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Abstract

Revealed preference is the dominant approach for inferring preferences, but it is limited in that it relies solely on discrete
choice data. When a person chooses one alternative over another, we cannot infer the strength of their preference or predict
how likely they will be to make the same choice again. However, the choice process also produces response times (RTs), which
are continuous and easily observable. It has been shown that RTs often decrease with strength-of-preference. This is a basic
property of sequential sampling models such as the drift diffusion model. What remains unclear is whether this relationship
is sufficiently strong, relative to the other factors that affect RTs, to allow us to reliably infer strength-of-preference across
individuals. Using several experiments, we show that even when every subject chooses the same alternative, we can still rank
them based on their RTs and predict their behavior on other choice problems. We can also use RTs to predict whether a subject
will repeat or reverse their decision when presented with the same choice problem a second time. Finally, as a proof-of-concept,
we demonstrate that it is also possible to recover individual preference parameters from RTs alone. These results demonstrate

that it is indeed possible to use RTs to infer preferences.
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1 Introduction

When inferring a person’s preferences, decision scientists
often rely on choice outcomes. This is the standard revealed
preference approach (Samuelson, 1938). While very power-
ful, relying purely on choice data does have its limitations.
In particular, observing a single choice between two options
merely allows us to order those two options (as less and
more preferred); we cannot infer the strength of the prefer-
ence. That is, we do not know the confidence with which
the person made the choice or the likelihood that they would
choose the same alternative again.

Choice itself is not the only output of the choice process.
We are also often able to observe other features such as re-
sponse times (RT), which are continuous and so may carry
more information than discrete choice outcomes (Loomes,
2005; Spiliopoulos & Ortmann, 2017). The potential is-
sue with RTs is that they are known to reflect many factors,
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including subject-level traits such as decision strategy and
motor latency (Kahneman, 2013; Luce, 1986), as well as fea-
tures of the choice problems such as complexity, stake size,
and option similarity (or attributes) (Bergert & Nosofsky,
2007; Bhatia & Mullett, 2018; Diederich, 1997, Fific, Little
& Nosofsky, 2010; Gabaix, Laibson, Moloche & Weinberg,
2006; Hey, 1995; Rubinstein, 2007; Wilcox, 1993).

One useful characteristic of RTs is that they often cor-
relate (negatively) with strength-of-preference. This effect
was observed in early studies in psychology and economics
(Dashiell, 1937; Diederich, 2003; Jamieson & Petrusic,
1977; Mosteller & Nogee, 1951; Tversky & Shafir, 1992)
and has been recently extensively researched using choice
models (Alds-Ferrer, Grani¢, Kern & Wagner, 2016; Buse-
meyer, 1985; Busemeyer & Rapoport, 1988; Busemeyer &
Townsend, 1993; Echenique & Saito, 2017; Hutcherson,
Bushong & Rangel, 2015; Krajbich, Armel & Rangel, 2010;
Krajbich & Rangel, 2011; Moffatt, 2005; Rodriguez, Turner
& McClure, 2014). In other words, choices between more
equally-liked options tend to take more time. If this relation-
ship is strong, relative to the other factors that affect RT, then
we should be able to infer strength-of-preference information
from RTs.!

Consider the following example. Suppose we are attempt-
ing to determine which of two people, Anne or Bob, has a
higher discount factor for future rewards (in other words,
is less patient). We ask each of them the same question:
“would you rather have $25 today or $40 in two weeks?”

'A similar approach has been adopted in the neuroimaging literature,
where it is considered important to go beyond correlations and demonstrate
that behavior can be predicted from brain activity (Haxby, Connolly &
Guntupalli, 2014).
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Suppose that both take the $40. With just this information
there is no way to distinguish between them. Now suppose
Anne made her choice in 5 seconds, while Bob made his
in 10 seconds. Who is more patient? We argue that the
answer is likely Anne. Since Anne chose the delayed option
more quickly than Bob, it is likely that she found it more
attractive. In other words, Anne’s relative preference for the
delayed option was likely stronger than Bob’s; she was far-
ther from indifference (i.e., the point at which she is equally
likely to choose either option).

Of course, if Anne and Bob employ different decision
strategies (e.g., Anne chooses based on heuristics while Bob
chooses based on deliberation) or differ on other relevant
characteristics (e.g., Anne is smarter or younger) then we
might be misled about their preferences. It is thus an em-
pirical question whether our example is actually feasible, or
merely speculation. This is a key question that we tackle in
this paper.

The answer to this question has potential practical im-
portance. Consider an online marketplace. A customer
might inspect a series of products but reject them all, mak-
ing the choice data uninformative. However, the customer
may linger more on certain items, revealing which ones were
most appealing. The online seller could use that information
to target related products at the customer. Or returning to
an interpersonal example, an overloaded clothes salesman
might focus their attention more on customers who hesitate
longer before returning items to the rack.

