
Generalization in portfolio-based algorithm selection

Maria-Florina Balcan
Carnegie Mellon University

ninamf@cs.cmu.edu

Tuomas Sandholm
Carnegie Mellon University

Optimized Markets, Inc.

Strategic Machine, Inc.

Strategy Robot, Inc.

sandholm@cs.cmu.edu

Ellen Vitercik
Carnegie Mellon University

vitercik@cs.cmu.edu

December 25, 2020

Abstract

Portfolio-based algorithm selection has seen tremendous practical success over the past two
decades. This algorithm configuration procedure works by first selecting a portfolio of diverse
algorithm parameter settings, and then, on a given problem instance, using an algorithm selector
to choose a parameter setting from the portfolio with strong predicted performance. Oftentimes,
both the portfolio and the algorithm selector are chosen using a training set of typical problem
instances from the application domain at hand. In this paper, we provide the first provable
guarantees for portfolio-based algorithm selection. We analyze how large the training set should
be to ensure that the resulting algorithm selector’s average performance over the training set is
close to its future (expected) performance. This involves analyzing three key reasons why these
two quantities may diverge: 1) the learning-theoretic complexity of the algorithm selector, 2)
the size of the portfolio, and 3) the learning-theoretic complexity of the algorithm’s performance
as a function of its parameters. We introduce an end-to-end learning-theoretic analysis of the
portfolio construction and algorithm selection together. We prove that if the portfolio is large,
overfitting is inevitable, even with an extremely simple algorithm selector. With experiments,
we illustrate a tradeoff exposed by our theoretical analysis: as we increase the portfolio size, we
can hope to include a well-suited parameter setting for every possible problem instance, but it
becomes impossible to avoid overfitting.

1 Introduction

Algorithms for many problems have tunable parameters. With a deft parameter tuning, these
algorithms can often efficiently solve computationally challenging problems. However, the best
parameter setting for one problem is rarely optimal for another. Algorithm portfolios—which are
finite sets of parameter settings—are used in practice to deal with this variability. A portfolio is
often used in conjunction with an algorithm selector, which is a function that determines which
parameter setting in the portfolio to employ on any input problem instance. Portfolio-based al-
gorithm selection has seen tremendous empirical success, fueling breakthroughs in combinatorial
auction winner determination [23, 32], SAT [38], integer programming [22, 39], planning [15, 29],
and many other domains.

Both the portfolio and the algorithm selector are often chosen using a training set of prob-
lem instances from the application domain at hand. This training set is typically assumed to be
drawn from an unknown, application-specific distribution. The portfolio and algorithm selector are
chosen to have strong average performance (quantified by low average runtime, for example) over

1

ar
X

iv
:2

01
2.

13
31

5v
1 

 [c
s.A

I]
  2

4 
D

ec
 2

02
0



the training set. We investigate whether the learned algorithm selector also has strong expected
performance on problems from the same application domain. The difference between average per-
formance and expected performance is known as generalization error. If the generalization error is
small, every parameter setting’s average performance over the training set is close to its expected
performance, so the learned algorithm selector will not overfit. When overfitting occurs, the learned
selector has strong average performance over the training set but poor expected performance on
the true distribution. In other words, the algorithm selector is overfitting to the problem instances
in the training set.

There are multiple reasons the generalization error might be large in this setting: 1) the learning-
theoretic complexity of the algorithm selector, 2) the size of the portfolio, and 3) the learning-
theoretic complexity of the algorithm’s performance as a function of its parameters. We provide
end-to-end bounds on generalization error in terms of all three elements simultaneously. The
variety of factors impacting generalization error differentiates this paper from prior research on
generalization guarantees in algorithm configuration [4–11, 16, 19, 26]. That research focuses on
bounding the generalization error of learning a single good parameter setting for the entire problem
instance distribution, rather than a portfolio together with an algorithm selector that selects an
algorithm (e.g., its parameter values) from the portfolio for the specific instance at hand. In the
former case, generalization error only grows with (3)—just one of the sources of error we must
contend with.

Our bounds apply to the widely-applicable setting where on any fixed input, algorithmic perfor-
mance is a piecewise-constant function of its parameters with at most t pieces, for some t ∈ Z. This
structure has been observed in algorithm configuration for integer programming, greedy algorithms,
clustering, and computational biology [3–5, 8, 19]. Given a training set of size N , we prove that the

generalization error is bounded1 by Õ
(√(

d̄+ κ log t
)
/N
)
, where κ is the size of the portfolio and

d̄ measures the intrinsic complexity of the algorithm selector, as we define in Section 3. We also
prove that this bound is tight up to logarithmic factors: the generalization error can be as large as

Ω̃
(√(

d̄+ κ
)
/N
)
. This implies that even if the algorithm selector is extremely simple (d̄ is small),

overfitting cannot be avoided in the worst case when the portfolio size κ is large. Moreover, we
instantiate our guarantees for several commonly-used families of algorithm selectors [21, 22, 38].

Finally, via experiments in the context of integer programming configuration, we illustrate the
inherent tradeoff our theory exposes: as we increase the portfolio size, we can hope to include a
high-performing parameter setting for any given instance, but it become increasingly difficult to
avoid overfitting. We incrementally increase the size of the portfolio and with each addition we train
an algorithm selector using regression forest performance models. As the portfolio size increases,
the algorithm selector’s training performance continues to improve, but there comes a point where
the test performance begins to worsen, meaning that the algorithm selector is overfitting to the
training set.

Additional related research. Gupta and Roughgarden [19] also provide generalization guaran-
tees for algorithm configuration. They primarily analyze the problem of learning a single parameter
setting with high expected performance on the underlying distribution. They do provide guarantees
for the more general problem of learning a mapping from instances to parameter settings in a few
special cases, but do not study the problem of learning a portfolio in conjunction with learning a
selector, which we do. They study settings where for each problem instance, a domain expert has
defined a number of relevant features, as do we in Section 4. Their first result applies to learning an

1Here we assume that algorithmic performance is a quantity in [0, 1], an assumption we relax in Section 2.

2



algorithm selector when the set of features is finite. In contrast, our results apply to infinite feature
spaces. Their second set of results is tailored to the problem of learning empirical performance
models and applies when the feature space is infinite. An empirical performance model is meant
to predict how long a particular algorithm will take to run on a given input. An algorithm selector
can use an empirical performance model by selecting the parameter setting with best predicted
performance. Gupta and Roughgarden [19] provide guarantees that bound the difference between
the empirical performance model’s expected error and average error over the training set. Their
guarantees can be applied once the portfolio is already chosen. They do not study the problem of
learning the portfolio itself, whereas we study the composite problem of learning the portfolio and
the algorithm selector.

In a related theoretical direction, several papers have studied a model where there are multiple
algorithms capable of computing a correct solution to a given problem, but with different costs.
The user can run multiple algorithms until one terminates with the correct solution. Given a
training set of problem instances, the authors provide guarantees for learning a schedule with high
expected performance [33, 35, 36]. That is a distinct problem from ours, since our goal is to learn
an algorithm selector rather than a schedule. Moreover, we additionally handle the problem of
learning the portfolio itself.

2 Problem formulation and road map

Notation. Our theoretical guarantees apply to algorithms parameterized by a real value ρ ∈ R.
We use the notation Z to denote the set of problem instances the algorithm may take as input.
For example, Z might consist of integer programs (IPs) if we are configuring an IP solver. There
is an unknown distribution D over problem instances in Z .

To describe the performance of a parameterized algorithm, we adopt the notation of prior
research [8]. For every parameter setting ρ ∈ R, there is a function uρ : Z → [0, H] that measures,
abstractly, the performance of the algorithm parameterized by ρ given an input z ∈ Z . For
example, uρ might measure runtime or the quality of the algorithm’s output. We use the notation
U = {uρ : ρ ∈ R} to denote the set of all performance functions.

Problem formulation. A portfolio-based algorithm selection procedure relies on two key com-
ponents: a portfolio and an algorithm selector. A portfolio is a set P = {ρ1, . . . , ρκ} ⊆ R of κ
parameter settings. An algorithm selector is a mapping f : Z → P from problem instances z ∈ Z
to parameter settings f(z) ∈ P . In practice [22, 32, 39], the portfolio and algorithm selector are
typically learned using the following high-level procedure:

1. Choose a class F of algorithm selectors, each of which maps Z to R. (In Section 4, we provide
several examples of classes F used in practice.)

2. Draw a training set S = {z1, . . . , zN} ∼ DN of problem instances from the unknown distri-
bution D.

3. Use S to learn a portfolio P̂ = {ρ1, . . . , ρκ} ⊆ R.

4. Use S to learn an algorithm selector f̂ ∈ F that maps to parameter settings in the portfolio
P̂ .

Given an instance z ∈ Z , the performance of the parameter setting selected by f̂ is uf̂(z)(z).

We bound the expected quality Ez∼D
[
uf̂(z)(z)

]
of the learned algorithm selector.

