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ABSTRACT
We study the mixing time of the Swendsen–Wang dynamics for the

ferromagnetic Ising and Potts models on the integer lattice Zd . This
dynamics is a widely used Markov chain that has largely resisted

sharp analysis because it is non-local, i.e., it changes the entire

configuration in one step. We prove that, whenever strong spatial

mixing (SSM) holds, the mixing time on any n-vertex cube in Zd is

O(logn), and we prove this is tight by establishing a matching lower

bound. The previous best known bound was O(n). SSM is a stan-

dard condition corresponding to exponential decay of correlations

with distance between spins on the lattice and is known to hold in

d = 2 dimensions throughout the high-temperature (single phase)

region. Our result follows from a modified log-Sobolev inequality,

which expresses the fact that the dynamics contracts relative en-

tropy at a constant rate at each step. The proof of this fact utilizes

a new factorization of the entropy in the joint probability space

over spins and edges that underlies the Swendsen–Wang dynamics,

which extends to general bipartite graphs of bounded degree. This

factorization leads to several additional results, including mixing

time bounds for a number of natural local and non-local Markov

chains on the joint space, as well as for the standard random-cluster

dynamics.

CCS CONCEPTS
•Mathematics of computing→Markovprocesses;Probabilis-
tic algorithms; • Theory of computation → Random walks
and Markov chains.

KEYWORDS
Ising/Potts model, Swendsen–Wang dynamics, entropy decay, mix-

ing time, spin systems.
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1 INTRODUCTION
The ferromagnetic Potts model is a classical spin system in statis-

tical physics and theoretical computer science. It is specified by a

finite graph G = (V ,E), a set of spins (or colors) [q] = {1, . . . ,q},
and an edge weight or inverse temperature parameter β > 0. A con-

figuration σ ∈ Ω = {1, . . . ,q}V of the model assigns a spin value

to each vertex v ∈ V , and the probability of finding the system

in a given configuration σ is given by the Gibbs (or Boltzmann)

distribution

µ(σ ) = µG ,β (σ ) :=
1

Z
exp(−β |D(σ )|), (1.1)

where D(σ ) := {{v,w} ∈ E : σv , σw } is the set of edges whose

endpoints have disagreeing spins in σ and

Z :=
∑
σ ∈Ω

exp(−β |D(σ )|)

is the normalizing factor or partition function. Note that this model

is ferromagnetic, in the sense that neighboring spins tend to align

with each other. The Ising model of ferromagnetism is exactly the

case q = 2.

We focus on the classical setting where G is a subgraph of the

infinite d-dimensional lattice Zd . We will mostly restrict attention

to the case where V = {0, . . . , ℓ}d is a cube, but our results can be

extended to more general subgraphs of Zd ; see Remark 2.2. In fact,

our main technical contributions apply to general bipartite graphs

of bounded degree.

A popularMarkov chain for sampling from the Gibbs distribution

(1.1) is the Swendsen–Wang (SW) dynamics [45], which utilizes

the random-cluster representation of the Potts model to derive a

sophisticated non-local Markov chain in which every vertex can

update its spin in each step. From the current spin configuration

σ (t) ∈ Ω, the SW dynamics generates σ (t + 1) ∈ Ω as follows:

(1) Let M(σ (t)) = E \ D(σ (t)) = {{v,w} ∈ E : σv (t) = σw (t)}
be the set of monochromatic edges of G in σ (t).
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(2) Independently for each edge e ∈ M(σ (t)), retain e with prob-

ability 1 − exp(−β) and delete it otherwise, resulting in the

subset A(t) ⊆ M(σ (t)). (This is equivalent to performing

bond percolation with probability 1 − exp(−β) on the sub-

graph (V ,M(σ (t))).)
(3) For each connected component C in the subgraph (V ,A(t)),

independently choose a spin sC uniformly at random from

[q] and assign sC to all vertices in C, yielding σ (t + 1) ∈ Ω.

The Swendsen–Wang dynamics is ergodic, and has (1.1) as its sta-

tionary distribution; see [19] for a proof.

This non-local dynamics was originally proposed as an algorithm

for sampling at low temperatures, where the space of configura-

tions is partitioned into q “phases” (in each of which one of the q
spins dominates). Unlike the standard Glauber dynamics, the local

Markov chain that updates the spin of a single, randomly chosen

vertex at each step, the SW dynamics can flip large regions of spins

in a single step allowing it to jump between phases. Even at high

temperatures, where the Glauber dynamics is fast, the SW dynam-

ics provides a powerful alternative sampling algorithm since one

can efficiently parallelize its global steps.

In this paper, we are interested in the speed of convergence

of the SW dynamics to stationarity, and in particular its mixing

time. The mixing time captures the convergence rate in total varia-

tion distance of a Markov chain from the worst possible starting

configuration and is the most standard measure of the speed of

convergence. Results proving tight bounds for the mixing time of

the SW dynamics are rare, and are limited to very special classes of

graphs, such as the complete graph and trees [8, 21, 29, 32], or to

very high temperatures [39, 43]. Most bounds for the mixing time

of the SW dynamics are derived by comparison with the Glauber

dynamics [46], and are consequently often very far from sharp. We

also know of multiple examples where the mixing time of the SW

dynamics is exponential in the number of vertices of the graph; see,

e.g., [8, 11, 12, 21–23].

There is a long line of work studying the connection between

spatial mixing (i.e., decay of correlations) properties of Gibbs dis-

tributions and the speed of convergence of Markov chains (see,

e.g., [1, 14, 18, 28, 36, 37, 42, 44, 47]). These results focus on local

Markov chains, such as the Glauber dynamics, but there has also

been some recent progress in understanding this connection for

non-local Markov chains such as the SW dynamics [5, 6, 13]. In

particular, it was established in [5] that the strong spatial mixing

(SSM) property implies that the mixing time Tmix(SW ) of the SW

dynamics is O(n), where n := |V | is the number of vertices.

SSM is a standard formalization of decay of correlations in spin

systems and, roughly speaking, expresses the fact that the corre-

lation between spins at different vertices decreases exponentially

with the distance between them. More precisely, given a pair of

fixed configurations ψ and ψu on the boundary of V such that ψ
and ψu differ only in the spin of the vertex u, the effect on the

(conditional) marginal distribution at a set B ⊂ V decays exponen-

tially with the distance between B and the disagreement at u; see
Section 2 for a precise definition. Our main algorithmic result in

this paper is that the mixing time of the SW dynamics is in fact

O(logn) whenever SSM holds, and this is tight.

Theorem 1.1. In an n-vertex cube of Zd , for all integer q ≥ 2, SSM

implies that for all boundary conditions Tmix(SW ) = Θ(logn).

We recall that a boundary condition τ for the Potts model is a

fixed assignment of spins to the boundary of V ; in the presence

of a boundary condition, we consider the Gibbs distribution on V
conditional on the assignment τ on the boundary of V . The case
where there is no boundary condition is known as the free boundary

case and is also covered by our results.

In Z2, SSM is known to hold for allq ≥ 2 and all β < βc (q), where
βc (q) = ln(1+

√
q) is the uniqueness threshold [2, 3, 38]. Therefore,

we obtain the following immediate corollary of Theorem 1.1.

Corollary 1.2. In an n-vertex square region of Z2, for all q ≥ 2,

all β < βc (q) and all boundary conditions, we have Tmix(SW ) =

Θ(logn).

The best previous bound in the setting of Corollary 1.2 was

Tmix(SW ) = O(n) and follows from the results in [5]. Nam and Sly

[43] recently proved an O(logn) mixing time bound (as well as

the cutoff phenomenon) for the periodic boundary condition for

sufficiently high temperatures (β ≪ βc (q)), a stronger assumption

than SSM. In higher dimensions d ≥ 3, SSM is not known to hold

up to the corresponding uniqueness threshold (it is only known for

sufficiently small β ; see [35]), but we expect the SW dynamics to

be rapidly mixing throughout the high temperature regime for all

d ≥ 3.

The key to our improved mixing time analysis is a novel fac-

torization of entropy based on the joint probability space of spins

and edges that underlies the SW dynamics. This factorization im-

plies that the relative entropy decays at a constant rate, which

in turn implies a tight bound on the mixing time via a modified

log-Sobolev inequality. In contrast, previous bounds for the SW dy-

namics [5, 6, 9, 25, 46] have used the spectral gap, which inherently

loses a factor of O(n) when transferred to mixing time bounds and

cannot deliver a tight result. We discuss our new technique and its

ramifications in the next subsection.

A priori the correct order of the mixing time of the SW dynamics

is unclear. In some settings, such as on the complete graph (the

mean-field Potts model) for all β below the uniqueness threshold,

the dynamics mixes in Θ(1) steps [21, 32]. In this paper, to comple-

ment our main result of anO(logn) upper bound, we also establish
a lower bound of Ω(logn) for all boundary conditions whenever

SSM holds. To prove our lower bound, we follow the strategy intro-

duced by Hayes and Sinclair [26], who proved a tight lower bound

on the mixing time of the local Glauber dynamics. However, the

synchronicity and non-locality of the updates in the SW dynamics

presents a significant obstacle to the adaptation of their techniques

and some new ideas are required. The main novel ingredient in

our proof of the lower bound is an analysis of the speed of propa-

gation of disagreements under a coupling of the steps of the SW

dynamics, provided SSM holds. To establish this we use a recent

breakthrough result of Duminil-Copin, Raoufi, and Tassion [17]

establishing exponential decay of correlations (i.e., weak spatial

mixing) in the entire high-temperature phase for the Potts model

on Zd . We believe that our analysis of the speed of disagreement

propagation could be useful for establishing lower bounds for the

mixing time of SW dynamics in other settings.
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Our methods also provide new results for the low-temperature

regime β > βc (q) in Z
2
for specific boundary conditions. We say

that a boundary condition τ is monochromatic if τ fixes the spin of

every boundary vertex to the same color. One of the most funda-

mental open problems in the study of the Glauber dynamics for the

Ising and Potts model concerns the mixing time at low temperatures

with a monochromatic boundary [33, 40]. We provide new bounds

for the mixing time of the SW dynamics in this setting.

