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Understanding Estimation and Generalization Error
of Generative Adversarial Networks
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Abstract—This paper investigates the estimation and gener-
alization errors of the generative adversarial network (GAN)
training. On the statistical side, we develop an upper bound
as well as a minimax lower bound on the estimation error
for training GANs. The upper bound incorporates the roles of
both the discriminator and the generator of GANs, and matches
the minimax lower bound in terms of the sample size and the
norm of the parameter matrices of neural networks under ReLU
activation. On the algorithmic side, we develop a generalization
error bound for the stochastic gradient method (SGM) in training
GANSs. Such a bound justifies the generalization ability of the
GAN training via SGM after multiple passes over the data and
reflects the interplay between the discriminator and the generator.
Our results imply that the training of the generator requires
more samples than the training of the discriminator. This is
consistent with the empirical observation that the training of the
discriminator typically converges faster than that of the generator.
The experiments validate our theoretical results.

Index Terms—GAN training, estimation error, generalization
error, neural networks, stochastic gradient method

I. INTRODUCTION

ENERATIVE adversarial networks (GANSs) [1] have

been developed as a successful machine learning tool
for learning complex high dimensional distributions, and have
been applied to many applications in computer vision, medical
science, etc. The GAN training is conducted through a min-max
optimization problem, where the minimum and the maximum
are taken over a class of generators and a class of discriminators,
respectively, in order to guarantee a distribution p,, to be close
enough to a target distribution. In particular, in the case that
the discriminator class is sufficiently large, the GAN training
amounts to finding a generator so that the generated distribution
is close to the target distribution p, with respect to the Jensen-
Shannon distance [1]. In this paper, we adopt the so-called
neural net distance [2], as given by

dF,,(Pz,py) = sup

E f(w;x)— E f(w;y)|, (1)
weWw Y~Py

X~Pz

where f(w;x) denotes the output of a discriminator neu-
ral network with network parameters w and input data x.

Kaiyi Ji is with the Department of Electrical and Computer Engineering, The
Ohio State University, Columbus, OH 43220 USA (email: ji.367 @osu.edu).
Yi Zhou is with the Department of Electrical and Computer Engineering,
University of Utah, Salt Lake City, UT 84101, USA (email: yi.zhou@utah.edu).
Yingbin Liang is with the Department of Electrical and Computer Engi-
neering, The Ohio State University, Columbus, OH 43220 USA (email:
liang.889 @osu.edu).

The work of K. Ji and Y. Liang was supported partially by the U.S. National
Science Foundation under the grants CCF-1801855 and CCF-1900145.

Kaiyi Ji and Yi Zhou equally contribute to this work.

Manuscript received October 01, 2020; revised July 31, 2020.

Correspondingly, the GAN training is to solve the following
optimization problem

(1.5)

min dz,, (b Py(v:z)),

where pg (v, z) is the generated distribution by a generator neural
network g(v; Z) with network parameters v and input random
sample Z that is drawn from a given distribution p, (e.g.,
Gaussian distribution).

In practical scenarios, the target distribution p, is unknown
a priori and the evaluation of the expectation in the neural net
distance in eq. (1) is computationally expensive. Thus, one
usually collects a set of training samples S,, = {x1, ..., X, } and
S, ={Z,...,Z,,} from the distributions p, and p,, respec-
tively, using which to evaluate the empirical distributions p, and
Py(v;z) instead. Then, the practical GAN training corresponds
to solving the following empirical risk minimization

(GAN training): mi‘r/l dF,, Dz, Dg(v:2)); 2)
ve

which takes the min-max form if we substitute the distance
by eq. (1).

As the above GAN training is conducted on empirical
distributions, it is therefore important to understand the
estimation error induced by the obtained solution. In specific,
denote v* as the solution of the optimization in eq. (2). Then
the corresponding estimation error is defined as

d,F,m (pwa pg(V*;Z)) - \}IelfV d]:n'n, (pz>pg(v;Z))- (3)

The estimation error of the GAN training has been studied in
[3] for v* being the minimizer of a different objective function
dF,, Pz Pg(viz)) (as compared to that in eq. (2)). [4] studied
the same type of estimation error but took the discriminator
class in the Sobolev space. As a result, the estimation error
bounds in [3], [4] incorporates only the discriminator part, but
does not capture the role of the generator and the interplay
between them. This motivates us to address the following
questions with respect to the estimation error of the GAN
training in this paper.

Ql: Taking v* as the minimizer of eq. (2), can we further
characterize the impact of the generator and the interplay
between the discriminator and the generator on the
estimation error?

Is the developed estimation error bound tight enough with
respect to the minimax lower bound?

Q2:

Another important aspect of the GAN training is the general-
ization error corresponding to specific optimization algorithms
used in practice. Since the GAN training optimization is
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typically solved by the stochastic gradient method (SGM)
in practice, it is desirable to investigate the generalization error
induced by the output of SGM. However, such a topic has
not been explored in the existing literature for GANs, which
we study in this paper. In specific, denoting (wg, vg) as the
discriminator and the generator trained by SGM with the dataset
S =5,US,, we are interested in the following generalization
error of the output of SGM

“4)

where df(wg)(Pz,Py) = Exmp, f(Wsi%x) — Eynp, f(Ws3y)
denotes the plug-in neural net distance with the trained
discriminator wg. Similar to the estimation error of the GAN
training, an important aspect of the above generalization error
is the interplay between the discriminator and the generator in
the training process of SGM. Thus, in this paper, we address
the following question with regard to the generalization error
of SGM for GAN training.

Q3: Can we characterize the generalization error of SGM for
the GAN training, which captures the interplay between
the discriminator and the generator?

df(ws)(Pz: Py(vs;2)) — dfws) (Do Dy(vs;2)),

A. Our Contributions

We first develop an upper bound on the estimation error for
the GAN training. In contrast to the existing results [3], [4],
our upper bound captures the impact of the generator and the
interplay between the generator and the discriminator on the
estimation error. In particular, our proof requires nontrivial ef-
forts into characterizing the bound via Rademacher complexity
of a compositional function class of the discriminator and the
generator in order to capture their interactions.

We then provide a minimax lower bound for the estimation
error. In particular for ReLU networks, we show that the
obtained lower bound matches the established upper bound in
terms of both the sample size and the norm of the parameter
matrices of neural networks. This shows that the generator
trained by GANs via the neural net distance is nearly minimax-
optimal. The technical proof exploits the Fano’s inequality,
with the major technical development lying in the construction
of appropriate multiple hypothesis distributions and a proper
neural network, and the development of a lower bound over
neural network functions.

We further develop the first known generalization error bound
for SGM in the GAN training under the stability framework [5]'.
The established bound shows that the GAN training via SGM
can generalize well after multiple passes over the training data,
and the corresponding proof reflects the interplay between the
discriminator and generator in the training process of SGM. We
note that the generalization error of SGM has been studied for
the risk minimization problem under the stability framework [5].
As a comparison, the GAN training corresponds to a min-max
problem due to the neural net distance, and the corresponding
SGM update consists of a minimization step as well as a

IThe stability here is with respect to replacement of samples, and is different
from the stability in [6], which is with respect the dynamic system of GAN
optimization (see Section III-B for details).

maximization step. Thus, the analysis of the corresponding
generalization error requires substantial new development.

Furthermore, we note that our analysis is also applicable
to the case where the number of samples of the generator is
unlimited, i.e., the objective function of the GAN training in
eq. (2) is minyey dz,, (Pz, Pg(v;z)). Where the estimation and
generalization errors of the generator become zero. Our results
still involve some developments for such a case. For example,
we develop the first known minimax lower bound, which match
upper bounds in both the sample size and the norm of neural
net weights, and we also provide the first characterization on
the stability of SGM in the GAN training. These two results
are both new in the existing literature.

We provide experiments in training the widely-used deep
convolutional GANs (DCGANsSs, [7]) over CIFAR-10 dataset,
and study its the generalization performance in the new setting
considered in our paper. Our results show that the generalization
performance of DCGANS is improved with the increasing of
the latent sample size m, and m needs to be larger than n to
achieve a good quality and diversity of the generated images,
which supports our theoretical results well.

B. Related Work

Estimation error of GANs: The generalization properties
of GANs have been studied recently. In specific, [3] studied the
estimation error of the GAN training where they considered
the obtained generator v* to be the minimizer of the objective
function dr,, (D, Pg(v;z)) (as opposed to that in eq. (2)). The
resulting estimation error bound captures only the impact of the
discriminator neural network class, whereas our work further
captures the impact of the generator neural network class.
[8] provided a generator-dependent estimation error bound
for MMD-GAN. In comparison, our work studies the GAN
training based on the neural net distance (which corresponds to
GAN training by neural networks) rather than MMD. Recently,
[9] studied the effect of disconnected support on the estimation
performance of GANs, and [10] explored the effectiveness of
regularization on the generalization performance of the original
GANSs. The objectives in their studies do not take the same
form as our objective in eq. (2).