3



Road map. We first analyze to what extent the average performance of the selector f̂ over
the training set generalizes to its expected performance on the distribution. We then use this
analysis to relate the performance of the learned selector f̂ and the optimal selector under the

optimal choice of a portfolio. In particular, we bound the difference between Ez∼D
[
uf̂(z)(z)

]
and

maxP :|P |≤κ Ez∼D
[
maxρ∈P uρ(z)

]
. (Equivalently, if our goal is to minimize uρ(z), we may replace

each max with a min.)

3 Sample complexity bounds

In this section, we bound the difference between the average performance of any selector f ∈ F
over the training set S ∼ DN and its expected performance. Formally, we bound∣∣∣∣∣ 1

N

∑
z∈S

uf(z)(z)− E
z∼D

[
uf(z)(z)

]∣∣∣∣∣ (1)

for any choice of an algorithm selector f ∈ F . This will serve as a building block for our general
analysis of portfolio-based algorithm selection.

Our bounds apply in the widely-applicable setting where on any fixed input, algorithmic per-
formance is a piecewise-constant function of the algorithm’s parameters. This structure has been
observed in algorithm configuration for integer programming, greedy algorithms, clustering, and
computational biology [3–5, 8, 19]. To describe this structure more formally, for a fixed input
z ∈ Z , we use the notation u∗z : R → R to denote algorithmic performance as a function of the
parameters (whereas the functions uρ defined in Section 2 measure performance as a function of
the input z). Naturally, u∗z(ρ) = uρ(z). We refer to u∗z as a dual function (as opposed to uρ, which
is a primal function). We assume algorithmic performance is a piecewise-constant function of the
parameters, or more formally, that each function u∗z is piecewise constant with at most t pieces, for
some t ∈ Z.

Our bounds depend on both the number of pieces t and on the intrinsic complexity of the class
of algorithm selectors F . We use the following notion of the multi-class projection of F to define
the class’s intrinsic complexity.

Definition 3.1. Given a selector f ∈ F , let ρ1 < ρ2 < · · · < ρκ̄ be the parameter settings f maps
to, with κ̄ ≤ κ. The function f defines a partition Z1, . . . , Zκ̄ of the problem instances Z where for
any z ∈ Z , if f(z) = ρi, then z ∈ Zi. For each function f ∈ F there is therefore a corresponding
multi-class function f̄ : Z → [κ] that indicates which set of the partition the instance z belongs
to: f̄(z) = i when z ∈ Zi. We use the notation F̄ =

{
f̄ : f ∈ F

}
to denote the set of all such

multi-class functions.

Defining this set of multi-class functions allows us to use classic tools from multi-class learning
to reason about the algorithm selectors F . In particular, our bounds depend on the Natarajan
[27] dimension of the class F̄ , which is a natural extension of the classic VC dimension [37] to
multi-class functions.

Definition 3.2 (Natarajan dimension). The set F̄ multi-class shatters a set of problem instances
z1, . . . , zN if there exist labels y1, . . . , yN ∈ [κ] and y′1, . . . , y

′
N ∈ [κ] such that:

1. For every i ∈ [N ], yi 6= y′i, and

2. For any subset C ⊆ [N ], there exists a function f̄ ∈ F̄ such that f̄ (zi) = yi if i ∈ C and
f̄(zi) = y′i otherwise.

4



The Natarajan dimension of F̄ is the cardinality of the largest set that can be multi-class shattered
by F̄ .

In Section 4, we bound the Natarajan dimension of F̄ for several commonly-used classes of
algorithm selectors F . We use Natarajan dimension to quantify the intrinsic complexity of the
class of selectors, which in turn allows us to bound Equation (1) for every function f ∈ F . To
do so, we relate the Natarajan dimension of F̄ to the pseudo-dimension of the function class
UF =

{
z 7→ uf(z)(z) : f ∈ F

}
. Every function in UF is defined by an algorithm selector f ∈ F .

On input z ∈ Z , uf(z)(z) equals the utility of the algorithm parameterized by f(z) on input z.
Pseudo-dimension [20] is a classic learning-theoretic tool for measuring the intrinsic complexity of a
class of real-valued functions (whereas Natarajan dimension applies to multi-class functions). Both
Natarjan dimension and pseudo-dimension are extensions of the classic VC dimension, so they bear
some resemblance. Below, we define the pseudo-dimension of the class UF .

Definition 3.3 (Pseudo-dimension). The set UF shatters a set of instances z1, . . . , zN ∈ Z if there
exist witnesses w1, . . . , wN ∈ R such that for any subset C ⊆ [N ], there exists an algorithm selector
f ∈ F such that uf(zi) (zi) ≤ wi if i ∈ C and uf(zi) (zi) > wi otherwise. The pseudo-dimension of
UF , denoted Pdim (UF ), is the size of the largest set of instances that can be shattered by UF .

Classic learning-theoretic results allow us to provide generalization bounds once we calculate the
pseudo-dimension. For example [20], with probability 1− δ over the draw of the set {z1, . . . , zN} ∼
DN , for any selector f ∈ F ,∣∣∣∣∣ 1

N

N∑
i=1

uf(zi)(zi)− E
z∼D

[
uf(z)(z)

]∣∣∣∣∣ = O

(
H

√
1

N

(
Pdim (UF ) + log

1

δ

))
. (2)

We now prove a general bound on Pdim (UF ), which allows us to bound Equation (1). The
proof is in Appendix A.

Theorem 3.4. Suppose each dual function u∗z is piecewise-constant with at most t pieces. Let d̄ be
the Natarajan dimension of F̄ . Then Pdim (UF ) = Õ

(
d̄+ κ log t

)
.

At a high level, the Õ
(
d̄
)

term accounts for the intrinsic complexity of the algorithm selectors
F . The O (κ log t) term accounts for the complexity of composing selectors f with the performance
functions uρ. In Theorem 3.5, we prove this bound is tight up to logarithmic factors.

Proof sketch of Theorem 3.4. Let z1, . . . , zN ∈ Z be an arbitrary set of problem instances. Since
each dual function u∗zi is piecewise-constant with at most t pieces, there are M ≤ Nt intervals
I1, . . . , IM partitioning R where for any interval Ij and any instance zi, u

∗
zi(ρ) is constant across

all ρ ∈ Ij . Given these intervals, we partition the algorithm selectors in F into at most Mκ sets
so that within any one set, all selectors map to the same κ (or fewer) intervals. Focusing on the
selectors within one set F0 of the partition, we prove that the number of ways the utility functions
uf across f ∈ F0 can labels the instances z1, . . . , zN is upper bounded by the number of ways the
multi-class projection functions f̄ across f ∈ F0 can label the instances. We can then use the
Natarajan dimension of F̄ to bound the number of ways the functions in UF label the instances
z1, . . . , zN .

Theorem 3.4 and Equation (2) imply that with probability 1 − δ over the draw S ∼ DN , for
any selector f ∈ F ,∣∣∣∣∣ 1

N

∑
z∈S

uf(z)(z)− E
z∼D

[
uf(z)(z)

]∣∣∣∣∣ = O

(
H

√
1

N

(
d̄+ κ log t+ log

1

δ

))
. (3)

5



This theorem quantifies a fundamental tradeoff: as the portfolio size increases, we can hope
to obtain better and better empirical performance

∑
z∈S uf(z)(z) but the generalization error

Õ
(
H
√(

d̄+ κ
)
/N
)

will worsen.

We now prove that Theorem 3.4 is tight up to logarithmic factors. The following theorem
illustrates that even if the class of algorithm selectors is extremely simple (in that the Natarajan
dimension of F̄ is 0), if the portfolio size (that is, the number κ of parameters mapped to) is large,
we cannot hope to avoid overfitting. The full proof is in Appendix A.

Theorem 3.5. For any κ, d̄ ≥ 2, there is a class of functions U = {uρ : ρ ∈ R} and a class of
selectors F such that:

1. Each selector f ∈ F maps to ≤ κ parameter settings.

2. Each dual function u∗z is piecewise-constant with 1 discontinuity,

3. The Natarajan dimension of F̄ is at most d̄, and

4. The pseudo-dimension of UF is Ω
(
κ+ d̄

)
.

Proof sketch. Let Z = (0, 1]. For each parameter setting ρ ∈ R, define uρ(z) = 1{z≤ρ}. Let κ, d̄ ≥ 2
be two arbitrary integers. We split this proof into two cases: d̄ ≥ κ and κ > d̄. In both cases, we
construct a class of selectors F that satisfies the properties in the theorem statement and we prove
that Pdim (UF ) ≥ max

{
κ, d̄
}

= Ω
(
κ+ d̄

)
. We sketch the proof of the case where κ > d̄.