Theorem 1.3. In an n-vertex square region of Z2, for all q ≥ 2

and all β > βc (q) we have Tmix(SW ) = O(n logn) for the free or
monochromatic boundary condition.

The best previously known bound for the mixing time of the

SW dynamics in an n-vertex square region of Z2 when β > βc (q)
was O(n2 log2 n), which follows from the results in [9, 46]; see

also [34] for better (sub-linear) bounds for the mixing time when

q = 2 and β ≫ βc (q). The bound in Theorem 1.3 is likely not tight,

and establishing that the SW dynamics mixes in O(logn) steps in
Z2 throughout the low-temperature regime remains an important

open problem. Furthermore, our result for low temperature with a

monochromatic boundary does not extend to higher dimensions

d ≥ 3, since it crucially uses the self-duality for the associated

random-cluster distribution on Z2. For the Ising model with d ≥ 3,

the state of the art seems to be the results from [34] for β ≫ βc (q).

1.1 A New Analytic Tool
A standard tool for the analysis of Markov chains are comparison

inequalities, which relate the spectral gap of a chain of interest to

that of some simpler chain that has already been analyzed. This

approach has proven particularly useful for analysis of the SW

dynamics; indeed, some of the currently best known upper bounds

on its mixing time are obtained in this manner [5, 6, 9, 25, 46]. As

mentioned earlier, this approach is unable to yield tight bounds on

the mixing time of the SW dynamics since bounds obtained via the

spectral gap inherently introduce a factor log(1/µ∗) = Ω(n) into
the mixing time, where µ∗ = minσ µ(σ ).

A potentially more powerful approach is to compare instead the

(classical) log-Sobolev constants (see Definition 2.6). This yields

mixing time bounds with only a log log(1/µ∗) = O(logn) depen-
dence on µ∗, which is potentially tight. Unfortunately, however,

log-Sobolev inequalities are not tight for the SW dynamics, and

the best possible mixing time bound obtained in this way would

be O(n) (see Remark 3.2 for details).

A modified log-Sobolev inequality (which essentially bounds the

rate of decay of relative entropy; see again Definition 2.6) is a strictly

weaker (and hence easier to satisfy) inequality than the classical

log-Sobolev inequality, but still strong enough to establish mixing

time bounds with the same dependence on µ∗. There have been
several notable recent results bounding the modified log-Sobolev

constant for various Markov chains [15, 27]. However, there are

no prior results addressing the modified log-Sobolev constant for

the SW dynamics and, more generally, no comparison inequalities

are available for the modified log-Sobolev constant. In this paper,

we develop new machinery that essentially allows us to compare

the modified log-Sobolev constant of the SW dynamics with that

of a much simpler dynamics, and hence obtain tight mixing time

bounds. This comparison is at the level of entropy factorization

rather than the modified log-Sobolev constant itself, as we now

describe.

Approximate factorization of the entropy of the Gibbs distribu-

tion µ with constant C says that, for any nonnegative function

f : Ω 7→ R+,

Entµ (f ) ≤ C
∑
v ∈V

µ[Entv (f )], (1.2)

where µ[f ] =
∑
σ ∈Ω µ(σ )f (σ ) and Entµ (f ) := µ[f log(f /µ[f ])]

are the expectation and entropy, respectively, of f with respect to µ,
and Entv is the entropy with respect to the conditional distribution

at vertex v given the spins of its neighbors. Note that necessarily

C ≥ 1, andC = 1 when µ is a product measure. (The term“constant”

here indicates that (1.2) holds for fixedC , independent of f . In most

applications, C will in fact be a constant independent of the size of

the underlying graph G; we will write C = O(1) to indicate this.)

Approximate factorization with C = O(1) played a central role in

classical results proving that SSM implies O(n logn) mixing time

of the Glauber dynamics; see, e.g., [14, 37, 44, 47].

Until recently it was unclear how to apply this approach to more

general Markov chains. However, in a very recent paper, Caputo

and Parisi [13] took an important step in this direction by extending

the above factorization as follows:

Definition 1.4. For a spin configuration σ on a bipartite graphG ,
let σE (respectively, σO ) denote the spins on the even (respectively,

odd) side of the bipartition. We say that approximate even/odd fac-

torization with constant C holds if for all functions f : Ω 7→ R+,

Entµ (f ) ≤ C(µ
[
Entµ (f |σE )

]
+ µ

[
Entµ (f |σO )

]
). (1.3)

To clarify the meaning of the inequality (1.3), we use the notation

Entµ (f |σE ) for the entropy of f with respect to the conditional

probability µ(·|σE ), that is, the Gibbs measure conditioned on a

given realization of the even spins σE , with similar notation for odd

spins. In particular, taking expectations one has

µ
[
Entµ (f |σE )

]
= µ[f log(f /µ[f |σE ])],

µ
[
Entµ (f |σO )

]
= µ[f log(f /µ[f |σO ])].

Caputo and Parisi [13] showed that for spin systems on Zd , under
the SSM assumption, approximate even/odd factorization holds

with C = O(1), and used this fact to establish a tight mixing time

bound for “block dynamics” in Zd , a generalization of Glauber

dynamics in which a randomly chosen block of spins (rather than

a single spin) is updated in each step.

Our main analytic tool in this paper establishes that, on any

bounded degree bipartite graph, even/odd factorization is in fact

sufficient to ensure O(logn) mixing time for the much more com-

plex SW dynamics. Note that SW is very far from a block dynamics,

in that the configurations of multiple, dynamically changing clus-

ters of spins are updated simultaneously in each step.

Theorem 1.5. For all constant ∆, for any bipartite graph of maxi-

mum degree∆, if the Gibbs distribution satisfies approximate even/odd

factorization with C = O(1) then the mixing time of the Swendsen–

Wang dynamics is O(logn).

We remark that Theorem 1.5 holds for arbitrary boundary con-

ditions (or pinnings of vertices) of the bipartite graph, and thus
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Theorem 1.1 for the lattice Zd follows immediately from this theo-

rem and the above mentioned results in [13].

The main technical step in the proof of Theorem 1.5 is to show

that even/odd factorization implies a novel spin/edge factorization

of entropy (see Defintion (1.6) below), which is tailored to the SW

dynamics so that it implies O(logn) mixing fairly directly.

1.2 The Spin/Edge Factorization
Our new entropy factorization is based on the joint probability

space on spins and edges introduced by Edwards and Sokal [19],

that underlies the SW dynamics. Let Ωj = Ω × {0, 1}E be the set of

joint configurations (σ ,A) consisting of a spin assignment to the

vertices σ ∈ Ω and a subset of edges A ⊆ E, where recall that E
is the set of edges with both endpoints in V . The Edwards-Sokal
distribution on G with parameters p ∈ [0, 1] and q ∈ N, and free

boundary condition, is the probability measure on Ωj given by

ν (σ ,A) :=
1

Zj
p |A |(1 − p) |E |− |A |1(σ ∼ A), (1.4)

where σ ∼ A means that A ⊆ M(σ ) (i.e., that every edge in A is

monochromatic in σ ) and Zj is the corresponding normalizing con-

stant or partition function. When p = 1 − e−β , the “spin marginal”

of ν is precisely the Potts distribution µ and Z = Zj; the “edge mar-

ginal” of ν corresponds to the well-known random-cluster measure;

see [20, 24]. The SW dynamics alternates between spin configu-

rations and joint spin/edge configurations in a manner consistent

with (1.4).

We note that a boundary condition on the joint space allows

fixing the state of both spins and edges and thus may introduce

more complex dependencies. While our results in the joint space

are stated here only for the free boundary condition, they actu-

ally extend to any spin-only boundary condition. By a “spin-only”

boundary condition we mean any boundary condition that fixes

the spins of a subset of vertices, and fixes no values for the edges.

In fact, in Zd , we can handle a slightly more general class of bound-

ary conditions we call admissible (see Definition 4.1) which will be

useful for proving Theorem 1.3 and our results for random-cluster

dynamics.

Our entropy factorization for the SW dynamics is defined as

follows.

Definition 1.6. We say that approximate spin/edge factoriza-

tion with constant C holds if for all functions f : Ωj 7→ R+,

Entν (f ) ≤ C (ν [Entν (f |σ )] + ν [Entν (f |A)]) . (1.5)

Let us explain the terms in (1.5) in more detail. We write ν (·|σ )
for the probability obtained from ν by conditioning the on whole

spin configuration being equal to a given σ ∈ Ω and ν (·|A) for the
probability obtained from ν by conditioning on the whole edge

configuration being equal to a given A ⊆ E. With this notation,

Entν (f |σ ) and Entν (f |A) denote the entropy of f with respect to

the conditional measures ν (·|σ ) and ν (·|A), respectively. Therefore,
taking their expectations with respect to ν one obtains

ν [Entν (f |σ )] = ν [f log(f /ν [f |σ ])],

ν [Entν (f |A)] = ν [f log(f /ν [f |A])]. (1.6)

The main technical ingredient in proving Theorem 1.5 is the

following “comparison lemma” for entropy factorization.

Lemma 1.7. For the Potts model at inverse temperature β on any

bipartite graph of maximum degree ∆, approximate even/odd factor-

ization with constant C implies approximate spin/edge factorization

with constant C ′ = C ′(C,∆,q, β).

To complete the proof of Theorem 1.5, we show that the spin/edge

factorization in (1.5) implies decay of entropy for the SW dynamics:

namely, there exists a constant δ > 0 such that, for all functions

f : Ω 7→ R+, we have

Entµ (Psw f ) ≤ (1 − δ )Entµ (f ), (1.7)

where Psw denotes the transition matrix of the SW dynamics. As

we recall in Section 2.2, standard arguments then imply a modified

log-Sobolev inequality, and a bound ofO(logn) on the mixing time

of the SW dynamics.

Lemma 1.8. For the Potts model on any n-vertex graph, approx-
imate spin/edge factorization with constant C = O(1) implies that

(1.7) holds with δ = 1/C and hence Tmix(SW ) = O(logn).

