
Energy-Efficient Models for High-Dimensional Spike Train
Classification using Sparse Spiking Neural Networks

Hang Yin
Worcester Polytechnic Institute

Worcester, USA
hyin@wpi.edu

John Boaz Lee
Worcester Polytechnic Institute

Worcester, USA
jtlee@wpi.edu

Xiangnan Kong
Worcester Polytechnic Institute

Worcester, USA
xkong@wpi.edu

Thomas Hartvigsen
Worcester Polytechnic Institute

Worcester, USA
twhartvigsen@wpi.edu

Sihong Xie
Lehigh University
Bethlehem, USA

six316@lehigh.edu

ABSTRACT

Spike train classification is an important problem in many areas

such as healthcare and mobile sensing, where each spike train is

a high-dimensional time series of binary values. Conventional re-

search on spike train classification mainly focus on developing

Spiking Neural Networks (SNNs) under resource-sufficient settings

(e.g., on GPU servers). The neurons of the SNNs are usually densely

connected in each layer. However, in many real-world applications,

we often need to deploy the SNN models on resource-constrained

platforms (e.g., mobile devices) to analyze high-dimensional spike

train data. The high resource requirement of the densely-connected

SNNs can make them hard to deploy on mobile devices. In this

paper, we study the problem of energy-efficient SNNs with sparsely-

connected neurons. We propose an SNN model with sparse spatio-

temporal coding. Our solution is based on the re-parameterization

of weights in an SNN and the application of sparsity regularization

during optimization.We compare our work with the state-of-the-art

SNNs and demonstrate that our sparse SNNs achieve significantly

better computational efficiency on both neuromorphic and standard

datasets with comparable classification accuracy. Furthermore, com-

pared with densely-connected SNNs, we show that our method has

a better capability of generalization on small-size datasets through

extensive experiments.

CCS CONCEPTS

• Information systems→ Data mining; • Computer systems

organization→ Neural networks; • Computing methodologies

→ Supervised learning.

KEYWORDS

spiking neural networks, supervised learning, spatio-temporal cod-

ing, sparsity, hard-concrete distribution

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

KDD ’21, August 14–18, 2021, Virtual Event, Singapore.

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8332-5/21/08. . . $15.00
https://doi.org/10.1145/3447548.3467252

ACM Reference Format:

Hang Yin, John Boaz Lee, Xiangnan Kong, Thomas Hartvigsen, and Sihong

Xie. 2021. Energy-Efficient Models for High-Dimensional Spike Train Clas-

sification using Sparse Spiking Neural Networks. In Proceedings of the 27th

ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD

’21), August 14–18, 2021, Virtual Event, Singapore. ACM, New York, NY, USA,

9 pages. https://doi.org/10.1145/3447548.3467252

1 INTRODUCTION

Motivation. Our brains have about a hundred billion neurons that

fire signals to communicate with each other all the time. Each

signal is electrochemical in nature and is referred to as a spike, or

an action potential. The most popular way to think of spike trains is

as a digital sequence of events: 1 for a spike, and 0 for no spike. Such

spike trains arise during physical sensory stimuli such as vision

and motion, or abstract stimuli such as memory. Recently, spike

train classification has attracted much attention in the field of data

mining [17, 20, 25, 26]. Unlike tradition classification, classifying

spike trains is a task with sequences of spikes as both inputs and

outputs. By assuming that all spikes are discrete characteristic

events, the processing of information is reduced to the timing and

counting of said spikes. Designing machine learning algorithms for

spike train classification is very important in many high-impact

fields such as sensor systems for disease diagnosis and human

activity monitoring.

Knowledge Gap. Spiking Neural Network (SNN) show great

potential for dealing with spike train classification [21ś23, 25, 26].

Originally proposed to imitate biological information processing

[9], the neurons transfer information between one another via spike

trains. Unlike Recurrent Neural Networks (RNN), which use con-

tinuous value as inputs and outputs, SNNs take sparse spike trains

as inputs and outputs, building large-scale neural networks with

far less energy and memory on neuromorphic hardware systems,

which operate on principles that are fundamentally different from

standard digital computers. Thus, SNNs are clear candidates for

spike train classification.

