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Abstract

Generative adversarial imitation learning
(GAIL) is a popular inverse reinforcement
learning approach for jointly optimizing pol-
icy and reward from expert trajectories. A
primary question about GAIL is whether ap-
plying a certain policy gradient algorithm to
GAIL attains a global minimizer (i.e., yields
the expert policy), for which existing under-
standing is very limited. Such global conver-
gence has been shown only for the linear (or
linear-type) MDP and linear (or linearizable)
reward. In this paper, we study GAIL under
general MDP and for nonlinear reward func-
tion classes (as long as the objective function
is strongly concave with respect to the re-
ward parameter). We characterize the global
convergence with a sublinear rate for a broad
range of commonly used policy gradient al-
gorithms, all of which are implemented in an
alternating manner with stochastic gradient
ascent for reward update, including projected
policy gradient (PPG)-GAIL, Frank-Wolfe
policy gradient (FWPG)-GAIL, trust region
policy optimization (TRPO)-GAIL and nat-
ural policy gradient (NPG)-GAIL. This is the
first systematic theoretical study of GAIL for
global convergence.

1 Introduction

In reinforcement learning (RL), the reward function
generally plays an important role to guide the design
of policy optimization to attain the best long-term ac-
cumulative reward. However, a reward function may
not be known in many situations, and imitation learn-
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ing (Osa et al., 2018) aims to find a desirable policy in
such cases, which produces behaviors as close as pos-
sible to expert demonstrations. Two popular classes
of approaches for imitation learning have been devel-
oped. The first approach is behavioral cloning (BC)
(Pomerleau, 1991), which directly provides a mapping
strategy from the state space to the action space based
on supervised learning to match expert demonstra-
tions. The BC method often suffers from high sample
complexity due to covariate shift (Ross and Bagnell,
2010; Ross et al., 2011) for achieving the desired per-
formance, which is mitigated by improved algorithms
such as DAgger (Ross et al., 2011) and Dart (Laskey
et al., 2017) that require further interaction with the
expert’s demonstration. The second approach is the
so-called inverse reinforcement learning (IRL) (Ng and
Russell, 2000), which attempts to recover the unknown
reward function based on the expert’s trajectories, and
then find an optimal policy by using such a reward
function.

A popular IRL method has been developed in Finn
et al. (2016); Ho and Ermon (2016); Fu et al. (2018),
which leverages the connection of IRL to the training
of generative adversarial networks (GANs) (Goodfel-
low et al., 2014). In particular, the generative ad-
versarial imitation learning (GAIL) framework (Ho
and Ermon, 2016) formulates a min-max optimization
problem as in the GAN training. The maximization is
over the reward function (which serves as a discrimina-
tor) to best distinguish between the trajectories gener-
ated by the expert and the learner, and the minimiza-
tion is then over the learner’s policy (which serves as
a generator) to best match the expert’s trajectories.
Since the policy optimization in GAIL is nonconvex,
its joint optimization with reward function in GAIL in
general can be guaranteed to converge only to a sta-
tionary point. Such a type of result was recently estab-
lished in Chen et al. (2020), which studied GAIL under
general MDP model and reward function class, and
showed that the gradient-decent and gradient-ascent
algorithm converges to a stationary point (not neces-
sarily the global minimum).
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More recently, it has been shown that some popular
policy gradient algorithms (Agarwal et al., 2019; Shani
et al., 2020; Xu et al., 2020a) can converge to a glob-
ally optimal policy under certain policy parameteriza-
tions. Then a natural question to ask is whether such
global convergence continues to hold in GAIL when
these algorithms are further implemented in an alter-
nating fashion with the reward optimization in GAIL.
The global convergence does not necessarily hold in
general, because the policy optimization is still over a
nonconvex objective function, which can induce com-
plicated and undesirable geometries jointly with the
reward optimization as a min-max problem in GAIL.
Thus, existing exploration on this topic in Cai et al.
(2019); Zhang et al. (2020), which established global
convergence for GAIL, requires restrictive conditions:
(1) linear (but possibly infinite dimensional) MDP and
(2) linear reward function or linearizable reward func-
tion such as overparameterized ReLU neural networks.

This paper aims to substantially expand the aforemen-
tioned global convergence results as follows.

• We allow general MDP models, not necessarily lin-
ear MDP. We study nonlinear reward functions as
long as the resulting objective function is strongly
concave with respect to the reward parameter. This
is a much bigger class than linear reward, and is
satisfied easily by incorporating a strongly concave
regularizer which has been commonly used in GAIL
practice.

