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Abstract

Two timescale stochastic approximation (SA)
has been widely used in value-based reinforce-
ment learning algorithms. In the policy evalu-
ation setting, it can model the linear and non-
linear temporal difference learning with gradi-
ent correction (TDC) algorithms as linear SA
and nonlinear SA, respectively. In the policy
optimization setting, two timescale nonlin-
ear SA can also model the greedy gradient-Q
(Greedy-GQ) algorithm. In previous stud-
ies, the non-asymptotic analysis of linear
TDC and Greedy-GQ has been studied in
the Markovian setting, with diminishing or
accuracy-dependent stepsize. For the nonlin-
ear TDC algorithm, only the asymptotic con-
vergence has been established. In this paper,
we study the non-asymptotic convergence rate
of two timescale linear and nonlinear TDC
and Greedy-G(Q under Markovian sampling
and with accuracy-independent constant step-
size. For linear TDC, we provide a novel
non-asymptotic analysis and show that it at-
tains an e-accurate solution with the optimal
sample complexity of O(e~!log(1/¢)) under
a constant stepsize. For nonlinear TDC and
Greedy-GQ, we show that both algorithms at-
tain e-accurate stationary solution with sam-
ple complexity O(¢~2). It is the first non-
asymptotic convergence result established for
nonlinear TDC under Markovian sampling
and our result for Greedy-GQ outperforms
the previous result orderwisely by a factor of

O(e tlog(1/¢)).
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1 Introduction

Two timescale stochastic approximation (SA) algo-
rithms have wide applications in reinforcement learn-
ing (RL) [Sutton and Barto, 2018]. Typically, two
timescale SA algorithms involve iterations of two
types of variables updated at different speeds, i.e.,
the stepsizes for two iterates are chosen differently
so that one iterate runs much faster than the other
[Borkar, 1997, Borkar, 2009]. Such algorithms are
widely used to solve both policy evaluation and policy
optimization problems in RL, in which the goal of pol-
icy evaluation is to estimate the expected total reward
(i.e. value function) of a target policy, and the goal of
policy optimization is to search for a policy with the
optimal expected total reward.

In the policy evaluation problem, temporal difference
(TD) learning [Sutton, 1988] is one of the most widely
used algorithms when a linear function class is uti-
lized to approximate the value function. However, in
the off-policy setting, in which the target policy to be
evaluated is different from the behavior policy that
generates samples, TD learning may diverge to infin-
ity. To overcome such an issue, [Sutton et al., 2009]
proposed the two timescale linear TD with gradi-
ent correction (TDC) algorithm, which has conver-
gence guarantee in the off-policy setting. The two
timescale linear TDC is a special case of two timescale
linear SA, whose asymptotic convergence has been
established in [Sutton et al., 2009, Borkar, 2009] and
[Yu, 2017, Tadic, 2004, Yaji and Bhatnagar, 2016] for
the i.i.d. and Markovian settings, respectively. The
non-asymptotic convergence rate of two timescale lin-
ear TDC/SA has also been studied. In the i.i.d. set-
ting, under diminishing stepsize, [Dalal et al., 2018b]
established the sample complexity of O(¢~!?), and
an improved complexity of O(e™!) was later es-
tablished in [Dalal et al., 2019]. In the Markovian
setting, [Xu et al., 2019] established the complexity
of O(e *51og?(1/€)) under a diminishing stepsize,
and [Gupta et al., 2019] established the complexity of
O(e~1~Clog?(1/€)) under a e-dependent stepsize, where
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¢ can be an arbitrarily small positive constant. Re-
cently, [Kaledin et al., 2020] provides a tighter com-
plexity bound of O(e~!) for two timescale linear SA
under a diminishing stepsize. Although having pro-
gressed significantly, existing convergence guarantee
were established either under a diminishing stepsize
or a drastically small e-level stepsize, which yield very
slow convergence and are rarely used in practice.

e Thus, the first goal of this paper is to investigate
the two timescale linear TDC under a constant
stepsize (not e-dependent), which is commonly
adopted in practice, and to provide the finite-sample
convergence guarantee for such a case. This neces-
sarily requires a new approach differently from the
existing ones.

When a nonlinear function is utilized to approximate
the value function, TD learning still suffers from the
divergence issue [Tsitsiklis and Van Roy, 1997]. To
address that, [Bhatnagar et al., 2009] proposed the
two timescale nonlinear TDC, which can be mod-
eled as a two timescale nonlinear SA. The asymp-
totic convergence of two timescale nonlinear SA has
been well established in [Borkar, 1997, Tadic, 2004,
Karmakar and Bhatnagar, 2018]. However, the non-
asymptotic convergence of two timescale nonlinear SA
has only been established in the i.i.d. setting under
some restrict assumptions such as global (local) stabil-
ity and local linearizion [Borkar and Pattathil, 2018,
Mokkadem and Pelletier, 2006].  So far, the non-
asymptotic convergence performance of two timescale
nonlinear TDC has not been studied under the general
Markovian sampling.

o The second goal of this paper is to provide the
first non-asymptotic convergence analysis for two
timescale nonlinear TDC with a constant step-
size, under Markovian sampling, and without re-
stricted assumptions.