Recently, a line of research studies have analyzed the
performance of GANs from the density estimation perspective.
[11] first studied the impact of the discriminator in the
approximation error of GANs, and showed that GANs with
certain restricted class of discriminators have a moment-
matching effect like f~-GANs. Second, it established a weak
convergence to the target distribution for a class of GAN
objective functions. [4] studied the rate of density estimation
of GANs as a nonparametric estimation problem. By modeling
the discriminator function class as s-Sobolev and the generator
function class as t—Sobole\:,+ t[4] developed the first-known
minimax lower bound n~ 24 for training Sobolev GANS,
where n is the size of observed samples from the target
distribution and d is the dimension. The developed theory
has also been applied to parametric function classes including
neural networks. In specific, [4] approximates neural networks
by Sobolev function class and established minimax rate
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optimality in terms of the sample size n. [12]-[14] extended
the results in [4] from several perspectives. Specifically, [13]
extended the results in its early version [4] to a wider range
of target distributions and a larger class of functional spaces,
which include nonparametric spaces (e.g., Sobolev space and a
reproducing kernel Hilbert space) and parametric spaces (e.g.,
leaky ReLLU neural networks). In particular, [13] provided a
tighter upper bound on density estimation in Sobolev GANs
than that in [4], which matches the minimax lower bound
established in [4]. In addition, the developed theories on the
parametric function classes such including neural networks
improved the results in [4] using a tool of pair regularization.
[12] provided upper bounds and minimax lower bounds on
the density estimation of a class of implicit generative models
including GANs as a typical example. The developed results
have been applied to different functional spaces including
Sobolev space, a reproducing kernel Hilbert space and neural
networks. In particular, for a s-Sobolev discriminator function
class and a ¢t-Sobolev generator function class, it provided a
tight upper bound n~ 24 that matches the lower bound in [4].
By approximating neural networks using a Sobolev class, [12]
provided a tighter upper bound than that in [4]. In addition, it
provided some evidence in the statistical advantages of implicit
generative models over conventional sampling approaches.
[14] studied the statistical error of GANs by modeling the
discriminator and generator as Besov function classes, and
demonstrated the advantage of GANs over the conventional
linear estimator.

The main developments in [12]-[14] and [4] approximate
neural networks as classical nonparametric function classes,
and leverage techniques based on these function classes. As a
comparison, our developed results directly exploit the structures
of neural networks and are given in a form of parameters
of neural networks. In particular, our developed upper and
lower bounds match with each others in terms of not only the
sample size n (as done by [4], [12]-[14]) but also the norms
of parameter matrices of neural networks.

Generalization error on deep neural networks: In the
context of regression and classification, analysis of the gener-
alization error of deep neural networks has been the theme of
a number of recent papers (e.g., [15]-[18]).

[15] did not theoretically provide upper bounds on the
generalization error, but proposed a simple method for com-
puting Lipschitz norms of a class of neural networks such as
fully connected networks, convolutional networks and residual
networks. Such Lipschitz norms are then used for regularizing
the model training via a constrained optimization procedure,
and are shown to play an important role in controlling the
generalization error. Our theory supports this empirical finding
by showing that the upper and lower bounds almost matches
in terms of such Lipschitz norms. [16] proposed a new loss
function by adding a regularization of Lipschitz norms of neural
networks for reducing the generalization error. It showed that
such a Lipschitz regularization leads to a depth-independent
generalization bound. As a comparison, our paper focuses
on a non-regularization case, and shows that such Lipschitz
norms of neural networks are important in controlling the

generalization error. We would like to leave the regularized
case for the future study, where one interesting part is to see
whether such a regularization technique also helps to reduce the
generalization error of GANs. [17] developed upper bounds
on the generalization error under the Jacobian-norm based
constraints on neural networks. The developments in [17] use a
notion of Lipschitzness augmentation inspired by margin theory,
which enables to exploit more data-dependent quantities that
are empirically small. As a comparison, our paper analyzes
the generalization error under a matrix-norm constraints in our
eq. (8), which are different from those made in [17]. However,
we would like to study the generalization error of GANs under
such Jacobian-norm based constraints in the future work.

There have been some other works analyzing the generaliza-
tion of classic regression problems via Rademacher complexity
of neural networks. For example, [19]-[22] developed various
bounds on the Rademacher complexity of neural networks for
a class of distributions with bounded support, and [23] studied
the average Rademacher complexity of neural networks over
Gaussian variables. Our upper bounds on the estimation error
are also developed based on the Rademacher complexity of
neural networks, but the key difference from these works is
that our analysis needs to handle the Rademacher complexity
of a compositional function class.

Estimation of neural net distance: Another type of related
but different problems focus on the estimation of the neural net
distance , which does not include generator minimization in
the GAN training. In particular, [2] established an upper bound
on the difference between the empirical and true neural net
distances, and [24] further established the minimax estimation
optimality of the empirical neural net distance. In comparison,
our work here studies the the neural net distance between
target and generated distributions, whereas [2], [24] studied the
difference between the empirical and true neural net distances.

Stability and generalization error: The stability approach
was initially proposed by [25] to study the generalization
error under the risk minimization framework, and [26] further
extended the stability framework to characterize the generaliza-
tion error of randomized learning algorithms. [27] developed
various properties of stability on learning problems. In [5],
the authors first applied the stability framework to study the
expected generalization error for SGD, followed by a number
of studies [28]—[31] that characterized the generalization error
of SGD under various scenarios. In [32], the authors studied
the generalization error of several first-order algorithms for
loss functions satisfying the gradient dominance [33] and
the quadratic growth conditions. [34] studied the stability of
online learning algorithms. More recently, [35], [36] improves
the probablistic generalization bounds for uniformly-stable
algorithms, and [37] relaxes the constraint on choice of the
learning rate and the assumption on boundedness of the gradient
of SGD to achieve a probablistic generalization guarantee.
More recently, [38] studied the generalization error of SGD
under a stagewise decreasing stepsize and [39] studied the
generalization error of stochastic gradient Langevin dynamics
in non-convex optimization, both via the algorithm stability
approach. All the above work studied the generalization error
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for the minimization problem, whereas this paper develops
the stability-based method for analyzing the min-max problem
specialized for the GAN training.

C. Practicality on Limited Number of Generator Samples

In this section, we provide some applications in domain
transportation to motivate the practicality of the assumption
on the limited number of generator’s input samples. First,
consider conditional GANs as an example. Following [40],
the goal of conditional GANs is to find a generator G(v;-)
parameterized by v from data y in a domain ) and a random
noise vector Z, to data in another domain X'. Let p, and p,
denote the distributions of = and y. Then, the objective function
of conditional GANSs is given by

®)

vmei\l/l dr,. (pm7pG(v;y72))’

where dz,, (-,-) is the neural net distance and pg(v,y,z) is
the generated distribution by generator G(v;y, Z) with data
Y ~ py,z ~ p,. In practical scenarios, the distributions p,
and p, of real images are unknown a priori. Thus, one usually
collects a set of training samples S, = {x1,...,X,} and S, =
{¥1,..,¥m} from the distributions p, and p,, using which to
compute the empirical distributions p, and pg(v,y,z). Then,
the practical objective function of conditional GANs in [40],
[41] corresponds to solve the empirical risk minimization
minyev dr,, (Dz) PG(viy,z))- Thus, in the above framework,
the generalization error of the generator exists due to the limited
number of the training samples S, = {y1,...,ym }, and hence
our assumption and analysis apply to such a setting.

Another example is cycle-GANs [42], of which the goal is
to learn mapping functions (which can be regarded as generator
functions) between two different domains X and Y, given two
sets of training samples {x;} and {y;}. In such a setting, the
number of input samples of generators is naturally limited, and
hence falls into the framework we study in our paper.

In our experiments, we also validate this setting for DCGANS,
where we show that with a proper choice of the latent sample
size m, the generalization performance of DCGANSs exhibits a
behavior similar to the conventional setting where fresh latent
samples are drawn at each iteration.