• In addition to the projected gradient and NPG that
have been studied in Cai et al. (2019); Zhang et al.
(2020) for GAIL, we also study Frank-Wolfe pol-
icy gradient, which is easier to implement than pro-
jected policy gradient, and TRPO which is widely
adopted in GAIL in practice.

• Existing convergence characterization for GAIL as-
sumed that the samples are either identical and in-
dependently distributed (i.i.d.) as in Chen et al.
(2020); Zhang et al. (2020) or follows the LQR dy-
namics as in Cai et al. (2019), whereas here we as-
sume that samples follow a general Markovian dis-
tribution.

1.1 Main Contributions

In this paper, we establish the first global convergence
guarantee for GAIL under the general MDP model
and the nonlinear reward function class (as long as
the objective function is strongly concave with respect
to the reward parameter). We provide the conver-
gence rate for three major types of algorithms, all
of which alternate between gradient ascent (for re-
ward update) and policy gradient descent (for policy
update), respectively being (a) projected policy gra-

dient (PPG)-GAIL and Frank-Wolfe policy gradient
(FWPG)-GAIL (with direct policy parameterization);
(b) trust region policy optimization (TRPO)-GAIL
(with direct policy parameterization); and (c) natural
policy gradient (NPG)-GAIL (with general non-linear
policy parameterization). We show that all these al-
ternating algorithms converge to the global minimum
with a sublinear rate. We summarize our results on the
convergence performance of the GAIL algorithms in
Table 1. Comparing among these algorithms indicates
that TRPO-GAIL with regularized MDP achieves the
best convergence rate, and TRPO-GAIL with regu-
larized and unregularized MDP outperform the other
algorithms in terms of the overall sample complexity.

Technically, the global convergence guarantee for
GAIL does not follow from the existing min-max op-
timization theory. In fact, the GAIL problem here
falls into nonconvex-strongly-concave min-max opti-
mization framework, for which existing optimization
theory does not provide the global convergence in gen-
eral. Thus, our establishment of global convergence
for GAIL develops several new properties specially for
GAIL. Furthermore, in contrast to conventional min-
max optimization, which is under i.i.d. sampling by
certain static distribution, GAIL is under Markovian
sampling by time-varying distributions due to the pol-
icy update. Thus, the convergence analysis for GAIL is
more challenging than that for min-max optimization.

1.2 Related Work

Due to the significant growth of studies in imitation
learning, this section focuses only on those studies that
are highly relevant to the theoretical analysis of the
convergence for GAIL algorithms.

Theory for IRL via adversarial training: The
idea of generative adversarial training (Goodfellow
et al., 2014) has motivated a popular approach for IRL
problems (Finn et al., 2016; Ho and Ermon, 2016; Fu
et al., 2018). Among these studies, GAIL (Ho and Er-
mon, 2016) formulated a min-max problem for jointly
optimizing the reward and policy, where reward and
policy serve analogous roles as the discriminator and
the generator in GANs. Naturally, such an approach
has been explored via the divergence minimization per-
spective in Ke et al. (2019); Ghasemipour et al. (2019),
and by leveraging GAN training (Nowozin et al., 2016).
Moreover, the generalization performance and sample
complexity have been studied for the setting where the
expert’s demonstrations include only the states but no
actions.

Most relevant to our study is the recent studies (Cai
et al., 2019; Chen et al., 2020; Zhang et al., 2020)
on the convergence rate for the algorithms developed
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Table 1: Comparison among GAIL algorithms studied in this paper

Algorithms Convergence rate Total Complexity1,2

PPG-GAIL O
(

1
(1−γ)3

√
T

)
Õ
(

1
ε4

)
FWPG-GAIL O

(
1

(1−γ)3
√
T

)
Õ( 1

ε4 )

TRPO-GAIL (unregularized) O
(

1
(1−γ)2

√
T

)
Õ( 1

ε3 )

TRPO-GAIL (regularized) Õ
(

1
(1−γ)3T

)
Õ( 1

ε2 )

NPG-GAIL O
(

1
(1−γ)2

√
T

)
Õ( 1

ε4 )

1 Total complexity refers to the total number of samples needed to achieve
an ε-accurate globally optimal point.

2 Õ(·) does not include the logarithmic terms.