1.3 Further Results
Our new entropy factorization framework leads to several addi-

tional algorithmic results on Zd that hold under the condition of

SSM, which we briefly summarize here. First, we prove optimal

O(logn) mixing time for alternating systematic scan dynamics, a

natural non-local dynamics in which even and odd sides of the bipar-

tition are updated on alternate steps. Systematic scan dynamics, in

which updates are performed in a deterministic rather than random

sequence, are widely used in practice but are non-reversible and

typically much harder to analyze. Second, we are able to show that

various versions of the SWdynamics on the joint spin/edge spacemix

in O(logn) time, as does the SW dynamics for the random-cluster

model. Finally, we show that a natural local Glauber dynamics in the

joint space has optimal mixing time Θ(n logn). Formal statements

of all these results and their proofs can be found in the full version

of the paper [4].

Organization of the paper: In Section 2 we gather definitions of

various standard concepts used throughout the paper. Section 3

proves Lemma 1.8 showing that the spin/edge entropy factorization

impliesO(logn)mixing for the SW dynamics. We prove Lemma 1.7

relating even/odd factorization to spin/edge factorization in Sec-

tion 4, and then combine Lemmas 1.7 and 1.8 to establish our main

technical tool (Theorem 1.5) and our main algorithmic result (Theo-

rem 1.1). Our lower bound on the mixing time is proved in Section 5.

The rest of our results and further applications are proved and dis-

cussed in the full version [4].

2 BACKGROUND
In this section, we formally define the spatial mixing property to

be used throughout the paper. We also recall some known relations

and prove some preliminary facts concerning entropy and mixing

times.

2.1 Strong Spatial Mixing (SSM)
We assume V ⊂ Zd is a d-dimensional cube in Zd . That is, V =
{0, 1, . . . , ℓ}d where ℓ is a positive integer. We use ∂V ⊆ V to

denote the internal boundary of V ; i.e., the set of vertices in V
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adjacent to at least one vertex in Zd \V . A boundary condition ψ
for V is an assignment of spins to some (or all) vertices in ∂V ; i.e.,

ψ : Uψ → [q] with Uψ ⊂ ∂V . The boundary condition where

Uψ = ∅ is called the free boundary condition. Given a boundary

conditionψ , each configuration σ ∈ Ω that agrees withψ onUψ is

assigned probability

µψ (σ ) =
1

Zψ
· e−β |D(σ ) |,

where Zψ is the corresponding normalizing constant and D(σ ) :=

{{v,w} ∈ E : σv , σw }. We define µψ (σ ) = 0 for σ ∈ Ω that does

not agree withψ .
Let C(V ,a,b) be the property that, for all B ⊂ V , all u ∈ ∂V and

any pair of boundary conditionsψ ,ψu on ∂V that differ only in the

spin of the vertex u, we have

∥µ
ψ
B − µ

ψu
B ∥

tv
≤ b exp(−a · dist(u,B)), (2.1)

where µ
ψ
B and µ

ψu
B are the probability measures induced in B by

the Potts distribution with boundary conditionsψ andψu , respec-
tively, ∥ · ∥tv denotes total variation distance and dist(u,B) =
minv ∈B ∥u −v ∥

1
.

Definition 2.1. We say that strong spatial mixing (SSM) holds if

there exist a,b > 0 such that C(V ,a,b) holds for every cube V ⊂ Zd .

We note that the definition of SSM varies in the literature, but we

work here with one of the weakest (easiest to satisfy) versions. In Z2,
this form of SSM has been established for all q ≥ 2 and β < βc (q),
where βc (q) = ln(1 +

√
q) is the uniqueness threshold [2, 3, 38].

Finally, we stress that the SSM property is determined only by

the values of the parameters q and p = 1 − e−β , and not by any

particular boundary condition.

Remark 2.2. For definiteness, we have stated all of our results

for n-vertex d-dimensional cubes but they extend to more general

regions of Zd . In particular, we can consider regions which are the

union of disjoint translates of a given large enough cube. The variant

of the SSM condition that requires C(U ,a,b) to hold for every such

region U is equivalent to the one in Definition 2.1 (see [36, Theorem

2.6]). As noted in [36], a version of SSM which requires C(V ,a,b) to
hold for arbitrarily shaped regions V does not hold all the way to the

uniqueness threshold.

2.2 Mixing Time, Entropy and Log-Sobolev
Inequalities

Let P be the transitionmatrix of an ergodic Markov chain with finite

state space Γ and stationary distribution π . Let P t (X0, ·) denote the

distribution of the chain after t steps starting from the initial state

X0 ∈ Γ. The mixing time Tmix(P) of the chain is defined as

Tmix(P) = max

X0∈Γ
min

{
t ≥ 0 : ∥P t (X0, ·) − π ∥tv ≤ 1/4

}
.

To prove upper bounds on the mixing time, in this paper we mostly

rely on functional inequalities related to entropy.

For a function f : Γ 7→ R, let π [f ] =
∑
σ ∈Ω π (σ )f (σ ) and

Varπ (f ) = π [f
2]−π [f ]2 denote its mean and variance with respect

to π . Likewise, for f positive, the entropy of f with respect to π is

defined as

Entπ (f ) = π

[
f log

(
f

π [f ]

)]
= π [f log f ] − π [f ] logπ [f ]. (2.2)

We often consider these functionals and their conditional ver-

sions with respect to the Potts measure µ or the joint measure ν (as

defined in (1.1) and (1.4) respectively). In particular, if the function

f is such that f : Ωj 7→ R+, for fixed σ ∈ Ω and A ⊆ E, we write
ν [f |σ ] =

∑
A⊆E ν (A|σ )f (σ ,A), ν [f |A] =

∑
σ ∈Ω ν (σ |A)f (σ ,A) and

Entν (f |σ ) = ν

[
f · log

(
f

ν [f |σ ]

) ����σ ]
,

Entν (f |A) = ν

[
f · log

(
f

ν [f |A]

) ����A]
.

Note that Entν (f |σ ) and Entν (f |A) are functions of σ ∈ Ω and

A ⊆ E, respectively, and with slight abuse of notation, we write

ν [Entν (f |σ )] and ν [Entν (f |A)] for the corresponding expectations
with respect to ν ; see (1.6). The following identities hold:

Entν (f ) = Entν (ν [f |A]) + ν [Entν (f |A)]; (2.3)

Entν (f ) = Entν (ν [f |σ ]) + ν [Entν (f |σ )]. (2.4)

Indeed, both statements follow from the general decomposition

Entπ (f ) = Entπ (π [f |F ]) + π [Entπ (f |F )], (2.5)

valid for any distribution π , and any sub σ -algebra F , which follows

by adding and subtracting the term π (f logπ [f |F ]) in (2.2). An-

other basic property of entropy that we shall use is the variational

principle

Entπ (f ) = sup

{
π [f φ] , π [eφ ] ≤ 1

}
, (2.6)

valid for any distribution π , and any f ≥ 0, where the supremum

ranges over all functions φ : Γ 7→ R such that π [eφ ] ≤ 1, see e.g.

Proposition 2.2 in [31].

When f ≥ 0 is such that π [f ] = 1, then Entπ (f ) = H (f π | π )
corresponds to the relative entropy, or Kullback-Leibler divergence,

between the distribution f π and π .

Definition 2.3. A Markov chain with transition matrix P and

stationary distribution π is said to satisfy the (discrete time) relative

entropy decay with rate δ > 0 if for all distributions ζ ,

H (ζP |π ) ≤ (1 − δ )H (ζ |π ). (2.7)

We recall a well known consequence of entropy decay for the

mixing time. For completeness, we include a proof in the full version

of our paper [4].

Lemma 2.4. If a Markov chain with transition matrix P and sta-

tionary distribution π satisfies relative entropy decay with rate δ > 0,

then its mixing time Tmix(P) satisfies

Tmix(P) ≤ 1 + δ−1[log(8) + log log(1/π∗)] ,

where π∗ = minσ π (σ ).

Remark 2.5. If ζ has density f with respect to π (i.e., ζ = f π ),
then ζP has density P∗ f with respect to π , where P∗ is the adjoint

or time-reversal matrix P∗(σ ,σ ′) =
π (σ ′)

π (σ ) P(σ
′,σ ). Thus, (2.7) is

equivalent to

Entπ (P
∗ f ) ≤ (1 − δ )Entπ (f ), (2.8)
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for all f ≥ 0 such that π [f ] = 1. By homogeneity, this is equivalent

to (2.8) for all f ≥ 0. When P is reversible, that is when P = P∗, (2.7)
is equivalent to Entπ (P f ) ≤ (1 − δ )Entπ (f ) for all f ≥ 0.

The inequality (2.8) can be considered as a discrete time analogue

of the so-called modified log-Sobolev inequality characterizing

the relative entropy decay for continuous time Markov chains;

see, e.g. [10]. Below we discuss some basic relations among (2.8),

the standard log-Sobolev inequality and the modified log-Sobolev

inequality.

Consider a transition matrix P with stationary distribution π .
The Dirichlet form associated to the pair (P, π ) is defined as

DP (f ,д) = ⟨f , (1 − P)д⟩,

where f ,д are real functions on Γ, ⟨f ,д⟩ = π [f д] denotes the scalar
product in L2(π ) and 1 is the identity matrix. Since f is real we also

have

DP (f , f ) = ⟨(1 −Q)f , f ⟩ =
1

2

∑
x ,y

π (x)Q(x,y)(f (x) − f (y))2,

where Q = 1

2
(P + P∗). Moreover, if P = P∗ one has

DP (f ,д) =
1

2

∑
x ,y

π (x)P(x,y)(f (x) − f (y))(д(x) − д(y)),

for all f ,д.

Definition 2.6. The pair (P, π ) is said to satisfy the (standard)

log-Sobolev inequality (LSI) with constant α if for all f ≥ 0:

DP (
√
f ,

√
f ) ≥ α Entπ (f ).

