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1 | INTRODUCTION

It has been observed in various machine learning problems recently that the gradient descent (GD) algorithm and the stochastic gradient descent
(SGD) algorithm converge to solutions with certain properties even without explicit regularization in the objective function. Correspondingly, the-
oretical analysis has been developed to explain such implicit regularization property. For example, it has been shown in Gunasekar, Lee, Soudry, and
Srebro (2018a); Gunasekar, Woodworth, Bhojanapalli, Neyshabur, and Srebro (2017) that GD converges to the solution with the minimum norm
under certain initialization for regression problems, even without an explicit norm constraint.

Another type of implicit regularization, where GD converges to the max-margin classifier, has been recently studied in Gunasekar et al. (2018a);
Jiand Telgarsky (2018); Nacson, Lee, et al. (2019); Soudry, Hoffer, and Srebro (2018) for classification problems as we describe below. Given a set
of training samples z; = (x;,y;) fori = 1,...,n, where x; denotes a feature vector and y; € {—1, +1} denotes the corresponding label, the goal is
to find a desirable linear model (i.e., a classifier) by solving the following empirical risk minimization problem

1 n
in L(w):=— L(yiwTx;).
Jnin, L(w) n; (yiwTxi)

It has been shown in Nacson, Lee, et al. (2019); Soudry et al. (2018) that if the loss function £(-) is monotonically strictly decreasing and satisfies
proper tail conditions (e.g., the exponential loss), and the data are linearly separable, then GD converges to the solution w with infinite norm and
the maximum margin direction of the data, although there is no explicit regularization towards the max-margin direction in the objective function.
Such aphenomenon is referred to as the implicit bias of GD, and can help to explain some experimental results. For example, even when the training
error achieves zero (i.e., the resulting model enters into the linearly separable region that correctly classifies the data), the testing error continues
to decrease, because the direction of the model parameter continues to have an improved margin. Such a study has been further generalized to hold
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for various other types of gradient-based algorithms Gunasekar et al. (2018a). Moreover, Ji and Telgarsky (2018) analyzed the convergence of GD
with no assumption on the data separability, and characterized the implicit regularization to be in a subspace-based form.
The focus of this paper is on the following two fundamental issues, which have not been well addressed by existing studies.

e Existing studies so far focused only on the linear classifier model. An important question one naturally asks is what happens for the more
general nonlinear leaky ReLU and ReLU models. Will GD still converge, and if so will it converge to the max-margin direction? Our study here
provides new insights for the ReLU model that have not been observed for the linear model in the previous studies.

o Existing studies mainly analyzed the convergence of GD with the only exceptions Ji and Telgarsky (2018); Nacson, Srebro, and Soudry (2019)
on SGD. However, Ji and Telgarsky (2018) did not establish the convergence to the max-margin direction for SGD, and Nacson, Srebro,
and Soudry (2019) established the convergence to the max-margin solution only epochwisely for cyclic SGD (not iterationwise for SGD
under random sampling with replacement). Moreover, both studies considered only the linear model. Here, our interest is to explore the
iterationwise convergence of SGD under random sampling with replacement to the max-margin direction, and our result can shed insights
for online SGD. Furthermore, our study provides new understanding for the nonlinear ReLU and leaky ReLU models.

1.1 | Main contributions

We summarize our main contributions, where our focus is on the exponential loss function under ReLU model.

We first characterize the landscape of the empirical risk function under the ReLU model, which is nonconvex and nonsmooth. We show that such
a risk function has asymptotic global minima and asymptotic spurious local minima. Such a landscape is in sharp contrast to that under the linear
model previously studied in Soudry et al. (2018), where there exist only equivalent global minima.