for GAIL. Among these studies, Chen et al. (2020)
studied GAIL under the general MDP model and the
reward function class, and showed that the gradient-
decent and gradient-ascent algorithm converges to a
stationary point (not necessarily the global minimum).
Cai et al. (2019); Zhang et al. (2020) provided the
global convergence result. More specifically, Cai et al.
(2019) studied GAIL under linear quadratic regula-
tor (LQR) dynamics and the linear reward function
class, and showed that the alternating gradient algo-
rithm converges to the unique saddle point. Zhang
et al. (2020) studied GAIL under a type of linear but
infinite dimensional MDP and with overparameterized
neural networks for parameterizing the policy and re-
ward function, and showed that the alternating al-
gorithm between gradient-ascent (for reward update)
and NPG (for policy update) converges to the neigh-
borhood of a global optimal point, where the represen-
tation power of neural networks determines the conver-
gence error. Our study here establishes global conver-
gence for GAIL for general MDP and the nonlinear
reward function class.

Difference from conventional min-max prob-
lems: Although the GAIL framework is formulated
as a min-max optimization problem, the stochastic al-
gorithms that we use for solving such a problem have
the following major differences from the conventional
min-max optimization problem. First, since these
algorithms continuously update the policy, the sam-
ples that are used for iterations are sampled by time-
varying policies; whereas the conventional min-max
problem typically has a fixed sampling distribution.
Second, since the samples are obtained following an
MDP process, the samples are distributed with corre-
lation rather than in the i.i.d. manner as in the conven-
tional optimization. These two differences cause the
convergence analysis to be more complicated for GAIL
than the conventional min-max problem. Further-
more, the min-max problem that we encounter here

for GAIL is nonconvex-strongly-concave, for which the
conventional min-max optimization (Nouiehed et al.,
2019; Lin et al., 2020) has been shown to converge
only to a stationary point, whereas this paper exploits
further properties in GAIL and establishes the global
convergence guarantee.

Connection to policy gradient algorithms: In
the GAIL framework, the policy optimization is jointly
performed with the reward optimization via a min-
max optimization. Thus, the variation of the reward
function during the algorithm execution continuously
change the objective function for the policy optimiza-
tion. Hence, even if the policy gradient algorithms
(running for a fixed objective function) converge glob-
ally, for example, PPG (Agarwal et al., 2019), NPG
(Agarwal et al., 2019), and TRPO (Shani et al., 2020),
the global convergence is generally not guaranteed if
these algorithms are executed in an alternating fash-
ion with reward iterations. Two special cases have
been shown to retain such global convergence, namely,
LQR model shown in Cai et al. (2019) and overpa-
rameterized neural networks for a linear type MDP
(Zhang et al., 2020). This paper significantly expands
such a set of cases by establishing the global conver-
gence guarantee for more general MDP and reward
class and a broader range of algorithms.

2 Problem Formulation and
Preliminaries

2.1 Markov Decision Process

The imitation learning framework that we study is
based on the Markov decision process (MDP) denoted
by (S,A,P, r, γ). We assume that both the state space
S ⊂ Rd and the action space A are finite, and use
s ∈ S and a ∈ A to denote a state and an action,
respectively. A policy π describes the probability to
take an action a ∈ A at each state s ∈ S in terms of
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the conditional probability π(a|s). Then the system
moves to a next state s′ ∈ S governed by the probabil-
ity transition kernel P(s′|s, a), and receives a reward
rt = r(s, a), which is assumed to be bounded by Rmax.

Suppose the initial state takes a distribution ζ. For a
given policy π and a reward function r, we define the
average value function as:

V (π, r) = E
[ ∞∑
t=0

γtr(st, at)
∣∣s0 ∼ ζ, at ∼ π(at|st), . . .

st+1 ∼ P(st+1|st, at)
]

=
1

1− γ
E(s,a)∼νπ(s,a)[r(s, a)],

where γ ∈ (0, 1) is a discount factor and

νπ(s, a) := (1− γ)

∞∑
t=0

γtP(st = s, at = a)

is the state-action visitation distribution. It has been
shown in (Konda, 2002) that νπ(s, a) is the stationary
distribution of the Markov chain with the transition
kernel

P̃(·|s, a) := (1− γ)ζ(·) + γP(·|s, a)

and policy π if the Markov chain is ergodic. Thus P̃ is
used in sampling for estimating the value function.

2.2 Generative Adversarial Imitation
Learning (GAIL)

For imitation learning, in which the reward function is
not known, GAIL (Ho and Ermon, 2016) is a frame-
work to jointly learn the reward function and optimize
the policy. We parameterize the reward function by
α ∈ Λ ⊂ Rq, which takes the form rα(s, a) at the
state-action pair (s, a). We assume that Λ is a bounded
closed set, i.e., ‖α1 − α2‖2 ≤ Cα, ∀α1, α2 ∈ Λ.