It is said to satisfy the modified log-Sobolev inequality (MLSI) with

constant δ if for all f ≥ 0:

DP (f , log f ) ≥ δ Entπ (f ). (2.9)

It is well known that the Log-Sobolev inequality is equivalent to

the so-called hypercontractivity (see [16, Theorem 3.5]), while the

modified Log-Sobolev inequality (2.9) is equivalent to exponential

decay of the relative entropy with rate δ for the continuous time

kernel Kt = e(P−1)t (see [16, Theorem 3.6]). Note that we are not

assuming reversibility. To see the relation between the MLSI and

the entropy decay in continuous time, note that if Kt = e(P−1)t and

f has mean π [f ] = 1 then using K∗
t = e(P

∗−1)t
one checks that the

time derivative of the relative entropy satisfies

d

dt
H (ζKt |π ) =

d

dt
Ent(K∗

t f ) = −DP (K
∗
t f , logK

∗
t f ),

where ζ = f · π . Therefore (2.9) implies, for all t ≥ 0:

H (ζKt |π ) ≤ H (ζ |π )e−δ t .

Next, we observe that the bound (2.8) is stronger than the MLSI in

(2.9).

Lemma 2.7. If the entropy decay holds with rate δ in discrete time

then it holds with the same rate in continuous time. That is, (2.8)

implies the MLSI with constant δ .

A proof of this fact is given in the full version of the paper [4].

It is also well known that the standard LSI with constant α im-

plies entropy decay in continuous time with rate δ = 2α , since

DP (f , log f ) ≥ 2DP (
√
f ,

√
f ) for all f ≥ 0, and this can be im-

proved to δ = 4α in the reversible case; see [16, Lemma 2.7]. Here

we recall a result of Miclo [41] showing in what sense the LSI

implies the discrete time entropy decay.

Lemma 2.8. If the pair (P∗P, π ) satisfies the standard LSI with

constant α , then the discrete time entropy decay holds for (P, π ) with
constant δ = α . In particular, if P is reversible and (P, π ) satisfies the
LSI with constant α , then for all f ≥ 0:

Entπ P f ≤ (1 − α)Entπ f .

3 SPIN/EDGE FACTORIZATION IMPLIES FAST
MIXING: PROOF OF LEMMA 1.8

As mentioned in the introduction, the proof of our main new an-

alytic tool (Theorem 1.5) has two components. We show that ap-

proximate even/odd factorization implies spin/edge factorization

(Lemma 1.7), and then that spin/edge factorization impliesO(logn)
mixing for the SW dynamics (Lemma 1.8). In this section, we pro-

vide the proof of the latter result, whereas Lemma 1.7 is proved in

the subsequent section.

Proof of Lemma 1.8. We show that the spin/edge factorization

with constant C implies that for all functions f ≥ 0 with µ[f ] = 1,

one has

Entµ (Psw f ) ≤ (1 − δ )Entµ (f ), (3.1)

with δ = 1/C . Since the SW dynamics is reversible with respect to

µ, we have Psw = P∗
sw

, and the desired mixing time bound follows

from Lemma 2.4 and Remark 2.5.

The transition matrix of the SW dynamics satisfies Psw(σ , τ ) =∑
A⊆M (σ ) ν (A|σ )ν (τ |A), where we recall that M(σ ) is the set of

monochromatic edges in σ . Hence,

Psw f (σ ) =
∑
τ ∈Ω

Psw(σ , τ )f (τ ) =
∑
τ ∈Ω

∑
A⊆M (σ )

ν (A|σ )ν (τ |A) ˆf (τ ,A),

where the function
ˆf : Ωj 7→ R+ is the “lift” of f to the joint space,

i.e.,
ˆf (σ ,A) = f (σ ) for every (σ ,A) ∈ Ωj. Recalling that we write

ν [f ], ν [f |A], ν [f |σ ] for the expectations of f with respect to the

measures ν (·), ν (· | A), ν (· | σ ), respectively, we obtain

Psw f (σ ) =
∑

A⊆M (σ )

ν (A|σ )ν [ ˆf | A] = ν [ν [ ˆf |A]|σ ] = ν [д |σ ],

where for ease of notation we set д := ν [ ˆf |A]. Since µ[f ] = 1, we

have µ[Psw f ] = 1 and

Entµ (Psw f ) = µ[(Psw f ) log(Psw f )] = µ [ν [д |σ ] log(ν [д |σ ])] .

The convexity of the function x · logx and Jensen’s inequality imply

ν [д |σ ] log(ν [д |σ ]) ≤ ν [д logд | σ ] ,

and then, since ν [д] = ν [ ˆf ] = µ[f ] = 1, we have

Entµ (Psw f ) ≤ µ [ν [д logд | σ ]] = ν [ν [д logд] | σ ]

= ν [д logд] = Entν (д). (3.2)

For any function h : Ωj 7→ R+, we have by (2.3) that Entν (h) =
Entν (ν [h |A]) + ν [Entν (h |A)]. Hence,

Entν ( ˆf ) = Entν (д) + ν [Entν ( ˆf |A)],
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which by (3.2) gives Entµ (Psw f ) ≤ Entν ( ˆf ) − ν [Entν ( ˆf |A)]. The

function
ˆf depends on σ only, so Entν ( ˆf |σ ) = 0. Therefore,

Entµ (Psw f ) ≤ Entν ( ˆf ) − ν
[
Entν ( ˆf |A) + Entν ( ˆf |σ )

]
.

The assumed spin/edge factorization (1.5) then implies that

Entµ (Psw f ) ≤ (1 − δ )Entν ( ˆf ),

with δ = 1/C . Inequality (3.1) follows from the fact that Entν ( ˆf ) =
Entµ (f ). □

Remark 3.1. We do not assume anything about the underlying

graph in the previous proof, so Lemma 1.8 holds for any graph G. In
addition, our proof as stated applies to the Potts measure µ obtained
as the marginal on spins of the joint measure ν . If ν is as in (1.4), this

yields only the Potts measure on V with the free boundary condition.

However, the proof extends to the Potts measure with any boundary

condition (or pinning of vertices) by choosing a spin-only boundary

condition forν . In particular, Theorem 1.1 holds for arbitrary boundary

conditions, as stated in the introduction. For the special case when G

is a cube of Zd , we allow a slightly more general class of boundary

conditions, involving both spin and edges, which we call admissible;

see Definition 4.1 and the examples immediately following it.

Remark 3.2. The entropy contraction established in (3.1) implies

a modified log-Sobolev inequality, and can be viewed as a discrete

time version of it; see Section 2.2. The classical log-Sobolev constant,

however, is not tight for the SW dynamics. Indeed, the remark in [35,

Section 3.7] shows a test function f such that Varµ (
√
f )/Entµ (f ) =

O(n−1). Since DPsw (
√
f ,

√
f ) = ν [Var(

√
f |A)], it follows from mono-

tonicity of variance functional that DPsw (
√
f ,

√
f ) ≤ Varµ (

√
f )

and so

DPsw (
√
f ,
√
f )

Entµ (f )
= O(n−1) for this function.

4 FACTORIZATION OF ENTROPY IN THE
JOINT SPACE

In this section, we prove our main technical result, Lemma 1.7,

which states that approximate even/odd factorization implies ap-

proximate spin/edge factorization for the Potts measure on bipartite

graphs. For clarity of notation, and to simplify the proofs, we will

restrict attention to n-vertex cubes in Zd , but it should be clear that
everything extends to arbitrary bipartite graphs of constant degree

with any spin-only boundary condition. In addition, on Zd we are

able to extend our results to a more general class of boundary con-

ditions in the joint space, involving both edges and vertices, that

we call admissible.

Admissible boundary conditions. Let ∂V be the set of vertices

of V with a neighbor in Zd \V . Let ∂E denote the set of edges in E
with at least one endpoint in ∂V . (Recall that E is the set of edges
with both endpoints in V .) We consider boundary conditions for

the joint space on subsets V0 ⊆ ∂V and E0 ⊆ ∂E. Specifically, we
letψ : V0 7→ [q] and φ : E0 7→ {0, 1} and define

νψ ,φ (σ ,A) =
1

Zψ ,φ
p |A |(1 − p) |E |− |A |1(σ ∼ A)1(σ ∼ ψ )1(A ∼ φ),

(4.1)

where σ ∼ A means that A ⊆ M(σ ), σ ∼ ψ that σ and ψ agree on

the spins in V0, and A ∼ φ that A and φ agree on the edges in E0.

As usual, Zψ ,φ
is the corresponding partition function.

Definition 4.1. We call the boundary condition admissible if

E0 ⊂ {{u,v} ∈ ∂E : u ∈ V0}; that is, if all edges in E0 have at least
one endpoint in V0.

Notice that the free boundary condition (V0 = ∅ and E0 = ∅) is

admissible, and all spin-only boundary conditions (V0 ⊂ ∂V and

E0 = ∅) are also admissible. In this case, the marginal on spins is

just the Potts measure withψ as the boundary condition on ∂V with

Uψ = V0. For some additional examples of admissible boundary

conditions the reader is referred to the full version [4].

The main motivation for introducing the notion of admissible

boundary conditions is that it guarantees that the spin marginal

of νψ ,φ
has the desired exponential decay of correlations if the

parameters q and β are such that SSM holds. We shall see that all

of our results concerning the joint measure and its dynamics on

Zd extend to the more general class of admissible boundary condi-

tions. We can therefore restate Lemma 1.7 from the introduction

for the special case of Zd allowing arbitrary admissible boundary

conditions.

Lemma 4.2. Let ν := νψ ,φ
be the joint distribution with an admis-

sible boundary condition (ψ ,φ). Approximate even/odd factorization

with constant C of the spin marginal of ν implies that approximate

spin/edge factorization holds with constant C ′ = C ′(C,d,q, β).

For simplicity, we will continue to write ν for the joint measure

νψ ,φ
and µ for its marginal on spins. We shall see that our proofs in

this section are largely oblivious to the boundary condition or the

geometry of Zd (in fact, we only require the underlying graph to be

bipartite). We also remark that, while we could allow a slightly more

general family of boundary conditions than the admissible ones,

some limitations are needed. For instance, arbitrary edge boundary

conditions may cause long-range dependencies; see, e.g., [7, 9]. We

proceed next with the proof of Lemma 4.2.