Based on the landscape property, we show that the implicit bias property in the course of the convergence of GD can fall into four cases: con-
verges to the asymptotic global minimum along the max-margin direction, converges to an asymptotic local minimum along a local max-margin
direction, stops at a finite spurious local minimum, or oscillates between the linearly separable and misclassified regions without convergence. Such
adiverse behavior is also in sharp difference from that under the linear model Soudry et al. (2018), where GD always converges to the max-margin
direction.

We then take a further step to study the implicit bias of SGD. We show that the expected averaged weight vector normalized by its expected I,
norm converges to the global max-margin direction or local max-margin direction, as long as SGD stays either in the linearly separable regionorina
region of the local minima defined by a subset of data samples with positive label. The proof here requires considerable new technical developments,
which are very different from the traditional analysis of SGD, e.g., F. Bach and Moulines (2013); F. R. Bach (2014); Bottou, Curtis, and Nocedal
(2016); Duchi and Singer (2009); Nemirovskii, Yudin, and Dawson (1983); Shalev-Shwartz, Shamir, Srebro, and Sridharan (2009); Xiao (2010). This
is because our focus here is on the exponential loss function without attainable global/local minima, whereas traditional analysis typically assumed
that the minimum of the loss function is attainable. Furthermore, our goal is to analyze the implicit bias property of SGD, which is also beyond
traditional analysis of SGD.

We further extend our analysis to the leaky ReLU model and multi-neuron networks.

2 | RELATED WORK

Implicit bias of gradient descent: Gunasekar et al. (2018a) studied the implicit bias of GD and SGD for minimizing the squared loss function under
bounded global minimum, and showed that some of these algorithms converge to a global minimum that is closest to the initial point. Another
collection of papers Gunasekar et al. (2018a); Ji and Telgarsky (2018); Nacson, Lee, et al. (2019); Soudry et al. (2018); Telgarsky (2013) charac-
terized the implicit bias of algorithms for the loss functions without attainable global minimum. Telgarsky (2013) showed that AdaBoost converges
to an approximate max-margin classifier. Soudry et al. (2018) studied the convergence of GD in logistic regression with linearly separable data and
showed that GD converges in direction to the solution of support vector machine at a rate of 1/ In(t). Nacson, Leg, et al. (2019) improved this rate
toIn(t)/+/t under the exponential loss via normalized gradient descent. Gunasekar et al. (2018a) further showed that steepest descent can lead to
margin maximization under generic norms. Ji and Telgarsky (2018) analyzed the convergence of GD on an arbitrary dataset, and provided the con-
vergence rates along the strongly convex subspace and the separable subspace. Later, the implicit bias of linear neural network was characterized in
Gunasekar, Lee, Soudry, and Srebro (2018b); Moroshko et al. (2020). Our work studies the convergence of GD and SGD under the nonlinear ReLU
model with the exponential loss, as opposed to the linear model studied by all the above previous work on the same type of loss functions.

Implicit bias of SGD: Ji and Telgarsky (2018) analyzed the average SGD (under random sampling) with fixed learning rate and proved the conver-

gence of the population risk, but did not establish the parameter convergence of SGD in the max-margin direction. Nacson, Srebro, and Soudry
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(2019) established the convergence of cyclic SGD epochwisely in direction to the max-margin classifier at a rate O(1/ Int). Our work differs from
these two studies first in that we study the ReLU model, whereas both of these studies analyzed the linear model. Furthermore, we showed that
under SGD with random sampling, the expectation of the averaged weight vector converges in direction to the max-margin classifier at a rate
O(1/VInt).

Generalization of SGD: There have been extensive studies of the convergence and generalization performance of SGD under various models, of
which we cannot provide a comprehensive list due to the space limitations. In general, these type of studies either characterize the convergence
rate of SGD or provide the generalization error bounds at the convergence of SGD, e.g., Brutzkus, Globerson, Malach, and Shalev-Shwartz (2017); Li
and Liang (2018); Wang, Giannakis, and Chen (2019), but did not characterize the implicit regularization property of SGD, such as the convergence
to the max-margin direction as provided in our paper.