We begin by partitioning Z = (0, 1] into κ intervals Z1, . . . , Zκ, where Zi =
(
i−1
κ , iκ

]
. For each

set C ⊆ [κ], we define an selector fC : Z → R as follows. For any z ∈ Z , let i be the index of the
interval z lies in, i.e., z ∈ Zi. If i ∈ C, we map fC(z) = i

κ and if i 6∈ C, we map fC(z) = i
κ −

1
2κ . Let

F = {fC : C ⊆ [κ]}. The multi-class projection of F̄ is extremely simple: its Natarjan dimension
is 0. Moreover, the set S =

{
1
κ ,

2
κ , . . . ,

κ−1
κ , 1

}
is shattered by UF because—at a high level—each

selector fC maps each element z ∈ S to a parameter just above z or just below z, which allows the
function class UF to shatter S .

In the proof of Theorem 3.5, each performance function uρ maps to {0, 1}, so we effectively
prove a lower bound on the VC dimension of UF . Classic results from learning theory imply the

generalization error of learning a selector f ∈ F can therefore be as large as Ω̃
(
H
√(

d̄+ κ
)
/N
)
,

which matches Equation (3) up to logarithmic factors.

4 Application of theory to algorithm selectors

We now instantiate Theorem 3.4 for several commonly-used classes of algorithm selectors. In each
of the case studies, there is a feature mapping φ : Z → Rm that assigns feature vectors φ(z) ∈ Rm
to problem instances z ∈ Z .

4.1 Linear performance models

We begin by providing guarantees for algorithm selectors that use a linear performance model.
These have been used extensively in computational research [38, 39]. To define this type of selector,
let ρ = (ρ1, . . . ρκ) be a set of κ distinct parameter settings. For each i ∈ [κ], define a vectorwi ∈ Rm

6



and let

W =

 . . .

w1
. . . wκ

. . .


be a matrix containing all κ weight vectors. The dot product wi · φ(z) is meant to estimate the
performance of the algorithm parameterized by ρi on instance z. We define the algorithm selector
fρ,W (z) = ρi where i = argmaxj∈[κ] {wj · φ(z)}, which selects the parameter setting with best pre-
dicted performance. We define the class of algorithm selectors FL = {fρ,W : W ∈ Rm×κ,ρ ∈ Rκ}.
To define the class F̄L, for each matrix W ∈ Rm×κ, let gW : Z → [κ] be a function where
gW (z) = argmaxi∈[κ] {wi · φ(z)} . By definition, F̄L = {gW : W ∈ Rm×κ}, so F̄L is the well-studied
m-dimensional linear class which has a Natarajan dimension of O(mκ) [34]. This fact implies the
following corollary.

Corollary 4.1. Suppose the dual functions are piecewise-constant with at most t pieces. The
pseudo-dimension of UFL =

{
z 7→ uf(z) : f ∈ FL

}
is O(κm log(κm) + κ log t).

4.2 Regression tree performance models

We now analyze algorithm selectors that use a regression tree as the performance model. These
have proven powerful in computational research [21]. A regression tree T ’s leaf nodes partition the
feature space Rm into disjoint regions R1, . . . , R`. In each region Ri, a constant value ci is used to
predict the algorithm’s performance on instances in the region. The internal nodes of the tree define
this partition: each performs an inequality test on some feature of the input. We use the notation
hT (z) to denote tree T ’s prediction of the algorithm’s performance on instance z. Formally, hT (z)
equals the constant value corresponding to the region of the tree’s partition to which φ(z) belongs.

An algorithm selector can be defined using a regression tree performance model as follows. Let
ρ = (ρ1, . . . , ρκ) be a set of κ distinct parameter settings. For each parameter setting ρi, let Ti
be a tree that is meant to predict the performance of the algorithm parameterized by ρi, and let
T = (T1, . . . , Tκ) be the set of all κ trees. We define the algorithm selector fρ,T (z) = ρi where
i = argmaxj∈[κ]

{
hTj (z)

}
. The class of algorithm selectors FR consists of all functions fρ,T across

all parameter vectors ρ ∈ Rκ and all κ-tuples of regression trees T = (T1, . . . , Tκ). The full proof
of the following lemma is in Appendix A.1.

Lemma 4.2. Suppose we limit ourselves to building regression trees with at most ` leaves. Then
the Natarajan dimension of F̄R is O(`κ log(`κm)).

Proof sketch. For each κ-tuple of regression trees T = (T1, . . . , Tκ), let gT : Z → [κ] be a function
where gT (z) = argmaxi∈[κ] {hTi(z)}. By definition, the set F̄R consists of the functions gT across
all κ-tuples of regression trees T with at most ` leaves. Let z1, . . . , zN ∈ Z be a set of problem
instances. Our goal is to bound the number of ways the functions gT can label these instances.
A single regression tree induces a partition of these N problem instances defined by which leaf
each instance is mapped to as we apply the tree’s inequality tests. The key step in this proof is
bounding the total number of partitions we can induce by varying the tree’s inequality tests. We
then generalize this intuition to bound the number of partitions κ regression trees can induce as
we vary all their parameters. Once the partition of each regression tree is fixed, the tree with the
largest prediction for each problem instance depends on the relative ordering of the constants at
the trees’ leaves. There is a bounded number of possible relative orderings, and we aggregate all of
these bounds to prove the lemma statement.

7



Corollary 4.3. Suppose the dual functions are piecewise-constant with at most t pieces and we limit
ourselves to building regression trees with at most ` leaves. Then Pdim (UFR) = O(`κ log(`κm) +
κ log t).

This pseudo-dimension bound reflects the end-to-end nature of our analysis, since the guarantee
bounds the generalization error of both selecting the portfolio and training the regression tree
performance model. This is why the bound grows with both the size of the portfolio (κ) and the
complexity of the regression trees (` and m).

4.3 Clustering-based algorithm selectors

We now provide guarantees for clustering-based algorithm selectors, which have also been used in
computational research [22]. This type of selector clusters the feature vectors φ(z1), . . . , φ(zN ) ∈
Rm and chooses a good parameter setting for each cluster. On a new instance z, the selector
determines which cluster center is closest to φ(z) and runs the algorithm using the parameter
setting assigned to that cluster. More formally, let ρ = (ρ1, . . . , ρκ) be a set of parameter settings
and let x1, . . . ,xκ ∈ Rm be a set of vectors. We define the matrix

X =

 . . .

x1
. . . xκ
. . .

 ,

where each column xi is meant to represent a cluster center. We define the algorithm selector

fρ,X(z) = ρi where i = argminj∈[κ]

{
‖xj − φ(z)‖p

}
, for some `p-norm with p ≥ 1. The class of

algorithm selectors is FC = {fρ,X : ρ ∈ Rκ, X ∈ Rm×κ} . The full proof of the following lemma is
in Appendix A.2.

Lemma 4.4. For any p ∈ [1,∞), the Natarajan dimension of F̄C is O(mκ log(mκp)).

Proof sketch. For each matrix X, let gX : Z → [κ] be defined such that

gX(z) = argmini∈[κ]

{
‖xi − φ(z)‖pp

}
.

By definition, F̄C = {gX : X ∈ Rm×κ}. Let z1, . . . , zN ∈ Z be a set of problem instances. Our goal
is to bound the number of ways the functions gX can label these instances as we vary X ∈ Rm×κ.
We do so by analyzing, for each instance zi, the boundaries in Rm×κ where if we shift X from one
side of the boundary to the other, the column in X closest to φ (zi) changes. We show that these
boundaries are defined by multi-dimensional polynomials. We bound the total number of regions
these boundaries induce in Rm×κ, which implies a bound on the Natarajan dimension of F̄C .

Lemma 4.4 and Theorem 3.4 imply the following bound.

Corollary 4.5. Suppose the dual functions are piecewise-constant with at most t pieces. Then
Pdim (UFC ) = Õ (mκ+ κ log t).

5 Learning procedure with guarantees

In this section, we use the results from the previous section to provide guarantees for the high-level
learning procedure outlined in Section 2:

8



1. Draw a training set of problem instances S ∼ DN .

2. Use the training set S to select a set of κ or fewer parameter settings P̂ ⊆ R.

3. Use S to learn an algorithm selector f̂ ∈ F that maps problem instances z ∈ Z to parameter
settings f̂(z) ∈ P̂ .

Our guarantees depend on the quality of the portfolio P̂ and selector f̂ , as formalized by the
following definition.

Definition 5.1. Given a training set S ⊆ ZN and parameters α ∈ (0, 1], β ∈ [0, 1], and ε ∈ [0, 1],
we say the portfolio P̂ and the algorithm selector f̂ are (α, β, ε)-optimal if:

1. The portfolio P̂ is nearly optimal over the training set in the sense that

1

N

∑
z∈S

max
ρ∈P̂

uρ(z) ≥ α max
P⊂R:|P |≤κ

1

N

∑
z∈S

max
ρ∈P

uρ(z)− β.

(The maximization means that performance is measured with respect to an oracle that selects
an optimal algorithm parameter ρ from the portfolio for each instance.)