We let πE represent the expert policy, and let the
learner’s policy be parameterized by θ ∈ Θ and be
denoted as πθ. In this paper, we consider two types of
parameterization for the learner’s policy. The first is
the direct parameterization, where πθ(a|s) = θs,a and
θ ∈ Θp := {θ : θs,a ≥ 0,

∑
a∈A θs,a = 1, for all s ∈

S, a ∈ A}. The second is the general nonlinear policy
class, which satisfies certain smoothness conditions as
given in Assumption 5.

The GAIL framework is formulated as the following
min-max optimization problem.

min
θ∈Θ

max
α∈Λ

F (θ, α) := V (πE , rα)− V (πθ, rα)− ψ(α),

(1)

where the objective function is given by the discrep-
ancy of the accumulated rewards between the expert’s
and learner’s policies, regularized by a function ψ(α)
of the reward parameter. Thus, the maximization in
eq. (1) aims to find the reward function that best dis-
tinguishes between the expert’s and the learner’s poli-
cies and the minimization aims to find the learner’s
policy that matches the expert’s policy as close as pos-
sible. Such a formulation is analogous to the GANs,
with the reward serving as a discriminator and the
policy serving as a generator.

Algorithm 1 Nested-loop GAIL framework
1: Input: Outer loop length T , inner loop length K,

stepsize η, β
2: for t = 0, 1, ..., T − 1 do
3: Randomly pick αt0 ∈ Λ
4: for k = 0, 1, ...,K − 1 do
5: Query a length-B trajectory (sEi , a

E
i ) ∼ P̃πE

and a length-B mini-batch (sθi , a
θ
i ) ∼ P̃πθ1

6:

∇̂αF (θ, α)

=
1

(1− γ)B

B−1∑
i=0

∇αrα(sEi , a
E
i )

− 1

(1− γ)B

B−1∑
i=0

∇αrα(sθi , a
θ
i )−∇αψ(α)

αtk+1 = PΛ

(
αtk + β∇̂αF (θt, α

t
k)
)

7: end for
8: αt = αtK
9: θt+1 = Options: PPG in eq. (4); FWPG in

eq. (5); TRPO in eq. (7); NPG in eq. (8)
10: end for

In this paper, we study four GAIL algorithms, all of
which follow the nested-loop framework described in
Algorithm 1. Namely, at each time step t (associated
with one outer loop), there is an entire inner loop up-
dates of the reward parameter αt to a certain accu-
racy and one update step of the policy parameter θt.
Specifically, αt is updated by the stochastic projected
gradient ascent given by

αk+1
t = PΛ

(
αkt + β∇̂αF (θt, α

k
t )
)
,

where the gradient estimator ∇̂αF (θt, α
k
t ) is obtained

via a Markovian sample trajectory. Then the policy
parameter θt is updated for one step, determined by
any of the four policy gradient algorithms, namely,

1The samples are obtained over a single trajectory path
for the entire algorithm execution.
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PPG in eq. (4), FWPG in eq. (5), TRPO in eq. (7)
and NPG in eq. (8).

2.3 Technical Preliminaries

For the GAIL problem in eq. (1) to be well posed, we
assume that maxα∈Λ F (θ, α) exists for any θ ∈ Θ, and
define the marginal-maximum function of F (θ, α)

g(θ) := max
α∈Λ

F (θ, α). (2)

We further define the corresponding optimizer
αop(θ) := argmaxα∈Λ F (θ, α). If there exists more
than one optimizer, αop(θ) denotes the elements of the
corresponding optimizer set.
Definition 1. Let θ∗ = argminθ∈Θ g(θ). The output
θ̄ of an algorithm is said to attain an ε-global conver-
gence if

g(θ̄)− g(θ∗) ≤ ε
holds for a prescribed accuracy ε ∈ (0, 1).

As remarked in Zhang et al. (2020), ε-global conver-
gence further implies

max
α∈Λ

[V (πE , rα)− V (πθ̄, rα)] ≤ max
α∈Λ

ψ(α) + ε.

Hence, as long as ψ(α) is chosen properly (for example,
with a small regularization coefficient), πθ̄ is guaran-
teed to be sufficiently close to the expert policy.

In this paper, we make the following standard assump-
tions for our analysis.
Assumption 1. The regularizer function ψ(α) is dif-
ferentiable with gradient Lipschitz constant Lψ.