3 | RELUCLASSIFICATION MODEL

We consider the binary classification problem, in which we are given a set of training samples {z1, ..., z,}. Each training sample z; = (x;j,yi)
contains an input data x; and a corresponding binary label y; € {—1, +1}. We denote I+ := {i : y; = +1} as the set of indices of samples with label
+1anddenotel™ := {i: y; = —1} inasimilar way. Their cardinalities are denoted as n* and n—, respectively, and are assumed to be non-zero. We
consider all datasets that are linearly separable, i.e., there exists a linear classifier w such that y;wTx; > Oforalli=1,... n.

We are interested in training a ReLU model for the classification task. In specific, for a given input data x, the model outputs o(wTx;), where
o(v) = max{0, v} is the ReLU activation function and w denotes the weight parameters. The predicted label is set to be sgn(wTx). Our goal is to
learn a classifier by solving the following empirical risk minimization problem, where we adopt the exponential loss.

min L(w) := 1 i@(w,zi), where ¢(w, z;) = exp(—yioc(WTx;)). (P)
wERS Ni=

The ReLU activation causes the loss function in problem (P) to be nonconvex and nonsmooth. Therefore, it is important to first understand the
landscape property of the loss function, which is critical for characterizing the implicit bias property of the GD and SGD algorithms.

4 | IMPLICIT BIAS OF GD IN LEARNING RELU MODEL

4.1 | Landscape of ReLU model

In order to understand the convergence of GD under the ReLU model, we first study the landscape of the loss function in problem (P), which turns
out to be very different from that under the linear activation model. As been shown in Ji and Telgarsky (2018); Soudry et al. (2018), the loss function
in problem (P) under linear activation is convex, and achieves asymptotic global minimum, i.e., VL (aw*) % 0and L(aw™) 2 0 as the scaling
constant @ — +oo, only if w* is in the linearly separable region. In contrast, under the ReLU model, the asymptotic critical points can be either
global minimum or (spurious) local minimum depending on the training datasets, and hence the convergence property of GD can be very different
in nature from that under the linear model.

The following theorem characterizes the landscape properties of problem (P). Throughout, we denote the infimum of the objective function in

problem (P) as £* = % Furthermore, we call a direction w* asymptotically critical if it satisfies VL(aw*)—0as o — +oo.

Theorem 4.1 (Asymptotic landscape property). For problem (P) under the ReLU model, any corresponding asymptotic critical direction w* fall into
one of the following cases:

o (Asymptotic global minimum): y;w*Tx; > Oforalli € I7 Ul~.Then,

Law™) = L* asa — +oo.

o (Asymptotic local minimum): w*Tx; > Oforalli € J* and w*Tx; < Oforalli € (1T \ J*) Ul~,where J* C I*.Then,

+_ gt
Llaw™) — L* + "_T‘J‘ asa — +o00.

o (Local minimum): w*Tx; < Oforalli € I7 U1~.Then,

L(w*) =L+ 05

n

To further elaborate Theorem 4.1, if w* classifies all data correctly (i.e., item 1), then the objective function possibly achieves global minimum £*

along this direction. On the other hand, if w* classifies some data with label +1 as —1 (item 2), then the objective function achieves a sub-optimal
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value along this direction. In the worst case where all data samples are classified as —1 (item 3), the ReLU unit is never activated and hence the
corresponding objective function has constant value 1. We note that the cases in items 2 and 3 may or may not take place depending on specific
datasets, but if they do occur, the corresponding w* are spurious (asymptotic) local minima. In summary, the landscape under the ReLU model can
be partitioned into different regions, where gradient descent algorithms can have different implicit bias as we show next.