2. The algorithm selector f̂ returns high-performing parameter settings from the set P̂ in the
sense that

1

N

∑
z∈S

uf̂(z)(z) ≥ 1

N

∑
z∈S

max
ρ∈P̂

uρ(z)− ε. (4)

For example, when algorithmic performance as a function of the parameters is piecewise con-
stant, there are only a finite number of meaningfully different parameter values to choose among,
one per piece. Then, since

∑
z∈S max

ρ∈P̂ uρ(z) is a submodular function of the portfolio P̂ , we can

use a greedy algorithm to select the portfolio P̂ , and we obtain α = 1− 1
e and β = 0, as we prove in

Appendix C. Alternatively, an integer programming technique could be used to select the optimal
portfolio from the finite set of candidate parameter values, in which case we would obtain α = 1
and β = 0. Moreover, the value ε can be calculated directly from the training set.

The following theorem bounds the difference between the expected performance of the chosen
selector f̂ and an oracle that selects an optimal selector and an optimal portfolio. The full proof is
in Appendix B.

Theorem 5.2. Suppose that each dual function u∗z is piecewise constant with at most t pieces.
Given a training set S ⊆ Z of size N , suppose we learn an (α, β, ε)-optimal portfolio P̂ ⊂ R and
algorithm selector f̂ : Z → P̂ in F . With probability 1−δ over the draw of the training set S ∼ DN ,

E
z∼D

[
uf̂(z)(z)

]
≥ α max

P :|P |≤κ
E
[
max
ρ∈P

uρ(z)

]
− ε− β − Õ

(
H

√
d̄+ κ

N

)
,

where d̄ is the Natarajan dimension of F̄ .

Proof sketch. First, let P∗ be the optimal portfolio in the sense that

P∗ = argmaxP⊂R:|P |≤κ E
z∼D

[
max
ρ∈P

uρ(z)

]
.

We use a Hoeffding bound to relate the expected performance of P∗ under the oracle algorithm
selector and its average performance over the training set. We then use Definition 5.1 to relate the

9



latter quantity to the average performance of the learned selector f̂ over the training set. Finally,
we use Theorem 3.4 to relate the average performance of f̂ to its expected performance. Putting
all of these bounds together, we prove the theorem statement.

By a parallel argument, we can obtain symmetric guarantees when our goal is to minimize
rather than maximize a performance measure.

6 Experiments

We provide experiments that illustrate the tradeoff we investigated from a theoretical perspective
in the previous sections: as we increase the portfolio size, we can hope to include a well-suited
parameter setting for any problem instance, but it becomes increasingly difficult to avoid overfitting.
We illustrate this in the context of integer programming algorithm configuration. We configure
CPLEX, one of the most widely used commercial solvers. CPLEX uses the branch-and-cut (B&C)
algorithm (branch-and-bound with cutting planes, primal heuristics, preprocessing, etc.) to solve
integer programs (IPs). We tune an important parameter ρ ∈ [0, 1] of CPLEX that controls its
variable selection policy2 and has been studied extensively in prior research [1, 5, 12, 13, 17, 25].
We leave CPLEX’s other techniques on and unchanged in order to compare against the state of the
art. We provide a more detailed overview of CPLEX and the parameter we tune in Appendix D.
At a high level, B&C partitions the IP’s feasible region, finding locally optimal solutions within
the regions of the partition, and eventually verifies that the best solution found so far is globally
optimal. It organizes this partition as a tree. As in prior research [5, 18, 40], our goal is to find
parameter settings leading to small trees, so we define uρ(z) to be the size of the tree B&C builds.

We aim to learn a portfolio P̂ and selector f̂ resulting in small expected tree size E
[
uf̂(z)(z)

]
.

Distribution over IPs. We analyze a distribution over IPs formulating the combinatorial auc-
tion winner determination problem under the OR-bidding language [31], which we generate using
the Combinatorial Auction Test Suite [24]. We use the “arbitrary” generator with 200 bids and 100
goods, resulting in IPs with around 200 variables, and the “regions” generator with 400 bids and
200 goods, resulting in IPs with around 400 variables. We define a heterogeneous distribution D as
follows: with equal probability, we draw an instance from the “arbitrary” or “regions” distribution.
To assign features to these IPs, we use all the features developed in prior research by Leyton-Brown
et al. [24] and Hutter et al. [21], resulting in 140 features.

Experimental procedure. We first learn a portfolio of size 10 in the following way. We draw a
training set of M = 1000 IPs z1, . . . , zM ∼ D and solve for the dual functions u∗z1 , . . . , u

∗
zM

—which
measure tree size as a function of the parameter ρ—using the algorithm described in Appendix
D.1 of the paper by Balcan et al. [5]. These functions are piecewise-constant with at most t
pieces, for some t ∈ N. Therefore, there are at most Mt parameter settings leading to different
algorithmic performance over the training set. Let P̄ be this set of parameter settings. We use
a greedy algorithm to select 10 parameter settings from P̄ . First, we find a parameter setting
ρ1 which minimizes average tree size over the training set: ρ1 ∈ argmin

∑M
i=1 uz∗i (ρ). Then, we

find a parameter setting ρ2 that minimizes average tree size when the better of ρ1 or ρ2 is used:

2We override the default variable selection of CPLEX 12.8.0.0 using the C API. All experiments were run on a
64-core machine with 512 GB of RAM, a m4.16xlarge Amazon AWS instance, and a cluster of m4.xlarge Amazon
AWS instances.

10



(a) Plot with portfolio sizes 1
through 10.

(b) Legend for Figures 1a and
1c.

(c) Plot with portfolio sizes 1
through 20.

Figure 1: In Figures 1a and 1c, we plot the multiplicative tree size improvement we obtain as we
increase both the portfolio size along the horizontal axis and the size of the training set, denoted
N . Fixing a training set size and letting v̂κ be the average tree size we obtain over the test set
using a portfolio of size κ (see Equation (5)), we plot v̂κ/v̂1. In Figure 1a, the portfolio size ranges
from 1 to 10 and the training set size N ranges from 100 to 200,000. In Figure 1c, the portfolio
size ranges from 1 to 20 and the training set size ranges from 100 to 1000. In Figure 1a, we also
plot a similar curve for the test performance of the oracle algorithm selector, as well as the training
performance of the learned algorithm selector when N = 2 · 105.

ρ2 ∈ argmin
∑M

i=1 min
{
uz∗i (ρ), uz∗i (ρ1)

}
. We continue greedily until we have a portfolio P̂ =

{ρ1, . . . , ρ10}.
We then use a regression forest to select among parameter settings in the portfolio P̂ . Prior

research [21] has illustrated that regression forests can be strong predictors of B&C runtime. Here,
we use them to predict B&C tree size. A regression forest is a set F = {T1, . . . , TM} of regression
trees (which we reviewed in Section 4.2). On an input IP z, the regression forest’s prediction,
denoted hF (z), is the average of the trees’ predictions: hF (z) = 1

M

∑M
i=1 hTi(z). We learn regression

forests F1, . . . , F10 for each of the 10 parameter settings in the portfolio P̂ . We then define the
algorithm selector f̂(z) = ρi where i = argmin {hF1(z), . . . , hF10(z)}.

To learn the regression forest, we draw a training set z1, . . . , zN ∼ D of IPs (with N specified
below). For each parameter setting ρi ∈ P̂ and IP zj , we compute uρi (zj), the size of the tree
B&C builds using the parameter setting ρi. We then train the regression forest Fi corresponding to
the parameter setting ρi using the labeled training set {(z1, uz1 (ρi)) , . . . , (zN , uzN (ρi))}. We use
Python’s scikit-learn regression forest implementation [30] with the default parameter settings.

In Figure 1a, we plot the performance of the regression forests as we increase the sizes of both
the training set and the portfolio. We denote the training set size as N , which ranges from 100
to 200,000. For a given choice of N , we first train the 10 regression forests F1, . . . , F10 using
the method described above. We then evaluate performance as a function of the portfolio size.
Specifically, for each portfolio size κ ∈ [10], we define an algorithm selector f̂κ(z) = ρi where
i = argmin {hF1(z), . . . , hFκ(z)}. We draw Nt = 104 test instances St ∼ DNt and evaluate the
performance of f̂κ on the test set. We denote the average test performance as

v̂κ =
1

Nt

∑
z∈St

uf̂κ(z) (z) . (5)

In Figure 1a, we plot the multiplicative performance improvement we obtain as we increase κ.
Specifically, we plot v̂κ/v̂1. These are the blue solid (N = 102), orange dashed (N = 103), green
dotted (N = 104), and purple dashed (N = 2·105) lines. By the iterative fashion we constructed the

11



portfolio, v̂1 is the performance of the best single parameter setting for the particular distribution,
so v̂1 is already highly optimized.

We plot a similar curve for the test performance of the oracle algorithm selector which always
selects the optimal parameter setting from the portfolio. Specifically, for each portfolio size κ ∈ [10],
let f∗κ be the oracle algorithm selector f∗κ(z) = argminρ1,...,ρκuρi(z). Given a test set St ∼ DNt , we
define the average test performance of f∗κ as

v∗κ =
1

Nt

∑
z∈St

uf∗κ(z) (z) .