II. ESTIMATION ERROR AND MINIMAX OPTIMALITY

A. Problem Formulation

The goal of the GAN training is to obtain a generator so
that the generated distribution is close to the target distribution.
Suppose we obtain the desired generator v* via the GAN
training, i.e.,

(6)

P . o~ o~
v¥ =argmin d . .
gvev Fnn (pacapg(v,Z))

Next, consider the quantity dr,, (P, pg(w+;z)) that measures
the distance between the target distribution p,, and the generated

distribution py(g~,z). Note that it is further decomposed as

d]:nn, (pxa pg(?*;Z)) = ‘32{‘/ dfn,n (p337pg(v;Z))

approximation error

+ d.Fan (p:mpg(V*;Z)) - ‘}2{/ d]-'"” (pﬂwpg(v;Z)) .

estimation error

The first two terms capture the performance gap between the
empirically trained generator and the best-possible generator,
and is referred to as the estimation error. The third term corre-
sponds to the minimal distance between the target distribution
P, and the entire class of generator distributions, and is referred
to as the approximation error. In the case where the generator
function class is infinitely powerful, this term achieves zero
approximation error. Our goal here is to study the estimation
error that captures the statistical nature of the GAN training
process.

We consider the following standard discriminator and gen-
erator classes of neural networks. The discriminator function
class F,, := {f(w;-): w € W} is taken as a set of neural
networks of the form:

feFy:xeX ={x:|x| < By} —
W;o’d_l (Wd_lo'd_g ( .. 0'1(W1X))) € R, 7

where w, is the parameter vector of the output layer,
W;,i = 1,2,...,d — 1 are the parameter matrices of the
intermediate layers, and each o;(-) denotes the entry-wise
activation function of layer ¢ fori = 1,2,...,d—1, i.e., for an
inputr € R, 0;(r) := [05(r1), 04(r2), ..., 73 (1¢)] L. We assume
that each o;(-) is L, (7)-Lipschitz, i.e., ||o;(r1) — o;(r2)|| <
Ly (i)||r1 — rof| for any 71,75 € R. The generator class
Gy = {g(v;-) : v € V} is taken as a set of neural networks
of the form:

9€Gy:Z€Z2:={Z:||Z|| < B:} —
Vs(bsfl (V371¢572 ( o (251 (VlZ))) , (8)

where V,;, ¢ = 1,...,s are parameter matrices and each
activation function ¢; (-) is entry-wise and assumed to be L, (7)-
Lipschitz. Moreover, for the discriminator and generator neural
networks, we consider the following compact parameter sets,
as adopted in [21], [22], [43].

d—1

W = H {Wl S RPi*Pit1 . ||Wz||F < Mw(i)}
i=1

X {Wd € RP4 ; ||WdH < Mw(d)},

Vv ::H {V; e REX9+1 | Vi||p < My (3)} . )

i=1

B. Upper Bound on Estimation Error

In this subsection, we develop an upper bound on the
estimation error. We first introduce the following notion of
Rademacher complexity.



IEEE TRANSACTION ON INFORMATION THEORY, VOL. , NO. , JANUARY 2021

Definition 1 (Rademacher complexity). Let Fy := {f(w;x) :
w € W} be a function class. Then, the Rademacher complexity
R(Fw) corresponding to the n samples X1, ..., Xy, is defined
as

1
R(Fw) = Ex,e sup ‘ € f(w;x;
(Fiv) = B sup |3 (i)

)

where €1, €s..., €, are independent random variables uniformly
chosen from {—1,1}. Similarly, for a compositional function
class Hwxy = {f(w;g9(v;Z)): wxveWxV}, we
define the Rademacher complexity R(Hw xv) corresponding
to the m samples Z1, ..., Zp, as

LS ef(wig(vi 2)

R(Hwxv)=Ez.
m

sup

m
weW,veV ‘

i=1
Based on the above notion of Rademacher complexity, we
establish the following result on the estimation error of GAN.

Theorem 1. Let Px be the class of Borel probability measures
over the compact domain X. Let F,, and G, be the discrim-
inator and generator classes given by eq. (7) and eq. (8),
respectively. Consider a target distribution p, € Px and the
trained generator V* given by eq. (6). Then, with probability
at least 1 — 20 over the randomness of the training samples,

d]:nn, (pxapg(V*;Z)) - ‘}Iel{‘/ d]:nn (pzapg(v;Z))
<AR(Fw) + AR(Hwxv)

91 1 ( B, n B.U,
Cs5\vn " Um

where parameters U, = H?Zl M., () Hf;ll Ly (i) and U, =
s . s—1 .

Hj:l My (5) I 1=y Lo (9).

Proof. See Section A-A. O

+2U, ). o)

Theorem 1 relates the estimation error to the Rademacher
complexity of the discriminator R(Fy ) and the Rademacher
complexity of the compositional function class R(Hw xv )-
This is due to the fact that the generator is composed into the
discriminator in the formulation of the objective function in the
GAN training. In other related works [3], [4], they study the
estimation error of the GAN training with the objective function
dF,, (PzsPg(v:z)) that is based on the empirical distribution
D and the true distribution Dg(v;z)- As a comparison, our GAN
objective function in eq. (2) uses the empirical distribution
for both parts. This is more desired as one can only access
a finite number of samples from the distributions in practical
GAN training. Moreover, their results incorporate only the
discriminator function class, and do not capture the impact
of the generator function class. Technically, the proof of
Theorem 1 requires much more efforts to capture the interplay
between the discriminator and generator in characterizing the
estimation error.

Based on Theorem 1 and upper bounds on the Rademacher
complexity for neural networks, we further obtain the following
result.

Corollary 1. Consider the same setting as that in Theorem 1,
and we assume that the activation functions o;(-),i = 1,..,d—1

and ¢;(-), j = 1,...,s — 1 are positive-homogeneous, i.e.,
oi(ar) = ao;(r) and ¢;j(ar) = ap;(r) forany o > 0 and r €
R. Then, with probability at least 1 — 20 over the randomness
of samples {x;}?_, and {Z;},, we have

d]:nn (prapg(ﬁ*;Z)) - ‘}g‘f/ dJ:nn, (pxapg(v;Z))
L4BU3 | AU,U,B.\/3(s +d—1)
== Jm

1/ B, B.U,
Wyt /2l0g = [ 22 7
+2u °g6<¢ﬁ+ m)

where parameters U,, = H?Zl M, (7) Hf;ll Ly () and U, =
s . s—1 .
Hj:1 My (5) ITi=1 Lo(9).

Proof. See Section A-B. O

Y

The estimation error bound in Corollary 1 has a larger
constant coefficient for the sample size m than that for
the sample size n. This is because the generator network
is composed into the discriminator network in the GAN
objective function, which further yields a higher Rademacher
complexity. This also justifies in part that the training of the
generator is more difficult than that of the discriminator, and
suggests to use more samples from p, than that from the target
distribution p, to balance the estimation error. We note that
the homogeneity assumption holds for widely-used ReLU-type
activation function, and hence Corollary 1 applies to the typical
ReLU networks.

Next, we consider the scenario in which the generator
function class G, is large enough so that the corresponding
distribution class contains the target distribution. Also, we
assume that the sample size m at the generator scales faster
than the sample size n of the target distribution, as they are
drawn from a known distribution. Then, based on Theorem 1,
we further obtain the following result.

Corollary 2. Consider the same setting as that in Theorem 1,
and assume that activation functions o;(+),i = 1,..,d — 1
and ¢;(-), j = 1,...,s — 1 are positive-homogeneous, i.e.,
oi(ar) = ao;(r) and ¢;(ar) = ag;(r) for any a > 0 and
r € R. Suppose that the generator function class is large
enough such that p, € Pg,, and that the number m of samples
drawn from the distribution p, scales faster than n. Then, with
probability at least 1 — 26, we have

dF,, Pz, Pg@+2)) <
’ < (4v/3d + 2, /2log 1) B, T, M (i) [T Lu(i)
7 .

Proof. By p, € Pg,, we have infycy dr,, (pz,pg(v;z)) =0,
which, in conjunction with Corollary 1 and the assumption
that m scales faster than n, yields the proof. O

Since the samples {Z;}, are i.i.d. generated from a
known distribution (e.g., uniform distributions), we can access
arbitrarily large number of these samples, e.g., m = co. For
this reason, we are more interested in whether the rate n~1/2
obtained by the estimator py-,z) under GAN framework
is optimal? To address this issue, we investigate minimax
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estimation of the target distribution p, based on finite samples,
as shown in the following subsection.

C. Minimax Lower Bound

We establish a minimax lower bound for the estimation
error in the following theorem. The main challenge of the
proof of Theorem 2 lies in the construction of appropriate
multiple hypothesis distributions and a proper neural network
with further development of a lower bound for the neural
network functions.