4.2 | Convergence of GD
In this subsection, we analyze the convergence of GD in learning the ReLU model. At each iteration t, GD performs the update
Wit1 = Wy — nVL(Wy), (GD)

where 7 denotes the stepsize. For the linear model whose loss function has infinitely many asymptotic global minima, it has been shown in Soudry
et al. (2018) that GD always converges to the max-margin direction. Such a phenomenon is regarded as the implicit bias property of GD. Here, for
the ReLU model, we are also interested in analyzing whether such an implicit-bias property still holds. Furthermore, since the loss function under
the ReLU model possibly contains spurious asymptotic local minima, the convergence of GD under the ReLU model should be very different from
that under the linear model.

Next, we introduce various notions of margin in order to characterize the implicit bias under the ReLU model. The global max-margin direction
of samples in I is defined as

W1 = arg max min (wTx;).
|w=1 €It

Such a notion of max-margin is natural because the ReLU activation function can suppress negative inputs. We note that here w may not locate in
the linearly separable region, and hence it may not be parallel to any (asymptotic) global minimum. As we show next, only when w isin the linearly
separable region, GD may converge in direction to such a max-margin direction under the ReLU model. Furthermore, for each given subset J* C I,

we define the associated local max-margin direction v’irj" as

vAvj = argmax min (WTx;).

lwll=1 i€J+
We further denote the set of asymptotic local minima with respect to J* C I* (see Theorem 4.1 item 2) as

Wt ={wTx; >0, Vie JTandwTx; <0, Vi€ (IT\JH)uI }.

Of course, Wf may or may not be empty for a certain J*, and \?vjr may or may not belong to WJ* depending on the specific training dataset. As we
show next, only when there exists a non-empty Wf and the corresponding vAvjr S Wf, GD may converge to such an asymptotic local minimum v?/J+
direction under the ReLU model.

Next, we present the implicit bias of GD for learning the ReLU model in problem (P).
Theorem4.2. Apply GD to solve problem (P) with arbitrary initialization and a small enough constant stepsize. Then, the sequence {w: } generated
by GD falls into one of the following cases.

o L(wt) = L*and || ity — w|| = o(2Int) where w+ is in linearly separable region;

o the direction of wy does not converge and oscillates between linearly separable and misclassified regions, where w7 is not in linearly
separable region;

o L(wi) — L%+ %,and | oty = Wi | = O(Mmt)  where J* # 0,and & € W

|| we Int

o L(wy)=L* % and wy = \?vj',where Jt =0, i.e., GD terminates within finite steps.

Theorem 4.2 characterizes various instances of implicit bias of GD in learning the ReLU model, which the nature of the convergence is different
from that in learning the linear model. In specific, GD can either converge in direction to the global max-margin direction W+ that leads to the global
minimum, or converge to the local max-margin direction vAvJ+ that leads to a spurious local minimum. Furthermore, it may occur that GD oscillates
between the linearly separable region and the misclassified region due to the suppression effect of ReLU function. In this case, GD does not have an
implicit bias property and convergence guarantee. We provide two simple examples in the supplementary material to further elaborate these cases.

Next, we illustrate through some examples that GD can fail to learn a proper linear classifier on linearly separable data under the ReLU activation

Example 1 (Figure 1, left). The dataset consists of two samples with label +1 and one sample with label —1. These samples satisfy x]x3 < 0and
x{x2 < 0.
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For this example, if we initialize GD at the green classifier, then GD converges to the max-margin direction of the sample (x1, +1). Clearly, such

a classifier misclassifies the data sample (x2, +1).

Proof of Example 1. Consider the first iteration. Note that the sample z3 has label —1, and from the illustration of Figure 1 (left) we have WJX3 <0,

w{ x> < 0and w] x1 > 0. Therefore, only the sample z; contributes to the gradient, which is given by

Vwo £L(Wo) = — exp(—w]x1)x1. (1)
By the update rule of GD, we obtain that for all t

Wil = Wi + nexp(—w{ x1)x1. 2
By telescoping eq. (2), it is clear that any w{ x> < 0for all t since x] x> < 0. This implies that the sample z; is always misclassified. O

Example 2 (Figure 1,right). The dataset consists of one sample with label +1 and one sample with label —1. These two samples satisfy 0 < x] x> <
0.5]|x2]|2.