Moreover, in the policy optimization problem, Q-
learning [Watkins and Dayan, 1992] has been widely
used and has achieved significant success in prac-
tice. However, in the function approxima-
tion setting, Q-learning does not have conver-
gence guarantee [Baird, 1995] unless under some
restricted regularity assumptions [Melo et al., 2008,
Zou et al., 2019, Cai et al., 2019]. In corresponding
to this, [Maei and Sutton, 2010] proposed the Greedy-
GQ algorithm in the linear function approximation
setting, in which the algorithm is guaranteed to con-
verge to a locally optimal policy without restricted
assumptions. Similarly to nonlinear TDC algorithms,
Greedy-GQ also adopts a two timescale update scheme,
and is a special case of two timescale nonlinear SA.
Under single-sample update and Markovian sampling,

[Wang and Zou, 2020] provided the non-asymptotic
convergence rate of Greedy-GQ with diminishing step-
size, which achieves the complexity of O(e~3log(e™1)).
However, such a rate does not attain the typical com-
plexity order of nonconvex optimization, and can be
potentially improved with a larger stepsize.

o The last focus of this paper is to provide an improved
non-asymptotic convergence rate for two timescale
Greedy-GQ under a constant stepsize.

1.1 Owur Contributions

For two timescale linear TDC, we show that it achieves
the sample complexity of O(e~!log(e!)), which has
the optimal dependence on € due to the lower bound
given in [Dalal et al., 2019]. Such a rate has been es-
tablished in [Kaledin et al., 2020], but only under a
diminishing stepsize, which is rarely used in practice
due to the slow empirical performance. In contrast,
our guarantee is established under a constant (not
e-dependent) stepsize, which is commonly used in
practice. Our analysis approach leverages the mini-
batch sampling for each iteration to control the conver-
gence error, which is significantly different from that
in [Kaledin et al., 2020, and can be of independent
interest.

For two timescale nonlinear TDC, we establish the first
non-asymptotic convergence rate under Markovian
sampling. We show that the mini-batch two timescale
nonlinear TDC algorithm achieves the sample complex-
ity of O(e72).

For two timescale Greedy-GQ, we show that mini-batch
two timescale Greedy-GQ with a constant stepsize
and under Markovian sampling achieves the sample
complexity of O(¢~2). Our result orderwisely outper-
forms the previous result of Greedy-GQ with dimin-
ishing stepsize in [Wang and Zou, 2020] by a factor of

O(e tlog(1/e)).
1.2 Related Work

Due to the vast amount of studies on SA and value-
based RL algorithms, we include here only the studies
that are highly related to our work.

Policy evaluation with linear function ap-
proximation. In the on-policy setting, TD
learning [Sutton, 1988] has been proposed to solve
the policy evaluation problem in the linear func-
tion approximation setting. The non-asymptotic
convergence rate of TD learning has been estab-

lished in [Dalal et al., 2018a] for the i.i.d. setting
and in [Bhandari et al., 2018, R. Srikant, 2019,
Hu and Syed, 2019] for the Markovian setting.

[Cai et al., 2019] explored the linearizable structure
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of neural networks in the overparameterized regime,
and studied the non-asymptotic convergence rate
of TD learning with neural network approximation.
[Zou et al., 2019] studied the convergence rate of
SARSA with linear function approximation in the
Markovian setting, which can been viewed as a policy
evaluation with dynamic changing transition kernel.

In the off-policy setting, GTD, GTD2 and TDC
have been proposed to solve the divergence issue of
TD learning [Sutton et al., 2008, Sutton et al., 2009,
Maei, 2011]. The convergence rate of one timescale
GTD and GTD2 algorithms has been established in
[Liu et al., 2015] by converting the objective into a
convex-concave saddle problem in the i.i.d. setting,
and was further generalized to the Markovian setting
in [Wang et al., 2017|. For two timescale linear TDC,
in the i.i.d. setting, the non-asymptotic analysis was
provided in [Dalal et al., 2018b, Dalal et al., 2019]. In
the Markovian setting, the non-asymptotic convergence
rate was first established in [Xu et al., 2019] under di-
minishing stepsize and in [Gupta et al., 2019] under
constant stepsize. The result in [Xu et al., 2019] was
later improved by [Kaledin et al., 2020] to achieve the
optimal convergence rate.