However, opportunities are always accompanied by challenges.

Due to significant advances in miniaturization of sensor systems,

more and more smart devices such as wearable sensors and smart

phones for elderly care and aerial robots appear around us, which

can produce high-dimensional data in the form of spike trains.

These devices require high quality pattern recognition to meet

dimensional inputs. These are indirect learning methods because

a regular non-spiking ANN (e.g., a multi-layer perceptron) is ini-

tially used during the training phase. At inference-time, the trained

model is then converted to an SNN. However, there are several dis-

advantages associated with such indirect training. First, it doesn’t

align well with how an SNN operates. In ANNs, it does not matter

if activations are negative, but firing rates in SNNs are always posi-

tive. Furthermore, many limiting constraints are typically added

while training the ANN models. These include not using bias terms,

only supporting average pooling, and only using ReLU activation

functions.

In response, methods for directly training an SNN have recently

been proposed [12, 21, 26]. These approaches are mainly based on

conventional gradient descent. Most notably, different from pre-

vious techniques based only on spatial back-propagation [10, 12],

SNNs trained directly using back-propagation in both the spatial

as well as the temporal domains [21, 26] have achieved state-of-

the-art accuracy on the MNIST and N-MNIST datasets. However,

although these methods perform better than the others described

above on many real-world datasets, from the perspective of compu-

tational efficiency, they are still far from power-efficient in solving

high-dimensional spike trains classification. Therefore there have

been some recently-proposed power-efficient SNNs [1, 5]. [5] aims

to enforce more neurons silence by making input spikes of each

neuron sparser. [1] introduces a stochastic SNN by exploiting the

benefits of stochastic computing to generate input spike trains and

reduce the connection complexity. However, both of them are only

applicable to standard datasets, but not to neuromorphic datasets

3 PRELIMINARY

To describe the SNN models with a sparse structure, we first intro-

duce the baseline framework for SNNs, as proposed by [26]. We

begin by describing the simplest possible SNN, onewhich comprises

a single neuron with one input entry. This neuron is a recurrent

unit that is affected by the current input, and the previous input

and output. For each timestep 𝑡 , it combines the current input with

the previous input and output to compute a new value. This value

can be referred to as the membrane potential in biological neural

network. If the membrane is greater than a threshold, the neuron

fires and outputs 1 to indicate a spike, otherwise, it outputs 0 to

indicate silence. Therefore, for each timestep 𝑡 , the membrane and

output are expressed as follows:

𝑢𝑡 = 𝜏𝑢𝑡−1 (1 − 𝑧𝑡−1) +𝑤𝑥𝑡 + 𝑏, (1)

𝑧𝑡 = Θ(𝑢𝑡 − 𝜗), (2)

where we write 𝑢𝑡 , 𝑥𝑡 , and 𝑧𝑡 to denote the membrane potential,

input, and output of the neuron on timestep 𝑡 , respectively. 𝜏 ∈ [0, 1]

is the time decay constant hyperparameter, and 𝑤 and 𝑏 are the

connection and bias between input and this neuron, respectively.

Θ(·) is the step function, which satisfies 𝛩 (𝑥) = 0 when 𝑥 < 0,

otherwise Θ(𝑥) = 1.

The SNN expressed in Equations 1-2 mimics natural neural net-

works more closely than a traditional ANN. In this way, we rep-

resent a neuron as the parallel combination of a "leaky" resistor

and a capacitor. The second term of the r.h.s. of Equation 1 is used

as external current input to charge up the capacitor to update the

potential 𝑢𝑡 . If the neuron emits a spike 𝑧𝑡 = 1 at timestep 𝑡 , the

capacitor discharges to a resting potential (which we fix at zero

throughout this paper) by using the first term in Equation 1.