For this example, if we initialize at the green classifier, then GD oscillates around the direction x2/||x2|| and does not converge.

Convergence of GD to bad direction Oscillation of GD

6 T 3 : :
w,
(x1,+1) @ 0
Al | oL Waaga i
Wo —W34g5
e W
2000 1 ® (x;,+1)

= maximum margin classifier of X4

0
0 \ i
=\\ -1
25 (XZA, +1) L ) 2
(x3,—-1)A (32, -1)
4 I I I I -3 L L L L L
-4 -2 0 2 4 6 -2 -1 0 1 2 3 4

FIGURE 1 Failure of GD in learning ReLU models

Proof of Example 2. Since we initialize GD at wq such that wlx; > 0and w]x> < 0, the sample z> does not contribute to the GD update due
to the ReLU activation. Next, we argue that there must exists a t such that w[x, > 0. Suppose such t does not exist, we always have wx; =
(wo + Zf;é exp(—w;{xl)xl)Txl > 0. Then, the linear classifier w: generated by GD stays between x; and x5, and the corresponding objective
function reduces to a linear model that depends on the sample z; (Note that z, contributes a constant due to ReLU activation). Following from
the results in Ji and Telgarsky (2018); Soudry et al. (2018) for linear model, we conclude that w: converges to the max-margin direction ﬁ as
t — 4-o00.Since x] x2 > 0, this implies that w x> > 0ast — +oo0, contradicting with the assumption.

Next, we consider the t such that wx; > 0and w{ x, > 0, the objective function is given by
L(wt) = exp(—w] x1) + exp(w] x2),

and the corresponding gradient is given by
Vw, L(Wi) = —exp(—w] x1)x1 + exp(w] x2)x2.
Next, we consider the case that w x; > 0 for all t. Otherwise, both of x; and x, are on the negative side of the classifier and GD cannot make any

progress as the corresponding gradient is zero. In the case that w x; > 0 for all t, by the update rule of GD, we obtain that
w/l, X2 — wlx2 = nexp(—w/[x1)x]x2 — nexp(w]x2)||xz2|? < —0.5n|x22. (3)

Clearly, the sequence {w, x} is strictly decreasing with a constant gap, and hence within finite steps we must have w] x, < 0. O
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4.3 | Implicit bias of SGD in learning ReLU models

In this subsection, we analyze the convergence property and the implicit bias of SGD for solving problem (P). At each iteration t, SGD samples an

index & € {1,...,n} uniformly at random with replacement, and performs the update
Wil = Wi — e VE( Wi, z¢,). (SGD)

Similarly to the convergence of GD characterized in Theorem 4.2, SGD may oscillate between the linearly separable and misclassified regions.
Therefore, our major interest here is the implicit bias of SGD when it does converge either to the asymptotic global minimum or local minimum.
Thus, without loss of generality, we implicitly assume that W is in the linearly separable region, and the relevant er € Wj‘ Otherwise, SGD does
not even converge.

The implicit bias of SGD with replacement sampling has not been studied in the existing literature, and the proof of the convergence and the char-
acterization of the implicit bias requires substantial new technical developments. In particular, traditional analysis of SGD under convex functions
requires the assumption that the variance of the gradient is bounded F. Bach and Moulines (2013); F.R. Bach (2014); Bottou et al. (2016). Instead
of making such an assumption, we next prove that SGD enjoys a nearly-constant bound on the variance up to a logarithmic factor of t in learning the
ReLU model.