4.1 Proof of Lemma 4.2

Overview. The following high level observations might be of help

before entering the technical details of the proof. First, notice that

the conclusion in the theorem would trivially hold true with con-

stant C = 1 if ν were a product measure with respect to the two

sets of variables (σ ,A). This is a consequence of standard factoriza-

tion properties of product measures. Thus, the minimal constant

C for which that statement holds is a measure of the “cost" for

“separating" the two sets of variables.

When the dependencies between the two sets of variables are

very weak, a factorization statement could be obtained as in [14].

However, in our case the dependencies are not weak, since the spin

variables interact locally with the edge variable in a strong way. For

instance, the presence of the edge xy in A forces deterministically

the condition σx = σy . Thus, the fact that our statement holds with

a constant C independent of n is highly nontrivial.

On the other hand, for every x ∈ V one can separate locally the

two variables (σx ,Ax ), where Ax denotes the set of edge variables

for edges incident to x , by paying a finite costC ; this is the content
of Lemma 4.7 below. We can then lift this local factorization to a

global factorization statement for the conditional measure ν (·|σE ),
respectively ν (·|σO ), obtained by conditioning on the spin variables
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of all even vertices E ⊂ V , respectively of all odd vertices O ⊂ V .
This is the content of Lemma 4.4.

Lemma 4.4 is the heart of the proof and relies crucially on the fact

that ν (·|σE ) is a product measure with respect to {(σx ,Ax ), x ∈ O},

and ν (·|σO ) is a product measure with respect to {(σx ,Ax ), x ∈ E}.
Thus, we reduce the problem of separating the spin/edge variables

(σ ,A) to the problem of separating the even/odd spin variables

(σE ,σO ) for the joint distribution ν . We then conclude by showing

that even/odd factorization for the Potts measure µ implies the

even/odd factorization for ν . This is the content of Lemma 4.5.

We now turn to the actual proof. Let ν (·|σE ,A) denote the mea-

sure ν conditioned on σE = {σv , v ∈ E} and A ⊆ E. Similarly,

ν (·|σO ,A) denotes the measure ν conditioned on σO = {σv , v ∈ O}

and A. We use Entν (f |σE ,A) and Entν (f |σO ,A) to denote the cor-

responding conditional entropies; for their expectations with re-

spect to ν we use ν [Entν (f |σE ,A)] and ν [Entν (f |σO ,A)]. The next
lemma shows that conditioning on the spin configuration of the

even or the odd sub-lattice can only decrease the entropy of a

function with respect to ν (· | A).

Lemma 4.3. For all functions f : Ωj 7→ R+ we have

ν [Entν (f |A)] ≥ ν [Entν (f |σE ,A)] ; and

ν [Entν (f |A)] ≥ ν [Entν (f |σO ,A)] .

Proof. We can write

ν [Entν (f |A)]

= ν

[
f log

(
f

ν [f |A]

)]
= ν

[
f log

(
f

ν [f |σE ,A]

)]
+ ν

[
f log

(
ν [f |σE ,A]

ν [f |A]

)]
= ν [Entν (f |σE ,A)] + ν

[
ν [f |σE ,A] log

(
ν [f |σE ,A]

ν [f |A]

)]
= ν [Entν (f |σE ,A)] + ν [Entν (ν [f |σE ,A]|A)]

≥ ν [Entν (f |σE ,A)] .

The same argument applies to the odd sites, so we also deduce that

ν [Entν (f |A)] ≥ ν [Entν (f |σO ,A)] . □

The advantage of working with ν (·|σO ,A) or ν (·|σE ,A) instead
of ν (·|A) is that once we condition on the spins on all odd (resp.

even) sites the measure becomes a product over the even (resp. odd)

vertices, and we can exploit tensorization properties of entropy for

product measures. The next lemma is a key step in the proof.

Lemma 4.4. There exists a constant δ1 > 0 depending only on

d, β,q such that, for all functions f : Ωj 7→ R+,

ν [Entν (f |σ )] + ν [Entν (f |σO ,A)] ≥ δ1 ν [Entν (f |σO )] , (4.2)

ν [Entν (f |σ )] + ν [Entν (f |σE ,A)] ≥ δ1 ν [Entν (f |σE )] . (4.3)

We defer the proof of Lemma 4.4 to later. Adding up (4.2) and

(4.3) and using Lemma 4.3 we obtain the estimate

ν [Entν (f |σ ) + Entν (f |A)] ≥
δ1
2

ν [Entν (f |σE ) + Entν (f |σO )] .

(4.4)

We then use a generalization of the entropy factorization from [13]

to reconstruct, in the presence of approximate even/odd factor-

ization, the global entropy Entν (f ) from the conditional average

entropies ν [Entν (f |σE )] and ν [Entν (f |σO )] on the right hand side

of (4.4).

Lemma 4.5. Approximate even/odd factorization with consant C
implies that for all functions f : Ωj 7→ R+,

ν [Entν (f |σE ) + Entν (f |σO )] ≥ δ2Entν (f ),

where δ2 = 1/C .

Proof. We need the following observations:

Entν (f |σO ) = Entν (ν [f |σ ] |σO ) + ν [Entν (f |σ )|σO ] , (4.5)

Entν (f |σE ) = Entν (ν [f |σ ] |σE ) + ν [Entν (f |σ )|σE ] . (4.6)

Indeed, to establish (4.5) note that from the definition of conditional

entropy we get

Entν (f |σO )

= ν

[
f log

(
f

ν [f |σO ]

) ����σO ]
= ν

[
f log

(
f

ν [f |σE ,σO ]

) ����σO ]
+ ν

[
f log

(
ν [f |σE ,σO ]

ν [f |σO ]

) ����σO ]
= ν

[
f log

(
f

ν [f |σE ,σO ]

) ����σO ]
+ ν

[
ν [f | σ ] log

(
ν [f |σ ]

ν [f |σO ]

) ����σO ]
= ν [Entν (f |σ )|σO ] + Entν (ν [f |σ ] |σO ) ,

where we also use the fact that ν [·|σE ,σO ] = ν [·|σ ]. The same

argument applies to (4.6).

Now, since the function ν [f |σ ] depends only on the spin config-

uration σ ,

ν [Entν (ν [f |σ ]|σE ) + Entν (ν [f |σ ]|σO )] =

µ
[
Entµ (ν [f |σ ]|σE ) + Entµ (ν [f |σ ]|σO )

]
;

and we may apply the approximate even/odd factorization to the

function ν [f |σ ]. Then, there exists a constant δ2 ∈ (0, 1] such that

µ
[
Entµ (ν [f |σ ]|σE ) + Entµ (ν [f |σ ]|σO )

]
≥ δ2 Entµ (ν [f |σ ]) .

(4.7)

Therefore, observing that

ν [ν [Entν (f |σ )|σO ] + ν [Entν (f |σ )|σE ]] = 2ν [Entν (f |σ )] ,

we obtain from (4.5), (4.6) and (4.7)

ν [Entν (f |σE )+Entν (f |σO )]

≥ δ2 Entν (ν [f |σ ]) + 2ν [Entν (f |σ )] .

Since δ2 ≤ 1, the standard decomposition in (2.4) implies

ν [Entν (f |σE ) + Entν (f |σO )] ≥ δ2 Entν (f ),

as claimed. □

4.2 Proofs of Main Results
The proofs of Lemma 1.7 and Theorems 1.1 and 1.5 are now imme-

diate.

Proof of Lemma 1.7. We note that inequality (4.4) and Lemma

4.5 are valid for any bipartite graph of bounded degree; the result

follows by taking C = 2/δ1δ2. □

Proof of Theorem 1.5. It follows immediately from Lemmas

1.7 and 1.8. □
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We now also prove our main theorem (Theorem 1.1). We use the

following result of [13] that under SSM the even/odd factorization

holds.

Theorem 4.6 (Theorem 4.3 in [13]). SSM implies that there exists

a constant δ > 0 such that for all cubes of Zd , all boundary conditions,
and for all functions f : Ω 7→ R+,

µ
[
Entµ (f |σE ) + Entµ (f |σO )

]
≥ δ Entµ (f ) .

Proof of Theorem 1.1. Theorem 4.6 [13, Theorem 4.3] implies

that the even/odd factorization holds for any boundary condition

whenever SSM holds. Then, from Lemma 4.2 we know that approx-

imate spin/edge factorization holds; the result then follows from

applying Lemmas 1.7 and 1.8. □

It remains for us to provide the proof of Lemma 4.4, which we

do in the next subsection.

4.3 Proof of Lemma 4.4
Before giving the proof of Lemma 4.4, we mention several useful

facts about the joint distribution ν . The first key fact is that, for

any fixed configuration σO of spins on the odd sub-lattice, the

conditional probability ν (·|σO ) is a product measure. That is,

ν (·|σO ) =
⊗
x ∈E

νx (·|σO ), (4.8)

where, for each x ∈ E, νx (·|σO ) is the probability measure on

{1, . . . ,q} × {0, 1}deg(x ), where deg(x) denotes the degree of x , de-
scribed as follows: pick the spin of site x according to the Potts

measure on x conditioned on the spin of its neighbors in σO ; then,

independently for every edge xy ∈ E incident to the vertex x , if
σx = σy set Axy = 1 with probability p and set Axy = 0 otherwise;

if σx , σy , set Axy = 0. (Note that in this section, to simplify

notation, we shall use xy to denote the edge {x,y}, and view the

edge configuration A as a vector in {0, 1}E.)

Consider now the measure ν (·|σO ,A) obtained by further con-

ditioning on a valid configuration of all edge variables A. Here A
is valid if it is compatible with the fixed spins σO . This is again a

product measure; namely

ν (·|σO ,A) =
⊗
x ∈E

νx (·|σO ,A), (4.9)

where νx (·|σO ,A) is the probability measure on {1, . . . ,q} that is
uniform if x has no incident edges in A, and is concentrated on the

unique admissible value given σO and A otherwise.