The blue dotted line equals v∗κ/v
∗
1 as a function of κ.

Finally, when the training set is of size N = 2 · 105, we provide a similar curve for the training
performance of the learned algorithm selectors f̂κ. Letting z1, . . . , zN be the training set, we denote
the average training performance as

ṽκ =
1

N

N∑
i=1

uf∗κ(zi) (zi) .

The yellow solid line equals ṽκ/ṽ1 as a function of the portfolio size κ.
In Figure 1c, we plot v̂κ/v̂1 as a function of the portfolio size κ for larger portfolio sizes ranging

from 1 to 20. We greedily extend the portfolio P̂ to include an additional 20 parameter settings.
We then train 20 regression forests using freshly drawn training sets of size 100 and 1000. This
plot illustrates the fact that as we increase the portfolio size, overfitting causes test performance to
worsen.

Discussion. Focusing first on test performance using the largest training set size N = 2 · 105, we
see that test performance continues to improve as we increase the portfolio size, though training and
test performance steadily diverge. This illustrates the tradeoff we investigated from a theoretical
perspective in this paper: as we increase the portfolio size, we can hope to include a well-suited
parameter setting for every instance, but the generalization error will worsen. Figure 1c shows that
for a given training set size, there is a portfolio size after which test performance actually starts
to get strictly worse, as our theory predicts. In other words, we observe overfitting: the learned
algorithm selector has strong average performance over the training set but poor test performance.

7 Conclusions

We provided guarantees for learning a portfolio of parameter settings in conjunction with an algo-
rithm selector for that portfolio. We provided a tight (up to log factors) bound on the number of
samples sufficient and necessary to ensure that the selector’s average performance on the training
set generalizes to its expected performance on the real unknown problem instance distribution.
Our guarantees apply in the widely-applicable setting where the algorithm’s performance on any
input problem instance is a piecewise-constant function of its parameters. Our theoretical bounds
indicate that even with an extremely simple algorithm selector, we cannot hope to avoid overfitting
in the worst-case if the portfolio is large. Thus, there is a tradeoff when increasing the portfolio
size, since a large portfolio allows for the possibility of including a strong parameter setting for
every instance, but this potential for performance improvement is overshadowed by a worsening
propensity towards overfitting. We concluded with experiments illustrating this tradeoff in the con-
text of integer programming. A direction for future research is to understand how the diversity of

12



a portfolio impacts its generalization error, since algorithm portfolios are often expressly designed
to be diverse.

Acknowledgments

This material is based on work supported by the National Science Foundation under grants CCF-
1535967, CCF-1733556, CCF-1910321, IIS-1617590, IIS-1618714, IIS-1718457, IIS-1901403, and
SES-1919453; the ARO under awards W911NF1710082 and W911NF2010081; the Defense Ad-
vanced Research Projects Agency under cooperative agreement HR00112020003; an AWS Machine
Learning Research Award; an Amazon Research Award; a Bloomberg Research Grant; a Microsoft
Research Faculty Fellowship; an IBM PhD fellowship; and a fellowship from Carnegie Mellon Uni-
versity’s Center for Machine Learning and Health.

References

[1] Tobias Achterberg. SCIP: solving constraint integer programs. Mathematical Programming
Computation, 1(1):1–41, 2009.

[2] Martin Anthony and Peter Bartlett. Neural Network Learning: Theoretical Foundations. Cam-
bridge University Press, 2009.

[3] Maria-Florina Balcan. Data-driven algorithm design. In Tim Roughgarden, editor, Beyond
Worst Case Analysis of Algorithms. Cambridge University Press, 2020.

[4] Maria-Florina Balcan, Vaishnavh Nagarajan, Ellen Vitercik, and Colin White. Learning-
theoretic foundations of algorithm configuration for combinatorial partitioning problems. Con-
ference on Learning Theory (COLT), 2017.

[5] Maria-Florina Balcan, Travis Dick, Tuomas Sandholm, and Ellen Vitercik. Learning to branch.
In International Conference on Machine Learning (ICML), 2018.

[6] Maria-Florina Balcan, Travis Dick, and Ellen Vitercik. Dispersion for data-driven algorithm
design, online learning, and private optimization. In Proceedings of the Annual Symposium on
Foundations of Computer Science (FOCS), 2018.

[7] Maria-Florina Balcan, Travis Dick, and Colin White. Data-driven clustering via parameterized
Lloyd’s families. In Proceedings of the Annual Conference on Neural Information Processing
Systems (NeurIPS), 2018.

[8] Maria-Florina Balcan, Dan DeBlasio, Travis Dick, Carl Kingsford, Tuomas Sandholm, and
Ellen Vitercik. How much data is sufficient to learn high-performing algorithms? arXiv
preprint arXiv:1908.02894, 2019.

[9] Maria-Florina Balcan, Travis Dick, and Manuel Lang. Learning to link. Proceedings of the
International Conference on Learning Representations (ICLR), 2020.

[10] Maria-Florina Balcan, Tuomas Sandholm, and Ellen Vitercik. Learning to optimize com-
putational resources: Frugal training with generalization guarantees. AAAI Conference on
Artificial Intelligence (AAAI), 2020.

13



[11] Maria-Florina Balcan, Tuomas Sandholm, and Ellen Vitercik. Refined bounds for algorithm
configuration: The knife-edge of dual class approximability. In International Conference on
Machine Learning (ICML), 2020.

[12] Evelyn Beale. Branch and bound methods for mathematical programming systems. Annals of
Discrete Mathematics, 5:201–219, 1979.

[13] Michel Bénichou, Jean-Michel Gauthier, Paul Girodet, Gerard Hentges, Gerard Ribière, and
O Vincent. Experiments in mixed-integer linear programming. Mathematical Programming, 1
(1):76–94, 1971.

[14] R. C. Buck. Partition of space. Amer. Math. Monthly, 50:541–544, 1943. ISSN 0002-9890.

[15] Isabel Cenamor, Tomás De La Rosa, and Fernando Fernández. The IBaCoP planning system:
Instance-based configured portfolios. Journal of Artificial Intelligence Research, 56:657–691,
2016.

[16] Vikas Garg and Adam Kalai. Supervising unsupervised learning. In Proceedings of the Annual
Conference on Neural Information Processing Systems (NeurIPS). 2018.

[17] J-M Gauthier and Gerard Ribière. Experiments in mixed-integer linear programming using
pseudo-costs. Mathematical Programming, 12(1):26–47, 1977.

[18] Prateek Gupta, Maxime Gasse, Elias Khalil, Pawan Mudigonda, Andrea Lodi, and Yoshua
Bengio. Hybrid models for learning to branch. In Proceedings of the Annual Conference on
Neural Information Processing Systems (NeurIPS), 2020.

[19] Rishi Gupta and Tim Roughgarden. A PAC approach to application-specific algorithm selec-
tion. SIAM Journal on Computing, 46(3):992–1017, 2017.

[20] David Haussler. Decision theoretic generalizations of the PAC model for neural net and other
learning applications. Information and computation, 100(1):78–150, 1992.

[21] Frank Hutter, Lin Xu, Holger H Hoos, and Kevin Leyton-Brown. Algorithm runtime predic-
tion: Methods & evaluation. Artificial Intelligence, 206:79–111, 2014.

[22] Serdar Kadioglu, Yuri Malitsky, Meinolf Sellmann, and Kevin Tierney. ISAC—instance-specific
algorithm configuration. In Proceedings of the European Conference on Artificial Intelligence
(ECAI), 2010.

[23] Kevin Leyton-Brown. Resource allocation in competitive multiagent systems. PhD thesis,
Stanford University, 2003.

[24] Kevin Leyton-Brown, Mark Pearson, and Yoav Shoham. Towards a universal test suite for
combinatorial auction algorithms. In Proceedings of the ACM Conference on Electronic Com-
merce (ACM-EC), pages 66–76, Minneapolis, MN, 2000.

[25] Jeff Linderoth and Martin Savelsbergh. A computational study of search strategies for mixed
integer programming. INFORMS Journal of Computing, 11(2):173–187, 1999.

[26] Shengcai Liu, Ke Tang, Yunwei Lei, and Xin Yao. On performance estimation in automatic
algorithm configuration. In AAAI Conference on Artificial Intelligence (AAAI), 2020.

[27] Balas K Natarajan. On learning sets and functions. Machine Learning, 4(1):67–97, 1989.

14



[28] George Nemhauser and Laurence Wolsey. Integer and Combinatorial Optimization. John Wiley
& Sons, 1999.

[29] Sergio Núñez, Daniel Borrajo, and Carlos Linares López. Automatic construction of optimal
static sequential portfolios for ai planning and beyond. Artificial Intelligence, 226:75–101,
2015.

[30] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[31] Tuomas Sandholm. Algorithm for optimal winner determination in combinatorial auctions.
Artificial Intelligence, 135:1–54, January 2002.