Assumption 1 captures the property for designing a
regularizer and can be easily attained.
Assumption 2. For any given θ, the objective func-
tion F (θ, α) in eq. (1) is µ-strongly concave on α.

Assumption 2 includes the linear function class as a
special case. In practice, a strongly convex regularizer
ψ(α) is often used to guarantee the strong concavity
of F (θ, α).
Assumption 3 (Ergodicity). For any policy parame-
ter θ ∈ Θ, consider the MDP with policy πθ and tran-
sition kernel P(·|s, a) or

P̃(·|s, a) = γP(·|s, a) + (1− γ)ζ(·).

There exist constants CM > 0 and 0 < ρ < 1 such that
∀t ≥ 0,

sup
s∈S

dTV (P(st ∈ ·|s0 = s), χθ) ≤ CMρt,

where χθ is the stationary distribution of the given
transition kernel P(·|s, a) or P̃(·|s, a) under policy πθ
and dTV (·, ·) is the total variation distance.

Assumption 3 holds for any time-homogeneous Markov
chain with finite state space or any uniformly ergodic
Markov chain with general state space.
Assumption 4. The reward parameterization sat-
isfies Gradient Lipschitz condition, i.e., there exists
Lr ∈ R+, such that for all s ∈ S and a ∈ A and for
all α1, α2 ∈ Λ, we have

‖∇αrα1
(s, a)−∇αrα2

(s, a)‖2 ≤ Lr ‖α1 − α2‖2 .

Clearly, under Assumption 4, the reward function also
has a bounded gradient. There exists Cr ∈ R+ such
that, for all α ∈ Λ, we have

‖∇αrα‖∞,2 :=

√√√√ q∑
i=1

∥∥∥∥∂rα∂αi

∥∥∥∥2

∞
≤ Cr,

where ‖·‖∞ is taken over the state-action space S×A.

We next provide the following Lipschitz properties,
which are vital for the analysis of convergence, and
were often taken as assumptions in the literature
of min-max optimization (Jin et al., 2019; Nouiehed
et al., 2019).
Proposition 1. Suppose Assumptions 1, 3 and 4 hold.
Then the GAIL min-max problem in eq. (1) with di-
rect parameterization satisfies the following Lipschitz
conditions: ∀θ1, θ2 ∈ Θ and ∀α1, α2 ∈ Λ,

‖∇θF (θ1, α1)−∇θF (θ2, α2)‖ ≤ L11 ‖θ1 − θ2‖
+ L12 ‖α1 − α2‖ ,

‖∇αF (θ1, α1)−∇αF (θ2, α2)‖ ≤ L21 ‖θ1 − θ2‖
+ L22 ‖α1 − α2‖ ,

where L11 = 2
√

2|A|CrCα
(1−γ)2 (1 +

⌈
logρ C

−1
M

⌉
+ (1− ρ)−1),

L12 =

√
|A|Cr

(1−γ)2 , L21 =
Cr
√
|A|

1−γ (1 + dlogρ C
−1
M e + (1 −

ρ)−1), and L22 =
2
√
qLr

1−γ + Lψ.

Furthermore, if θ1 = θ2, the above second bound holds
with a general parameterization for the policy.

3 Global Convergence of GAIL
Algorithms

In this section, we provide the global convergence guar-
antee for four GAIL algorithms.

3.1 PPG-GAIL and FWPG-GAIL
Algorithms

In this section, we study the PPG-GAIL and FWPG-
GAIL algorithms, both of which take the general
framework in Algorithm 1, and update the policy pa-
rameter θ respectively based on projected policy gradi-
ent (PPG) and Frank-Wolfe policy gradient (FWPG).
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We take the direct parameterization for the policy. At
each time t of the outer loop, both PPG-GAIL and
FWPG-GAIL first estimate the stochastic policy gra-
dient by drawing a minibatch sample trajectory with
length b as (si, ai) ∼ P̃πθt as follows.

∇̂θF (θt, αt)(s, a) = − Q̂(s, a)

b(1− γ)

b−1∑
i=0

1 {si = s} , (3)

for all s ∈ S, a ∈ A, where Q̂(s, a) applies EstQ in
Zhang et al. (2019) (also given in Supplementary ma-
terials, Section A) with the reward function rαt(s, a).
Then, PPG-GAIL updates θt as

θt+1 = PΘp

(
θt − η∇̂θF (θt, αt)

)
, (4)

where Θp is the probability simplex defined in Sec-
tion 2.2.