Theorem 2 (Minimax lower bound). Let F,, be the discrimi-
nator function class given by eq. (7) and p,, be any estimator
of the target distribution p, constructed based on the samples
{x;}"_,. Then, we have

. -~ C(Px)
f sup Pqd e > 0.42, 12
inf sup. { Fun (Pri> Par) Jn } (12)
where the constant C(Px) is given by
C(Px) = 0.015(M(d)og—1 (- - - (Mw(1)Bg))
= My(d)og—1 (- (=My(1)By))). (13)
Proof. See Section B . O

To elaborate, Theorem 2 shows that no matter what algorithm
we use to construct the estimator p,, of the target distribution
based on the training samples, there exists at least one particular
target distribution that makes the corresponding estimation error
larger than CPx) ith a non-vanishing probability. In other
words, this minimax lower bound characterizes the fundamental
limit of learning the target distribution via the GAN training
based on the neural net distance.

The constant C(Px) in the above lower bound takes a
complicated form, and its exact value in general depends on
the activation function and the neural network structure. To
further illustrate, we consider the case in which all the activation
functions are ReL.U functions and obtain the following result.

Corollary 3. Consider the same setting as that in Theorem 2
and assume that all activation functions in eq. (7) are ReLU,
ie, o;(x) =max(0,z) fori =1,2,...,d — 1. Then, we have

0.015B, [T, M, (i)
NG

Proof. The proof follows directly from Theorem 2 by letting
oi(x) = max(0,x),i =1,...,d — 1 in eq. (13). O

inf sup }P’{d]:m (P, Px) > } > 0.42.

Pn p €Px

Comparing the lower bound in Corollary 3 with the upper
bound developed in Corollary 2, it can be seen that the two
bounds nearly match each other, and share the same terms
n=1/2 and B, [T%_, My, (i) (note that L, (i) = 1 under ReLU
activation). This implies that these quantities play an important
role in determining the estimation performance of the GAN
training (under ReLU activation). We note that the upper bound
in Corollary 2 has an additional depth-dependent term +/d,
which stays at the constant level for reasonably deep neural
networks (e.g., d = 100). Thus, the generator trained by GANs
under ReLU networks is nearly-minimax optimal, and this
justifies in part the use of GANSs to learn the target distribution.

III. GENERALIZATION ERROR OF SGM

In Section II, we study the estimation error assuming that
we obtain the optimal solution of the GAN training, i.e.,
v* = argminyey dr,, Pz, Dy(v;z)), Where the analysis does
not depend on the specific algorithm that is used to obtain
the optimal solution. In practice, we typically do not obtain
the exact optimal solution. Furthermore, the GAN training is
typically performed by the stochastic gradient method (SGM),
which significantly affects the generalization performance.
Hence, in this section, we focus on SGM in the GAN training,
and analyze the non-asymptotical generalization error of SGM.

A. Problem Formulation and SGM

Recall that S, = {x1,...,x,} and S, = {Z1,...,Z}
are the data samples generated from the distributions p, and
p., respectively. Here, we rewrite the objective function in
the GAN training introduced in eq. (1.5) and eq. (2) more
explicitly as follows.

L(w,v) := df(w)(pm»pg(v,Z))
= Exp, f(W;x) = Ezop. f(W;9(v; Z)),
LS(va) = df w)(ﬁxai)\g(v Z))

fowxl—%Z f(w;g(v; Z;)).

Here, Lg denotes the empirical risk of the GAN objective,
which measures the distance between the empirical target
distribution p,, (e.g., already seen real images) and the empirical
generated distribution py (v, z) (e.g., already generated images),
whereas L denotes the population risk of the GAN objective,
which measures the distance between the true target distribution
p, (e.g., unseen real images) and the generated distribution
Pg(v,z) (e.g., images to be generated). Let (wg, vs) denote the
trained discriminator and generator by SGM with the dataset
S. Then, we expect that the obtained generator can further
generate images that are close to the unseen real images. Such
a goal naturally motivates us to study the generalization error
in eq. (4), whose expected value can be rewritten as

(Generalization error): EgEgm [L(ws, vs) — Ls(wg, vs)},

where the expectation is taken over the random draw of the
dataset S = S, U S, and the random sampling of SGM.

Next, we specify the SGM for the GAN training. Note
that the GAN objective in eq. (2) corresponds to solving the
min-max optimization problem

min max Lg(w, V), (14)

veVweWw
and the updates of the corresponding SGM can be written as,
fort=0,...,7 -1,
=w; + UtvaS(th Vi, Xeys ZCt)v
- ntvaS(Wt; Vi, ZCt)»

(SGM): {Wt“

Vil = Vi

where §; € {1,...,n} and ¢; € {1,...,m} are sample indices
that are sampled uniformly at random, and the stochastic
gradients of the discriminator and the generator take the forms
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VWLS(th Vi; x§t7Z<t) = VWf(Wt; x&t) - va(Wﬁg(vt; ZCt))?
VVLS(wtv Vi; ZCt) = _vVg(Vi; ZCt)ng(wt; g(vﬁ ZCt))'

That is, SGM conducts a stochastic gradient ascent step on
the discriminator parameter w and followed by a stochastic
gradient descent step on the generator parameter v. The min-
max structure of the optimization problem and the alternating
scheme of SGM makes the updates of the discriminator and the
updates of the generator interact and compete with each other.
Also, it can be seen that the stochastic gradient of the generator
has a very different structure from that of the discriminator.

B. Stability Approach

We adopt the stability-based approach for analyzing the gen-
eralization error for the GAN training. The stability framework
has been established for providing generalization error bounds
for risk minimization problems (see references in Section I-B).
The GAN training is a min-max problem, which does not
fall directly under the existing framework for stability-based
analysis. Hence, in this subsection, we first introduce two
notions of uniform stability for SGM in the GAN training and
then develop a bound on the generalization error for the GAN
training based on such stability quantities.

Throughout the paper, we denote S = S, U S,, where S,
and S, are data sets that differ from S, and S, in one data
sample, respectively. We also use (wg,vg) and (wg,vg) to
denote the outputs of SGM in the GAN training with the data
sets S and S, respectively.

Definition 2 (Stability and Generalization for GANs). SGM is
said to be €y uniform-discriminator stable if for any S, S that

Sl}P ]Esgm|f(WS;X) - f(Wg,X)‘ < €f-

S,S,x
Moreover, it is said to be €, uniform-generator stable if for
any S, S that

Sl_lp Exgm|f(ws; g(VS; Z)) -
5,5,72
Definition 2 introduces the stability notions for SGM in
training the discriminator and the generator of GANSs. In
particular, the discriminator-stability of SGM is similar to the
uniform stability of the SGD introduced in [5]. On the other
hand, the generator-stability of SGM measures the stability of
the composition of both the discriminator and the generator
with respect to the data perturbation. We note that the stability
notion in Definition 2 for GANs is different from that proposed
in [6], which corresponds to the stability of the dynamic system
associated with the corresponding optimization.
Based on the above stability notions, we obtain the following
characterization of the generalization error for SGM in training
GANsS.

Proposition 1. Let SGM be €5 uniform-discriminator stable
and €4 uniform-generator stable. Then, the generalization error
induced by the output of SGM in the GAN training satisfies

ESEsgm [L(WSaVS) - LS(W»vaS)] S ef + 69'

Proof. See Section C. O

Proposition 1 bounds the generalization error of SGM in
the GAN training in terms of its discriminator-stability and
generator-stability. The proof requires special treatments for
both the discriminator and the generator, and the obtained upper
bound involves their corresponding stability notions. This is
different from the stability result developed in [5], where the
generalization error is bounded by the stability of the single
objective function.

The generalization error induced by SGM in training GANs
is affected by the algorithm stability of both the discriminator
and the generator, which interact with each other due to
the competence between the two networks in the training
process. Thus, bounding the uniform-generator stability and
the uniform-discriminator stability in Proposition 1 is the key
to understanding the generalization error of SGM for training
GANSs, and we further explore them in the next subsection.

C. Stability Bounds for SGM in the GAN Training

To understand the generalization error of SGM for training
GANs, we adopt the following assumptions on the discriminator
and generator of GANSs.

Assumption 1. The discriminator and generator of GANs

satisfy:

1) For all w,x, f(:;x) and f(w;-) are o'f-Lipschitz and o¥-
Lipschitz, respectively;

2) For all w,x, Vy f(x) and Vx f(w;-) are LYf-Lipschitz
and L%-Lipschitz, respectively;

3) For all Z, g(-;Z) is og4-Lipschitz and NVyg(-; Z) is Lg-
Lipschitz.