[32] Tuomas Sandholm. Very-large-scale generalized combinatorial multi-attribute auctions:
Lessons from conducting $60 billion of sourcing. In Zvika Neeman, Alvin Roth, and Nir
Vulkan, editors, Handbook of Market Design. Oxford University Press, 2013.

[33] Tzur Sayag, Shai Fine, and Yishay Mansour. Combining multiple heuristics. In Annual
Symposium on Theoretical Aspects of Computer Science, pages 242–253. Springer, 2006.

[34] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to
algorithms. Cambridge University Press, 2014.

[35] Matthew Streeter and Daniel Golovin. An online algorithm for maximizing submodular func-
tions. In Proceedings of the Annual Conference on Neural Information Processing Systems
(NeurIPS), pages 1577–1584, 2009.

[36] Matthew Streeter, Daniel Golovin, and Stephen F. Smith. Combining multiple heuristics
online. In AAAI Conference on Artificial Intelligence (AAAI), 2007.

[37] Vladimir Vapnik and Alexey Chervonenkis. On the uniform convergence of relative frequencies
of events to their probabilities. Theory of Probability and its Applications, 16(2):264–280, 1971.

[38] L. Xu, F. Hutter, H.H. Hoos, and K. Leyton-Brown. Satzilla: portfolio-based algorithm
selection for SAT. Journal of Artificial Intelligence Research, 32(1):565–606, 2008.

[39] Lin Xu, Holger Hoos, and Kevin Leyton-Brown. Hydra: Automatically configuring algorithms
for portfolio-based selection. In AAAI Conference on Artificial Intelligence (AAAI), 2010.

[40] Giulia Zarpellon, Jason Jo, Andrea Lodi, and Yoshua Bengio. Parameterizing branch-and-
bound search trees to learn branching policies. arXiv preprint arXiv:2002.05120, 2020.

A Sample complexity proofs from Section 3

Theorem 3.4. Suppose each dual function u∗z is piecewise-constant with at most t pieces. Let d̄ be
the Natarajan dimension of F̄ . Then Pdim (UF ) = Õ

(
d̄+ κ log t

)
.

15



Proof. Let z1, . . . , zN ∈ Z be a set of problem instances that is shattered by UF , as witnessed by
the points t1, . . . , tN ∈ R. By definition, this means that

2N =

∣∣∣∣∣∣∣∣



1{uf(z1)(z1)≤t1}
...

1{uf(zN )(zN )≤tN}

 : f ∈ F


∣∣∣∣∣∣∣∣ ≤

∣∣∣∣∣∣∣

 uf(z1)(z1)

...
uf(zN )(zN )

 : f ∈ F


∣∣∣∣∣∣∣ . (6)

Since each dual function u∗zi is piecewise-constant with at most t pieces, we know there are M ≤ Nt
intervals I1, . . . , IM partitioning R where for any interval Ij and any problem instance zi, u

∗
zi(ρ)

is constant across all ρ ∈ Ij . We assume that the intervals are ordered so that if j < j′, then the
points in Ij are smaller than the points in Ij′

Let J = (j1, . . . , jκ̄) ∈ [M ]κ̄ be a vector of κ̄ ≤ κ interval indices with j1 ≤ j2 ≤ · · · ≤ jκ̄. Let
FJ ⊆ F be the set of functions f ∈ F with the following property: letting ρ1 < ρ2 < · · · < ρκ̄
be the parameter settings f maps to (i.e., {f(z) : z ∈ Z} = {ρ1, . . . ρκ̄}), we have that the ith

parameter setting is in the ith interval: ρ1 ∈ Ij1 , . . . , ρκ̄ ∈ Ijκ̄ . Since I1, . . . , IM partition R and
since each function f ∈ F maps to at most κ parameter settings, F = ∪JFJ . Together with
Equation (6), this means that

2N ≤
κ∑
κ̄=1

∑
J∈[M ]κ̄

∣∣∣∣∣∣∣

 uf(z1)(z1)

...
uf(zN )(zN )

 : f ∈ FJ


∣∣∣∣∣∣∣ . (7)

Fix a particular set J = (j1, . . . , jκ̄) ∈ [M ]κ̄ as defined above. For each algorithm selector
f ∈ FJ , let f0 : Z → J be a function that indicates which of the κ̄ intervals Ij1 , . . . , Ijκ̄ the
parameter setting f(z) falls in. In other words, f0(z) = j if and only if f(z) ∈ Ij . Recall that
for any i ∈ [N ] and j ∈ J , uf(zi)(zi) is constant across all f ∈ FJ with f(zi) ∈ Ij . Therefore,
even if we only know which of the κ̄ intervals f (zi) falls in and not the function f itself, we can
correctly infer the value uf(zi) (zi). Said another way, if we only know the value f0 (zi) ∈ [κ̄], we
can infer the value uf(zi) (zi). Aggregating this logic across all N problem instances, given a vector
(f0 (z1) , . . . , f0(zN )) we can directly infer the vector

(
uf(z1)(z1), . . . , uf(zN )(zN )

)
. This implies that∣∣∣∣∣∣∣


 uf(z1)(z1)

...
uf(zN )(zN )

 : f ∈ FJ


∣∣∣∣∣∣∣ ≤

∣∣∣∣∣∣∣

 f0(z1)

...
f0(zN )

 : f ∈ FJ


∣∣∣∣∣∣∣ . (8)

Next, we use a similar logic to show that∣∣∣∣∣∣∣

 f0(z1)

...
f0(zN )

 : f ∈ FJ


∣∣∣∣∣∣∣ ≤

∣∣∣∣∣∣∣

 f̄(z1)

...
f̄(zN )

 : f ∈ FJ


∣∣∣∣∣∣∣ . (9)

To see why, suppose we only know the value f̄(zi) and not the function f itself. For ease of notation,
say ` = f̄(zi). By definition of f̄ , we know that f(zi) is the `th-smallest parameter setting that the
function f maps to. By definition of the function f0, this implies that f0 (zi) = j`. Therefore, if
we only know the value f̄(zi) and not the function f itself, we can correctly infer the value f0 (zi).
Again, aggregating this logic across all N problem instances, given a vector

(
f̄ (z1) , . . . , f̄(zN )

)
we

can directly infer the vector (f0 (z1) , . . . , f0(zN )). This implies that Equation (9) holds.

16



Combining Equations 8 and (9) with Natarajan’s lemma [27], we have that∣∣∣∣∣∣∣

 uf(z1)(z1)

...
uf(zN )(zN )

 : f ∈ FJ


∣∣∣∣∣∣∣ ≤ N d̄κ̄2d̄.

Combining this fact, the fact that M ≤ Nt, and Equation (7), we have that 2N ≤ κ(Nt)κN d̄κ2d̄,
which implies that N = O

((
κ+ d̄

)
log
(
κ+ d̄

)
+ κ log t

)
.

Theorem 3.5. For any κ, d̄ ≥ 2, there is a class of functions U = {uρ : ρ ∈ R} and a class of
selectors F such that:

1. Each selector f ∈ F maps to ≤ κ parameter settings.

2. Each dual function u∗z is piecewise-constant with 1 discontinuity,

3. The Natarajan dimension of F̄ is at most d̄, and

4. The pseudo-dimension of UF is Ω
(
κ+ d̄

)
.

Proof. Let Z = (0, 1]. For each parameter setting ρ ∈ R, define uρ(z) = 1{z≤ρ}. As claimed, each
dual function u∗z : R→ R is piecewise-constant with 1 discontinuity. In this case, the function in UF
map Z to {0, 1}. In the special case where the range of the function class is {0, 1}, pseudo-dimension
is typically referred to as VC dimension, which we denote as VCdim (UF ) .

Let κ, d̄ ≥ 2 be two arbitrary integers. We split this proof into two cases: d̄ ≥ κ and κ > d̄. In
both cases, we exhibit a class of selectors F that satisfies the properties in the theorem statement
and we prove that VCdim (UF ) ≥ max

{
κ, d̄
}

= Ω
(
κ+ d̄

)
.

Claim A.1. Suppose d̄ ≥ κ. There exists a class of selectors F that satisfies the properties in the
theorem statement and VCdim (UF ) = d̄.

Proof of Claim A.1. Let F ⊆ {0, 1}Z be any set of binary functions with VC dimension d̄. As
required, each selector f ∈ F maps to at most κ parameter settings (|{f (z) : z ∈ Z}| ≤ 2 ≤ κ).
Moreover, F̄ = F , so the Natarajan dimension of F̄ equals the VC dimension of F , which is d̄.

For any instance z ∈ Z and function f ∈ F ,

uf(z)(z) =

{
1 if z ≤ f(z)

0 if z > f(z).

Since z ∈ (0, 1] and f(z) ∈ {0, 1}, this implies that uf(z)(z) = f(z). Therefore, VCdim (UF ) =
VCdim(F) = d̄.