An SNN is built by hooking together many of these simple

łneuronsž, so that the output of a neuron can be the input of an-

other. We let 𝑢𝑡,𝑛𝑖 and 𝑧𝑡,𝑛𝑖 denote the membrane and output of

neuron 𝑖 in layer 𝑛 at timestep 𝑡 . The network has parameters

W = {W1, . . . ,W𝑁−1}, where W
𝑛
𝑖 𝑗 denote the parameter associ-

ated with the connection between neuron 𝑗 in layer 𝑛, and neuron

𝑖 in layer 𝑛 + 1. We also let 𝑙 (𝑛) denote the number of neurons in

layer 𝑛 and let 𝑁 be the number of layers in our network. There-

fore, for layer 𝑛 ∈ {2, . . . , 𝑁 }, we write u
𝑡,𝑛

= (𝑢𝑡,𝑛1 , . . . , 𝑢𝑡,𝑛
𝑙 (𝑛)
)⊤

and z
𝑡,𝑛

= (𝑧𝑡,𝑛1 , . . . , 𝑧𝑡,𝑛
𝑙 (𝑛)
)⊤ to denote the membrane and output

vector of neurons in layer 𝑛 at timestep 𝑡 . For 𝑛 = 1, we will use

z
𝑡,1

= x
𝑡 to denote the input vector. Thus, the expression of an SNN

is given by:

u
𝑡,𝑛

= 𝜏u𝑡−1,𝑛 ⊙ (1 − z𝑡−1,𝑛) +W𝑛−1
z
𝑡,𝑛−1, (3)

z
𝑡,𝑛

= Θ(u𝑡,𝑛 −𝑉th). (4)

From Equations 3-4, the spike signals not only propagate through

the layer-by-layer spatial domain, but also affect the neuronal states

through the temporal domain. Therefore, it considers both the spa-

tial and temporal directions during the error backpropagation, i.e.,

spatio-temporal backpropagation (STBP) [25, 26], which signifi-

cantly improves the network accuracy. During backpropagation,

because the activity function Θ(·) is non-differentiable, it is com-

mon to use the rectangular function to approximate the correspond-

ing derivative.

Given the expressions above, we can easily solve a standard

SNN classification problem by training a classifier 𝑓 : R𝑃×𝑇 ↦→

{1, . . . , 𝑁 } on a given dataset {(x(1) , 𝑦 (1)), . . . , (x(𝐾) , 𝑦 (𝐾))} that

contains 𝐾 training samples, of which each instance x(𝑖) ∈ R𝑃×𝑇

has an observed label 𝑦 (𝑖) ∈ {1, . . . , 𝑙 (𝑁)}. 𝑃 is the number of input

entries and𝑇 denotes the length of spike train. To train the SNN, we

define the following loss function 𝐿 for a single training example

(x, 𝑦):

𝐿 =

(

𝑦 −
1

𝑇

𝑇
∑

𝑡

Mz
𝑡,𝑁

)2

(5)

where z𝑡,𝑁 denotes the voting vector of the last layer 𝑁 at time step

𝑡 , M denotes a constant voting vector connecting neurons in the

output layer to a specific class. Thus, we can use STBP to propagate

the gradients 𝜕𝐿

𝜕𝑜𝑡,𝑛+1
𝑖

from the (𝑛 + 1)-th layer and 𝜕𝐿

𝜕𝑜𝑡+1,𝑛
𝑖

from time

step 𝑡 + 1 as follows:

𝜕𝐿

𝜕𝑜𝑡,𝑛𝑖

=

𝑙 (𝑛+1)
∑

𝑗=1

𝜕𝐿

𝜕𝑜𝑡,𝑛+1𝑗

𝜕𝑜𝑡,𝑛+1𝑗

𝜕𝑜𝑡,𝑛𝑖

+
𝜕𝐿

𝜕𝑜𝑡+1,𝑛𝑖

𝜕𝑜𝑡+1,𝑛𝑖

𝜕𝑜𝑡,𝑛𝑖

(6)