Assumption 1 essentially assumes that the discriminator
is Lipschitz in terms of either w or x and the generator
is Lipschitz in terms of v, which are standard assumptions
adopted in stability analysis of SGM [5]. In particular, for
fully-connected deep neural network models discussed in the
previous section, the Lipschitz constants o and o4 reduce to
the quantities U,, and U, defined in Theorem 1. We note that
the bivariate Lipschitz property in the item 1 of Assumption 1
is introduced to the discriminator due to its composition with
the generator in the GAN training. Based on Assumption 1,
we obtain the following result.

Lemma 1. Let Assumption 1 hold. Apply SGM to solve the
ERM in eq. (14) with the data sets S and S, respectively, and
denote the corresponding outputs as (Wg,vg) and (Wg,vg),
respectively. Then, the stabilities €5, e, of GAN satisfy
€5 +eg < 207 sup Eggn||ws — wz || + ofog sup Eygn||vs — vsl|.
Proof. See Section D. [

By Lemma 1, the generalization error of SGM for the GAN
training is bounded by the stability of both the discriminator
parameter and the generator parameter with respect to the data
perturbations. In particular, as the discriminator and generator
are involved and competing with each other in the SGM updates,
their corresponding stabilities also affect each other.

Next, we characterize how the stability of the discriminator
interact with that of the generator in the training process of
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GAN with the SGM. For simplicity of presentation, we denote
0 = ||lwt,s —w, 5|l and 6f = ||v¢,5 — v, 5||, and obtain the
following result.

Proposition 2 (Stability of SGM for GANSs). Let Assumption 1
hold. Apply SGM to solve the ERM in eq. (14) with the datasets
S and S, respectively, and denote the corresponding outputs
as (wg,vg) and (wg,vg), respectively. Denote the stepsize
as ny > 0. Then, the stabilities of both the discriminator and
the generator satisfy

E, 01 < 1+ 2n, LY Lo - s

ot ] S | mLyo, 1+ m(otLy+o2L3)| |8y
m4+n __w

+ 27 W(Lng}” ! 15)

Proof. See Section E. O

Eq. (15) characterizes how the discriminator stability J;”
interacts with the generator stability d; along the iteration
path of SGM. It can be seen that the matrix in eq. (15) has
nonzero off-diagonal entries, implying that the stability of the
discriminator is correlated with that of the generator in the
training process. Also, these two stabilities are affected by very
different problem parameters due to the asymmetric roles that
the discriminator and the generator play in the GAN objective.

We note that the recursive stability bound in Proposition 2
is the key to obtain the final stability bound. In particular, the
analysis of the proposition requires to carefully examine the
stochastic samples sampled by the SGM in the updates of the
discriminator and generator. Specifically, in the proof, we first
analyze the stability of the discriminator 63", ; by examining
four different cases of stochastic samples: £ = or # 1 and
¢t = or # 1. We bound 4}, in each separate case and the
weighted average of these bounds leads to the desired bound.
Similarly, in the analysis of the stability of the generator 67, ,,
we examine two different cases of stochastic samples: (; = or
# 1 to obtain the desired bound.

Based on Proposition 2, we obtain the following result on
the generalization error of SGM for the GAN training.

Theorem 3. Let Assumption 1 hold. Apply SGM to solve
the ERM in eq. (14) with the dataset S and denote the
corresponding output at T-th iteration as (W g, vr,s). Choose
the stepsize ny = o5 with ¢ < (2LY + 0§ Ly + UEL?)fl.
Then, the generalization error of SGM satisfies

EsEgem[L(Wr,s,vr,s) — Ls(Wr.s,vr,s)]
0¥ +o40% oY
<2,/(209) + (0% 0,)? (f L

+ > logT.
n
Proof. See Section F. [

m

Theorem 3 provides a generalization error bound for SGM
in training GANs. The generalization bound conveys several
insights. First, the bound vanishes as the number of samples
m,n — 0o, implying that SGM can generalize well in training
GANSs given enough data samples. Second, the bound has a
logarithm dependence on 7'. Hence, SGM can still generalize
well after conducting multiple passes over the data during
the training process. Last, the coefficient associated with m

|

(the sample size of S,) is larger than that associated with
n (the sample size of S,). This implies that the training
of the generator requires more samples than that required
by that of the discriminator. This is consistent with the
empirical observations that the training of the discriminator
typically converges faster than that of the generator, and agrees
with Theorem 1 on the estimation error. Moreover, for the
fully-connected deep neural network models discussed in the
previous section, the Lipschitz constants 0% and o4 can be
specified by the quantities U,, and U, defined in Theorem 1.
Hence, one can incoporate these quantities into the above bound
to obtain a generalization error of SGM under neural network
models.

IV. EXPERIMENTS

In this section, we conduct experiments on the GAN training
to validate our theoretical results from two perspectives: 1)
justifying the new setting considered in our theory, where the
number of noise samples by the generator is assumed to be
limited, and 2) validating our generalization bounds under such
this new setting.

A. Parameter Setting and Performance Metrics

Our implementation is adapted from the existing reposi-
tory [44] (github.com/xugiantong/GAN-Metrics) on DCGANS.
The experiment is performed on one commonly used dataset
CIFAR-10, which consists of 50000 training samples and
10000 test samples. We adopt the same hyper-parameter (i.e.,
learning rate, optimizer, batch size, noise dimension) settings as
in [44], and use 2000 test samples for performance evaluation
of the trained generative model based on three metrics: Frechet
Inception Distance (FID) [45], Model Score (MS) [46], and
generalization error, which we describe as follows.

Frechet Inception Distance (FID): Let P, and P, be the true
distribution and the generated distribution, respectively. Given
the inception network’s feature function f, FID models f(P;)
and f(P,) as two multivariate Gaussians with means i, and
g and covariances X, and ¥,. Then, the FID between P, and
P, is given by

FID(P;, Pg) = ||ptr — pig| + Trace(, + g — 2(27“29)1/2)-

The lower FID value implies a better quality and diversity of
the generated image.

Model Score (MS): MS is an improved version of the Inception
Score (IS) given by

MS(Fy) = exp(Eonp, (DL (Po(yl)[| Po(y))
— Drr(Py(y)l|Ps(y™)))),

where Py(y|z) is the label distribution of x predicted by
a classification model ¢, and Py;(y) and Pys(y*) are the
marginal distributions over P, and P, respectively. The higher
MS value implies a better quality and diversity of the generated
images.

Generalization Error (GE): Both MS and FID measure the
quality of generated samples rather than the generalization error
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studied in our theory. To capture the generalization performance,
let wg and vg be the well-trained discriminator and generator
network parameters. Then,

df(ws)(pz»py) = EXszf(WS; X) - Ey~pyf(WS§ Y)

represents the distance between the two distributions p, and
Dy, measured by the trained discriminator wg. Here, we use
wg to approximate the neural net distance defined in eq. (1)
for the ease of empirical evaluation. Then, if p, and p, denote
the empirical distributions over the training samples, then
df(ws)(Dz» Dg(vs;z)) Tepresents the training performance of
the trained generator vg; and if p,,p, denote the empirical
distributions over the test samples, then d (v ) (Dz, Pg(vs;2))
represents the test performance of the trained generator vg.
Therefore, it is natural to define the distance between the
training and test performances as the generalization error, which
is given by

GE := df(ws) (Pa: Dy(vsi2)) — df(ws) (P Py(vs:2))-

B. GAN Training with Limited Latent Samples

The conventional GAN training considers a setting where
the number of latent samples is supposed to be unlimited, and
draws fresh latent samples at each iteration. As a comparison,
our theory considers the setting where the latent (noise) samples
of the generator are constrained to a finite set. To implement
such a setting, we draw a limited number of latent samples
{#1,...., Zm } to construct a set Z,, before training. Then, at
each iteration during the training, we randomly choose latent
samples from the set Z,. rather than sampling fresh data.

0.14 1.15
=== Unlimited

012 — m: 100 110

=== m: 100000
0.10 1.05 //\_“/'
1.00
0

= 0.95
0.06

0.90
0.04 : 085

0.80
10 12 14 6

3
Number of epochs

= Unlimited
== m: 100
== m: 100000

6 1s

3 o =
Number of epochs

Fig. 1. FID and MS scores of DCGAN under different sizes of latent sample
set. The left figure plots FID v.s. the number of epochs and the right figure
plots MS v.s. the number of epochs. A lower FID or a higher MS implies a
better quality of generated sample. Scores are averaged over 10 trials with
different random seeds.

Our results are shown in Figure 1, where the “unlimited”
line refers to the conventional setting with fresh latent samples
drawn at each iteration. It can be seen that the FID and MS
curves of the m = 100000 and unlimited cases are very close
to each other. This validates the limited latent sample setting
used in our theoretical analysis.