Policy evaluation with nonlinear function ap-
proximation. Two timescale nonlinear TDC is pro-
posed by [Bhatnagar et al., 2009], in which a smooth
nonlinear function is utilized to approximate the value
function. Nonlinear TDC with i.i.d. samples is a spe-
cial case of two time-scale nonlinear SA with martin-
gale noise, whose asymptotic convergence has been
established in [Bhatnagar et al., 2009, Maei, 2011] by
using asymptotic convergence results in nonlinear SA
[Borkar, 1997, Borkar, 2009, Tadic, 2004]. Under the
global/local asymptotic stability assumptions or lo-
cal linearizion assumption, the non-asymptotic conver-
gence of two timescale nonlinear SA with martingale
noise has been studied in [Borkar and Pattathil, 2018].
Under certain stability assumptions, the asymptotic
convergence of two timescale nonlinear SA with
Markov noise was established in [Karmakar et al., 2016,
Karmakar and Bhatnagar, 2018]. A concurrent study
[Qiu et al., 2020] also investigated nonlinear TDC and
obtained the same sample complexity of O(e~2) as our
result. However, [Qiu et al., 2019] only considered the
i.i.d. setting, whereas we considered the more general
Markovian setting.

Policy optimization with linear function ap-
proximation. Q-learning [Watkins and Dayan, 1992]
is one of the most widely used value-based pol-
icy optimization algorithms. The asymptotic and
non-asymptotic convergence have been established
for Q-learning with linear function approximation in
[Melo et al., 2008] and [Zou et al., 2019], respectively,

under certain regularity assumption. Under a simi-
lar regularity assumption, [Cai et al., 2019] established
the convergence rate of Q-Learning in the neural net-
work approximation setting. However, without reg-
ularity assumptions, Q-Learning does not have con-
vergence guarantee in the function approximation
setting. [Maei et al., 2010] proposed two timescale
Greedy-GQ to solve the divergence issue of Q-Learning
with linear function approximation, and the asymp-
totic convergence of Greedy-GQ was also established
therein. Recently, [Wang and Zou, 2020] studied the
non-asymptotic convergence rate of Greedy-GQ under
diminishing stepsize in the Markovian setting. In this
paper, we provide an orderwisely better convergence
rate than that in [Wang and Zou, 2020].

2 Markov Decision Process

Consider a Markov decision process (MDP) denoted
(S, A,P,r,v). Here, S C R? is a state space, A is
an action set, P = P(s|s,a) is the transition kernel,
r(s,a, s') is the reward function bounded by 7y, and
v € (0,1) is the discount factor. A stationary policy
7 maps a state s € § to a probability distribution
7(-|s) over the action space A. At time-step ¢, sup-
pose the process is in some state s; € S. Then an
action a; € A is taken based on the distribution 7 (-|s;),
the system transitions to a next state s;11 € S gov-
erned by the transition kernel P(:|s;, at), and a reward
ry = 1(8¢, a4, S¢11) 1s received. We assume the asso-
ciated Markov chain p(s'|s) = >, . 4 p(s']s,a)m(als)
is ergodic, and let u, be the induced stationary dis-
tribution of this MDP, i.e., > p(s'|s)px(s) = px(s’).
The state value function for policy 7 is defined as:
V™ (s) = E[> ooy r(se, ar, se41)|s0 = s,7), and the
state-action value function is defined as: Q™(s,a) =
E[>2 0 r(se, ar, si41)]50 = s, a0 = a, ). It is known
that V7 (s) is the unique fixed point of the Bellman oper-
ator T™,i.e., V7 (s) = T™V7(s) =17 (s5) +Ey V7 (s),
where r™(s) = E, ys7(s,a,5") is the expected re-
ward of the Markov chain induced by the policy .
We take the following standard assumption for the
MDP in this paper, which has also been adopted in
previous works [Bhandari et al., 2018, Zou et al., 2019,
R. Srikant, 2019, Xu et al., 2019, Xu et al., 2020b].

Assumption 1 (Geometric ergodicity). There exist
constants k > 0 and p € (0,1) such that

sug drv (P(s¢|so = 8), pir, (5¢)) < Kp', Wt >0,

se
where P(s¢|sg = s) is the distribution of s; conditioned
on so = s and dpy (P, Q) denotes the total-variation
distance between the probability measures P and Q.

Assumption 1 holds for any time-homogeneous
Markov chain with finite state space and any
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uniformly ergodic Markov chain with general
state space [Bhandari et al., 2018, Zou et al., 2019,
Xu et al., 2019].