Taking this idea one step further, we might also want to
know whether choice data are necessary to infer preferences,
or whether RTs alone could suffice. In the example with
Anne and Bob, we used both the choice outcome and the
RT to rank the two decision makers on patience. While
the RT told us how easy the decision was for each person,
without the choice outcome we could not know whether
Anne faced an easy decision because she was very patient
or very impatient. This might lead one to believe that it is
still necessary to observe choice outcomes in order to infer
preferences. However, in theory, all we need is a second RT.

Suppose that both Anne and Bob take 5 seconds to choose
between the $25 today vs. $40 in two weeks, but we do not
see their choices. Let us assume, for the sake of this example,
that strength-of-preference is the only factor that affects RT.
At this point we can use Anne and Bob’s RTs to infer their
distance from indifference, but we cannot say whether they
were on the patient side or impatient side. Now we ask a
second question: $25 today vs. $50 in two weeks. Relative
to the previous question, we have made the “patient” option
more attractive, i.e., we have made the decision easier for a
patient person (e.g., someone who chose the $40) and more
difficult for an impatient person (e.g., someone who chose
the $25). Suppose Anne makes this decision in 6 seconds
while Bob makes this decision in 4 seconds. We can then
conclude that Bob is on the patient side and Anne is on the
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impatient side. With just two questions we are thus able to
infer their temporal discounting factors (preferences, more
generally). Of course, this procedure assumes a noiseless
relationship between strength-of-preference and RT. In what
follows, we investigate the usefulness of this procedure using
more than two decisions (to compensate for noise in the
decision process) and show that the preferences inferred from
RTs can indeed be reliable.

Our work builds on a growing literature focused on se-
quential sampling models (SSM) (such as the drift-diffusion
model (DDM)) of economic decision making. The idea of
applying SSMs to economic choice was first introduced by
Jerome Busemeyer and colleagues in the 1980s (Busemeyer,
1985) and further developed into decision field theory in
subsequent years (Diederich, 1997, 2003; Roe, Busemeyer
& Townsend, 2001). Recent years have seen renewed in-
terest in this work due to the ability of these models to si-
multaneously account for choices, RTs, eye movements, and
brain activity in many individual preference domains such as
risk and uncertainty (Fiedler & Glockner, 2012; Hunt et al.,
2012; Stewart, Hermens & Matthews, 2015), intertemporal
choice (Amasino, Sullivan, Kranton & Huettel, 2019; Dai &
Busemeyer, 2014; Rodriguez et al., 2014), social preferences
(Hutcherson et al., 2015; Krajbich, Bartling, Hare & Fehr,
2015; Krajbich, Hare, Bartling, Morishima & Fehr, 2015),
food and consumer choice (De Martino, Fleming, Garret &
Dolan, 2013; Krajbich et al., 2010; Milosavljevic, Malmaud,
Huth, Koch & Rangel, 2010; Polanfa, Krajbich, Grueschow
& Ruff, 2014), and more complex decision problems (Caplin
& Martin, 2016; Konovalov & Krajbich, 2016). The SSM
framework views simple binary decisions as a mental tug-of-
war between the options (Bogacz, Brown, Moehlis, Holmes
& Cohen, 2006; Brunton, Botvinick & Brody, 2013; Fuden-
berg, Strack & Strzalecki, 2018; Shadlen & Shohamy, 2016;
Tajima, Drugowitsch & Pouget, 2016; Usher & McClelland,
2001; Woodford, 2014). For options that are similar in
strength (subjective value) it takes more time to determine
the winner, and in some cases the weaker side may prevail.
In other words, these models predict that long RTs indicate
indifference, and that RTs decrease as the superior option
gets better than the inferior option.

Here, we estimate individual preferences using subjective
value (utility) functions with single parameters and demon-
strate the strength of the relationship between preference and
RT, using experimental data from three prominent choice
domains: risk, time, and social preferences. We show that
single-trial RTs can be used to rank subjects according to
their degree of loss aversion, that RTs on “extreme” trials
(where most subjects choose the same option) can be used to
rank subjects according to their loss, time, and social pref-
erences, and that RTs from the full datasets can be used to
estimate preference parameters. In every case these rank-
ings significantly align with those estimated from subjects’
choices over the full datasets. We also show that trials with
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longer RTs are less consistent with a subject’s other choices,
and more likely to be reversed if presented a second time.

These results complement several recent papers that have
investigated the relationship between RT and preferences.
Chabris et al. (2009) use a structural RT model to estimate
time preferences in groups, but they do not attempt the same
exercise at the individual level. Alés-Ferrer et al. (2016)
demonstrate that preference reversals between choice and
valuation tasks are associated with longer RTs. We take
this idea a step further by looking at reversals between two
instances of identical choice problems. Finally, Clithero
(2018) uses the DDM to improve out-of-sample predictions
in food choice. We provide a complementary approach
where subjective values can be inferred parametrically, and
apply the DDM without using the choice data. Consider-
ing these results, our main contribution is in demonstrating
that, across many decision domains, there are several ways
in which RTs can supplement or even replace choice data in
individual preference estimation.