𝜕𝐿

𝜕𝑢𝑡,𝑛𝑖

=
𝜕𝐿

𝜕𝑜𝑡,𝑛𝑖

𝜕𝑜𝑡,𝑛𝑖

𝜕𝑢𝑡,𝑛𝑖

+
𝜕𝐿

𝜕𝑜𝑡+1,𝑛𝑖

𝜕𝑜𝑡+1,𝑛𝑖

𝜕𝑢𝑡,𝑛𝑖

(7)

4 METHODOLOGY

In this work, we propose a sparsification procedure for deep SNNs

that accelerates both training and inference while improving the

their generalization capabilities through regularization.

zt,l
1

z t,l
2

zt,l
i

…

Synapse Weight

integration
Activation

Function

Θ zt,l+1

i

Spiking Neuron

zt+1,l
1

z t+1,l
2

zt+1,l
i

…

Θ zt+1,l+1

i

Leaky

constant Inhibition Weight

zt,l
1

z t,l
2

zt,l
i

…

Synapse Weight

integration
Activation

Function

Θ zt,l+1

i

Spiking Neuron

zt+1,l
1

z t+1,l
2

zt+1,l
i

…

Θ zt+1,l+1

i

Leaky

constant Inhibition Weight

b1

b2

bi

b2

b1

bi

bi ∼ Bern(pi)

o
n

 t
im

e-
st

ep
 t

o
n

 t
im

e-
st

ep
 t

+
1

Figure 3: Difference between traditional and sparse SNNs.

4.1 Sparsity regularization and optimization

To build a sparse structure, we consider a re-parametrization of

W
𝑛
𝑖 𝑗 , inspired by [13]:

W
𝑛
= W̃

𝑛 ⊙ b
𝑛, b

𝑛
𝑖 𝑗 ∈ {0, 1}, W̃

𝑛
𝑖 𝑗 ≠ 0 (8)

where the b𝑛𝑖 𝑗 correspond to binary łgatesž that denote whether the

corresponding parameter W̃𝑛
𝑖 𝑗 is utilized or not utilized. W̃

𝑛 and b𝑛

is also independent of time 𝑡 . To simplify the later derivations, we

reformulate the minimization of Equation 5 as 𝐿 = 𝑓 (𝑦, x; W̃, b).

By letting 𝑝 (b𝑛𝑖 𝑗 |Π
𝑛
𝑖 𝑗) = Bern(Π𝑛𝑖 𝑗) be a Bernoulli distribution

over each gate b𝑛𝑖 𝑗 , we reconsider a sparse network structure as a

regularized minimization procedure with a regularization on the

number of parameters being used, on average, as follows:

𝐿 = 𝐿𝐸 + 𝐿𝐶 , (9)

𝐿𝐸 = E𝑝 (b |Π)

[

𝑓 (𝑦, x; W̃, b)
]

, (10)

𝐿𝐶 = 𝜆

𝑁
∑

𝑛=1

∥Π𝑛 ∥1 (11)

where𝐿𝐸 denotes the expectation of losswith respect to the Bernoulli

distribution of b. Meanwhile, 𝐿𝐶 corresponds to the complexity loss

that measures the sparsity of the model. Due to the positive nature

of each Π
𝑛
𝑖 𝑗 , this term also corresponds to the expectation of the

amount of gates being łon.ž Based on [16], the objective described

in Equation 9 is a close surrogate to a variational bound involving a

spike and slab distribution over the parameters and a fixed coding

cost for the parameters when the gates are active. However, the first

term in Equation 9 is problematic for Π due to the discrete nature

of b, which does not allow for efficient gradient-based optimization.

The unbiased gradient estimator in [24] could be employed, how-

ever, it suffers from high variance. The straight-through estimator in

[3] can also be used in this problem, but it provides biased gradients

as it ignores the Heaviside function during gradient evaluation.

In this paper, inspired by [13], we find a simple alternative way

to smooth the objective function such that we allow for efficient

gradient-based optimization of Equation 9. Let s𝑛𝑖 𝑗 be a continuous

random variable with a distribution 𝑞(s𝑛𝑖 𝑗) that has parameters Φ𝑛𝑖 𝑗 .

