
Real-Time Evasion Attacks against Deep Learning-Based
Anomaly Detection from Distributed System Logs

J. Dinal Herath, Ping Yang, Guanhua Yan
Department of Computer Science, State University of New York at Binghamton

Binghamton, NY, USA
{jherath1,pyang,ghyan}@binghamton.edu

ABSTRACT
Distributed system logs, which record states and events that oc-
curred during the execution of a distributed system, provide valu-
able information for troubleshooting and diagnosis of its opera-
tional issues. Due to the complexity of such systems, there have
been some recent research efforts on automating anomaly detection
from distributed system logs using deep learning models. As these
anomaly detection models can also be used to detect malicious
activities inside distributed systems, it is important to understand
their robustness against evasive manipulations in adversarial envi-
ronments. Although there are various attacks against deep learning
models in domains such as natural language processing and image
classification, they cannot be applied directly to evade anomaly
detection from distributed system logs. In this work, we explore the
adversarial robustness of deep learning-based anomaly detection
models on distributed system logs. We propose a real-time attack
method called LAM (Log Anomaly Mask) to perturb streaming
logs with minimal modifications in an online fashion so that the
attacks can evade anomaly detection by even the state-of-the-art
deep learning models. To overcome the search space complexity
challenge, LAM models the perturber as a reinforcement learning
agent that operates in a partially observable environment to predict
the best perturbation action. We have evaluated the effectiveness of
LAM on two log-based anomaly detection systems for distributed
systems: DeepLog and an AutoEncoder-based anomaly detection
system. Our experimental results show that LAM significantly re-
duces the true positive rate of these two models while achieving
attack imperceptibility and real-time responsiveness.

ACM Reference Format:
J. Dinal Herath, Ping Yang, Guanhua Yan. 2021. Real-Time Evasion Attacks
against Deep Learning-Based Anomaly Detection from Distributed System
Logs. In Proceedings of the Eleventh ACM Conference on Data and Application
Security and Privacy (CODASPY ’21), April 26–28, 2021, Virtual Event, USA.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3422337.3447833

1 INTRODUCTION
Distributed system logs record states and events that occurred dur-
ing the executions of large distributed systems, such as big data

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CODASPY ’21, April 26–28, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8143-7/21/04. . . $15.00
https://doi.org/10.1145/3422337.3447833

systems, online services, and scientific workflows. Usually printed
in predefined formats, these logs help system administrators exam-
ine internal system states, identify anomalous behaviors (e.g., due to
malicious activities), and troubleshoot root causes. A large body of
research efforts have been dedicated to automating anomaly detec-
tion from distributed system logs, using machine learning [21] and
deep learning particularly [9]. However, although deep learning
models have shown superior performance in various application
domains, there have been many successful attempts at mislead-
ing their predictions by injecting imperceptible modifications to
inputs [1, 3, 40, 43]. This naturally raises the concern: can an at-
tacker perturb distributed system logs with minimal modifications
to evade anomaly detection based on deep learning models? If such
perturbations are done when an attacker is performing malicious
activities, then he/she does not have to worry about being caught
by the anomaly detection system.

Evading anomaly detection from distributed system logs comes
with new challenges. Although there are various attacks against
deep learning models in domains such as natural language pro-
cessing (NLP) and image classification [2, 40, 45], none of these
techniques can be applied directly to evade system log anomaly
detection due to the following reasons. First, a key challenge in the
generation of adversarial examples is to ensure their impercepti-
bility, which differs in different application domains. For example,
in image classification, an adversarial example should have as few
pixels modified as possible. Due to the use of predefined templates,
distributed system logs have different syntactical structures, which
constrains the attacker’s action space in constructing imperceptible
adversarial examples. Second, as state-of-the-art log-based anomaly
detection models for distributed systems such as DeepLog [13] and
AutoEncoders [19] are capable of catching misbehavior in an online
fashion, successful evasion of these models must respond in real
time to the incoming log entries. The streaming nature of the prob-
lem dictates that an attacker cannot look ahead for future log entries
in the stream. The attacker also cannot perturb a past log entry
that has already been processed by the anomaly detection model.
Such real-time constraints do not exist in image classification, for
which a large body of adversarial machine learning techniques have
been developed [1]. Last but not least, the temporal correlations
inherent in distributed system logs, which are commonly exploited
by existing anomaly detection techniques to detect suspicious pat-
terns, significantly complicate real-time evasion attacks because
any modification action taken nowmay alter the anomaly detection
model’s prediction results for the future log entries, which are not
available for attack decision-making at the present moment.

Against this backdrop, in this work we explore the adversarial ro-
bustness of deep learning-based anomaly detection from distributed

https://doi.org/10.1145/3422337.3447833
https://doi.org/10.1145/3422337.3447833

system logs, which to the best of our knowledge, has not been in-
vestigated previously. We propose a real-time attack method called
LAM (Log Anomaly Mask) to perturb streaming logs with minimal
modifications in an online fashion so that they can evade anomaly
detection by even the state-of-the-art deep learning models. LAM
includes two key components, a surrogate model and a perturber.
The surrogate model is used to approximate the behavior of the op-
erational deep learning-based anomaly detection model in blackbox
or graybox attacks, or simply a duplicate of the operational model
in whitebox attacks. The perturber is trained offline to learn the
best policy in perturbing streaming logs with minimal changes to
evade the detection by the surrogate model. The attacker uses this
policy to make immediate decisions when performing a real-time
evasion attack against the operational anomaly detection model.