In Figure 2 and Figure 3, we plot the generated images at
epochs 0 and 20, respectively. It can be seen that for both the
unlimited and m = 100000 cases, the quality and diversity of
the generated images are improved as the algorithm runs. We
want to mention that the low-quality generated samples do not
necessarily mean poor generalization and may be due to poor
optimization performance.

Fig. 2.  Generated images at epoch 0 (left) and epoch 20 (right) with
m = 100000.

Fig. 3. Generated images at epoch 0 (left) and epoch 20 (right) with unlimited
latent samples.

C. Generalization Performance of GANs

As shown in Table I, GE of DCGAN decreases as the size
m of latent sample set increases. This verifies our theory that
the generalization error decreases with respect to the number
m of latent samples.

TABLE I
GENERALIZATION PERFORMANCE OF GANS V.S. SAMPLE SIZE m

m 100
GE 0.058

500
0.053

1000
0.051

50000
0.041

100000
0.031

unlimited
0.031

V. CONCLUSION

In this paper, we provided an upper bound as well as a
minimax lower bound on the estimation error. Our upper
bound captures the interplay between the discriminator and the
generator on the estimation error, and furthermore matches the
lower bound in terms of the convergence rate with respect to the
sample size and the norm of the parameter matrices of neural
networks. We also developed the generalization error bound
for the stochastic gradient method (SGM) in training GANS.
Such a bound not only characterizes how the discriminator
interacts with the generator in the training process, but also
shows that SGM can generalize well in training GANs with
multiple passes over the data. Our experiments on DCGANs
validate our theoretical results.

APPENDIX A
PROOF OF THEOREM 1 AND COROLLARY 1

A. Proof of Theorem 1

Theorem 1. Let Px be the class of Borel probability measures
over the compact domain X. Let F,, and G, be the discrim-
inator and generator classes given by eq. (7) and eq. (8),
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respectively. Consider a target distribution p, € Px and the
trained generator v* given by eq. (6). Then, with probability
at least 1 — 29 over the randomness of the training samples,

d]:nn (pxapg(V*,Z)) - ‘jrelé d]:nn (p-T7pg(V;Z))
§4R(fw) + 4R<HW><\/)

1/ B B.U
2U,,1/2log = == =), (10
+ 20,0/ Ogé(\/ﬁ-l- Em) (10)
where parameters U,, = H?Zl M, (7) Hj;ll Ly (%) and U, =
S . s—1 .
Hj:l M, (5) [1;=1 Lo(4).

Proof. Let v = argminyey = dg,, (ﬁm,pg(v;z)). We have

AFp, Dz, Pg(o+:2)) — ‘}g‘f/ A7, (Dzs Pg(v;z))
=dF,, (P2, Pg(e+:2)) — AFpn (P Pg(e+:2))

(]
+ ‘}gf“/ d]:nn (i)\z 5 pg(v;Z)) - ‘}gf“/ d]:'n.n (pz ) pg(v;Z))

an

+ d]:nn (f)\zapg(G*;Z)) - ‘}2{‘/ d]'_nn (ﬁzapg(v;Z)) . (16)

(1)

We next upper-bound eq. (16) through the following three
steps.
Step 1: bound (I). By the definition of dz,, (P, Py(v:2))
given by eq. (1), we have
d}_nn (pzvpg(C*;Z)) - d]:nn (ﬁ\z:pg(G*;Z))
= sup [Ex~p, f(W;x) = Eznp, f(W;9(V"; 2))]

weE

— sup [Exwp, f(W;x) = Ezep, f(W; 9(V"; 2))]
wew

(i)
< SUP [Exep, f(W;X) = Bxup, f(W3 %), a7
weE

where (i) follows from the inequality that supz — supy <
sup(x —y) < sup |z — y|.
Step 2: bound (I). Let v* = argminyevy dz,, (P2 Pg(v;2))-
Similarly to (i), we obtain

‘}Iel{‘/dfnn (Z/)\mvpg(v;Z)) - \}IelfV dJ:nn (va pg(v;Z))

< dg,, Do Pyivesz)) — A, (P2 Pg(vei2))
< Sup [Bxcmp, F(W:%) — Bxep F(wi)],
weW
where (i) follows from the same steps as in eq. (17).
Step 3: bound (III). This step captures the role of
the generator in the estimation error. Letting v =
arg minycy dr (ﬁz,pg(v;z)), we can obtain

dF,, Pz, Pgw+:2)) — vlfel{/ dF,, Dz, Pg(v:2))

SAFon (ﬁmpg(o*;z)) —dF,, (ﬁxaﬁg(?*;Z))
+ d}_"m (ﬁm;ﬁg(V;Z)) - d]:nn (ﬁﬁapg(V;Z))

< sup |Egep, f(W;9(V"5 2)) = Ezep. f(W; 9(V"; Z))|
weWw
+ SEEVIEZNpi(W;g(V;Z)) —Ezp. f(W;9(v; Z2)|

<2sup sup [Ez~p. f(W;9(v; Z)) —Ezp, f(W;g(v; Z)|
veVweW

=2 sup |Ez~p, f(W;9(v;Z)) —Ezep. f(w;g(v; Z)].
weW,veV

Combining the above three steps yields

dFn (Pas Pg+;2))
<infdz,, (Pe;Py(v;z)) + 25UP [Ex~p, f(W;X) — Exvp, f(W;x)|
v w

+2 sup |Ezep, f(W;g(v;2)) —Ezep, f(w;g(v; Z)].

weW,veV

) 1<
= nfdr,, (e, Py(viz)) +25Up [Exnp, f(Wix) — — > fwixi)

i=1
F(x1,..., Xn)
+25up (Ezmp. f(W9(v; 2)) — — Y f(w;ig(v; Zi) (18)
w,v i=1
G(Z1,ee Zom)

Our next step is to upper-bound G(Z1, ...., Z,,) in eq. (18).
Based on the inequality that sup |z|—sup |y| < sup(|z|—]y|) <
sup |z — y|, we have, for any Z1,...., Z;, ..., Zy, Z!

\G(Z1, s Ziy oo Zo) — G(Z1y ooy Z ooy Z) |
< sup |f(wig(vi Zi)) — f(wig(vi Z7))| /m,
weW,veV

which, using the Cauchy-Schwarz inequality, is upper-bounded
by 2Q./m with @, given by

d s

d—1 s—1
Q. = B. [[ Luw(i) [] Lo() [ ] Mui
i=1 =1

i=1

=
=

Combining the above result with the standard McDiarmid’s
inequality, we have, with probability at least 1 — 4,

G(Z1, ooy Ziy ooy Zom)

log(1/3)

<E;G(Zy,..... Zi, ....
m

s Zm) +2Q5 (19)
The expectation term in eq. (19) is upper-bounded through the

following standard steps

EzG(Z1, ooy Ziy ooy Zom)
1 — ~ 1 &
—Ezsggv EZE;J”(W,Q(V, Zi)) — m;f(w,g(",Zi))’
Qe |2 fwigviZ) — 23 flwig(vi 22)
=%z Z GII/)V ml:l ;G \V; 4 mi:l y9\V; 44
1 & ~
=E,z_ sup |— f 19(vi Z;)) — ;9(v; Z;
2750 m;e(f(w 9(v; Zi)) — f(w;g(v )))|
1 m
< 2Ez,es1v1vp ’E ; eif(w; g(v; Zi))‘ =2R(Hwxv) (20)

where (i) follows from the Jensen’s inequality. Using an
approach similar to eq. (20), we have, with probability at
least 1 — &

log(1/6)
2n

F(X1, ey Xy ooy X)) < 2R(Fw) + 2Q, , (21

where Q. = By [T, Lu(i) [Ty M (i).
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Combining eqs. (18), (20) and (21), and a union bound
implies that

dfnn (pT 7pg(3* ;Z)) - ‘}Iel{‘/ dfnn (pmapg(v;Z))

<AR(Fw) + AR(Hwxv) + W\/lgg(l/é)
2Q.+/21og(1/4)
+ T.
B. Proof of Corollary 1

We first upper bound the Rademacher complexity in Theo-
rem 1. First note that
) X1, ...7Xn> .
n

(23)
1
E ; eif(wa Xi) .