Next, we note that ν (·|σ ) is a product of Bernoulli(p) random
variables over all monochromatic edges inσ , while it is concentrated
on Ae = 0 on all remaining edges. Therefore we may write

ν (·|σ ) =
⊗
x ∈E

νx (·|σ ), (4.10)

where νx (·|σ ) is the probability measure on {0, 1}deg(x ) given by

the product of Bernoulli(p) variables on all edges xy incident to x
such that σx = σy and is concentrated on Axy = 0 if σx , σy .

We write Entx (·|σO ), Entx (·|σO ,A), Entx (·|σ ) for the entropies
with respect to the distributions νx (·|σO ), νx (·|σO ,A), νx (·|σ ) re-
spectively. The first observation is that, for every site x , there is a
local factorization of entropies in the following sense.

Lemma 4.7. There exists a constant δ1 > 0 such that, for all func-

tions f ≥ 0 and all x ∈ E,

νx [Entx (f |σ )|σO ] + νx [Entx (f |σO ,A)|σO ] ≥ δ1 Entx (f |σO ).
(4.11)

Proof. For x ∈ V , let Ax be random variable in {0, 1}deg(x )

corresponding to the configuration of the edges incident to x in

A. If we replace entropy by variance, then (4.11) is a spectral gap

inequality for the Markov chain where the variable (σx ,Ax ) ∈

[q]×{0, 1}deg(x ) =: S is updated as follows. At each step, with prob-

ability 1/2 the spin σx is updated with a sample from νx (·|σO ,A),
and with probability 1/2 the edges Ax incident to x are simultane-

ously updated with a sample from νx (·|σ ). Let Px =
Qx+Sx

2
denote

the transition matrix of this Markov chain, where Qx , Sx are the

stochastic matrices corresponding to the spin and edge moves at

x , respectively. Let DPx , DQx and DSx denote the corresponding

Dirichlet forms. Observe that, by updating first the edges with an

empty configuration and then the spin, two arbitrary initial con-

figurations can be coupled after two steps with probability at least

1

4
(1 − p)−2d , and thus for any function f : S 7→ R+

DQx (f , f ) +DSx (f , f )

2

= DPx (f , f ) ≥ δ0 Varx (f |σO ),

where δ0 > 0 is a constant depending only on p and d . Using the

standard facts that

DQx (f , f ) = νx [Varx (f |σ )|σO ] , and

DSx (f , f ) = νx [Varx (f |σO ,A)|σO ] ,

we arrive at the inequality

νx [Varx (f |σ )|σO ] + νx [Varx (f |σO ,A)|σO ]

2

≥ δ0 Varx (f |σO ).

(4.12)

A well known general relation between entropy and variance

(see, e.g., Theorem A.1 and Corollary A.4 in [16]) shows that, for

all f ≥ 0,

Entx (f |σO ) ≤ C1 Varx (
√
f |σO ), (4.13)

where C1 = C1(q,p,d) is a constant independent of n, since we

are considering the conditional measure at the single site x . Thus,

applying (4.12) to

√
f instead of f , we obtain

δ0
C1

Entx (f |σO )

≤

νx
[
Varx (

√
f |σ )|σO

]
+ νx

[
Varx (

√
f |σO ,A)|σO

]
2

. (4.14)

The conclusion (4.11) follows by recalling that for any f ≥ 0 the

variance of

√
f is at most the entropy of f for any underlying proba-

bility measure; see, e.g., [30, Lemma 1]. In particular, Varx (
√
f |σ ) ≤

Entx (f |σ ) and Varx (
√
f |σO ,A) ≤ Entx (f |σO ,A). □

To prove Lemma 4.4, we need to lift the inequality of Lemma 4.7

to the product measure ν (·|σO ) = ⊗x ∈Eνx (·|σO ).

Proof of Lemma 4.4. Wewill prove (4.2); exactly the same argu-

ment applies to (4.3). Let x = 1, . . . ,w denote an arbitrary ordering
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of the even sites x ∈ E. Let Ax ∈ {0, 1}deg(x ) be the random vari-

able corresponding to the state of the edges incident to x . We write

ξx = (σx ,Ax ) for the pair of variables at x . We first observe that

Entν (f |σO ) =
w∑
x=1

ν [Entx (дx−1 |σO )|σO ] , (4.15)

where дx = ν [f |σO , ξx+1, . . . , ξw ], so that д0 = f and дw =
ν [f |σO ]. To prove (4.15) note that since ν (·|σO ) = ⊗x ∈E νx (·|σO ),
one has νx [дx−1 |σO ] = дx . Therefore,

Entν (f |σO ) = ν [д0 log (д0/дw ) |σO ]

=

w∑
x=1

ν [д0 log (дx−1/дx ) |σO ] .

Since the дx are (conditional) expectations, we deduce

Entν (f |σO ) =
w∑
x=1

ν [дx−1 log (дx−1/дx ) |σO ]

=

w∑
x=1

ν [νx [дx−1 log (дx−1/дx ) |σO ] |σO ]

=

w∑
x=1

ν [Entx (дx−1 |σO )|σO ] . (4.16)

From (4.16), using Lemma 4.7 we obtain

δ1 Entν (f |σO ) ≤
w∑
x=1

ν [νx [Entx (дx−1 |σ )|σO ] |σO ]+

w∑
x=1

ν [νx [Entx (дx−1 |σO ,A)|σO ] |σO ]

=

w∑
x=1

ν [Entx (дx−1 |σ )|σO ]+

w∑
x=1

ν [Entx (дx−1 |σO ,A)|σO ] . (4.17)

The two sums in (4.17) are “tensorized” versions ofν [Entν (f |σ )|σO ]
andν [Entν (f |σO ,A)], respectively, which are the terms on the right

hand side of (4.2). Using similar but somewhat more involved ideas

to those used to derive (4.16), we can establish the following.

Lemma 4.8.

(1)

∑w
x=1 ν [Entx (дx−1 |σ )|σO ] ≤ ν [Entν (f |σ )|σO ];

(2)

∑w
x=1 ν [Entx (дx−1 |σO ,A)|σO ] ≤ ν [Entν (f |σO ,A)|σO ].

Before providing the proof of this lemma, we finish the proof

of Lemma 4.4. Inequality (4.17) together with parts 1 and 2 of

Lemma 4.8 show that

δ1 Entν (f |σO ) ≤ ν [Entν (f |σ )|σO ] + ν [Entν (f |σO ,A)|σO ] .
(4.18)

Taking expectations with respect to ν in (4.18) we arrive at (4.2)

and the proof is complete. □

We finish the proof of Lemma 4.4 by providing the proof of

Lemma 4.8.

Proof of Lemma 4.8. We start with part 2. Let

hx = ν [f |σO ,σx+1, . . . ,σw ,A] ,

so that h0 = f and hw = ν [f |σO ,A]. Since ν (·|σO ,A) is a product
measure, νx [hx−1 |σO ,A] = hx . Therefore, reasoning as in (4.15)

we obtain

Entν (f |σO ,A) =
w∑
x=1

ν [Entx (hx−1 |σO ,A)|σO ,A] . (4.19)

Taking expectations with respect to ν (·|σO ) in (4.19) we see that it

is sufficient to show that, for all x ,

ν [Entx (дx−1 |σO ,A)|σO ] ≤ ν [Entx (hx−1 |σO ,A)|σO ] . (4.20)

To prove (4.20), we introduce the measures µk = ⊗kx=1νx (·|σO )

and µAk = ⊗kx=1νx (·|σO ,A). Then we have дx = µx [f ], hx =

µAx [f ], and дx = µx [hx ]. Also, we simplify the notation by writing

νx (·|σO ,A) =: ν
A
x . Now the product structure implies the commu-

tation relation between expectations

νAx дx−1 = ν
A
x µx−1hx−1 = µx−1ν

A
x hx−1. (4.21)

Therefore,

ν [Entx (дx−1 |σO ,A)|σO ] (4.22)

= ν
[
дx−1 log

(
дx−1/ν

A
x дx−1

)
|σO

]
= ν

[
µx−1hx−1 log

(
µx−1hx−1/µx−1ν

A
x hx−1

)
|σO

]
= ν

[
hx−1 log

(
µx−1hx−1/µx−1ν

A
x hx−1

)
|σO

]
= ν

[
νAx

(
hx−1 log

(
дx−1/ν

A
x дx−1

))
|σO

]
. (4.23)

From the variational principle (2.6) it follows that

νAx

[
hx−1 log

(
дx−1/ν

A
x [дx−1]

)]
≤ Entx (hx−1 |σO ,A), (4.24)

which combined with (4.23) proves (4.20). This completes the proof

of part 2.

We use a similar argument for part 1. Let

ψx = ν (f |σ ,Ax+1, . . . ,Aw ) ,

so that ψ0 = f and ψw = ν (f |σ ). Notice that νx [ψx−1 |σ ] = ψx .
Therefore, as in (4.15),

Entν (f |σ ) =
w∑
x=1

ν [Entx (ψx−1 |σ )|σ ] .

Taking expectations with respect to ν (·|σO ) we see that it is suffi-

cient to show that, for all x ∈ E,

ν [Entx (дx−1 |σ )|σO ] ≤ ν [Entx (ψx−1 |σ )|σO ] . (4.25)

Introducing the measures µk = ⊗kx=1νx (·|σO ), µ
σ
k = ⊗kx=1νx (·|σ ),

and νσx = νx (·|σ ), we have дx = µx [f ], ψx = µσx [f ], and дx =
µx [ψx ]. As in (4.21), we have the commutation relation

νσx дx−1 = ν
σ
x µx−1ψx−1 = µx−1ν

σ
x ψx−1.
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Therefore, as in (4.23)-(4.24) we obtain

ν [Entx (дx−1 |σ )|σO ]

= ν
[
дx−1 log

(
дx−1/ν

σ
x дx−1

)
|σO

]
= ν

[
µx−1ψx−1 log

(
µx−1ψx−1/µx−1ν

σ
x ψx−1

)
|σO

]
= ν

[
ψx−1 log

(
µx−1ψx−1/µx−1ν

σ
x ψx−1

)
|σO

]
= ν

[
νσx

(
ψx−1 log

(
дx−1/ν

σ
x дx−1

) )
|σO

]
≤ ν [Entx (ψx−1 |σ )|σO ] .