3 Two Timescale TDC with Linear
Function Approximation

In this section we first introduce the two timescale
linear TDC algorithm to solve the policy evaluation
problem, and then present our convergence rate result.

3.1 Algorithm

When § is large or infinite, a linear function 9(s, ) =
#(s) "0 is often used to approximate the value function
V7™ (s), where ¢(s) € R? is a fixed feature vector for
state s and # € R? is a parameter vector. We can
also write the linear approximation in the vector form
as 9(0) = ®0, where @ is the |S| x d feature matrix.
Without loss of generality, we assume that the feature
vector [|¢(s)||y < 1 for all s € S and the columns of
the feature matrix ® are linearly independent. Here
we consider policy evaluation problem in the off-policy
setting. Namely, a sample path {(s¢, at, S¢41) }e>0 1S
generated by the Markov chain according to a behavior
policy 7, but our goal is to obtain the value function
of a target policy m, which is different from .

To find a parameter 6* € R? with E,., 0(s,07) =
E,, T70(s,0%). The linear TDC algorithm
[Sutton et al., 2009] updates the parameter by
minimizing the mean-square projected Bellman error
(MSPBE) objective, defined as

J(0) =K, [0(s,0) —TIT™0(s,0)]?,

where I is the orthogonal projection operation onto the
function space V = {6(6) | € R? and 9(-,0) = ¢(-)T6}.
When the columns of the feature matrix ® are linearly
independent, [Sutton et al., 2009] shows that J(6) is
strongly convex and has * = —A~1b as its global min-
imum, ie., J(0*) =0, where A=E,_ [(VEx[¢(s")[s] —
¢(s))¢(s)] and b = K, [Ex[r(s,a,s")|s]¢(s)]. A con-
venient way to find 6* is to minimize the MSPBE
objective function J(f) using the gradient descent
method: ;41 = 60; — §VJ(0;), where a > 0 is
the stepsize and the gradient VJ(0) was derived by
[Bhatnagar et al., 2009] as follows:

S0

2
=E,,, [E[0(0)]s]6(s)] — VE,.,, [Ex[6(s))|s]é(s) TJw(h),
(1)

where 0(0) =
is the temporal

r(s,a,s") + yi(s',0) — o(s,0)
difference error, w(f) =

By, [6(5)0(5) T B, [Eo[BO)Is]0(s). T prac-
tice, stochastic gradient descent (SGD) method is
usually adopted to perform the update in eq. (1)
approximately. However, directly sampling is not
applicable to w(#). To solve such an issue, an auxiliary
parameter w; can be introduced to estimate the vector
w(By), i.e., wy = w(f;), by solving a linear SA with the
following corresponding ODE:

W= —Ey,, [6()6(s) " |w + By, [Ex[5(0)[s]6(s)).

Given wy, the parameter 6; can then be updated with
a stochastic approximation of V.J(6;) obtained via di-
rectly sampling:

1

Ht-‘rl = et + a— Z g(ehwt)l‘j)a (2>
B :
JEB:
where B; is the mini-batch sampled from the
MDP7 g(etawtvgjj) = p(sjvaj)((;j(et)d)(sj) -
V6(sj+1)0(s5) "we), p(s,a) = w(als)/my(als) is

the importance weighting factor with pp.x being
its maximum value, and z; denotes the sample
(85, a5, 8541)-

Algorithm 1 is an online algorithm based on a single
sample path. Algorithm 1 adopts a two timescale
update scheme, in which parameters 6; and w; are
updated simultaneously but with different stepsizes.
Specifically, the main parameter 6, iterates at a slow
timescale with a smaller stepsize, and the auxiliary
parameter w; iterates at a fast timescale with a larger
stepsize. By doing so, w; can be close to w(f;) asymp-
totically, so that 6; is updated approximately in the
direction of —V.J(6). Algorithm 1 utilizes an accuracy-
independent constant stepsize, i.e., a, 8 = O(1) for
both the updates of 6; and w;, and a mini-batch of
samples {(s;,a;,s;j11)}i,<j<i,+Mm—1 are taken sequen-
tially from the trajectory at each iteration to perform
the update. As we will show later, linear TDC in this
setting is guaranteed to converge to the global optimal
with an arbitrary accuracy level.

Algorithm 1 Two Timescale Linear TDC

1: Input: batch size M, learning rate o and 3
2: Sampling: A trajectory {s;, a;};>0 is sampled by
following the behaviour policy
Initialization: 6y and wq
fort=0,---,7—1do
iy =tM _
weer = wi ot By YT (= (s)9(s5) T +
p(sj,a;)8;(01)d(s;))
T O =0t agy ST p(sg,05)(85(00)(s5) -
7¢(5j+1)¢(5j)th)
8: end for
9: OQutput: 01
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3.2 Convergence Analysis

We define matrix C = —E, [#(5)p(s)T]. Let A\ =
‘)\max(ATC*IA)’, A2 = [Amax(C)| and Ry = ||6%|,.
The following theorem provides the convergence rate
and sample complexity of Algorithm 1.