Claim A.2. Suppose κ > d̄. There exists a class of selectors F that satisfies the properties in the
theorem statement and VCdim (UF ) ≥ κ.

Proof of Claim A.2. We begin by partitioning Z = (0, 1] into κ intervals Z1, . . . , Zκ, where Zi =(
i−1
κ , iκ

]
. For each set T ⊆ [κ], define an selector fT : Z → R as follows. For any z ∈ Z = (0, 1], let

i ∈ [κ] be the index of the interval z lies in, i.e., z ∈ Zi. We define

fT (z) =

{
i
κ if i ∈ T
i
κ −

1
2κ if i 6∈ T.

17



Let F = {fT : T ⊆ [κ]}. For every function f ∈ F , f̄(z) equals the index i ∈ [κ] such that z ∈ Zi.
Therefore,

∣∣F̄ ∣∣ = 1, so the Natarajan dimension of F̄ is 0 < d̄.
Define S =

{
1
κ ,

2
κ , . . . ,

κ−1
κ , 1

}
⊂ Z . We prove that S is shattered by UF . Let T ⊆ [κ] be an

arbitrary subset. If i ∈ T , then fT
(
i
κ

)
= i

κ , so

ufT ( iκ)

(
i

κ

)
= u i

κ

(
i

κ

)
= 1{ iκ≤ i

κ} = 1.

If i 6∈ T , then fT
(
i
κ

)
= i

κ −
1

2κ , so

ufT ( iκ)

(
i

κ

)
= u i

κ
− 1

2κ

(
i

κ

)
= 1{ iκ≤ i

κ
− 1

2κ} = 0.

Therefore, S is shattered by UF , so the VC dimension of UF is at least κ.

These two claims illustrate that VCdim (UF ) ≥ max
{
κ, d̄
}

= Ω
(
κ+ d̄

)
.

A.1 Regression tree performance models

Lemma 4.2. Suppose we limit ourselves to building regression trees with at most ` leaves. Then
the Natarajan dimension of F̄R is O(`κ log(`κm)).

Proof. In this proof, to simplify notation, we will denote the feature vector φ(z) as z ∈ Rm.
For each κ-tuple of regression trees T = (T1, . . . , Tκ), let gT : Z → [κ] be a function where
gT (z) = argmaxi∈[κ] {hTi(z)}. By definition, the set F̄R consists of the functions gT across all
κ-tuples of regression trees T with at most ` leaves. We will assume, without loss of generality,
that all trees are full.

Let N be the the Natarajan dimension of F̄R and let z1, . . . , zN ∈ Z be a set of N problem
instances that are multi-class shattered by F̄R. This implies that

2N ≤

∣∣∣∣∣∣∣

 gT (z1)

...
gT (zN )

 : T is a κ-tuple of regression trees


∣∣∣∣∣∣∣ . (10)

In this proof, we show that the right-hand-side of this inequality is bounded by mκ(`−1)(N`)`κ(κ`)κ`,
which implies that N = O(`κ log(`κm)).

To this end, we begin by focusing on a single regression tree T . We analyze the number of ways
the tree can partition the instances z1, . . . , zN as we vary the parameters of T . Each internal node
of T performances an inequality test on some feature of the input, so it is defined by a feature index
i ∈ [m] and a threshold θ ∈ R. Since there are ` leaves, there are `− 1 internal nodes. First, we fix
the indices of all internal nodes, which leaves `−1 real-valued thresholds to analyze. At a particular
internal node ν, let j be the index of the feature on which the node performs an inequality test
and let θν be the threshold (where the index j is fixed by the threshold θν is not fixed). Whether
or not the instance zi would be sorted into the left or right child of the node depends on whether
or not

zi[j] ≤ θν (11)

(where zi[j] is the jth coordinate of the vector zi). For each problem instance zi, there are therefore
`− 1 hyperplanes splitting the set of thresholds R`−1 into regions where if we use thresholds from
within any one region, the path that the instance zi takes through the tree (from root to leaf) is

18



constant. The same holds for all N problem instances, leading to a total of N(`−1) hyperplanes in
R`−1. In total, these hyperplanes split R`−1 into at most (N`)` regions where if we use the thresholds
from within any one region, the path that each of the N problem instances takes through the tree
is constant [14]. Since this is true no matter how we fix the feature indices of each interval node,
tuning all parameters of the tree T (both the feature indices and the thresholds) can induce at
most m`−1(N`)` different partitions of the N problem instances.

Said another way, for any tree T and instance z ∈ Z , let λT (z) ∈ [`] be the index of the leaf
that the instance z is mapped to as we apply the inequality tests defined by the internal nodes of
T . As we vary the tree T , the vector (λT (z1) , . . . , λT (zN )) ∈ [`]N will take on at most m`−1(N`)`

different values.
We now aggregate this reasoning across all κ regression trees. For any instance z ∈ Z and any

κ-tuple of regression trees T = (T1, . . . , Tκ), let ΛT (z) ∈ [`]κ be a vector where for each j ∈ [κ], the
jth component of ΛT (z) is the index of the leaf that the instance z is mapped to as we apply the
inequality tests defined by the tree Tj . In other words, ΛT (z) = (λT1(z), . . . , λTκ(z)). As we vary
T , the matrix (

ΛT (z1) . . . ΛT (zN )
)

=

λT1 (z1) · · · λT1 (zN )
...

. . .
...

λTκ (z1) · · · λTκ (zN )


will take on at most m(`−1)κ(N`)`κ different values. After all, the first row of the matrix can take
on at most m`−1(N`)` different values as we vary the tree T1, the second row can take on at most
m`−1(N`)` different values as we vary T2, and so on.

Now, consider the set of all κ-tuples of regression trees T where the matrix (ΛT (z1) , . . . ,ΛT (zN ))
is constant. Across all such T = (T1, . . . , Tκ), we know exactly which leaf each instance zi maps to
for all κ trees. For each each instance zi, the tree with the largest label—or in other words, the value
of the multi-class function gT (zi)—only depends on the relative order of the leaves’ predictions.
Since there is a total of κ` leaves, there are at most (κ`)κ` such orderings. Combining this bound
with the bound from the previous paragraph, we have that∣∣∣∣∣∣∣


 gT (z1)

...
gT (zN )

 : T is a κ-tuple of regression trees


∣∣∣∣∣∣∣ ≤ m(`−1)κ(N`)`κ(κ`)κ`.

From Equation (10), we have that 2N ≤ m(`−1)κ(N`)`κ(κ`)κ`, so N = O(`κ log(`κm)).

A.2 Clustering-based algorithm selectors

Lemma 4.4. For any p ∈ [1,∞), the Natarajan dimension of F̄C is O(mκ log(mκp)).

Proof. In this proof, to simplify notation, we will denote the feature vector φ(z) as z ∈ Rm. For
each matrix X ∈ Rm×κ, let gX : Z → [κ] be a function where

gX(z) = argmini∈[κ]

{
‖xi − z‖pp

}
.

By definition, F̄C = {gX : X ∈ Rm×κ}. LetN be the Natarajan dimension of F̄C and let z1, . . . , zN ∈
Z be a set of N problem instances that are multi-class shattered by F̄C . This implies that

2N ≤

∣∣∣∣∣∣∣

 gX(z1)

...
gX(zN )

 : X ∈ Rm×κ


∣∣∣∣∣∣∣ . (12)

19



In this proof, we analyze the partition of the parameter space Rm×κ into regions where in any one
region R ⊆ Rm×κ, across all matrices X ∈ R, the vector (gX(z1), . . . , gX(zN )) is constant.

We begin by subdividing Rm×κ into regions P1, . . . , PT ⊆ Rm×κ where in any one region P ,
across all X ∈ P , either the `th component of zq is smaller than the `th component of xj , i.e.
zq[`] ≤ xj [`], or vice versa (but not both) for all q ∈ [N ], j ∈ [κ], and ` ∈ [m]. This is partition is
defined by Nκm hyperplanes in Rmκ, so there are T ≤ (Nκm+ 1)mκ such regions [14].

Next, fix one of these T regions P ⊆ Rm×κ. Without loss of generality, assume that the `th

component of zq is smaller than the `th component of xj , i.e. zq[`] ≤ xj [`] for all q ∈ [N ], j ∈ [κ],
and ` ∈ [m]. For any two labels i, j ∈ [κ] and any q ∈ [N ], whether or not

‖xi − zq‖pp ≥ ‖xj − zq‖
p
p (13)

directly depends on the sign of the polynomial

hq,i,j(X) :=

m∑
`=1

(xi[`]− zq[`])p − (xj [`]− zq[`])p .