2 Methods

We analyze four separate datasets: the last two (Studies 2
and 3) were collected with other research goals in mind,
but included precise measurements of RTs, while the first
two (Study 1) were collected specifically for this analysis
(see Note 1 in the Supplement for summary statistics). For
each dataset, we selected a common, single-parameter pref-
erence model (i.e., subjective-value function). Our goal here
was not to compare different preference models but rather
to identify best-fitting parameter values given a particular
model that explains the data well. The decision problems in
these datasets were specifically designed with these particu-
lar models in mind.

In addition to the differing domains, these tasks vary along
a couple of dimensions that might affect the relationship be-
tween preference and RT. One dimension is time constraint.
Time limits are common in binary choice tasks in order
to keep subjects focused, but overly restrictive cutoffs may
dampen the effect of strength-of-preference on RTs. Here we
examine datasets with varying time constraints (3s, 10s, and
unlimited) in order to explore the robustness of our results.

2.1 Study 1: risky choice
2.1.1 Participants

This experiment was conducted at The Ohio State Univer-
sity. The experiment had two versions: 61 subjects partic-
ipated in the adaptive version of the task, earning $17-20
on average; and 39 subjects participated in the non-adaptive
version, earning $18 on average. In order to cover any po-
tential losses, subjects first completed an unrelated task that
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endowed them with enough money to cover any potential
losses.

2.1.2 Adaptive risky choice task

In each trial, subjects chose between a sure amount of money
and a 50/50 lottery that included a positive amount and a loss
(which in some rounds was equal to $0). The set of decision
problems was adapted from Sokol-Hessner et al. (2009).
Subjects’ RTs were not restricted. In the adaptive experi-
ment, each subject’s choice defined the next trial’s options
using a Bayesian procedure to ensure an accurate estimate of
the subject’s risk and loss aversion within a limited number
of rounds (Chapman, Snowberg, Wang & Camerer, 2018).
Each subject completed the same three unpaid practice tri-
als followed by 30 paid trials. Each subject received the
outcome of one randomly selected trial. Importantly, every
subject’s first paid trial was identical.

2.1.3 Non-adaptive risky choice task

In the non-adaptive experiment, each subject first completed
a three-trial practice followed by 276 paid trials. These trials
were presented in two blocks of the same 138 choice prob-
lems, each presented in random order without any pause be-
tween the two blocks. Subjects were endowed with $17 and
additionally earned the outcome of one randomly selected
trial (in case of a loss it was subtracted from the endowment).

2.1.4 Preference model

For both experiments we assumed a standard Prospect The-
ory value function (Kahneman & Tversky, 1979):

U) xP if x>0 0
X) =
-A-—xP if x<0,

where x is the monetary amount, p reflects risk aversion, and
A captures loss aversion. For simplicity, we assumed linear
probability weighting. Similar to prior work using this task,
we found that risk aversion plays a minimal role in this task
relative to loss aversion, with p estimates typically close to 1.
Therefore, acknowledging that varying levels of risk aversion
could add noise to the RTs, for the analyses below (both
choice- and RT-based) we assumed risk neutrality (p = 1).
In the non-adaptive experiment, the preference functions
were estimated using a standard MLE approach with a logit
choice function. We used only trials with non-zero losses
(specifically, 112 out of 138 decision problems). Two sub-
jects with outlying estimates of A (beyond three standard
deviations of the mean) were removed from the analysis due
to unreliability of these estimates (subjects making choices
that are extremely biased towards one of the options). The
same exclusion criterion was used for the other datasets.
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2.2 Study 2: intertemporal choice
2.2.1 Participants

This experiment was conducted while subjects underwent
functional magnetic resonance imaging (fMRI) at the Cal-
ifornia Institute of Technology (Hare, Hakimi & Rangel,
2014). 41 subjects participated in this experiment, earning a
$50 show-up fee and the amount from one randomly selected
choice. The payments were made using prepaid debit cards
that were activated at the chosen delayed date.

2.22 Task

In each round, subjects chose between getting $25 right after
the experiment or a larger amount (up to $54) at a later date
(7 to 200 days). There were 108 unique decision problems
and subjects encountered each problem twice. All 216 trials
were presented in random order. Each trial, the amount
was first presented on the screen, followed by the delay, and
subjects were asked to press one of two buttons to accept or
reject the offer. The decision was followed by a feedback
screen showing “Yes” (if the offer was accepted) or “No”
(otherwise). The decision time was limited to 3 seconds,
and if a subject failed to give a response, the feedback screen
contained the text “No decision received”. These trials (2.6%
across subjects) were excluded from the analysis. Trials were
separated by random intervals (2-6 seconds).

2.2.3 Preference model

In line with the authors who collected this dataset, we used a
hyperbolic discounting subjective-value function (Loewen-
stein & Prelec 1992; Ainslie 1992):

_ X
T 1+ kD’

U(x,D) @)
where x is the delayed monetary amount, k is the discount
factor (higher is more impatient), and D is the delay period
in days. One subject who chose $25 now on every trial
was removed from the analysis. Preference parameters were
estimated using a standard MLE approach with a logit choice
function. Two subjects with outlying estimates of k were also
removed from the analysis.?