Theorem 1. Suppose Assumption 1  hold.

Consider Algorithm 1 of two timescale lin-

ear TDC wupdate. Let the stepsize a <
VA28

8\ 12 2/Bpman 1602, ' 642, 768
g < mm{ 1 )‘2} and the batch size M >

min{i A1 A2V A28 A1daB )‘l)éﬁ}’

82’ 4
128 (PR + 57 ) BED2 max {1, S50 Stiha ],
Then we have
* in{ A1, A2} A,
o < (1o minaa BT A
where Ay = |Jwg —w*(90)||§ + 160 _G*HS; where A,

is a constant defined in eq. (30) in Appendiz A. Fur-
thermore, let M > % and T > m In (Qf(’)
The total sample complexity for Algorithm 1 to achieve

an e-accurate optimal solution 0*, i.e., E[||6r — 9*”3] <

€, 18 given by
™ =6 (llog (1)) .
€ €

Theorem 1 shows that the convergence error of Algo-
rithm 1 consists of two terms: the first term is the tran-
sient error decreasing at an exponential rate, and the
second term is the variance error that diminishes as the
batch size M increases. This is in contrast to the single-
sample TDC under constant stepsizes, which suffers
from the variance and bias errors with order O(?/a)
[Gupta et al., 2019]. Thus, e-level small stepsizes «
and 3 are required in single-sample TDC to reduce the
variance error to achieve the required e-accurate opti-
mal solution, which can slow down the practical conver-
gence speed significantly. In contrast, mini-batch TDC
can attain high accuracy with a large constant (not
e-level) stepsize. Our result of O(e~!log(1/¢)) achieves
the optimal complexity order due to the lower bound
given in [Dalal et al., 2019]. In contrast to the same
sample complexity established in [Kaledin et al., 2020],
which is applicable only under a diminishing stepsize,
our result given in Theorem 1 is applicable under the
constant stepsize, which is practically preferred due to
the much better performance.

We next provide a sketch of the proof for Theorem 1.

Proof Sketch of Theorem 1. The proof of Theo-
rem 1 consists of the following three steps. At t-
th step, we call ||6; — 9*“3 as the training error and

lwy — w(&t)H; as the tracking error.

Step 1: We establish the following induction relation-
ships for the tracking error:

w(Brs1)[13]
< (1-©(X8) + O(a®/B))E [y -
+6(a?/B + M)E[|0;

E | [lwirr —

w(0,)]3]
— O[3+ O(1/M). ()

Step 2: We then establish the induction relationships
for the training error:

E [16001 - 0°13]
< (1-6(\a) +O(a?))E |6, - "|3]

+6(a+a)E [fuw, — w(B)3] +©(1/M).  (5)

Step 3: Combing eq. (4) and eq. (5) and letting the
stepsize a and (8 and batch size M satisfy the require-
ment specified in Theorem 1, we establish the induction

relationship of A; = E[||0; — 9*||3] + E[|jw: — w(@)”g]
as follows:
Ay < (1 —O(min{\a, A28})) Ay + O(1/M). (6)

Applying eq. (6) recursively from ¢t =T — 1 to 0 yields
the desired convergence result. O

4 Two Timescale TDC with Nonlinear
Function Approximation

In this section we first introduce the nonlinear two
timescale TDC algorithm to solve the policy evalu-
ation problem, then we provide our non-asymptotic
convergence rate result.

4.1 Algorithm

In this section we consider policy evaluation prob-
lem with nonlinear function approximation, in which
a parameterized smooth nonlinear function (s, 6)
is used to approximate the value function V7(s).
[Bhatnagar et al., 2009] proposed an algorithm to find
a parameter for the approximator 9(s, #), named nonlin-
ear TDC. The nonlinear TDC updates the parameter
by minimizing the following mean-square projected
Bellman error objective defined as:

M [’[](3’ 9)

where Ily is the orthogonal projection operation into
the function space V = {V (s,¢) | ¢ € R? and 9(s,() =
do(s) "¢ with (¢g(s)); = Va,0(s,0)}. In general, since
J(0) defined in eq. (7) is nonconvex with respect to
the parameter 6, finding the global minimum of J(0)

J() =FE — T, T™0(s,0))%, (7)



Sample Complexity Bounds for Two Timescale Value-based Reinforcement Learning Algorithms

is NP-hard. However, we can still apply gradient de-
scent method to find a local optimum (i.e., first-order
stationary point) of J(6), via updating the parameter
0 iteratively as 0yy1 = 0; — 5 V.J(0;), where oy > 0
is the stepsize and the gradient VJ(0) was derived by
[Bhatnagar et al., 2009] as follows:

[6(8)bo(5)] — VE[do (s )po(s) " Jw(6) — h(B, w(e)(g)

where 6(0) = r(s,a,s") +~v0(s',0) — (s, 0) is the tem-
poral difference and

w(8) = Elgo(s)do(s) '] E[3(8)do(s)],
h(0,u) = E[(8(6) — ¢o(s) " u)V5Va(s)ul.