Differently from PPG-GAIL, FWPG-GAIL updates θt
based on the Frank-Wolfe gradient as given by

v̂t = argmax
θ∈Θp

〈
θ,−∇̂θF (θt, αt)

〉
,

θt+1 = θt + η (v̂t − θt) . (5)

To analyze the convergence, we first define the gradient
dominance property.
Definition 2. A function f(θ) satisfies the gradient
dominance property, if there exists a positive C, such
that

f(θ)− f(θ∗) ≤ C max
θ̄∈Θ

〈
θ − θ̄,∇θf(θ)

〉
for any given θ ∈ Θ, where θ∗ := argminθ∈Θ f(θ).

The following proposition facilitates to prove global
convergence for PPG-GAIL and FWPG-GAIL.
Proposition 2. The function g(θ) given in eq. (2)
satisfies the gradient dominance property.

The following theorem characterizes the global conver-
gence of PPG-GAIL.
Theorem 1. Suppose Assumptions 1 to 4 hold. Con-
sider PPG-GAIL with the θ-update stepsize η =(
L11 + L12L21

µ

)−1

and the α-update stepsize β = µ
4L2

22
,

where L11, L12, L21 and L22 are given in Proposi-
tion 1. Then we have

1

T

T−1∑
t=0

E [g(θt)]− g(θ∗)

≤ O
(

1

(1− γ)3
√
T

)
+O

(
e−(1−γ)2K

)
+O

(
1

(1− γ)3
√
B

)
+O

(
1

(1− γ)3
√
b

)
. (6)

Theorem 1 implies that if we set T = O
(

1
ε2

)
, K =

O
(
log( 1

ε )
)
, B = O

(
1
ε2

)
and b = O

(
1
ε2

)
, then PPG-

GAIL converges to an ε-accurate globally optimal value
with an overall sample complexity T (KB + b) =
Õ
(

1
ε4

)
. Due to the Markovian sampling for updating

both the reward and policy parameters α and θ, our
analysis bounds the two corresponding bias error terms
by O( 1√

B
) and O( 1√

b
) as shown in eq. (6). Hence,

the choices for the mini-batch sizes B and b trade off
between the convergence error and the computational
complexity. To achieve a given accuracy ε, the tradeoff
yields the overall complexity of Õ

(
1
ε4

)
. We also note

that the result here provides the first convergence rate
for projected stochastic gradient with non-i.i.d. sam-
pling.

We next provide the following theorem, which charac-
terizes the global convergence of FWPG-GAIL.
Theorem 2. Suppose Assumptions 1 to 4 hold. Con-
sider FWPG-GAIL with the θ-update stepsize η = 1−γ√

T

and α-update stepsize β = µ
4L2

22
, where L22 is given in

Proposition 1. Then we have

1

T

T−1∑
t=0

E [g(θt)]− g(θ∗)

≤ O
(

1

(1− γ)3
√
T

)
+O

(
e−(1−γ)2K

)
+O

(
1

(1− γ)3
√
B

)
+O

(
1

(1− γ)3
√
b

)
.

Theorem 2 implies that if we let T = O
(

1
ε2

)
, K =

O
(
log( 1

ε )
)
, B = O

(
1
ε2

)
and b = O

(
1
ε2

)
, then FWPG-

GAIL converges to an ε-accurate globally optimal value
with overall sample complexity T (KB + b) = Õ

(
1
ε4

)
,

which is the same as that of PPG-GAIL. The analy-
sis of FWPG-GAIL also needs to bound the two bias
terms due to the Markovian sampling for updating the
reward and policy parameters. This is the first anal-
ysis that provides the convergence rate for stochastic
Frank-Wolfe gradient with non-i.i.d. sampling.

3.2 TRPO-GAIL Algorithm

In this section, we study the TRPO-GAIL algorithm,
which takes the general framework in Algorithm 1 and
updates the policy parameter θ based on TRPO under
λ-regularized MDP. At each time t of the outer loop,
TRPO-GAIL adopts the update rule in Shani et al.
(2020) for updating θt as follows:

πθt+1
(·|s) ∈ argmin

π∈∆A

{〈
− Q̂πθtλ,αt

(s, ·), π − πθt(·|s)
〉
. . .