2.3 Study 3: social preference
2.3.1 Participants

This dataset was collected while subjects underwent fMRI
at the Social and Neural Systems laboratory, University of
Zurich (Krajbich et al., 2015). In total, 30 subjects were

2We also considered an alternative attribute-wise comparison model
(Dai & Busemeyer, 2014), but it did not fit the data as well as the hyperbolic
model (total log-likelihood of —3148 vs. —3024). Therefore, for the rest of
the paper we focus only on the hyperbolic model.
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recruited for the experiment. They received a show-up fee
of 25 CHF and a payment from 6 randomly chosen rounds,
averaging at about 65 CHF.

2.3.2 Task

Subjects made choices between two allocations, X and Y,
which specified their own payoff and an anonymous re-
ceiver’s payoff. The payoffs were displayed in experimen-
tal currency units, and 120 predetermined allocations were
presented in random order. Each allocation had a tradeoft
between a fair option (more equal division) and a selfish
option (with higher payoft to the dictator). 72 out of 120 de-
cision problems per subject had higher payoff to the dictator
in both options X and Y (to identify advantageous inequality
aversion), while the rest of the problems (48/120) had higher
payoffs to the receiver in both options (to identify disadvan-
tageous inequality aversion). In each trial, subjects observed
a decision screen that included the two options, and had to
make a choice with a two-button box. Subjects were required
to make their decisions within 10 seconds; if a subject failed
to respond under this time limit, that trial was excluded from
the analysis (4 trials were excluded). Intertrial intervals were
randomized uniformly from 3 to 7 seconds. Subjects read
written instructions before the experiment, and were tested
for comprehension with a control questionnaire. All subjects
passed the questionnaire and understood the anonymous na-
ture of the game.

2.3.3 Preference model

To fit choices in this experiment, we used a standard Fehr-
Schmidt other-regarding preference model (Fehr & Schmidt,
1999):

Ui(x;, xj) = x; —a-max(x; — x;,0) - 8-max(x; —x;,0), (3)

where x; is the dictator’s payoff, x; is the receiver’s payoff,
reflects disadvantageous inequality aversion, and S reflects
advantageous inequality aversion. Each trial was designed to
either measure a or 8, so we treated this experiment as two
separate datasets. The preference parameters were estimated
using a standard MLE approach with a logit choice function.
One subject with an outlying estimate of @ was removed
from the analysis.

2.4 Computational modeling
2.4.1 Choice-based estimations

The three preference functions we selected to model sub-
jects’ choices performed well above chance. To examine the
number of choices that were consistent with the estimated
parameter values, we used standard MLE estimates of logit
choice functions (see the Supplement) to identify the “pre-
ferred” alternatives in every trial and compared those to the
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actual choice outcomes. More specifically, we calculated
subjective values using parameters estimated purely from
choices, and in every trial predicted that the alternative with
the higher subjective value would be chosen with certainty.
All subjects were very consistent in their choices even in
the datasets with a large number of trials: social choice a:
94%, social choice B: 93%, intertemporal choice: 83%,
non-adaptive risky choice: 89% (see Figure S5).

2.4.2 Drift-diffusion model (DDM)

We used the simple, most robust SSM variant, which is
the DDM with constant thresholds (see Note 2 in the
Supplement), where we assumed that drift rate on every trial
is a linear function of the difference in the subjective values
of the two alternatives. Unlike previous studies, we assume
that only RT data are available and use the RT probability
densities to estimate the preference parameter for each sub-
jecti (6;) given the empirical distribution of RTs. Note that
we do not use choice-conditioned RT distributions. Instead
we maximize the RT likelihood function across both choice
boundaries:

LL =Y, log(f(RT,an=1lb,1,v,)) @
+ log(f(RTy,an = 2|b,7,vp)).
Here f(-) is the response time density function, RT is the
response time on a specific trial, a is the choice the subject
could have made, b is the DDM decision boundary, 7 is non-
decision time, and v,, is the drift rate on the specific trial n,
which depends on the difference in subjective values, which
in turn depends on the subject’s preference parameter (6;)
(see Note 2 in the Supplement). Intuitively, the individual
parameter is identified due to the fact that longer RTs corre-
spond to lower drift rates and thus smaller subjective-value
differences. Please see the Supplement for more detail.

3 Results

3.1 RTs peak at indifference

We first sought to establish the hypothesized negative corre-
lation between strength-of-preference and RT. For this analy-
sis, our measure of strength-of-preference was the difference
between the subject’s preference parameter (estimated purely
from their choices, see Note 2 in the Supplement) and the
parameter value that would make the subject indifferent be-
tween the two options in that trial (we refer to this as the
“indifference point”). When a subject’s parameter value is
equal to the indifference point of a trial, we say that the sub-
ject is indifferent on that trial and so strength-of-preference
is zero.