Similarly to linear TDC studied in Section 3, in order
to estimate the gradient in eq. (8), an auxiliary param-
eter w; can be used to estimate the vector w(f;), i.e.,
wy &= w(6y), by solving a linear SA with the following
corresponding ODE:

w = ~Elgg(s)po(s) ' Jw +E[5(0)ge(s)]. (9

Given wy, the parameter 6; can then be updated with
a stochastic approximation of V.J(6;) obtained via di-
rectly sampling:

1
01 :9t+at7‘6| E 901, we, x5), (10)
t|
JEB:

where B; is the minibatch sampled from the
MDP, x; denotes the sample (s;,a;,554+1)
and we define g¢(0;,we,z;) = 6;(0:)o,(s5) —
Vo0, (sj41)¢0, (5) Twe  —  hi(0,we), where
hi(Opw) = (5;(0:) — ¢o,(s5) Twe)VVe,(s5)w.
The nonlinear TDC algorithm is shown in Algorithm 2.
Similarly to Algorithm 1, here we also use a mini-batch
of samples for each update.

Algorithm 2 Two Time-scale Nonlinear TDC

1: Input batch size M, learning rate o and
2: Sampling: A trajectory {s;, a;};>0 is sampled by
following the policy m
Initialization: 6y and wy
fort=0,1,....,T—1do
it =tM )
wir = wit B S T (= e, (55)Ba, (5;) Twit
6;(0¢) %o, (7)) ‘
7 0 = 0 + agp Z;t:—:iw_l((sj(et)%t(sj) -
V90, (8j+1)¢0, (55) " we — Tj(Or, we))
8: end for
Output: 0; with 7' chosen uniformly from {1,---,7}

4.2 Convergence Analysis

Our analysis of Algorithm 2 will be based on the fol-
lowing assumptions.

Assumption 2 (Bounded feature). For any state s €
S and any vector 0 € R, we have ||¢g(s)]l, < Cy,
|V (s,0)] < Cy and HV%V(S,H)HF < Dy, where Cy, Cy
and D, are positive constants.

Assumption 3 (Smoothness).  For  any
state s € S and any wvector 6,0/ <€ R%,
we have |V(s,0) —V(s,8)] < L, |0 ¢,

[0 (5) = dor (5)]], < Ly|l0 =05, and
V2V (s,0) —VgV(s,Q’)H2 < Lyp|0—-10,, where
Ly, Ly, and Ly, are positive constants.

Assumption 4 (Non-singularity). For any vector 6 €
R?, we have eig{E[pg(s)da(s) ]} > Ay, where N, is a
positive constant.

Assumption 5 (Lipschitz gradient). For any vec-
tor 0,0 and w,w' € R? and any sample x,
we have ||[VJ(0)—-VJ(@)|, < Ljs||0—¢]|, and
lg(0,w,z) —g(0,w x)|, < Lel|w—w, where L

and L. are positive constants.

Assumptions 2-5 are equivalent to the assumptions
adopted in the original nonlinear TDC analysis
[Bhatnagar et al., 2009], and can be satisfied by ap-
propriately choosing the approximation function class
0(s,0). The following theorem characterizes the con-
verge rate and sample complexity of Algorithm 2.

Theorem 2. Consider the two timescale nonlinear
TDC algorithm in Algorithm 2. Suppose Assumptions

1-5 hold. Let the stepsize < min{ 8)5’4 , )\i} and o <
(b v

1 MB  LsA2B°
min{ 57—, TR 384L%UL§}‘ We have

E[IIV7@2)]5)

< 4IC) “EVOr)) , Bl w@)lly , By

where By and Bs are constants defined in Appendixz B
in eq. (48). Furthermore, let M > % and T >

2 @ + By |Jwg — w(90)||§] The total sample com-
plexity for Algorithm 2 to achieve an e-accurate sta-
tionary point, i.e., E[ HVJ((‘)T)H;] < e, is given by

rr-o(L).
€

Theorem 2 shows that the convergence error of Algo-
rithm 2 consists of three terms: the first two terms are
the transient error decreasing at a sublinear rate as T'
increases, and the third term contains the variance and
bias errors that diminish as the batch size M increases.
We next provide a sketch of the proof for Theorem 2.
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Proof Sketch of Theorem 2. The proof of Theo-
rem 2 consists of the following four steps.

