightforwardly from
the results in [17], is provided in the full version [4]. We can now
describe our starting condition for the SW dynamics.

A starting condition. We consider a regular pattern of non-
overlapping d-dimensional cubes of side length £ = (log n)® with
a fixed minimal distance between cubes. Formally, consider the
cubes of side length ¢ centered at (€ + 3) - h where h € Z4. These
cubes have volume ¢¢ and are at distance 4 from each other. We
let By, B, ... BN C V be the collection of those cubes that are con-
tained in V and at distance at least 4 from the boundary 0V then,
N = 0(n/t%).

Let B = Uﬁ.\il B;, 0B = Uﬁl 0B; and let e; be an edge at the
center of B;. For definiteness, we may assume that ¢ is odd so
that there is a unique vertex v; at the center of each B;; we take
e; = {vj,u;} where u; = v; +(1,0,...,0) € Z%. Let A; be the set
of configurations on B; in which the spins at the endpoints of e; are
the same, and let S; be the set of L-shattered configurations in each
B;. (Later we will set L = C(log n) with C > 0 a large constant.)

We consider two variants of the SW dynamics, {X;} and {Y;},
with the same initial condition Xy = Yy. The chain {X;} is an in-
stance of the standard SW dynamics on (V, E); for the initial state
Xo of {X;} we set the spins of all the vertices in U = (V \ B)UdB to
1. The configuration in each cube B; is sampled (independently) pro-
portional to “Ilal- on S; N A;, where “113,- denotes the Potts measure
on B; with the “all 1” monochromatic boundary condition.

The other instance we consider, {Y; }, only updates the spins of
the vertices in B \ dB. That is, after adding all the monochromatic
edges independently with probability p = 1 — exp(—J), only the
connected components fully contained in B update their spins.
(Note that if a component touches the boundary of B, then it is not
updated since the boundary is frozen to the spin 1 by the boundary
condition.) We set Yy = Xj and couple the evolution of Y; and
X; using the SW coupling defined earlier. We can view {Y;} as a
dynamics on the configurations on B whose stationary measure is
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/1113 = ®f\]1p}gi. We also observe that a step of {Y;} is equivalent to
performing one step of the SW dynamics in each B; independently.

Note that Xp = Yp, and any disagreements between X;, Y; at
later times t can arise only from the fact that Y; does not update the
spins outside B: i.e., disagreements must propagate into the B; from
their boundaries. The following result, whose proof we defer until
after the proof of Theorem 5.1, provides a bound on the speed of
propagation of these disagreements under the SW coupling with the
specified initial condition. In particular it says that, for t = Q(log n)

steps, X;, Y; agree w.h.p. on the spins at the center of every cube B;.

THEOREM 5.4. Let C = Uf\il e; and set L = C(logn). For any
constant A > 0, for a sufficiently large constant C > 0 SSM implies
that

Pr[Vt < Alogn: X;(C) =Y:(C)] =1-o0(1).

A key ingredient in the proof of Theorem 5.4 (and also of The-
orem 5.1) is the following discrete time version of the completely
monotone decreasing (CMD) property of reversible Markov chains
from [26]; the proof of this lemma is provided in the full version [4].

LeEMmMA 5.5. Let {X;} denote a discrete time Markov chain with
finite state space Q, reversible with respect to & and with a positive
semidefinite transition matrix. Let B C Q denote an event. If X is
sampled proportional to & on B, then Pr(X; € B) > n(B) forallt > 0,
and forallt > 1

Pr(X; € B) > n(B) + (1 — =(B))"**1(Pr(X; € B) — n(B))".
We now proceed with the proof of Theorem 5.1.
Proor oF THEOREM 5.1. Our goal is to show that at some time
T = O(logn)
1
X7 = il >
where with a slight abuse of notation we use X7 for the distribution
of the chain {X;} at time T. This clearly implies that the mixing
time of the SW dynamics is Q(log n).
Let C = Ue; and let e; = {a;,b;}. Let fic and ﬁlc be the
marginals of y and ;1]13, respectively, on C. Then,
”XT - /'l”'rv > ”XT(C) - ﬁC”TV
2 [IY7(C) = hcllry = IX7(C) = YT (O)llry
> 1¥7(C) - Il — 1A% = ficll.,, = IX7(C) = ¥r(Ollyy. (1)

We bound each term of (5.1) independently. We note first that by
Theorem 5.4

1X7(C) = Y7 (O)llxv < Pr(Xr(C) # Y7(C)) = o).