Let us illustrate this concept with a simple example. Sup-
pose that in the intertemporal-choice task a subject has to

Preference strength inferred from response time 385

choose between $25 today and $40 in 30 days. The subject
would be indifferent with an individual discount rate k* that
is the solution to the equation $25 = $40/(1 + 30k*), or
k* = 0.0125. This would be the indifference point of this
particular trial. A subject with k& = k* would be indifferent
on this trial, a subject with a k < k* would favor the delayed
option, and a subject with a higher k > k* would favor the
immediate option.

We hypothesized that the bigger the absolute difference
between the subject’s parameter and the trial’s indifference
point |k — k*|, the stronger the preference, and the shorter the
mean RT. This is analogous to how, in decision field theory,
the difference in valence between the two options determines
the preference state and thus the average speed of the deci-
sion (Busemeyer & Townsend 1993). We observe this effect
in all of our datasets, with RTs peaking when a subject’s
parameter is equal to the trial indifference point (Figure 1).
Mixed-effects regression models show strong, statistically
significant effects of the absolute distance between the indif-
ference point and subjects’ individual preference parameters
on log(RTs) for all the datasets (fixed effect of distance on
RT: dictator game a: t = =7.5, p < 0.001; dictator game f:
t=-9.1, p < 0.001; intertemporal choice k: t = -9.9, p <
0.001; non-adaptive risky choice 1: t = —9.6, p < 0.001,
adaptive risky choice 1: t=-4.4, p < 0.001).

Having verified the relationship between strength-of-
preference and RT, we next asked whether we could invert
this relationship. In other words, we sought to test whether
one can estimate preferences from RTs. First, we investi-
gated whether RTs can reveal preference information when
only a single trial’s data is available.

3.2 One-trial preference ranking

In the adaptive risk experiment, all subjects faced the same
choice problem in the first trial. They had to choose between
a 50/50 lottery with a gain ($12) and a loss ($7.5), vs. a sure
amount ($0). Assuming risk neutrality, a subject with a loss
aversion coefficient of 2 = 1.6 should be indifferent between
these two options, with more loss-averse subjects picking the
safe option, and the rest picking the risky option.

Because the mean loss aversion (estimated based on all the
choices) in our sample was 2.5 (median = 2.46), most of the
subjects (44 out of 61) picked the safe option in this first trial.
Now, if we had to restrict our experiment to just this one trial,
the only way we could classify subjects’ preferences would
be to divide them into two groups: those with 4 > 1.6 and
those with 4 < 1.6. Within each group we would not be able
further distinguish between individuals.

However, by additionally observing RTs we can establish
a ranking of the subjects in each group. Specifically, we
hypothesized that subjects with loss aversion closer to 1.6
would exhibit longer RTs. To test this hypothesis we ranked
subjects in each group according to their RTs and then com-
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Ficure 1: RTs peak at indifference. Mean RT in seconds as a function of the distance between the individual subject’s
preference function parameter and the indifference point on a particular trial; data are aggregated into bins of width 0.02 (top
row), 0.01 (bottom left panel), and 1 (bottom right panel), which are truncated and centered for illustration purposes. Bins with
fewer than 10 subjects are removed for display purposes. Bars denote standard errors, clustered at the subject level.

pared those rankings to the “true” loss aversion parameters
estimated from all 30 choices in the full dataset (see Figure 2,
Note 2 in the Supplement, and Figure S5 for the choice-based
estimates).

There was a significant rank correlation (Spearman) be-
tween RTs and loss seeking in the “safe option” group (r =
0.43, p = 0.004) and marginally between RTs and loss aver-
sion in the “risky option” group (r = 0.41, p = 0.1). Thus,
the single-trial RT-based rankings aligned quite well with
the 30-trial choice-based rankings.

3.3 Uninformative choices

A similar use of RT-based inference is the case where an
experiment (or questionnaire) is flawed in such a way that
most subjects give the same answer to the choice problem
(e.g., because it has an extreme indifference point, or because
people feel social pressure to give a certain answer, even

if it contradicts their true preference (Coffman, Coffman
& Ericson, 2017)). This method could be used to bolster
datasets that are limited in scope and so unable to recover all
subjects’ preferences.

To model this situation, for each dataset (non-adaptive
risk, intertemporal choice, and social choice) we isolated the
4-10 trials (depending on the dataset) with the highest indif-
ference points, where most subjects chose the same option
(e.g., the risky option), and limited our analysis to those sub-
jects who picked this most popular option. Then we iterated
an increasing set of trials (just the highest point, the first and
the second highest points, the first, second, and third, and so
on), took the median RT in this set, and correlated it with
the “true” choice-based estimates. We hypothesized that the
slower the decisions on these trials, the more extreme the
choice-based parameter value for that subject.