We can now let each gate be given by a hard-sigmoid rectifiation

of s𝑛𝑖 𝑗 as follows:

s
𝑛
𝑖 𝑗 ∼ 𝑞

(

s
𝑛
𝑖 𝑗 |Φ

𝑛
𝑖 𝑗

)

, b
𝑛
𝑖 𝑗 = min

(

1,max(0, s𝑛𝑖 𝑗)
)

(12)

This allows b𝑛𝑖 𝑗 to be exactly zero. Due to the i.i.d assumption of each

s
𝑛
𝑖 𝑗 , we can thus smooth the binary Bernoulli gates by replacing

each b
𝑛
𝑖 𝑗 appearing in the first term of Equation 9 with s

𝑛
𝑖 𝑗 and the

second term with the probability of the variable s𝑛𝑖 𝑗 being positive:

𝐿𝐸 = E𝑞 (s |Φ)

[

𝑓 (𝑦, x; W̃, s)
]

, (13)

𝐿𝐶 = 𝜆
∑

𝑖 𝑗𝑛

𝑃 (s𝑛𝑖 𝑗 > 0|Φ𝑛𝑖 𝑗) (14)

Here we similarly have a cost that explicitly penalizes the proba-

bility of a gate being different from zero, thus Equations 13-14 act

as a close surrogate to the original loss function in Equation 10-11.

By following the reparameterization trick [11], we can describe

the expression in Equation 13 as an expectation over a parameter-

free noise distribution 𝑝 (𝜖) and a deterministic and differentiable

transformation 𝑔(·) of the parameter Φ and 𝜖 . This allows us to

make the following Monte Carlo approximation to the intractable

expectation over the noise distribution:

𝐿𝐸 =
1

𝑀

𝑀
∑

𝑚=1

[

𝑓 (𝑦, x; W̃, s(𝑚))
]

, (15)

s
(𝑚)

= min
(

1,max(0, 𝑔(Φ, 𝜖 (𝑚)))
)

, 𝜖 (𝑚) ∼ 𝑝 (𝜖) (16)

Next we provide more details about 𝑔(·) in Equations 16.

4.2 The hard concrete distribution

The framework above enables us to employ efficient stochastic

gradient-based optimization, while still allowing for exact zeros

of the parameters. For the differentiable transformation 𝑔(·), we

follow [14]: assume that we have a binary concrete random variable

𝑠 distributed in the interval (0, 1). The parameters of this distribu-

tion include log𝛼 and 𝛽 , where log𝛼 denotes the location and 𝛽 is

referred to as the temperature.

Temperature 𝛽 controls the degree of approximation. With 𝛽 =

0, we recover the original Bernoulli distribution, whereas with

0 < 𝛽 < 1 we obtain a probability density that concentrates its

mass near 0 and 1. Therefore the hard concrete distribution can

inherit statistical properties very similar to that of the Bernoulli

distribution. We then stretch 𝑠 to the interval (𝛾, 𝜍), with 𝛾 < 0

and 𝜍 > 1. Following [14], we fix 𝛾 = −0.1, 𝜍 = 1.1, and all 𝛽 =
2
3

throughout this paper. Then we sample 𝑏 based on the expressions

as follows:

𝑠 = 𝜎 ((log𝑢 − log(1 − 𝑢) + log𝛼) /𝛽) , (17)

𝑠 = 𝑠 (𝜍 − 𝛾) + 𝛾, 𝑢 ∼ 𝑈 (0, 1), (18)

𝑏 = min(1,max(0, 𝑠)) . (19)

Thus, the complexity loss 𝐿𝐶 of the objective function in Equa-

tion 14 under the hard concrete distribution can be calculated as:

𝐿𝐶 =

∑

𝑖 𝑗𝑛

𝜎

(

log𝛼𝑛𝑖 𝑗 − 𝛽 log
−𝛾

𝜍

)

. (20)