)

We proceed to bound the term ||ﬁC - jc ||TV in (5.1), for which

we use SSM. Let Q(A) be the set of all possible configurations on the

AV

set A C V. Fora configuration ) on U, let /i, denote the marginal of

yg onC. Let ﬁéi, ﬁfl be the marginals Ofﬂlls,»’ ﬁg on e;, respectively.
Then,
I - el < > ulas - A%,
Y eQU)
< >0 Wl =ikl < =7 = o(D),
YEQU) i=1 €
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where the second inequality follows from the fact that ;1}13 and pg

are product measures over the B;’s, and the last one follows from
the SSM property for a suitable constant x > 0.

It remains for us to provide a lower bound for || Y7(C) — ﬁlc ||TV.
For this, we introduce an auxiliary copy of the chain {Y;}, denoted
{Z:}, which is coupled with {Y; } but with a slightly different start-
ing condition. Namely, Z, is sampled proportional to ;111,31_ on the
set A;, independently for each B;. (Recall that Yy = Xj is sampled
proportional to ,ugi on S; N A; instead.) Then,

IYr(C) = L1l > 1Z2(C) = i, ~IV7(C) = Zr(Ollzy. (52
We first provide an upper bound for the second term in (5.2). Plainly,
1Y7(C) = Zr(C)llrv < YT = Z1llxy < Pr[Yo # Zo].

Let ,ug , pOZ be the initial distribution for {Y;} and {Z;}, respec-

tively, and let S = ®S; and A = ®A;. For 0 € S N A, we have
1 (0) = (o) ph(S NA), and for & € A,y (0) = ik (o) ().
Therefore, if the configurations Yy and Zj are sampled from the
optimal coupling between ;13/ , pOZ and the steps of {Y; }, {Z;} are
then coupled with the SW coupling, we have

N
Y,i Z,i
IY7(C) = Zr(Ollay < i = i Ny < D g = 18 Ny
i=1

Y,1 Z,1
—Hy ”Tv’

= Nlly,

A
0

' are the initial distributions of Yy, Zp on B;. Then,
ﬂ};l(ﬂl \ S1) - llllgl(Slc) O( —cL)
< =0|e ,
LA ph ()
where the last inequality follows from Lemma 5.3 and the fact that
”}31 (A1) = Q1) . In summary, since L = C(logn) and C can be
taken large enough, we have proved

1Y7(C) = Z1(C)llzv = o(1).

It remains for us to find a lower bound for ||Z7(C)

where /,13(’1, u

Y,1
Il

Z,1 _
- /—l() ”TV =

- ﬁc ”TV
in (5.2) for a suitable T. For a configuration o on B, let f(o) denote
the number of edges e; € C that are monochromatic in o. For any
a > 0 we have

1Zr(C) - gl ., = Prlf(Zr) = a] - Pr, ilf(o) = al. (53)
We will show that, for a suitable T andany i =1,...,N,

N1/4

N
i=1

Pr{Zr(B;) € Ai] = pp (Ai) + ) (5.4)

Assuming this is the case, then setting ‘W = }} yllg_(ﬂi) we

obtain by Hoeffding’s inequality
Pr [f(ZT) > W+ N4~ \/Nlog N]

. 1
=N

and
1

PrU~‘u}5 [f(o) >W+ \/NlogN] < Nz

which yields from (5.3) that || Z7(C) -

eg.,a=W++/NlogN.

To establish (5.4), note that by Lemma 5.5
Pr(Zr(B;) € Ai) 2 pp (Ai) + (1 - ﬂ;;i(ﬂi))_TH.ZT,

ﬁéHTV > 1-2/N? by taking,

(5.5)
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where Z := Pr(Z(B;) € A;) — p}gi(ﬂi). We remark that {Z;} has
positive semidefinite transition matrix; this follows from the fact
{Z:} is a product of SW dynamics in each B;, and the SW dynamics
has positive semidefinite transition matrix [5].

Let Pg&), denote the transition matrix of the SW dynamics on B;.
Then

pp, (@)
#p, (o)
pp, (A
1, ‘f__l
q  qup,(Ai)

PH(Zi(B) € A = Y. P (o, )

ceA;

-3

o€EA;

1-6(o0)

(9(0) +

|

>\ up,(0)0(0)

geA;

(5.6)

where 6(o) denotes the probability that, after the edge percolation
phase of the SW step, the end points of the edge e; are connected
in the edge configuration. Similarly,

pp, (Ai) = Z ﬂ}gi(a)P§i3(a,ﬂi)

o €Q(B;)

= D b @PRE AN+ Y ()P (o. A

O'EQ(B[)\Q?[[ cEA;