The set of trials varied across datasets due to the structure
of the experiments. In the risk and intertemporal datasets
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Safe option chosen

2 r=0.41
p=0.1

0.0 0.5 1.0 1.5 2.0 25 3.0
A estimated from choices

1.5 2.0 25 3.0 35 4.0 4.5
A estimated from choices

Ficure 2: Preference rank inferred from a single decision problem. RTs in the first trial of the adaptive risk experiment as
a function of the individual subject’s loss-aversion coefficient from the whole experiment; each point is a subject, Spearman
correlations displayed. In this round, each subject was presented with a binary choice between a lottery that included a 50%
chance of winning $12 and losing $7.5, and a sure option of $0. The right panel displays subjects who chose the safe option,
and the left panel shows those who chose the risky option. The solid black lines are regression model fits.

every decision problem was shown twice, so we started with
two trials and then increased in steps of two. For the risk task
there were several trials with identical indifference points
after the first 8 trials, so we stopped there. For the social-
preference datasets there were many trials with the same
indifference point (8 and 6 for @ and S respectively) so we
simply used those trials, going from lowest to highest game id
number (arbitrarily assigned in the experiment code). Note
that we used only the highest indifference points, since trials
with indifference parameters close to zero were often trivial
“catch” trials, e.g., $25 today vs. $25 in 7 days.

Confirming the hypothesis, we found that the RTs on these
trials were strongly predictive of subjects’ choice-based pa-
rameters in all four domains (Figure 3), with Spearman cor-
relations ranging from 0.37 to 0.84 (for the largest set: risk
choice (n = 19): p = 0.50, p = 0.03; intertemporal choice
(n =25): p=0.59, p=0.002; social choice @ (n =26): p
= 0.50, p = 0.009; social choice S (n = 20): p =0.84, p <
0.001). Thus, we again see, in every domain, that RT-based
rankings from a small subset of trials align well with choice-
based rankings from the full datasets. These analyses also
hint at potential benefits from including more trials, but also
suggest that RTs may not be that noisy once we control for
the difficulty of the question and subject-level heterogeneity.

3.4 DDM-based preference parameter esti-
mation from RTs

The results described in the previous sections demonstrate
that we can use RT to rank subjects according to their prefer-
ences on trials where they all make the same choice. A more
challenging problem is to estimate a subject’s preferences

from RT alone. In this section, we explore ways to estimate
individual subjects’ preference parameters from their RTs
across multiple choice problems.

The DDM predicts more than just a simple relationship
between strength-of-preference and mean RT; it predicts en-
tire RT distributions. The drift rate in the model is a linear
function of the subjective value difference (or in decision
field theory the valence difference) and so by estimating drift
rates we can potentially identify the latent preference param-
eters. We hypothesized that the DDM-derived preference
parameters, using only RT data, would correlate with the
choice-based preference parameters estimated in the usual
way.

We used the simple standard DDM, but did not condition
the RT distributions on the choice made in each trial (see
Section 2.4. and the Supplement). We assumed no starting
point bias and, following the traditional approach, assumed
that the drift rate is a simple linear function of the differ-
ence in subjective values (Busemeyer & Townsend, 1993;
Dai & Busemeyer, 2014). Parameter recovery simulations
confirmed that the preference parameters could be identified
using this method (Figure S6).

First, we estimated the DDM assuming that the boundary
parameter b, non-decision time 7, and drift scaling parameter
z were fixed across subjects (see Note 2 in the Supplement).
We made this simplifying assumption to drastically reduce
the number of parameters we needed to estimate. In each
dataset, we found that DDM-derived preference parameters
were correlated with the choice-based parameters (social
choice a: r =0.39, p = 0.04, t(27) = 2.2; social choice §: r
=0.52, p = 0.003, t(28) = 3.2; intertemporal choice k: r =
0.57, p < 0.001, t(37) = 4.2; risky choice A: r = 0.36, p =
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Ficure 3: Spearman correlations between choice-based parameter estimates and the median RT in the trials with the highest

indifference points, for increasing sets of these extreme trials.

0.03, t(35) = 2.26; Pearson correlations, Figure S7).

We did not use the adaptive risk dataset here (or for subse-
quent analyses) since the adaptive nature of the task means
that subjects should be closer to indifference as the exper-
iment progresses. The well-established negative correla-
tion between trial number and RT would thus counteract the
strength-of-preference effects and interfere with our ability
to estimate preferences.

We also estimated the DDM for each subject separately,
assuming individual variability in the boundary parameter
b, non-decision time 7, and drift scaling parameter z. In
some cases, this causes identification problems for certain
subjects (the parameters were estimated at the bounds of the
possible range), most likely due to the small number of trials
(only 48 trials to estimate 4 parameters in the case of @ in
the social preference task) and the tight distribution of sub-
jects” indifference points in that task. After excluding these
subjects (2/30 and 2/30 in the social choice dataset, 16/39 in
the intertemporal choice dataset, and 7/37 in the risk choice
dataset), we found that in most cases correlations between

DDM parameters and choice-based parameters were stronger
than in the pooled estimation variant (social choice a: r =
0.09, p = 0.65, t(25) = 0.45; social choice 8: r=0.74, p <
0.001, t(26) = 5.54; intertemporal choice k: r = 0.63, p =
0.001, t(22) = 3.84; risky choice A: r=0.53, p =0.002, t(28)
= 3.33; Pearson correlations, Figure S8).