+ λ 〈∇ω(πθt(·|s)), π − πθt(·|s)〉 . . .
+ η−1

t Bω(π, πθt(·|s))
}
,
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where Q̂πθtλ,αt
denotes the estimation of the Q-function

based on EstQ (Zhang et al., 2019) (also given in Sup-
plementary materials, Section A), the regularized re-
ward rλ,αt(s, a) := rαt(s, a)+λω(πθ(·|s)), the negative
entropy function

ω(π(·|s)) :=
∑
a∈A

π(·|s) log π(·|s) + log |A|,

and the Bregman distance

Bω(x, y) := ω(x)− ω(y)− 〈∇ω(y), x− y〉

associated with ω(x), which is the KL-divergence here.
We consider the direct parameterization for the policy,
and hence the update for the policy parameter θ can be
analytically computed (Shani et al., 2020) as follows.
For each (s, a) ∈ S ×A,

θt+1(s, a) =

1

Zt(s)
θt(s, a) exp

(
ηt(Q̂

πθt
λ,αt

(s, a)− λ log θt(s, a))
)
,

(7)

where Zt(s) is the normalization factor and it equals
to ∑

a′∈A
θt(s, a

′) exp
(
ηt(Q̂

πθt
λ,αt

(s, a′)− λ log θt(s, a
′))
)
.

The following theorem provides the global convergence
of TRPO-GAIL under the unregularized MDP, where
we have λ = 0.

Theorem 3. Suppose Assumptions 1 to 4 hold. Con-
sider unregularized TRPO-GAIL (λ = 0) with θ-
update stepsize ηt = 1−γ√

T
and α-update stepsize β =

µ
4L2

22
, where L22 is given in Proposition 1. Then we

have,

1

T

T−1∑
t=0

E [g(θt)]− g(θ∗)

≤ O
(

1

(1− γ)2
√
T

)
+O

(
e−(1−γ)2K

)
+O

(
1

(1− γ)4B

)
.

We further consider the regularized MDP, where we
have λ > 0.

Theorem 4. Suppose Assumptions 1 to 4 hold. Con-
sider regularized TRPO-GAIL (λ > 0) with θ-update
stepsize ηt = 1

λ(t+2) and α-update stepsize β = µ
4L2

22
,

where L22 is given in Proposition 1. Then we have,

1

T

T−1∑
t=0

E [g(θt)]− g(θ∗)

≤ Õ
(

1

(1− γ)3T

)
+O

(
e−(1−γ)2K

)
+O

(
1

(1− γ)4B

)
.

Theorem 3 indicates that if we set T = O
(

1
ε2

)
,

K = O
(
log( 1

ε )
)
and B = O

(
1
ε

)
, then TRPO-GAIL

with unregularized MDP converges to an ε-accurate
globally optimal value with a total sample complexity
TKB = Õ

(
1
ε3

)
. Theorem 4 indicates that if we let

T = Õ( 1
ε ), K = O

(
log( 1

ε )
)
, and B = O

(
1
ε

)
, then

TRPO-GAIL with regularized MDP converges to an
ε-accurate globally optimal value with an overall sam-
ple complexity TKB = Õ

(
1
ε2

)
. The regularized MDP

changes the objective function with λ-regularized per-
turbation and yields orderwisely better sample com-
plexity. Moreover, the sample complexity here is with
respect to the convergence in expectation, which im-
proves that in high-probability convergence in Shani
et al. (2020) by a factor of Õ

(
1
ε

)
.

3.3 NPG-GAIL Algorithm

In this section, we study the NPG-GAIL algorithm,
which takes the general framework in Algorithm 1 and
updates the policy parameter θ based on natural policy
gradient (NPG).

We consider the general nonlinear parameterization for
the policy, so that the state space may not be finite
and for example can be Rd. At each time t of the
outer loop, NPG-GAIL ideally should update θt via a
regularized natural gradient

−(F (θt) + λI)−1∇θV (πθt , rαt),

where

F (θ) = E(s,a)∼νπθ

[
∇θ log(πθ(a|s))∇θ log(πθ(a|s))>

]
is the Fisher-information matrix, and λ is the regular-
ization coefficient for avoiding singularity. In practice,
we estimate such a natural gradient via solving the
problem

min
w∈Rd

E(s,a)∼νπθ

[
∇θ log(πθ(a|s))>w −Aπθα (s, a)

]2
using the mini-batch linear stochastic approximation
(SA) algorithm over a Markovian sampled trajectory,
where Aπθα (s, a) := Qπθα (s, a) − V πθα (s) is the advance
function under reward rα. More details are provided
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Algorithm 2 Policy update in NPG-GAIL
Input: Policy parameter θt, reward parameter αt,
stepsize βW , policy stepsize η, batch-sizeM and tra-
jectory length Tc
for i = 0, · · · ,MTc do
si ∼ P̃(·|si−1, ai−1)
Sample ai and a′i independently from πθt(·|si)

end for
Initialize W0 = 0
for k = 0, · · · , Tc − 1 do
for i = kM, · · · , (k + 1)M − 1 do

Obtain Q-function estimation Q̂(si, ai) with re-
ward function rαt by EstQ (Zhang et al., 2019) (also
given in Supplementary material, Section A).