Proposition 1 (Variance bound). Apply SGD to solve problem (P) with any initialization. If there exists 7 such that for all t > T, wy either stays in
the linearly separable region, or in WJ*, then with stepsize n, = (k + 1)~ where 0.5 < « < 1, the variances of the stochastic gradients sampled

by SGD along the iteration path satisfy that for all t,
t—1

Int
S 2BV, 7, )|I® < O (—) .
k=0 v

Proposition 1 shows that the summation of the norms of the stochastic gradients grows logarithmically fast. This implies that the variance of
the stochastic gradients is well-controlled. In particular, if we choose n, = (k + 1)*1/2, then the bound in Proposition 1 implies that the term
E||Ve(wy, z¢, )|| stays at a constant level. Based on the variance bound in Proposition 1, we next establish the convergence rate of SGD for learning
the ReLU model. Throughout, we denote w; := % Z‘k;}) wy as the averaged iterates generated by SGD.

Theorem 4.3 (Convergence rate of loss). Apply SGD to solve problem (P) with any initialization. If there exist 7 such that for all t > T, w either
stays in the linearly separable region, then with the stepsize n, = (k + 1) =%, where 0.5 < « < 1, the averaged iterates generated by SGD satisfies
In?t
tl—a

EL(W) — L* <O ( ) s IEWe]| > O(Int).

If there exist 7 such that for allt > 7T, wy staysin Wf, then with the same stepsize

gt In? ¢
Bo) — (o0 + T go( o ) |Ew:|| > O(lnt).
n ti—o

Theorem 4.3 establishes the convergence rate of the expected risk of the averaged iterates generated by SGD. It can be seen that the conver-
gence of SGD achieves different loss values corresponding to global and local minimum in different regions. The stepsize is set to be diminishing to
compensate the variance introduced by SGD. In particular, if a is chosen to be sufficiently close to 0.5, then the convergence rate is nearly of the
order O(In? t/+/t), which matches the standard result of SGD in convex optimization up to an logarithmic order. Theorem 4.3 also implies that the
convergence of SGD is attained as | Ewt|| — oo at a rate of O(Int). We note that the analysis of Theorem 4.3 is different from that of SGD in
traditional convex optimization, which requires the global minimum to be achieved at a bounded point and assumes the variance of the stochastic
gradients is bounded by a constant Duchi and Singer (2009); Nemirovski, Juditsky, Lan, and Shapiro (2009); Shalev-Shwartz et al. (2009). These

assumptions do not hold here.

Theorem 4.4 (Implicit bias of SGD). Apply SGD to solve problem (P) with any initialization. If there exist 7 such that for all t > 7, wy stays in the

linearly separable region, then with the stepsize n, = (k+ 1)~ where 0.5 < a < 1, the sequence of the averaged iterate {w }+ generated by SGD
satisfies
Ewy ~

2 1
Tr— 1 =0 (7) .
[[Ewe|| Int

If there exist 7 such that for all t > T, wy stays in Wj’ then with the same stepsize

2
:@(L),
Int

Theorem 4.4 shows that the direction of the expected averaged iterate E[w;] generated by SGD converges to the max-margin direction w,

Ew:
ot

IEW ||

without any explicit regularizer in the objective function. The proof of Theorem 4.4 requires a detailed analysis of the SGD update under the ReLU
model and is substantially different from that under the linear model Nacson, Lee, et al. (2019); Nacson, Srebro, and Soudry (2019); Soudry et al.
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(2018). In particular, we need to handle the variance of the stochastic gradients introduced by SGD and exploit its classification properties under
the ReLU model.

We next provide an example class of datasets (which has been studied in Combes, Pezeshki, Shabanian, Courville, and Bengio (2018)), for which
we show that SGD stays stably in the linearly separable region.

Proposition 2. [f the linear separable samples {z1, . . ., z, } satisfy the following conditions given in Combes et al. (2018):
e Forall (i,j) € I x IT UI= x I7,itholds that x x; > 0;
e Forall(i,j) € I x I7 U™ x I, it holds that xT x; < 0,

thenthereexistsat € IN such that forallt > t the sequence generated by SGD stays in the linearly separable region, as long as SGD is not initialized

at the local minima described initem 3 of Theorem 4.1.