We know there are at most
(
Nκ2p

)mκ
regions partitioning P so that in any one region R, across

all X ∈ R, either hq,i,j(X) ≤ 0 or hq,i,j(X) > 0 (but not both) for all q ∈ [N ] and i, j ∈ [κ] [2].
For any such region R, across all X ∈ R, all pairwise comparisons as in Equation (13) are fixed, so
the vector (gX(z1), . . . , gX(zN )) is constant. In total, there are at most (Nκm+ 1)mκ

(
Nκ2p

)mκ ≤
(2N2κ3p`)mκ regions, which implies that∣∣∣∣∣∣∣


 gX(z1)

...
gX(zN )

 : X ∈ Rm×κ


∣∣∣∣∣∣∣ ≤ (2N2κ3p`)mκ.

Combining this inequality with Equation (12), we have that 2N ≤ (2N2κ3p`)mκ, soN = O(mk log(mκp)).

B Proof of Theorem 5.2

Theorem 5.2. Suppose that each dual function u∗z is piecewise constant with at most t pieces.
Given a training set S ⊆ Z of size N , suppose we learn an (α, β, ε)-optimal portfolio P̂ ⊂ R and
algorithm selector f̂ : Z → P̂ in F . With probability 1−δ over the draw of the training set S ∼ DN ,

E
z∼D

[
uf̂(z)(z)

]
≥ α max

P :|P |≤κ
E
[
max
ρ∈P

uρ(z)

]
− ε− β − Õ

(
H

√
d̄+ κ

N

)
,

where d̄ is the Natarajan dimension of F̄ .

Proof. First, let

P∗ = argmaxP⊂R:|P |≤κ E
z∼D

[
max
ρ∈P

uρ(z)

]
.

A Hoeffding bound implies that with probability 1 − δ,

E
z∼D

[
max
ρ∈P∗

uρ(z)

]
≤ 1

N

∑
z∈S

max
ρ∈P∗

uρ(z) + Õ

(
H

√
1

N

)
.

20



Combining this inequality with Definition 5.1, we have that

E
z∼D

[
max
ρ∈P∗

uρ(z)

]
≤ 1

α

(
1

N

∑
z∈S

max
ρ∈P̂

uρ(z) + β

)
+O

(
H

√
1

N
log

1

δ

)

≤ 1

α

(
1

N

∑
z∈S

uf̂(z)(z) + ε+ β

)
+O

(
H

√
1

N
log

1

δ

)
.

From Theorem 3.4, we know that with probability 1 − δ,

E
z∼D

[
max
ρ∈P∗

uρ(z)

]
≤ 1

α

(
E
z∼D

[
uf̂(z)(z)

]
+ Õ

(
H

√
d̄+ κ

N

)
+ ε+ β

)
.

Therefore, the theorem statement holds.

C Connection to submodularity

Since each dual function u∗z(ρ) is piecewise-constant with at most t pieces, on any training set
S = {z1, . . . , zN} ⊆ Z , there are at most Nt parameter settings leading to different algorithmic
performance over this training set. In other words,∣∣∣∣∣∣∣


u

∗
z1(ρ)

...
u∗zN (ρ)

 : ρ ∈ R


∣∣∣∣∣∣∣ ≤ Nt.

Let P̄ ⊆ R be a set of at most Nt parameters such that
u

∗
z1(ρ)

...
u∗zN (ρ)

 : ρ ∈ R

 =


u

∗
z1(ρ)

...
u∗zN (ρ)

 : ρ ∈ P̄

 .

For any T ⊆ P̄ , let

U(T ) =

N∑
i=1

max
ρ∈T

uρ(zi).

Theorem C.1. The function U is monotone and submodular.

Proof. For any zi, let Ui : 2P
∗ → R be the function Ui(T ) = maxρ∈T uρ(zi). We will prove that each

function Ui is submodular. The theorem then follows because the class of submodular functions is
closed under non-negative linear combinations. To this end, let T ⊆ P∗ be an arbitrary subset of
P∗ and let ρ1, ρ2 ∈ P∗ \ T be any two parameter settings in P∗ but not in T . We want to prove
that

max
ρ∈T∪{ρ1}

uρ(zi) + max
ρ∈T∪{ρ2}

uρ(zi) ≥ max
ρ∈T∪{ρ1,ρ2}

uρ(zi) + max
ρ∈T

uρ(zi). (14)

Without loss of generality, suppose that uρ1(zi) ≥ uρ2(zi). Let ρ̄ ∈ argmaxρ∈Tuρ(zi). There are
three cases:

• In the first case, uρ̄(z) ≥ uρ1(zi) ≥ uρ2(zi), so

max
ρ∈T∪{ρ1}

uρ(zi) + max
ρ∈T∪{ρ2}

uρ(zi) = 2uρ̄(zi) = max
ρ∈T∪{ρ1,ρ2}

uρ(zi) + max
ρ∈T

uρ(zi),

so Equation (14) holds.

21



• In the second case, uρ1(zi) ≥ uρ̄(z) ≥ uρ2(zi), so

max
ρ∈T∪{ρ1}

uρ(zi) + max
ρ∈T∪{ρ2}

uρ(zi) = uρ1(zi) + uρ̄(z) = max
ρ∈T∪{ρ1,ρ2}

uρ(zi) + max
ρ∈T

uρ(zi),

so Equation (14) holds.

• In the third and final case, uρ1(zi) ≥ uρ2(zi) ≥ uρ̄(z), so

max
ρ∈T∪{ρ1}

uρ(zi)+ max
ρ∈T∪{ρ2}

uρ(zi) = uρ1(zi)+uρ2(zi) ≥ uρ1(zi)+uρ̄(z) = max
ρ∈T∪{ρ1,ρ2}

uρ(zi)+max
ρ∈T

uρ(zi),

so Equation (14) holds.

Therefore, the function U is monotone and submodular.

For any cardinality constraint κ ∈ N, let P̂ ⊆ P∗ be the set of κ parameter settings that the
greedy algorithm selects to optimize the function U . Theorem C.1 implies that

N∑
i=1

max
ρ∈P̂

uρ(zi) ≥
(

1− 1

e

)
max

T⊆P :|T |≤κ

N∑
i=1

max
ρ∈T

uρ(zi).

D Additional details about experiments

Branch-and-bound. We begin with a high-level overview of branch-and-cut (B&C) and refer
the reader to the textbook by Nemhauser and Wolsey [28], for example, for more details. B&C is
an algorithm for solving integer programs (IPs). An IP is defined by an objective vector c ∈ Rn, a
constraint matrix A ∈ Rm×n, a constraint vector b ∈ Rm, and a set of indices I ⊆ [m]. The goal is
to solve the following optimization problem:

maximize c · x
subject to Ax ≤ b

x[i] ∈ Z ∀i ∈ I.
(15)

In keeping with Section 2, we use the notation z = (c, A, b, I) to denote the IP. B&C builds a
search tree to solve an input IP z, with z stored at the root. It begins by solving the LP relaxation
of the input IP z. We use the notation x̆z to denote the solution to this LP relaxation. B&C then
uses a variable selection policy to choose a variable i ∈ I and it branches on this variable. This
means that it defines a new IP z−i which is identical to the original IP z but with the additional
constraint that x[i] ≤ bx̆z[i]c. It stores the IP z−i in the left child of the root node. Similarly, it
defines another IP z+

i which is identical to the original IP z but with the additional constraint that
x[i] ≥ bx̆z[i]c. It stores the IP z+

i in the right child of the root node. It then uses a node selection
policy to choose one of the two leaves and repeats this process—solving the LP relaxation of the
node’s IP, choosing a variable to branch on, and so on. Eventually, one of the solutions to an LP
relaxation B&C solves will in fact be the optimal solution to the original IP (Equation (15)), and
B&C will be able to verify its optimality (this verification procedure is straightforward, but we do
not go into the details here).

22



Parameterized variable selection policy. We analyze a parameterized variable selection pol-
icy that has been studied extensively in prior research [1, 5, 11–13, 17, 25]. To define this variable
selection policy, we use the notation c̆z̄ = c · x̆z̄ for any IP z̄. Given a parameter setting ρ ∈ [0, 1]
and the IP z̄ contained at the leaf of the search tree, this variable selection policy chooses to branch
on the variable i ∈ I that maximizes

(1− ρ) min
{
c̆z̄ − c̆z̄+

i
, c̆z̄ − c̆z̄−i

}
+ ρmax

{
c̆z̄ − c̆z̄+

i
, c̆z̄ − c̆z̄−i

}
.

The parameter ρ thus balances a pessimistic approach to branching—which always chooses the
variable leading to the minimal change in the LP objective value—with an optimistic approach—
which chooses the variable leading to the maximal change in the LP objective value.

23


	1 Introduction
	2 Problem formulation and road map
	3 Sample complexity bounds
	4 Application of theory to algorithm selectors
	4.1 Linear performance models
	4.2 Regression tree performance models
	4.3 Clustering-based algorithm selectors

	5 Learning procedure with guarantees
	6 Experiments
	7 Conclusions
	A Sample complexity proofs from Section 3
	A.1 Regression tree performance models
	A.2 Clustering-based algorithm selectors

	B Proof of Theorem 5.2
	C Connection to submodularity
	D Additional details about experiments