Algorithm 1 Training code for sparse SNN

Require: : i: Network inputs {𝑋 𝑡 }𝑇𝑡 ; ii: class label 𝑌 ; iii: parame-

ters and states of convolutional layers ({W𝑛, b𝑙 , u0,𝑛, o0,𝑛}
𝑁1−1
𝑛=1);

iv: full-connected layers ({W𝑛, b𝑛, u0,𝑛, o0,𝑛}
𝑁2−1
𝑛=1); v: simulation

window T; vi: the parameters of the hard-concrete distribution

(log𝛼𝑛, 𝛽, 𝛾, 𝜍); vii: the parameters of iterative LIF (𝑇, 𝑘𝜏 , 𝛿,𝑉𝑡ℎ)

Ensure: : Update network parameters

Forward (inference):

1: for all 𝑡 = 1 to 𝑇 do

2: b
𝑛 ← Generate(log𝛼𝑛, 𝛽, 𝛾, 𝜍) //Eq. (17)

3: o
𝑡,1 ← EncodingLayer(𝑋 𝑡)

4: for all 𝑙 = 2 to 𝑁1 − 1 do

5: (u𝑡,𝑛, o𝑡,𝑛) ← StateUpdate(W𝑛−1, b𝑏−1, u𝑡−1,𝑛, o𝑡−1,𝑛,

o
𝑡,𝑛−1, x𝑡,𝑛−1)//Eq. (21,22)

6: end for

7: end for

Loss:

𝐿 ← ComputeLoss(Y, o𝑡,𝑁2 , log𝛼)//Eq. (9)

Backward:

1: Gradient Initialization: 𝜕𝐿
𝜕o𝑡+1,∗

= 0

2: for all 𝑡 = 𝑇 to 1 do

3:
𝜕𝐿

𝜕o𝑡,𝑁2
← LossGradient(𝐿, 𝜕𝐿

𝜕o𝑡+1,𝑁2
)//Eq. (6,7,9)

4: for all 𝑙 = 𝑁2 − 1 to 1 do

5: (𝜕𝐿
𝜕o𝑡,𝑛

, 𝜕𝐿
𝜕u𝑡,𝑛

, 𝜕𝐿
𝜕W𝑛 ,

𝜕𝐿
𝜕𝛼𝑛) ← BackwardGradient

(𝜕𝐿
𝜕o𝑡,𝑛+1

, 𝜕𝐿
𝜕o𝑡+1,𝑛

,W𝑛, log𝛼𝑛)//Eq. (6,7,9)

6: end for

7: for all 𝑙 = 𝑁1 to 2 do

8: (𝜕𝐿
𝜕o𝑡,𝑛

, 𝜕𝐿
𝜕u𝑡,𝑛

, 𝜕𝐿
𝜕W𝑛−1 ,

𝜕𝐿
𝜕𝛼𝑛−1

) ← BackwardGradient

(𝜕𝐿
𝜕o𝑡,𝑛+1

, 𝜕𝐿
𝜕o𝑡+1,𝑛

,W𝑛−1, log𝛼𝑛−1)//Eq. (6,7,9)

9: end for

10: end for

Given these derivations, we can easily obtain the corresponding

iterative state update equations and gradients for sparse deep SNNs.

u
𝑡+1,𝑛+1
𝑖 = 𝑘𝜏u

𝑡,𝑛+1
𝑖

(

1 − o𝑡,𝑛+1𝑖

)

+

𝑙 (𝑛)
∑

𝑗

W̃
𝑛
𝑖 𝑗b

𝑛
𝑖 𝑗o

𝑡+1,𝑛
𝑗 (21)

o
𝑡+1,𝑛+1
𝑖 = 𝛩

(

u
𝑡+1,𝑛+1
𝑖 −𝑉th

)

(22)

b
𝑛
𝑖 𝑗 = min

(

1,max(0, s̄𝑛𝑖 𝑗)
)

, (23)

s̄
𝑛
𝑖 𝑗 = s

𝑛
𝑖 𝑗 (𝜍 − 𝛾) + 𝛾, (24)

s
𝑛
𝑖 𝑗 = 𝜎

((

log𝑢 − log(1 − 𝑢) + log𝛼𝑛𝑖 𝑗

)

/𝛽
)

(25)

We also summarize the overall training process of our proposed

sparse SNNs as pseudo-code in Algorithm 1.