We also want to point out that any linearly separable dataset can satisfy the condition in Proposition 2 after a proper transformation, e.g., data
augmentation by padding 1s to the samples with label 41 and -1s to the samples with label —1. Such data transformation changes the landscape of
the ReLU model into a more optimization-friendly version that facilitates to regularize the SGD path.

5 | FURTHER EXTENSIONS AND DISCUSSIONS

5.1 | LeakyReLU models

The leaky ReLU activation takes the form o(v) = max(av,v), where the parameter (0 < a < 1). Clearly, leaky ReLU takes the linear and ReLU
models as two special cases, respectively corresponding to o = 0 and a = 1. Since the convergence of GD/SGD of the ReLU model is very different
from that of the linear model, a natural question to ask is whether leaky ReLU with intermediate parameters 0 < o < 1 takes the same behavior as
the linear or ReLU model.

It can be shown that the loss function in problem (P) under the leaky ReLU model has only asymptotic global minima achieved by w* in the
separable region with infinite norm (there does not exist asymptotic local minima). Hence, the convergence of GD is similar to that under the linear
model, where the only difference is that the max-margin classifier needs to be defined based on leaky ReLU as follows.

For the given set of linearly separable data samples, we construct a new set of dataz* = (x*,y’),inwhichx* = x;, Vi € I*, x* =ax;, Viel,
andy* =vy;, Vi € IT U I~. Essentially, the data samples with label —1 are scaled by the parameter « of leaky ReLU. Without loss of generality, we
assume that the max-margin classifier for data {x;* } passes through the origin after a proper translation. Then, we define the max-margin direction
of data X* as

W" =argmax min (y;wTx]).
|w||=1 i€ltul—

Then, following the result under the linear model in Soudry et al. (2018), it can be shown that GD with arbitrary initialization and small constant
stepsize for solving problem (P) under the leaky ReLU model satisfies that £(w) converges to zero, and w converges to the max-margin direction,
i.e., limi— 0o m = w*, with its norm going to infinity.

Furthermore, following our result of Theorem 4.4, it can be shown that for SGD applied to solve problem (P) with any initialization, if there exists

T such that for all t > 7 wy stays in the linearly separable region, then with the stepsize n, = (k + 1)7%, 0.5 < a < 1, the sequence of the
averaged iterate {w }+ generated by SGD satisfies
Ew, ok

2
1
[[EwWe|| Int

Thus, for SGD under the leaky ReLU model, the normalized average of the parameter vector converges in direction to the max-margin classifier.

5.2 | Multi-neuron Networks

In this subsection, we extend our study of the ReLU model to the problem of training a one-hidden-layer ReLU neural network with K hidden
neurons for binary classification. Here, we do not assume linear separability of the dataset. The output of the network is given by

K
Fx) =D vko(wlx) = vTo(W x), @

k=1
where W = [wy, wy, - - - , wk] with each column wy representing the weights of the kth neuronin the hidden layer, vT = [v1,v,, - - -, vk] denotes

the weights of the output neuron, and o (+) represents the entry-wise ReLU activation function. We assume that v is a fixed vector whose entries
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are nonzero and have both positive and negative values. Such an assumption is natural as it allows the model to have enough capacity to achieve

zero loss. The predicted label is set to be the sign of f(x), and the objective function under the exponential loss is given by
1 n
L(W) = =) " exp(—yif(xi)). (5)
ni=