This proves (4.25) and completes the proof of part 1. □

5 A LOWER BOUND FOR THE SW DYNAMICS
In this section we establish an asymptotically tight lower bound for

the mixing time of SW dynamics whenever SSM holds; this result

implies the lower bound in Theorem 1.1 from the introduction.

Theorem 5.1. In an n-vertex cube of Zd , for all integer q ≥ 2 and

all β > 0, SSM implies that for all boundary conditions Tmix(SW ) =

Ω(logn).

The main new ingredient in the proof of this result is a bound

on the speed of propagation of disagreements under a coupling of

the steps of the SW dynamics provided SSM holds. With this new

tool, we are able to adapt the lower bound framework of Hayes and

Sinclair [26] for the Glauber dynamics to the SW setting. We also

use a recently established fact about concentration properties of

the Potts measure due to [17].

SW coupling. Consider two copies of the SW dynamics on the

graphG = (V ,E), whereV is an n-vertex cube of Zd . Let Xt and Yt
be the configurations of these copies at time t ≥ 0. We can couple

the steps of the SW dynamics as follows:

(1) Draw |E| independent, uniform random numbers from [0, 1],

one for each edge. Let re (t) ∈ [0, 1] denote the random

number corresponding to the edge e ∈ E.
(2) Draw |V | independent, uniform random numbers from the

set {1, ...,q}, one for each vertex. Let sv (t) ∈ {1, ...,q} denote
the random number for v ∈ V .

(3) Let AX = {e ∈ M(Xt ) : re (t) ≤ p} and AY = {e ∈ M(Yt ) :
re (t) ≤ p}, where recall that M(Xt ) and M(Yt ) denote the
set of monochromatic edges in Xt and Yt , respectively

(4) For each connected component C of (V ,AX ) or (V ,AY ), we
let sC = sv (t), where v is the vertex in C with the smallest

coordinate sum. (If two or more vertices in C have the same

coordinate sum, we break ties “lexicographically” using the

coordinates.) Then, every vertex of C is assigned the spin

sC .

The key property of the SW coupling is that, after assigning

the edges, two identical connected components in AX and AY will

be assigned the same spin (namely, the spin sv of their common

vertex v with smallest coordinate sum). We show that, under SSM,

the SW coupling propagates disagreements slowly for a suitable

starting condition.

To describe our starting condition we introduce the notion of

L-shattered configurations.

Definition 5.2. Consider the graph G = (V ,E), where V is an

n-vertex cube of Zd . For a configuration σ onV , letAσ ⊆ M(σ ) be the
configuration that results from keeping each monochromatic edge in

M(σ ) independently with probability p = 1− exp(−β). We say that σ
is L-shattered inV if, with probability at least 1−|V | exp(−γL)where
γ > 0 is a fixed constant we choose later, for every v ∈ |V | at distance

at least 2L from the boundary of |V |, the connected component of v
in Aσ does not reach the boundary of the cube Λv (L) centered at v of

side length L.

Note that the above defined notion involves a probability that

decays exponentially with L, so the dimension of the cubeV will not

be as significant as long as logn ≪ L ≪ n. The following lemma

establishes a concentration of the probability mass on shattered

configurations under SSM (for the monochromatic “all 1” boundary

condition).

Lemma 5.3. LetS be the set of L-shattered configurations of the

n-vertex cube G = (V ,E) of Zd . There exists a constant c > 0 such

that for all integers q ≥ 2 and L ≥ 1, SSM implies that µ1(S) ≥

1 − exp(−cL).

The proof of this lemma, which follows straightforwardly from

the results in [17], is provided in the full version [4]. We can now

describe our starting condition for the SW dynamics.

A starting condition. We consider a regular pattern of non-

overlapping d-dimensional cubes of side length ℓ = (logn)3 with
a fixed minimal distance between cubes. Formally, consider the

cubes of side length ℓ centered at (ℓ + 3) · ®h where
®h ∈ Zd . These

cubes have volume ℓd and are at distance 4 from each other. We

let B1,B2, . . . BN ⊂ V be the collection of those cubes that are con-

tained in V and at distance at least 4 from the boundary ∂V ; then,

N = Θ(n/ℓd ).
Let B =

⋃N
i=1 Bi , ∂B =

⋃N
i=1 ∂Bi and let ei be an edge at the

center of Bi . For definiteness, we may assume that ℓ is odd so

that there is a unique vertex vi at the center of each Bi ; we take

ei = {vi ,ui } where ui = vi + (1, 0, . . . , 0) ∈ Z
d
. Let Ai be the set

of configurations on Bi in which the spins at the endpoints of ei are
the same, and let Si be the set of L-shattered configurations in each

Bi . (Later we will set L = C(logn) with C > 0 a large constant.)

We consider two variants of the SW dynamics, {Xt } and {Yt },
with the same initial condition X0 = Y0. The chain {Xt } is an in-

stance of the standard SW dynamics on (V ,E); for the initial state
X0 of {Xt } we set the spins of all the vertices inU = (V \B)∪ ∂B to

1. The configuration in each cube Bi is sampled (independently) pro-

portional to µ1Bi
on Si ∩ Ai , where µ

1

Bi
denotes the Potts measure

on Bi with the “all 1” monochromatic boundary condition.

The other instance we consider, {Yt }, only updates the spins of

the vertices in B \ ∂B. That is, after adding all the monochromatic

edges independently with probability p = 1 − exp(−β), only the

connected components fully contained in B update their spins.

(Note that if a component touches the boundary of B, then it is not

updated since the boundary is frozen to the spin 1 by the boundary

condition.) We set Y0 = X0 and couple the evolution of Yt and

Xt using the SW coupling defined earlier. We can view {Yt } as a
dynamics on the configurations on B whose stationary measure is
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µ1B = ⊗N
i=1µ

1

Bi
. We also observe that a step of {Yt } is equivalent to

performing one step of the SW dynamics in each Bi independently.
Note that X0 = Y0, and any disagreements between Xt ,Yt at

later times t can arise only from the fact that Yt does not update the
spins outside B: i.e., disagreements must propagate into the Bi from
their boundaries. The following result, whose proof we defer until

after the proof of Theorem 5.1, provides a bound on the speed of

propagation of these disagreements under the SW coupling with the

specified initial condition. In particular it says that, for t = Ω(logn)
steps,Xt ,Yt agree w.h.p. on the spins at the center of every cube Bi .

Theorem 5.4. Let C =
⋃N
i=1 ei and set L = C(logn). For any

constant A > 0, for a sufficiently large constant C > 0 SSM implies

that

Pr [∀t ≤ A logn : Xt (C) = Yt (C)] = 1 − o(1).

A key ingredient in the proof of Theorem 5.4 (and also of The-

orem 5.1) is the following discrete time version of the completely

monotone decreasing (CMD) property of reversible Markov chains

from [26]; the proof of this lemma is provided in the full version [4].

Lemma 5.5. Let {Xt } denote a discrete time Markov chain with

finite state space Ω, reversible with respect to π and with a positive

semidefinite transition matrix. Let B ⊂ Ω denote an event. If X0 is

sampled proportional to π on B, then Pr(Xt ∈ B) ≥ π (B) for all t ≥ 0,

and for all t ≥ 1

Pr(Xt ∈ B) ≥ π (B) + (1 − π (B))−t+1(Pr(X1 ∈ B) − π (B))t .

We now proceed with the proof of Theorem 5.1.

Proof of Theorem 5.1. Our goal is to show that at some time

T = Θ(logn)

∥XT − µ∥
tv
>

1

2

,

where with a slight abuse of notation we useXT for the distribution

of the chain {Xt } at time T . This clearly implies that the mixing

time of the SW dynamics is Ω(logn).
Let C =

⋃
ei and let ei = {ai ,bi }. Let µ̂C and µ̂1

C
be the

marginals of µ and µ1B , respectively, on C. Then,

∥XT − µ∥
tv

≥ ∥XT (C) − µ̂C ∥tv

≥ ∥YT (C) − µ̂C ∥tv − ∥XT (C) − YT (C)∥tv

≥ ∥YT (C) − µ̂1
C
∥
tv

− ∥µ̂1
C
− µ̂C ∥

tv
− ∥XT (C) − YT (C)∥tv. (5.1)

We bound each term of (5.1) independently. We note first that by

Theorem 5.4

∥XT (C) − YT (C)∥tv ≤ Pr(XT (C) , YT (C)) = o(1).

We proceed to bound the term ∥µ̂1
C
− µ̂C ∥

tv

in (5.1), for which

we use SSM. Let Ω(A) be the set of all possible configurations on the

setA ⊆ V . For a configurationψ onU , let µ̂
ψ
C
denote the marginal of

µ
ψ
B on C. Let µ̂1ei , µ̂

ψ
ei be the marginals of µ̂1Bi

, µ̂
ψ
Bi

on ei , respectively.

Then,

∥µ̂1
C
− µ̂C ∥

tv
≤

∑
ψ ∈Ω(U )

µ(ψ )∥µ̂1
C
− µ̂

ψ
C
∥
tv

≤
∑

ψ ∈Ω(U )

N∑
i=1

µ(ψ )∥µ̂1ei − µ̂
ψ
ei ∥tv ≤

N

eκℓ
= o(1),

where the second inequality follows from the fact that µ1B and µ
ψ
B

are product measures over the Bi ’s, and the last one follows from

the SSM property for a suitable constant κ > 0.

It remains for us to provide a lower bound for ∥YT (C) − µ̂1
C
∥
tv

.

For this, we introduce an auxiliary copy of the chain {Yt }, denoted
{Zt }, which is coupled with {Yt } but with a slightly different start-

ing condition. Namely, Z0 is sampled proportional to µ1Bi
on the

set Ai , independently for each Bi . (Recall that Y0 = X0 is sampled

proportional to µ1Bi
on Si ∩ Ai instead.) Then,

∥YT (C) − µ̂1
C
∥
tv

≥ ∥ZT (C) − µ̂1
C
∥
tv

− ∥YT (C) − ZT (C)∥tv. (5.2)

We first provide an upper bound for the second term in (5.2). Plainly,

∥YT (C) − ZT (C)∥tv ≤ ∥YT − ZT ∥tv ≤ Pr[Y0 , Z0].