Letting F;(x) = 0;—1(W;_10,_2(- - - 01(W1x)), we have
AR (Fw)

(22)

n

%Zeif(wﬂ(i)

i=1

1
= [Ex (EE < sup
weWw

R(Fw) = Ex,e sup
weW

n

- ZGif(VWXi)

1=1

Conditioned on x4, ..., X,, we define

Rn(Fw) = Ee sup
weWw

:)\Ee sup ‘Zeiwgad,l(wd,le,l(xi))‘
i=1

Fow,W |4

= log (exp A (EE sup
F.w,W

) Zj: einUdfl(Wdledfl(xi))D)

@) n
< log (IE6 sup exp)\(‘ Zeiwgad_l(wd_le_l(xi))D)
Fw, W i—1

< log (IE6 ziuvl;)/ exp)\(Mw(d)H ;eiadfl(Wdledfl(xi))H)),

(24)

where (i) follows from the Jensen’s inequality. In our case, we

have ||x;|| < B, for i = 1,...,n. Thus, combining eq. (24)
with the steps of the proof of Theorem 1 in [21], we have

Bo 15y Mu (i) T2 Lu(i)(v2dT0g2 + 1)

vn ’
which, in conjunction with eq. (23) and the fact that 1/2d log 2+
1 < +/3d, implies that

A Ba [Tiy M () [T Lu(i)V3d.

LD
We next upper-bound R(Hw «v ), which is given by

sup iz:eif(W;g(V; Z;)| -

R(Hwxv) =Ez.
weW,veV | T i—1

Ez (Rm(Hwxv))

Note that each function f(w;g(v;-)) can be regarded
as a concatenation of the discriminator and generator
neural networks, which takes the form as f(w;g(v;-)) =
Wi 0d-1(Wa-1---01(W1Vips_i(---61(Vi(-)))). Then,
taking an approach similar to eq. (24) and using the fact that
[W1Vg|lr < My, (1)M,(s), we finishes the proof. O

APPENDIX B
PROOF OF THEOREM 2

Theorem 2 (Minimax lower bound). Let F,, be the discrimi-
nator function class given by eq. (7) and p,, be any estimator
of the target distribution p, constructed based on the samples
{x;}_,. Then, we have

C(Px)
NG

where the constant C(Px) is given by

inf sup P{dz,, (Bn,ps) = (12)

Pn p. €Px

}>0m,

C(PX) = 0~015(Mw(d)0'd71 ( o (Mw(l)Bac))
 My(d)ggor (- (—Mu(1)B)). (13)

Proof. The following Fano’s inequality (Theorem 2.5 in [47])
is useful in the proof.

Lemma 2 (Fano’s inequality). For M > 2, assume that there
exist M hypotheses 8y, ...,0n € © satisfying (i) d(0;,0;) >
25 >0 for all 0 < i < j < M; (i) & S, KL(Py,||Pa,) <

alogM, 0 < a < 1/8, where d(-,-) is a semi-distance and
Py is a probability measure with respect to the randomness of
2a

data D. Then, we have
v (- )
— %0 — ,
1+vVM log M

where the infimum is taken over all estimators 6 of 0 constructed
based on the data D.

inf sup Pp~p,
6 0co

{d6,0)> s} >

In our setting, we let © be a hypothesis set that contains
all distributions in Px and choose d(-,-) in Lemma 2 as
the neural distance dz,,(-,-). To use Lemma 2, we need
to choose M distributions {p; € Px,i =0, ..., M} such that
@ dr,.(pi,p;) > 2s > 0forall 0 < i < j < M
and (i) 2 S0, KL(Py,||Pg,) < alog M. In our proof, we
choose M = 2 and consider the following three hypothesis
distributions

1 1
o X=X 5 €z, X =1X1
po(x) = { 2 pi(x) = 2

5, X = —X1 5—&—630, X = —X1
1
3 26, X =1X1

2(x) =4 3 (25)
§+2€wa X = —Xi,

where ||x;|| = B, and e, = log(2)n"2/10 < 1/4.
First, we lower-bound dr,,, (p;,p;). For 0 <14 < j <2, we
have

d]-'nn (pivpj) = sup ’EX’\/pif(W; X) - ]EXij f(W,X)’

we
= (j —1)ex sup [f(w;x1) — f(w; —x1)]
weW
> €, sup |f(w;x1) — f(w; —x1)]. (26)
weWw
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Next, we select w € W in eq. (7) as following.

o wy(1l) = My(d),wgu(i) =0 for i =2,3,....,nq

o Fori=2,....d—1, W;(1,1) = M, (i), W;(s, t) =0,
for (s,t) # (1,1),

o [Wi(1)|| = w1 = My (1)x1/[x1 ], Wi(s) =0,

for 2 < s <nq, 27

where W (i) refers to the i*" coordinate of wq, Wi(&t)
denotes the (s, )" entry of W, W(s) is the s column
vector of W7 .

Combining eqs. (26) and (27) yields

dr,. (pisp;) >€x(My(d)og_1 (-
— My(d)og—1 (-

(M (1)Bz))
(=M (1)Bz)))-

Next, we upper-bound 3 Z?Zl KL(Py, || Py, ). Using the prop-
erties of KL-divergence, we obtain

KL(P,
e
:E log(1 — 4i%€2) + nie, log (1 +

()
<4m e

(28)

) = nKL(pi||po)

1
iel.) log(1 — 2ie;) +n (2 + Z€L> log(1 + 2ie,)

4ie,
1 — 2ie,

where (i) follows from the fact that log(1 + =) < x. Then, we
obtain

log*(2)

2
1
3 > KL(Py,||Py,) < 10ne2 < T

i=1

Combining the above inequality with eq. (28) and Lemma 2,
we have

inf sup P{dfm(ﬁn,pm) > C(Px)nflm}

Prn p,ePx
s V2 (4 - 10g(2)> > 0.42,
1++v2\5 5
where the constant C'(Py) is given by
log(2
0(Px) =22 (a1, (@) (- (Mo (1)B2))
= My(d)oa—1 (- (—Mw(1)Bz))),
which, combined with the fact that log(2)/20 > 0.015, finishes
the proof. O
APPENDIX C

PROOF OF PROPOSITION 1

Proposition 1. Let SGM be ¢y uniform-discriminator stable
and €4 uniform-generator stable. Then, the generalization error
induced by the output of SGM in the GAN training satisfies

EsEgm [L(WSaVS) - LS(W57V5)] <€t

12
Proof. We denote S = {x1,...,x,t U{Z1,...,Zn}, 5 =
{xi, . xyu{zy,..., 20}, 8% = {x1,...,, x5, ..., x, JU
{Z1,...,Z},..., Zm}. Note that

EsE4 |:LS(W57 Vs)] =EsEy [rlz z:: f(ws; Xz’)}

1 m
— EcE —
s A[m; (ws:g

Q

vsi2))|.

The two terms P, () can be further rewritten as

1 n
P = ]EsleA |:E ;f(WSL,J,X;)]

= BsBa [Baf(wsix)] +Essi o Y Ealf(wsisixi) = f(wsix))

i=1

Q =EssEa [%Z (Wgis;g( sz,Z-))}
= B/l [% 2 Fwsig(vsi Z))) - %Zf(WS;g(vS; Z)

<
1
-

%; Ws7l7g(vS7J7Zj)):|
=EsEa [EZJC(WS§Q(VS; Z))]

—Ess/*ZEA[ Ws;g Vs;Zg/'))—f(Wsi,j;g(Vsi,j;Z;))],

where we have used the fact that x; and Z’ are i.i.d. copies
of x; and Z;, respectively. Subtracting () from P yields that
P—-Q

=EsEa [L(Ws, Vs)] + Ess'% iEA [f(Wsi,j;X;) - f(Ws;Xg)]

=1

+Ess 3 Eaf(wsi g(vs; 24) -

f(wsisi9(vsiss 27))].
j=1

Note that P — Q = EgE4 [LS(WS7 vs)]. Thus, we conclude
that

EsEA |:L(Ws, Vs) — LS (WS7 Vs):|

1 n
=Ess > Ealf(wsisix)) — f(ws;x))]
i=1

1 m
+ ]ESS’E ZEA|f(Ws;9(VS§ Z5)) — f(wsiisg(vsia: Z5))|

j=1
< sup Ealf(wg;x) — f(ws;x)|
SSx
+ sup Ea|f(ws;g9(vs; 2)) — f(wg;9(vs; 2))|
8,5,7
= €5 Jreg,

where S is any such S%7. O
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APPENDIX D
PROOF OF LEMMA 1

Lemma 1. Let Assumption 1 hold. Apply SGM to solve the
ERM in eq. (14) with the data sets S and S, respectively, and
denote the corresponding outputs as (Wg,vg) and (Wg,vg),
respectively. Then, the stabilities €5, €, of GAN satisfy

€f + €5 < 207 sup Eggn||lws — wsl| + 07 04 sup Egu|lvs — v
S,S S,5

Proof. By Proposition 1 and Assumption 1, we obtain that

ESEsgm [L(WSWVS) - LS(WS7VS)]
< sSup Esgm‘f(wg;x) - f(WS;X)‘
S,S,x

+ sup Egem|f(Ws;9(vs; 2)) — f(wgig9(vs: Z))|
5,5.2

< sup Eggm|f(Wg;x) — f(ws;x)|
S,S,x

+ sup Egm|f(Ws;9(vs; Z2)) — f(wgig(vs; Z))|
$.5.7

+ sup Egm|f(Wg;9(vs; Z)) — f(wgig9(vs: Z))|
$.5,2
< QU}UEng”"Vg —wsll + JfagEsgm”VS —vsl,

which finishes the proof.