These results highlight that it is useful to have trials with a
wide range of indifference points. This can be inefficient with
standard choice-based analyses, since most subjects choose
the same option on trials with extreme indifference points.
However, when including RTs, these trials can still convey
useful information, namely the strength-of-preference.

3.5 Alternative approaches to preference pa-
rameter estimation from RTs

The DDM may seem optimal for parameter recovery if that
is indeed the data generating process. However, several fac-
tors likely limit its usefulness in our settings. The DDM has
several free parameters that are identified using features of
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choice-conditioned RT distributions. Identification thus typ-
ically relies on many trials and observing choice outcomes.
Without meeting these two requirements, the DDM approach
may struggle to identify parameters accurately. Thus, we ex-
plored alternative, simpler approaches to analyzing the RTs.

One alternative approach is to focus on the longest RTs.
Long RTs are considerably more informative than short RTs.
Sequential sampling models correctly predict that short RTs
can occur at any level of strength-of-preference, but long RTs
almost exclusively occur near indifference (Figure 4). With
these facts in mind, we set about constructing an alternative
method for using RTs to infer a subject’s indifference point.

Clearly, focusing on the slowest trials would yield less biased
estimates of subjects’ indifference points. However, using
too few slow trials would increase the variance of those
estimates. We settled on a simple method that uses the
slowest 10% of a subject’s choices, though we also explored
other cutoffs (Figure S9).

In short, our estimation algorithm for an individual sub-
ject includes the following steps: (1) identify trials with RTs
in the upper 10% (the slowest decile); (2) for each of these
trials, calculate the value of the preference parameter that
would make the subject indifferent between the two alter-
natives; (3) average these values to get the estimate of the
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subject’s parameter (see Figure 4f and the Supplement for
formal estimation details and Figure S6 for the parameter re-
covery simulations). It is important to note that this method
puts bounds on possible parameter estimates: the average
of the highest 10% of all possible indifference values is the
upper bound, while the average of the lowest 10% of the
indifference values is the lower bound.

Again, the parameters estimated using this method were
correlated with the same parameters estimated purely from
the choice data, providing a better prediction than the DDM
approach (social choice a: r=0.44, p = 0.02, t(27) = 2.54;
social choice 8: r=0.56, p=0.001, t(28) = 3.57; intertempo-
ral choice k: 1=0.71, p < 0.001, t(37) = 6.17; risky choice A:
r=0.64, p < 0.001, t(35) = 4.9; Pearson correlations; Figure
5, see the Supplement for estimation details for both meth-
ods). Furthermore, these parameters provided prediction
accuracy that was better than the informed baseline in three
out of four cases (excluding social choice ). In all cases, a
random 10% sample of trials produced estimates that were

not a meaningful predictor of the choice-based parameter
values (since these estimates are just a mean of 10% random
indifference points). The RT-based estimations have upper
and lower bounds due to averaging over a 10% sample of tri-
als and thus are not able to capture some outliers (Figure 5).
Furthermore, the number of “extreme” indifference points in
the choice problems that we considered is low, biasing the
RT-based estimates towards the middle.

We also explored a method using the whole set of RT data
and a non-parametric regression, but its performance was
uneven across the datasets (see the Supplement and Figure
S6 for the parameter recovery).

3.6 Choice reversals

Finally, we explored one additional set of predictions from
the revealed strength-of-preference approach. We know that
when subjects are closer to indifference, their choices be-
come less predictable, and they slow down. Therefore, slow
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choices should be less likely to be repeated (Alds-Ferrer et
al., 2016).

In all three datasets, the choice-estimated preference
model was significantly less consistent with long-RT choices
than with short-RT choices (based on a median split within
subject): 80% vs 89% (p < 0.001) in the risky choice exper-
iment, 71% vs 79% (p < 0.001) in the intertemporal choice
experiment, 88% vs 94% (p = 0.008) and 90% vs 96% (p
< 0.001) in the dictator game experiment; p-values denote
Wilcoxon signed rank test significance on the subject level.

A second, more nuanced feature of DDMs is that with
typical parameter values, without time pressure, they some-
times predict “slow errors”, even conditioning on difficulty
(Ratcliff & McKoon, 2008). In preferential choice there
are no clear correct or error responses, however, we can
compare choices that are consistent or inconsistent with the
best-fitting choice model. The prediction is that inconsistent
choices should be slower than consistent ones.

To control for choice difficulty, we ran mixed-effects re-
gressions of choice consistency on the RTs and the absolute
subjective-value difference between the two options. In all
cases we found a strong negative relationship between the
RTs and the choice consistency (slower choice = less consis-
tent) (fixed effects of RTs: social choice a: z = -2.62, p =
0.009; social choice 8: z = =3.3, p < 0.001, intertemporal
choice: z = —-5.28, p < 0.001, risk choice: z = -5.35, p <
0.001).