Our goal is to characterize the implicit bias of GD and SGD for learning the weight parameters W of the multi-neuron model. In general, such
a problem is challenging, as we have shown that GD may not converge to a desirable classifier even under the single-neuron ReLU model. For
this reason, we adopt the same setting as that in (Soudry et al. 2018, Corollary 8), which assumes that the activated neurons do not change their
activation status and the training error converges to zero after a sufficient number of iterations, but our result presented below characterizes the
implicit bias of GD and SGD in the original feature space, which is different from that in (Soudry et al. 2018, Corollary 8). We define a set of vectors
{A; € Rk“};“:l,where AJ; = lifthe sample x; is activated on the jth neuron,i.e., ijx; > 0,and set AJI: = Ootherwise.Such an A; vector isreferred
to as the activation pattern of x;. We then partition the set of all training samples into m subsets B1, B2, - - - , Bm, so that the samples in the same
subset have the same ReLU activation pattern, and the samples in different subsets have different ReLU activation patterns. We call By,, h € [m] as

the h-th pattern partition. Let w}, viwy. Then, for any sample x € By, the output of the network is given by

= Zke{j:A{‘:l}
K
Fx) = kaU(W;X) = Z VWX = W] X.
k=1 ke{j:Aj =1}
We next present our characterization of the implicit bias property of GD and SGD under the above ReLU network model. We define the
corresponding max-margin direction of the samples in 13, as
W), = arg max min (w7x).
llwi=1 xEBh( )

Then the following theorem characterizes the implicit bias of GD under the multi-neuron network.

Theorem 5.1. Suppose that GD optimizes the loss £(W) in eq. (5) to zero and there exists 7 such that for all t > T, the neurons in the hidden layer
do not change their activation status. If A, A A, = 0 (where "A" denotes the entry-wise logic operator “AND" between digits zero or one) for any
h1 # hy, then the samples in the same pattern partition of the ReLU activation have the same label, and

"i’]t
A

Differently from (Soudry et al. 2018, Corollary 8) which studies the convergence of the vectorized weight matrix so that the implicit bias of GD is

Wh

Inlnt
:O( i ), forallh € [m].

with respect to features being lifted to an extended dimensional space, Theorem 5.1 characterizes the convergence of the weight parameters and

the implicit bias in the original feature space. In particular, Theorem 5.1 implies that although the ReLU neural network is a nonlinear classifier, f (x)

is equivalent to a ReLU classifier for the samples in the same pattern partition (that are from the same class), which converges in direction to the
1t—1

max-margin classifier wy, of those data samples. We next let %y, := + 2 k—o Wh(t). Then the following theorem establishes the implicit bias of SGD.

Theorem 5.2. Suppose that SGD optimizes the loss £L(W) in eq. (5) so that there exists 7 such that forany t > 7, £L(W) < 1/n, the neurons in the
hidden layer do not change their activation status, and for any h; # hy, A, A Ay, = 0.Then, for the stepsize n, = (k+1)7%, 0.5 < a < 1,the
samples in the same pattern partition of the ReLU activation have the same label, and
Ew! 2 1
h_ & :(’)( ), forallh € [m].

H A Int

Similarly to GD, the averaged SGD in expectation maximizes the margin for every sample partition. At the high level, Theorem 5.1 and
Theorem 5.2 imply the following generalization performance of the ReLU network under study. After a sufficiently large number of iterations, the
neural network partitions the data samples into different subsets, and for each subset, the distance from the samples to the decision boundary is
maximized by GD and SGD. Thus, the learned classifier is robust to small perturbations of the data, resulting in good generalization performance.

6 | CONCLUSION

In this paper, we study the problem of learning a ReLU neural network via gradient descent methods, and establish the corresponding risk and
parameter convergence under the exponential loss function. In particular, we show that due to the possible existence of spurious asymptotic local
minima, GD and SGD can converge either to the global or local max-margin direction, which in the nature of convergence is very different from
that under the linear model in the previous studies. We also discuss the extensions of our analysis to the more general leaky ReLU model and multi-
neuron networks. In the future, it is worthy to explore the implicit bias of GD and SGD in learning multi-layer neural network models and under
more general (not necessarily linearly separable) datasets.
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