ĝi =−∇θt log(πθt(ai|si))>Wk∇θt log(πθt(ai|si))

+ Q̂(si, ai)∇θt log(πθt(ai|si))

− Q̂(si, ai)∇θt log(πθt(a
′
i|si))− λWk

end for
Ĝk = 1

M

∑(k+1)M−1
i=kM ĝi

Wk+1 = Wk + βW Ĝk
end for
wt = WTc

Return: θt+1 = θt − ηwt

in Algorithm 2. Suppose such an algorithm provides
an output wt. Then the policy parameter is updated
as

θt+1 = θt − ηwt. (8)

Since we take the general nonlinear parameterization
for the policy, we make the following assumptions for
the policy parameterization, which are standard in
the literature (Kumar et al., 2019; Zhang et al., 2019;
Agarwal et al., 2019; Xu et al., 2020b).

Assumption 5. For any θ, θ′ ∈ Θ, and any state-
action pair (s, a) ∈ S×A, there exist positive constants
Lπ, Lφ, Cφ and Cπ, such that the following bounds
hold:

(1) ‖∇θ log(πθ(a|s))−∇θ log(πθ′(a|s))‖2

≤ Lφ ‖θ − θ′‖2

(2) ‖∇θ log(πθ(a|s))‖2 ≤ Cφ,
(3) ‖πθ(·|s)− πθ′(·|s)‖TV ≤ Cπ ‖θ − θ′‖2,

where ‖·‖TV denotes the total-variation norm.

Next, we provide the following theorem, which char-
acterizes the global convergence of NPG-GAIL.

Theorem 5. Suppose Assumptions 1 to 5 hold. Con-
sider NPG-GAIL with θ-update stepsize η = 1−γ√

T
, α-

update stepsize β = µ
4L2

22
, and the SA-update stepsize

βW = λP
4(C2

φ+λ)2
, where L22 is given in Proposition 1.

Then we have

1

T

T−1∑
t=0

E [g(θt)]− g(θ∗)

≤ O
(

1

(1− γ)2
√
T

)
+O

(
e−(1−γ)2K

)
+O

(
1

(1− γ)4B

)
+O

(
e−Tc

)
+O

(
λ

1− γ

)
+O

(
ζ ′

(1− γ)3/2

)
+O

(
1

(1− γ)2
√
M

)
.

where

ζ ′ = max
θ∈Θ,α∈Λ

min
w∈Rd√

Eνπθ [∇θ log(ππθ (a|s))>w −A
πθ
α (s, a)]

2

and Tc and M are defined in Algorithm 2.

Theorem 5 indicates that if we let T = O
(

1
ε2

)
, K =

O
(
log( 1

ε )
)
, B = O

(
1
ε

)
, Tc = O

(
log( 1

ε )
)
, λ = O (ζ ′)

and M = O
(

1
ε2

)
, then NPG-GAIL converges to an

(ε + O (ζ ′))-accurate globally optimal value with an
overall sample complexity of T (KB+TcM) = Õ

(
1
ε4

)
,

which is the same as PPG-GAIL and FWPG-GAIL.
Comparison of Theorem 3 and Theorem 5 indicates
that TRPO-GAIL has a better sample complexity
than NPG-GAIL, mainly because TRPO can update
the policy parameter based on an analytical form,
which saves the samples that NPG uses for estimat-
ing the natural gradient by solving the quadratic op-
timization problem.

4 Conclusion

In this paper, we study four GAIL algorithms, each
of which is implemented in an alternating fashion be-
tween a popular policy gradient algorithm for the pol-
icy update and a gradient ascent for the reward up-
date. Our focus is on investigating whether incorpora-
tion of these policy gradient algorithms to the GAIL
framework will still have global convergence guaran-
tee. We show that all these GAIL algorithms converge
globally as long as the objective function is properly
regularized (to be strongly concave) with respect to
the reward parameter. We also anticipate that the
analysis tools that we develop here will benefit the fu-
ture theoretical studies of similar problems including
GANs, min-max optimization, and bi-level optimiza-
tion algorithms.
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