1
IJBI.(U) 1-0(oc

- + > up,() (0(a)+ ( ))

o €Q(B;)\A; q ocEA;

1 g-1

= - 4+ —

p D #p,(0)0(0).

ceA;

Combining with (5.6) we get

q—1 1 1
g _ )

1 (“éi(ﬂi) )oezy](ini(o) (o)

qg-1 1 ) _q;l . |
e ”}Bi(ﬂ")_l)p’ﬂBi(ﬂl)_ q (1= b, 20)

where in the last inequality we use the fact that 0(c) > p when
o€ Aj;recall thatp =1 - e P
Plugging this bound into (5.5), we obtain

_ T
Pr(Z(51) € ) = i, () + 1 - o (0 (122

1
2 H};i(ﬂi) + N4

where the last inequality holds for T = & log n for a suitable constant
& > 0 since ,Ullg_(«ﬂi) =Q(1). O

We provide next the proof of Theorem 5.4, our bound on the
speed of disagreement propagation under the SW coupling.

Proor oF THEOREM 5.4. We will show inductively that with high
probability disagreements propagate a distance of at most L in
each step. Let A;(k) € B; be the cube of side length k < ¢ cen-
tered at vj; recall that e; = {vj, u;} where v; is the center of B;.
Let A(k) = Ufil A;i(k). Note that at time 0, Xy and Y, agree on
B = A(0).
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Let us assume that X; and Y; agree on A(k) for some k < £ — 2L.
Suppose Y; is L-shattered in each B;; ie., Y;(B;) € S; fori =
1,..., N.IfE(k) is the set of edges with both endpoints in A(k), after
adding the monochromatic edges of E(k) in X; and Y; coupled with
the SW coupling, the joint edge/spin configuration on (A(k), E(k))
will be the same in both copies. However, when assigning the new
spins, the connected components are not necessarily the same since
there can be external connections; i.e., monochromatic paths in
V \ A(k). This may create disagreements between the two chains
on A(k) but only in the components touching the boundary of
A(k). Since we are assuming that Y; is L-shattered in each B;, then
with probability 1 — N|B;| - exp(—yL), the disagreements cannot
propagate to A(k — 2(L + 1)). Consequently, the spin configurations
of Xy4+1 and Yy41 on A(k — 2(L + 1)) are the same.

Proceeding inductively, and assuming that Y; is L-shattered in
each B; forallt = 0,...,T, we deduce from a union bound that
Xt and Yr agree on A(f — 2L — 2T(L + 1)) with probability at
least 1 — TN|B;| exp(—yL), provided £ > 2T(L + 1) + 2L. Therefore,
X (C) =Y(C) forall t < T since C € A(€ — 2L — 2¢(L + 1)).

It remains for us to show that Y; is L-shattered in each B; for
allt =0,...,T with probability at least 1 — o(1). The configuration
of Yy on B; is sampled proportional to Vllal- onS;NA;.Foro €
Si N A, let mi(o) = ,u};i(o)/yll;i(si N A;) and for o € S;j, let
71() = b (@), (S1). We have

Pry,(B;)~#;(Yt(Bi) € Si) =
Pry,(B;)~#;(Yt(Bi) € Si | Yo(B;) € Aj)a+
Pry,B;)~#;(Yt(Bi) € Si | Yo(Bi) € Ai)(1 — @),
where a = Pry,(g,)~#,(Yo(B;) € A;), and so
PrYo(B,-)~7ri(Yt(Bi) € Sl) = PrYg(B,—)~fr,-(Yt(Bi) € S; | Y()(Bi) € ﬂi)

1 =Py~ (Ye(Bi) € Si)
a

>1

(.7)

By Lemmas 5.5 and 5.3,

ecL’

Moreover, Pry,(g,)~,(Yo(Bi) € A;) = a = a(f, q,d) = Q(1), and
so we obtain from (5.7)

Setting § = ®£IS,-, a union bound over the B;’s implies

)

It follows from another union bound over the steps that Pr(Vt < T :
;eS8 >1-0 ( TN) . Setting T = A(log n) (which satisfies £ >

ecL
2T(L + 1) + 2L as required), recalling that N = O(n/t?), and taking
C sufficiently large, we obtain that Pr(Vt < T :Y; € S) > 1 - 0(1),
and hence

Pr[Vt < Alogn: X:(C) = Y:(C)] =1-0(1),

Pry,B,)~s, (Ye(Bi) € Si) > iy (Si) = 1 -

1

PrYo(Bi)wri(Yt(Bi) €S)=1-0 (ecL

N

Pr(Y; eS):l—O(ecL

as claimed.
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