5 EMPIRICAL STUDY

To comprehensively validate the effectiveness of our proposed

method, we conduct experiments to answer two questions: First,

we are interested in computational improvement with very negli-

gible degradation in accuracy. Our work in this paper thus aims

to improve the state-of-the-art SNN in this regard. We choose the

Spiking CNN (SCNN) [26] as the basic model to which we apply

our proposed sparsification procedure on this model and name

it sparse SCNN. We then compare the efficiency and accuracy of

our Sparse SCNN with SCNN, M-SNN [5], and stochastic SNN [1]

on various classification tasks. To better compare our work with

them, we follow the same experimental setting as in [26], including

the same experimental datasets and the same network structure.

Second, we want to explore the generalizability of our proposed

model, especially for high dimensional data with very few training

samples. We thus test on small training subsets of MNIST and N-

MNIST. We validate our sparse deep SNN framework by using the

state-of-the-art fully connected and convolutional architectures for

deep SNNs [26] on these datasets. To combat randomness in the

experiment system, we run all experiments 10 times and report the

average results, except when otherwise stated.

5.1 Datasets

We evaluate our sparse SNN models and baselines on various

datasets. Using the same datasets as in [26], we test on both static

(non-spiking) as well as dynamic (neuromorphic) data.

5.1.1 Static Datasets. MNIST is a popular dataset comprised of

a training set with 60, 000 samples and a testing set with 10, 000

samples of hand-written digits 0 − 9. CIFAR-10 is an established

computer-vision dataset used for object recognition. It consists of

60, 000 32×32 color images containing one of 10 object classes, with

6, 000 images per class. Since our method and baselines are spike

based learning algorithm, the static images should be converted to

spike trains. To this end, we use the Bernoulli sampling conversion

from original pixel intensity to the spike trains in this paper. Each

normalized pixel is converted to a spike event ł1ž) or no spike

event ł0ž) at each time step by using an independent and identically

distributed Bernoulli sampling. The probability of generating a

spike event is proportional to the normalized value of the entry.

Thus, given a certain time window𝑇 , the spike events form a spike

train. During training, we set 𝑇 to 12 and 30ms in MNIST and

CIFAR-10, respectively.

5.1.2 Dynamic Datasets. Compared to the static datasets, dynamic

datasets contain richer temporal features and are therefore more

suitable for evaluating SNNs since SNNs can take advantage of

the added information. We use the N-MNIST1 and DVS-Gesture2

datasets to evaluate the capability of our method on dynamic

datasets. The N-MNIST dataset [19] consists of MNIST images

converted into a spiking dataset using a Dynamic Vision Sensor

(DVS) moving on a pan-tilt unit. Each dataset sample is 300ms long,

with a shape of 34× 34 pixels, containing both łonž and łoffž spikes.

The dataset is split into training and test sets following the origi-

nal split in MNIST of 60, 000 training samples and 10, 000 testing

samples.

The DVS-Gesture dataset [2] contains 1, 342 instances of a set of

11 hand and arm gestures, grouped into 122 trials and collected from

29 subjects under 3 different lighting conditions. During each trial,

one subject stood against a stationary background and performed

all 11 gestures sequentially under the same lighting conditions.

1https://www.garrickorchard.com/datasets/n-mnist
2https://ibm.ent.box.com/s/3hiq58ww1pbbjrinh367ykfdf60xsfm8

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminary
	4 Methodology
	4.1 Sparsity regularization and optimization
	4.2 The hard concrete distribution

	5 Empirical Study
	5.1 Datasets
	5.2 Network structure
	5.3 Initialization
	5.4 Evaluation metrics
	5.5 Experiment results
	5.6 Impact of the weight factor of sparse regularization

	6 Conclusion
	Acknowledgments
	References