Step 1: We first provide Lemma 4 to show that w(6)
is Lq,-Lipschitz:

w(0) —w(@)|y, < Ly ||0 —0'),, forall 6,6 cR™

This property is crucial for the convergence analysis
of two time-scale nonlinear TDC. It indicates that
if 6; changes slowly, then w(f;) also changes slowly.
This allows our finite time analysis to be over a slowly
changing linear SA with corresponding ODE defined
in eq. (9), guaranteeing that |Jw; — w(Gt)H; is small in
an amortized sense.

Step 2: We then establish the induction relationships
for the tracking error ||w; — w(Gt)Hg:

E [Ilwtﬂ - w(9t+1)||§]
< (1= OB E [|lwe — w(®))3]
+6(a?/BE[IVI@)3] +ea/m). (1)

Step 3: We then establish the induction relationships
for the gradient norm ||VJ(9t)||§:

() - ©(a®) E[IVJ (611}
< E[J(0,)] ~ BLJ(0011)]
+6(a+ad)E [Ju — wB)|}] +©(1/M). (12)

Step 4: Applying eq. (11) and eq. (12) recursively
from ¢t = T — 1 to 0 and combing those two results
together yield

(6(0) - 6(0?) - ©(a") 3" E [IVI(6)]2]

< J(6o) — E[J(67)]
+6((a+a?)/B) llwo — w(Bo)[|3 + O(1/M).
Letting the stepsize a and S and the batch size M

satisfies the requirement specified in Theorem 2, we
can then obtain the desired convergence result. O

5 Policy Optimization: Greedy-GQ
Algorithm

In this section, we will provide the non-asymptotic
convergence result of Greedy-GQ [Maei et al., 2010],
which is also a two timescale nonlinear SA algorithm.

Greedy-GQ was proposed in [Maei et al., 2010] to solve
the divergence issue of Q-Learning in the linear function

approximation setting. In Greedy-GQ, the goal of the
agent is to learn an optimal policy for the MDP with
respect to the total expected discounted reward. In the
linear function approximation setting, a linear function
Q(s, a,0) = ¢(s,a) "0 is used to approximate the state-
action value function Q(s,a), where ¢(s,a) € R? is
a fixed feature vector for state-action pair (s,a) and
6 € R is a parameter vector. Without loss of generality,
we assume that the feature vector [|¢(s, a)||, < 1 for all
(s,a) € S x A and the columns of the feature matrix
® are linearly independent. In this setting, we hope to
find a solution # that satisfies

HT’T‘"Q(S,CL,H) = Q(s,aﬁ), for all (s,a) € S x A,

(13)

where mp is the soft-max greedy policy with respect to
the state-action value function Q(s, a,8), i.e., mg(als) =
exp(rQ(s.a.0)
Zar’eA exp(TQ(s,a’,0))’
parameter, and 7™ denotes the Bellman operator with

policy mg. Similarly to the TDC algorithms, Gready-
GQ searches a parameter that satisfies eq. (13) by min-
imizing a projected Bellman error objective function
defined as:

where 7 > 0 is the temperature

J(0) =E,, [Q(s,a,0) —TIT™Q(s,a,0)]*,  (14)

where §(0) = r(s,a,s’) + 7@(5’,1), 0) — Q(s,a,@) is
the temporal difference error, with a ~ my(-|s) and
b ~ my(-|s’). Since J(0) is nonconvex and smooth ev-
erywhere, we can apply gradient descent method to
find a local optimal (stationary point) of the objective
J(0) via applying the update 0,41 = 0, — $V.J(6;)
iteratively, in which

1

§VJ(9t)

= _Eﬂwb [Ex, [0(0)]s, ald(s, a)]

+ By, [Bx,[0(s',0)]s,a]¢(s, a) "Jw(6)
where
w(6) = By, [6(5,0)6(5,0) T 'y, [Bry [6(0)]s, al (5, 0)].
Similarly to the nonlinear TDC algorithms in sec-

tion 4, here an auxiliary parameter w; is adopted to

estimate the vector w(6;) by solving a linear SA with
the following corresponding ODE:

W = —Ey,, [6(s,0)(s,a) " Jw + By, By [5(6) 5, ald(s, a)].
Then, 6; can be updated via direct sampling
1
9t+1 - et + s Z g(etawhxj)?
Bl 5

where pg(s,a) = mg(als)/mp(als) is the impor-
tance weighting factor bounded by pma.x and we de-
fine g(0s, wi,z;) = po,(Sj+1,a5+1)(0;(0:)d(s5,a;) —
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Yo (si41,a541)B(s5,a;) Twy). The two timescale
Greedy-GQ algorithm is shown below.