Let µY
0
, µZ

0
be the initial distribution for {Yt } and {Zt }, respec-

tively, and let S = ⊗Si and A = ⊗Ai . For σ ∈ S ∩ A, we have

µY
0
(σ ) = µ1B (σ )/µ

1

B (S∩A), and for σ ∈ A, µZ
0
(σ ) = µ1B (σ )/µ

1

B (A).

Therefore, if the configurations Y0 and Z0 are sampled from the

optimal coupling between µY
0
, µZ

0
and the steps of {Yt }, {Zt } are

then coupled with the SW coupling, we have

∥YT (C) − ZT (C)∥tv ≤ ∥µY
0
− µZ

0
∥
tv

≤

N∑
i=1

∥µY ,i
0

− µZ ,i
0

∥
tv

= N ∥µY ,1
0

− µZ ,1
0

∥
tv
,

where µY ,i
0

, µZ ,i
0

are the initial distributions of Y0, Z0 on Bi . Then,

∥µY ,1
0

− µZ ,1
0

∥
tv
=
µ1B1

(A1 \ S1)

µ1B1

(A1)
≤

µ1B1

(Sc
1
)

µ1B1

(A1)
= O

(
e−cL

)
,

where the last inequality follows from Lemma 5.3 and the fact that

µ1B1

(A1) = Ω(1) . In summary, since L = C(logn) and C can be

taken large enough, we have proved

∥YT (C) − ZT (C)∥tv = o(1).

It remains for us to find a lower bound for ∥ZT (C) − µ̂1
C
∥
tv

in (5.2) for a suitable T . For a configuration σ on B, let f (σ ) denote
the number of edges ei ∈ C that are monochromatic in σ . For any
a ≥ 0 we have

∥ZT (C) − µ̂1
C
∥
tv

≥ Pr[f (ZT ) ≥ a] − Prσ∼µ1B
[f (σ ) ≥ a]. (5.3)

We will show that, for a suitable T and any i = 1, . . . ,N ,

Pr[ZT (Bi ) ∈ Ai ] ≥ µ1Bi (Ai ) +
1

N 1/4
. (5.4)

Assuming this is the case, then setting W =
∑N
i=1 µ

1

Bi
(Ai ) we

obtain by Hoeffding’s inequality

Pr

[
f (ZT ) ≥ W + N 3/4 −

√
N logN

]
≥ 1 −

1

N 2

and

Prσ∼µ1B

[
f (σ ) ≥ W +

√
N logN

]
≤

1

N 2
,

which yields from (5.3) that ∥ZT (C) − µ̂1
C
∥
tv

≥ 1− 2/N 2
by taking,

e.g., a =W +
√
N logN .

To establish (5.4), note that by Lemma 5.5

Pr(ZT (Bi ) ∈ Ai ) ≥ µ1Bi (Ai ) + (1 − µ1Bi (Ai ))
−T+1ZT , (5.5)
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where Z := Pr(Z1(Bi ) ∈ Ai ) − µ1Bi
(Ai ). We remark that {Zt } has

positive semidefinite transition matrix; this follows from the fact

{Zt } is a product of SW dynamics in each Bi , and the SW dynamics

has positive semidefinite transition matrix [5].

Let P
(i)
sw

denote the transition matrix of the SW dynamics on Bi .
Then

Pr(Z1(Bi ) ∈ Ai ) =
∑
σ ∈Ai

µ1Bi
(σ )

µ1Bi
(Ai )

P
(i)
sw

(σ ,Ai )

=
∑
σ ∈Ai

µ1Bi
(σ )

µ1Bi
(Ai )

(
θ (σ ) +

1 − θ (σ )

q

)
=

1

q
+

q − 1

qµ1Bi
(Ai )

∑
σ ∈Ai

µ1Bi (σ )θ (σ ) , (5.6)

where θ (σ ) denotes the probability that, after the edge percolation

phase of the SW step, the end points of the edge ei are connected
in the edge configuration. Similarly,

µ1Bi (Ai ) =
∑

σ ∈Ω(Bi )

µ1Bi (σ )P
(i)
sw

(σ ,Ai )

=
∑

σ ∈Ω(Bi )\Ai

µ1Bi (σ )P
(i)
sw

(σ ,Ai ) +
∑
σ ∈Ai

µ1Bi (σ )P
(i)
sw

(σ ,Ai )

=
∑

σ ∈Ω(Bi )\Ai

µ1Bi
(σ )

q
+

∑
σ ∈Ai

µ1Bi (σ )

(
θ (σ ) +

1 − θ (σ )

q

)
=

1

q
+
q − 1

q

∑
σ ∈Ai

µ1Bi (σ )θ (σ ).

Combining with (5.6) we get

Z =
q − 1

q

(
1

µ1Bi
(Ai )

− 1

) ∑
σ ∈Ai

µ1Bi (σ )θ (σ )

≥
q − 1

q

(
1

µ1Bi
(Ai )

− 1

)
p · µ1Bi (Ai ) =

q − 1

q

(
1 − µ1Bi (Ai )

)
p,

where in the last inequality we use the fact that θ (σ ) ≥ p when

σ ∈ Ai ; recall that p = 1 − e−β .
Plugging this bound into (5.5), we obtain

Pr(ZT (Bi ) ∈ Ai ) = µ
1

Bi (Ai ) + (1 − µ1Bi (Ai ))

(
(q − 1)p

q

)T
≥ µ1Bi (Ai ) +

1

N 1/4
,

where the last inequality holds forT = ξ logn for a suitable constant
ξ > 0 since µ1Bi

(Ai ) = Ω(1). □

We provide next the proof of Theorem 5.4, our bound on the

speed of disagreement propagation under the SW coupling.

Proof of Theorem 5.4. Wewill show inductively that with high

probability disagreements propagate a distance of at most L in

each step. Let Λi (k) ⊆ Bi be the cube of side length k < ℓ cen-
tered at vi ; recall that ei = {vi ,ui } where vi is the center of Bi .
Let Λ(k) =

⋃N
i=1 Λi (k). Note that at time 0, X0 and Y0 agree on

B = Λ(ℓ).

Let us assume that Xt and Yt agree on Λ(k) for some k ≤ ℓ − 2L.
Suppose Yt is L-shattered in each Bi ; i.e., Yt (Bi ) ∈ Si for i =
1, . . . ,N . If E(k) is the set of edges with both endpoints inΛ(k), after
adding the monochromatic edges of E(k) in Xt and Yt coupled with
the SW coupling, the joint edge/spin configuration on (Λ(k), E(k))
will be the same in both copies. However, when assigning the new

spins, the connected components are not necessarily the same since

there can be external connections; i.e., monochromatic paths in

V \ Λ(k). This may create disagreements between the two chains

on Λ(k) but only in the components touching the boundary of

Λ(k). Since we are assuming that Yt is L-shattered in each Bi , then
with probability 1 − N |Bi | · exp(−γL), the disagreements cannot

propagate to Λ(k − 2(L + 1)). Consequently, the spin configurations

of Xt+1 and Yt+1 on Λ(k − 2(L + 1)) are the same.

Proceeding inductively, and assuming that Yt is L-shattered in

each Bi for all t = 0, . . . ,T , we deduce from a union bound that

XT and YT agree on Λ(ℓ − 2L − 2T (L + 1)) with probability at

least 1 −TN |Bi | exp(−γL), provided ℓ > 2T (L + 1) + 2L. Therefore,
Xt (C) = Yt (C) for all t ≤ T since C ⊆ Λ(ℓ − 2L − 2t(L + 1)).

It remains for us to show that Yt is L-shattered in each Bi for
all t = 0, . . . ,T with probability at least 1 − o(1). The configuration
of Y0 on Bi is sampled proportional to µ1Bi

on Si ∩ Ai . For σ ∈

Si ∩ Ai , let πi (σ ) = µ1Bi
(σ )/µ1Bi

(Si ∩ Ai ) and for σ ∈ Si , let

π̂i (σ ) = µ
1

Bi
(σ )/µ1Bi

(Si ). We have

PrY0(Bi )∼π̂i (Yt (Bi ) ∈ Si ) =

PrY0(Bi )∼π̂i (Yt (Bi ) ∈ Si | Y0(Bi ) ∈ Ai )α+

PrY0(Bi )∼π̂i (Yt (Bi ) ∈ Si | Y0(Bi ) < Ai )(1 − α),

where α = PrY0(Bi )∼π̂i (Y0(Bi ) ∈ Ai ), and so

PrY0(Bi )∼πi (Yt (Bi ) ∈ Si ) = PrY0(Bi )∼π̂i (Yt (Bi ) ∈ Si | Y0(Bi ) ∈ Ai )

≥ 1 −
1 − PrY0(Bi )∼π̂i (Yt (Bi ) ∈ Si )

α
(5.7)

By Lemmas 5.5 and 5.3,

PrY0(Bi )∼π̂i (Yt (Bi ) ∈ Si ) ≥ µ1Bi (Si ) ≥ 1 −
1

ecL
.

Moreover, PrY0(Bi )∼π̂i (Y0(Bi ) ∈ Ai ) = α = α(β,q,d) = Ω(1), and
so we obtain from (5.7)

PrY0(Bi )∼πi (Yt (Bi ) ∈ Si ) = 1 −O

(
1

ecL

)
.

Setting S = ⊗N
i=1Si , a union bound over the Bi ’s implies

Pr(Yt ∈ S) = 1 −O

(
N

ecL

)
.

It follows from another union bound over the steps that Pr(∀t ≤ T :

Yt ∈ S) ≥ 1 −O
(
T N
ecL

)
. Setting T = A(logn) (which satisfies ℓ >

2T (L + 1) + 2L as required), recalling that N = Θ(n/ℓd ), and taking

C sufficiently large, we obtain that Pr(∀t ≤ T : Yt ∈ S) ≥ 1 − o(1),
and hence

Pr [∀t ≤ A logn : Xt (C) = Yt (C)] = 1 − o(1),

as claimed. □
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