In two of the datasets (intertemporal choice and non-
adaptive risk choice) subjects faced the same set of decision
problems twice. This allowed us to perform a more direct
test of the slow inconsistency hypothesis by seeing whether
slow decisions in the first encounter were more likely to be
reversed on the second encounter.

In the intertemporal choice experiment, the median RT for
a later-reversed decision was 1.36 s, compared to 1.17 s for
a later-repeated decision. A mixed-effects regression effect
of first-choice RT on choice reversal, controlling for the ab-
solute subjective-value difference, was highly significant (z
=4.04, p < 0.001). The difference was even stronger in the
risk choice experiment: subsequently reversed choices took
2.36 s versus only 1.4 s for subsequently repeated choices.
Again, a mixed-effects regression revealed that RT was a sig-
nificant predictor of subsequent choice reversals (controlling
for absolute subjective-value difference, z = 5.2, p < 0.001).

There are a couple of intuitions for why slow decisions are
still less consistent, even after controlling for difficulty. First,
the true difficulty of a decision can only be approximated.
Even with identical choice problems, one attempt at that
decision might be more subjectively difficult than another.
In the DDM, this is captured by across-trial variability in drift
rate. In other words, one cannot fully control for difficulty
in these kinds of analyses. So, slow decisions can still signal
proximity to indifference, and thus inconsistency in choice.
Second, slow errors can also arise from starting-points that
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are biased towards the preferred category (e.g., risky options)
(Chen & Krajbich, 2018; White & Poldrack, 2014). In these
cases, preference-inconsistent choices typically have longer
distances to cover during the diffusion process and so take
more time.

4 Discussion

Here we have demonstrated a proof-of-concept for the
method of revealed strength-of-preference. This method
contrasts with the standard method of revealed preference, by
using response times (RTs) rather than choices to infer pref-
erences. It relies on the fact that people generally take longer
to decide as they approach indifference. Using datasets from
three different choice domains (risk, temporal, and social)
we established that preferences are highly predictable from
RTs alone. Finally, we also found that long RTs are predic-
tive of choice errors, as captured by inconsistency with the
estimated preference function and later choice reversals.

Our findings also have important implications for anyone
who studies individual preferences.

First, using RTs may allow one to estimate subjects’ pref-
erences using very short and simple decision tasks, even
a single binary-choice problem. This is important since
researchers, and particularly practitioners, can often only
record a small number of decisions (Toubia, Johnson, Evge-
niou & Delquié, 2013). Since RT data is easily available in
online marketplaces, and many purchases or product choices
occur only once, these data might provide important insight
into customers’ preferences. Along the way, the speed with
which customers reject other products might also reveal im-
portant information. On the other hand, clients who wish
to conceal their strength-of-preference, might use their RT
strategically to avoid revealing their product valuations.

Second, the fact that RTs can be used to infer preferences
when choices are unobservable or uninformative is an im-
portant point for those who are concerned about private in-
formation, institution design, etc. For instance, while voters
are very concerned about the confidentiality of their choices,
they may not be thinking about what their time in the vot-
ing booth might convey about them. In an election where
most of a community’s voters strongly favor one candidate,
a long stop in the voting booth may signal dissent. Another
well-known example is the implicit association test (IAT),
where subjects’ RTs are used to infer personality traits (e.g.,
racism) that the subjects would otherwise not admit to or even
be aware of (Greenwald, McGhee & Schwartz, 1998). Thus,
protecting privacy may involve more than simply masking
choice outcomes.

Third, our work highlights a method for detecting choice
errors. While the standard revealed preference approach
must equate preferences and choices, the revealed strength-
of-preference approach allows us to identify choices that are
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more likely to have been errors, or at the very least, made
with low confidence.

There are of course limitations to using RTs to infer
strength-of-preference. Other factors may influence RTs in
addition to strength-of-preference, such as complexity, stake
size, and trial number (Krajbich, Hare, Bartling & Fehr,
2015; Logan, 1992; Moffatt, 2005). It may be important to
account for these factors in order to maximize the chance
of success. A second issue is that we have focused on re-
peated decisions which are made quite quickly (1-3 seconds
on average) and so the results may not necessarily extend
to slower, more complex decisions (but see Krajbich, Hare,
Bartling & Fehr, 2015).

More research is required to distinguish between SSMs
and alternative frameworks (Achtziger & Alds-Ferrer, 2013;
Alos-Ferrer et al., 2016; Alds-Ferrer & Ritschel, 2018; Hey,
1995; Kahneman, 2013; Rubinstein, 2016), where long RTs
are associated with more careful or deliberative thought and
short RTs are associated with intuition. It may in fact be
the case that in some instances people do use a logic-based
approach, in which case a long RT may be more indicative
of careful thought, while in other instances they rely on a
SSM approach, in which case a long RT likely indicates
indifference. This could lead to contradictory conclusions
from the same RT data; for example, one researcher may see a
long RT and assume the subject is very well informed, while
another researcher may see that same RT and assume the
subject has no evidence one way or the other. More research
is required to test whether SSMs, which are designed to
tease apart such explanations, can be successfully applied to
complex decisions.
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