Algorithm 3 Two Timescale Greedy-GQ

1: Input: batch size M, learning rate o and (3
2: Sampling: A trajectory {s;,a;};>0 is sampled by
following the behaviour policy
Initialization: 6, and wy
fort=0,---,7T—1do

’it =tM

werr = we + B 27 T (=0 (s, a5) (s, a5) Twe+
po;(s5,a5)05(0:)d(s;,a;))

To O = Otasy 0T poy (8541, a541)(85(0:)b(55)—

VP(85+1, a+1)$(s5,a;) " we)
8: end for R
Output: 6; with 7" chosen uniformly from {1,--- T}

By slightly abusing notations in Section 4, we make
the follow standard assumptions.

Assumption 6  (Non-singularity). We have
(maxgera [Amax{Ag C~ 1 Ag}|) ™ = A1 and
Amax{C} = A2, where Ag = E,,_ [(VEx,[¢(s)]s] —
#(s))o(s)T] and C = —Ey,, [#(5)p(s)T] and Ay and Ao

are positive constants.

Assumption 7 (Bounded importance factor). For any
state-action pair (s,a) € S x A and any 0 € R?, we
have pg(s,a) < pmax, where pmax s a positive constant.

Note that Assumption 7 can be satisfied when the
behaviour policy is non-degenerated for all states.
Moreover, we make the following Lipschitz property
of the gradient V.J(6), which has been verified in
[Wang and Zou, 2020] in a similar setting.

Lemma 1. Suppose Assumption 1 and Assumption 6
hold, for any 0,0" € R%, we have |VJ(0) — VJ(0')], <
Ly||0—¢|,, where Ly is a positive constant.

Note that the Greedy-GQ algorithm in Algorithm 3
and nonlinear TDC algorithm in Algorithm 2 share
similar structures. Both objectives are nonconvex and
both algorithms adopt a two timescale update scheme,
in which the fast timescale iteration corresponds to a
linear SA and the slow time-scale iteration corresponds
to a nonlinear SA. Thus, the analysis of two time-scale
nonlinear TDC in Section 4 can be extended to study
the convergence rate of Greedy-GQ algorithm. The
following theorem characterizes the convergence rate
and sample complexity of Algorithm 3.

Theorem 3. Consider the two timescale Greedy-GQ
algorithm in Algorithm 3. Suppose Assumptions 1,
6 and 7 hold. Let the stepsize f < mln{ s )\

AoV L,])\z 2
fpmxﬂ’ TP B2}, and batch

and « S min{m, 3

2
size M > H(F”ipl max{128 (p?nax + %) 1+ %(% +
2/3%)], 7ﬁ A2 (pmax t1) }. We have

E[[[v76:)]3]

8(J(00) = ELJ (7)) | 192ma w0 — w* (60) I3
- o A2/B T
32C1[1 + (k — 1)p]
M(l—-p) 7

where Cy is a positive constant defined in eq. (60) in
Appendiz C. Furthermore, let M > 6405 [14(x—1)p]

(I—p)e
T> 2 8'](‘90) + 192Pmax|\;\1;0ﬁ w(6o)l13 . The total sample

complemty for Algorithm 2 to achieve an e-accurate
E[||VJ(®

and

stationary point, i.e., T)Hz] <€, is given by

rr-o(L).
€

Similarly to Theorem 2, in Theorem 3 we show that
Algorithm 3 converges to an e-accurate stationary
point with sample complexity O(e~2). Note that
[Wang and Zou, 2020] studied the convergence rate of
two timescale Greedy-GQ with diminishing stepsize,
which achieves the complexity of O(e~2log(1/¢)). The-
orem 3 for two timescale Greedy-GQ with constant step-
size outperforms the result in [Wang and Zou, 2020] by
a factor of O(e~!log(1/e)), indicating that the constant
stepsize can significantly improve the convergence rate
of two timescale Greedy-GQ algorithm.

6 Conclusion

In this paper, we study the convergence rate for two
timescale linear and nonlinear TDC and Greedy-GQ un-
der Markovian sampling and constant stepsize. Specifi-
cally, we show that the complexity result of linear TDC
orderwisely achieves the optimal convergence rate under
a constant stepsize. Our result for nonlinear TDC is the
first under Markovian sampling. Moreover, our sample
complexity result of Greedy-GQ outperforms the previ-
ous result orderwisely. For future work, it is interesting
to apply more advance optimization techniques, e.g.,
acceleration, variance reduction, to further improve
the convergence performance of the value-based RL
algorithms studied in this paper.
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