APPENDIX E
PROOF OF PROPOSITION 2

Proposition 2 (Stability of SGM for GANSs). Let Assumption 1
hold. Apply SGM to solve the ERM in eq. (14) with the datasets
S and S, respectively, and denote the corresponding outputs
as (wg,vg) and (wg,vg), respectively. Denote the stepsize
as n; > 0. Then, the stabilities of both the discriminator and
the generator satisfy

E ?4-1 < 1+27’]tL7; ntL?‘Ug E 5?
o (5o | S| LYoy 14 (oL, +02L%)| e | 5y
t+1 thfOg Mm\0flg + 0gly t
m4+n _w
+om | Wt (15)
m

Proof. Consider a pair of fixed data sets S, S. Without of loss
of generality, we assume that S, S are different at the samples
with index 1, i.e., S contains x;, Z; and S contains x}, 7],
respectively.

We first bound 47, ;. At iteration ¢, we consider the following
four cases.

Case 1: & # 1,( # 1.
By the uniform sampling, this case occurs with probability

n—lm=1Also, the update rule of SGD implies that

n m
6th1 = [[we,s — wy g+ 10 (Vw f(We,55%e,) — Vw (W 55%¢,)
+ Vw (Wi 5:9(Ve 51 Z¢,) — Vwf(Wes39(ve,s5 Ze,))) |l
<6 +nLf o)
+ el Vw f(We 559(ve 53 Z¢,) — Vwf(Wes39(Ve 53 Z¢,))
+ Vw f(We,559(Ve 51 Z¢.)) — Vwf(We,s59(ve,s; Ze,)) |l
1+ mL}”)éz” + ntL”;’(S;” + ntL?O'g6;)

<
= (14 2n.LY)6 +neLioydy.

Case 2: £, =1,(; # 1.

This case occurs with probability 2 =1 The update rule
of SGD implies that

01 = [lwes — Wy 5 + (Ve f(We 53 %1) = Vw f(W; 53 %7)
+ Vwf(Wi519(ve5:2¢,)) — Vwf(Wesi9(ve,s; Ze,)))|l
<6 +2m0f +mLiogdy.

Case 3: £, #1,( = 1.
This case occurs with probability "T_I% The update rule
of SGD implies that

0ph1 = [IWes — Wy g+ (Ve f(We,55%e,) — Vi f (W 55 %e,)
+ Vwf(W, 590V, 5:21)) — Vi f(Wes59(ve,s: Z1))) |
<&+ L0 + 2m0f
=1+ ntlfj’)(ﬁ” + Qnta}”.

Case 4: =1, = 1.
This case occurs with probability 2 -L. The update rule of
SGD implies that

611 = lwWe.s = Wi 5+ m(Vwf(Wes5%1) — Vw f(W, 5:X])
+ Vwf(W; 59V, 5 21)) = Vw f(We,s59(ve,s5 21))) |

Based on the results of the above four cases, we take the
expectation over the randomness of the SGD and obtain that

n—1)(m-—1
EA(SZJ)_,'_l < % [(1 + QUtL}U)EA(SZ“U + ’f]tL?UgEA(Sf]

L (m-1)

[IEAéz” +2n0% + mL?agEAdf]

(-1

[(1+nLY)EAS + 2ni0F]

< (1 + 277tL?;})EA(5zU + ntL;;‘O-gEA(S;}
2(m 4+ n)no¥
| Amtn)mey (29)

mn

Next, we bound 67, ,. At iteration ¢, we consider the
following two cases.

Case 1: (; # 1.

This case occurs with probability mT_l Also, the update

rule of SGD implies that

61 = lIve,s = v 5 +0e(Vvg(vesi Z¢, )V f(We,s39(Ve,s5 Ze,)
= Vg(vi,5:Z¢, )V f(Wy 53 9(Ve 55 Z¢,))l
< o7 + ntog(qu’é;" + L50407) + 1n0f Lgdy
= (1 + ntL}Lcoz + ’I]tO')Ich)(S;] + ntqu]O'gézu.
Case 2: (; = 1.

This case occurs with probability i Also, the update rule
of SGD implies that

§)+1 = ||Vt,s — V5t nt(vvg(vt,s; Zl)vgf(wt,s§ g(Vt,S; Zl))
—Vyg(vi5: Z1)V o f (Wy 559(Ve 55 Z0))) |
<é + 2nt0?09.
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Based on the results of the above two cases, we take the
expectation over the randomness of SGD and obtain that

-1 T z v w w
Eady,, < ——[(1 +77tha§ +n:0FLg)0; +ni L ogdy ]

1 )
+ — (67 + 2nto}og]
<(1+ ntL‘ﬁai + ma;Lg)EA(SZ’ + LY ogEady

2
+ Emo’f”ag. (30)
Combining eq. (29) and eq. (30) yields that
ow 1+ 217th e L%o o
E t+1 fva E t
A [a;gﬂ] = [ mLYoy  14m(0%Ly +o2L%)| 4 |6}
m+n }u
+ 277t o407
Then, the proof is complete. O
APPENDIX F

PROOF OF THEOREM 3

Theorem 3. Let Assumption 1 hold. Apply SGM to solve
the ERM in eq. (14) with the dataset S and denote the
corresponding output at T-th iteration as (Wr,s,VT,s). Choose
the stepsize 1y = 715 with ¢ < (2LY + 0L, + osL5)~t
Then, the generalization error of SGM satlsﬁes

EsEgem[L(Wr,s,vr,s) — Ls(Wr,s,vr,s)]

o + o,0%
2)2 1 (g 9f 1 99%
§2\/(20f) + (0f0g)? ( - - >logT

Proof. Define the following two quantities

U, — L+ 2n. LY niLjog . nTznthx}u
! mlyoy 1+ m(ofLy +0iL%)]’ ]

Then, the recursion property in Proposition 2 can be rewritten
as

3 (31)

w 0
41
Ea L;;,H] < UiEy [5u

Applying eq. (31) recursively and noting that §§’ = 6§ = 0,
we obtain that
5]
t+1

t
11 Uk>2mb.

=0

By Lemma 1 and the above inequality, we further obtain that

EsEa[L(wi,s,vi,s) — Ls(Wis,ve,s)]

571_)
< \/(20—?)2 + (0} 0g)? bup ‘IEA {6”} ‘
< \/(20—35 2 4 (o%0y)? Z( H Uk>2mb
1=0 k= l+1

t—1

24 (o 0g)? )

=0

(I o

k=Il+1

t—1 t—1
<2\/2o}) + (0po)? Il Yo | [T U
=0 k=I+1
t—1 t—1
<2,/209)? + (¥, [l Yom [T Ul (32
=0 k=I+1

Next, we evaluate the operator norm of Uy, i.e., the quantity

\/ Amax (U] U). Note that U] Uy, is a 2 x 2 matrix. We
calculate its eigenvalue and obtain that

||Uk|| - max Ulc Uk

T4
2"

where
v = (1429 L%)° + (LY o,)?
F oy + (14 o3y + oA
B = ((1+20,LY)(1 + (0% Ly + 02L%))
w Z 2
— (mLng)(nthUg)) :

Note that the stepsize 7, for SGD is chosen to decrease to
zero. Thus, we can ignore the higher order terms that contain
n? and obtain that

2l 7’ 2
§+\/4 — B S 1+ m(2LY + 0FLg + oo L)

Let A =2,/(20%)? + (0} 0,4)?. Substituting the above bound
into eq. (32) and noting that n; =

U]l <

“L, we obtain that
ogt

EsE [L(Wt 5, Vi,5) —

t—1

<)‘||b||z771 H (L4 ne(2LY + 0Ly + 0, L))
1=0 k= 1+1

<A||b||2“gl H
< Auan“

< A||b
|| ||Z Toa
< Albllogty T e7 311

oY 4+o,0% o
§A<f s —i—f) logt.
m

Then, the proof is complete. O

Ls(wy,s,ve,s)]

(2Lw + 0Ly +0,L}))

ogt)

exp c(2Ly +ofL, —i—(fQL”“)log1 ol

logt (2Lf +O’?L9+0'9Lfv)
log
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