The real-time constraint of LAM requires us to overcome two
complexity-related challenges. First, even for a small number of log
keywords (shortened as logkeys), the combination of all possible
modifications in the attacker’s action space can grow exponentially,
making it hard to find in real time the optimal one that can evade
the operational anomaly detection model while ensuring that the
changes should beminimal (action space complexity). Secondly, even
if an algorithm can avoid exhaustive search of the entire action
space, the number of states and actions it uses to find an ideal policy
for evasion attacks should be manageable with limited computa-
tional resources (state space complexity). To overcome the action
space complexity challenge, the perturber in LAM is modeled as
a Reinforcement Learning (RL) agent that operates in a partially
observable environment. Given only the current and some past
logkeys in the data stream, the perturber learns an optimal policy
to determine which perturbation action should be taken at each
time step. Moreover, the perturber addresses the state space com-
plexity challenge by training an LSTM (Long Short-Term Memory)
deep learning model to predict the best perturbation action from its
observations made in the current environment. In a real attack, the
LSTMmodel trained offline is used to assist the attacker with choos-
ing the best perturbation action for each new logkey encountered.
In a nutshell, our contributions can be summarized as follows:

• We propose a real-time attack method called LAM, to per-
turb streaming logs with minimal modifications in an online
fashion. LAM considers three types of attacks – whitebox,
graybox and blackbox - depending on the attackers’ pre-
existing knowledge and access to anomaly detection models.

• We overcome the search space complexity challenge by mod-
eling the perturber in LAM as a reinforcement learning agent
that operates in a partially observable environment to predict
the best perturbation action.

• We have evaluated the effectiveness of LAM on two state-
of-the-art log-based anomaly detection models shown to
have superior anomaly detection capability for distributed
systems: DeepLog [13] and an AutoEncoder-based anomaly
detection system [19]. Our experimental results show that
LAM significantly reduces the true positive rate of these two
models while achieving attack imperceptibility and real-time
responsiveness.

• We have provided thorough discussions on the potential
defensive methods against our proposed attack on log-based
anomaly detection for distributed systems.

Organization: The rest of the paper is organized as follows. Sec-
tion 2 provides a brief overview of deep learning based anomaly
detection models from distributed system logs. Section 3 formulates
the problem of our real-time evasion attack and presents the threat
model. Section 4 describes the architecture of LAM. The algorithm
details are given in Section 5. Section 6 presents our experimental
results. Section 7 discusses potential defensive methods against
LAM. Section 8 presents the related work and Section 9 draws the
concluding remarks.

2 BACKGROUND
This section provides a brief overview of deep learning-based mod-
els used for distributed system log anomaly detection that are tar-
geted in our attack, namely DeepLog [13] and AutoEncoder [19].
Our attack focuses on circumventing anomaly detection at the ses-
sion level. A session is a collection of system logs grouped together
by some predefined criteria (e.g., logs generated from the same
virtual machine). Many log based anomaly detection systems that
utilize deep learning models as the anomaly detection component
(e.g., DeepLog [13], AutoEncoders [4, 19], LogGAN [38], and Desh
[11]) operate in two steps – a parsing step and an anomaly detection
step.

Logkeys

Anomaly
Detection

Model

Distributed Node 1

ParserSystem Logs

Distributed Node 2

ParserSystem Logs

Distributed Node N

ParserSystem Logs

Figure 1: Anomaly Detection on Distributed System Logs
with 𝑁 Distributed Nodes.

Logkey System Logs
1 Adding an already existing block (.*)
2 (.*)Verification succeeded for (.*)
3 (.*) Served block (.*) to (.*)
.
29 PendingReplicationMonitor timed out block (.*)
Table 1: Example logkeys for HDFS system logs

Figure 1 shows the flow of the data stream in anomaly detection
systems based on distributed system logs. In general, the deep
learning based anomaly detection model is deployed in a central
location, where the logs are collected and streamed to the anomaly
detection system from one or more locations over the network [32].

Examples of such distributed logs are Hadoop File System logs
(HDFS) [42] and logs generated by scientific workflow systems [22].

An anomaly detection system as illustrated in Figure 1 involves
multiple steps. First, the raw system logs are collected and parsed
into numerical values called logkeys. This step uses a predefined
template that directly maps a given log entry into a numerical
value [41]. This template is generated either through automated log
parsing tools (e.g., Spell [12], Drain [20]) or is defined by domain
experts. An example of the logkeys parsed from the HDFS system
log dataset [42] is given in Table 1, where the logkey template has 29
logkey types. In Table 1, the symbols (.∗) represent the parameter
value positions that are discarded when mapping log entries into
logkeys.

In the second step, the logkeys are grouped into sessions and
are fed into the anomaly detection model. Formally, we denote a
session as a univariate time series 𝑋 = {𝑥1, 𝑥2, 𝑥3, ..., 𝑥𝑇 }, where
𝑇 is the length of the session and 𝑥𝑡 (1 ≤ 𝑡 ≤ 𝑇) is a logkey.
An anomaly detection model processes each session using a fixed
length sliding window with a step size of 1. At each time instance 𝑡 ,
the input to the anomaly detection model is a fixed length sequence
𝑠𝑒𝑞𝑡 = {𝑥𝑡−𝑚+1, 𝑥𝑡−𝑚+2, ..., 𝑥𝑡 } where𝑚 is the sliding window size.

Anomaly detection models are usually trained on benign sam-
ples. At the test time, the models detect the presence of anomalies
based on the deviation between the input and what it has learnt.
The deviation is captured either through the error or the loss of
the model (e.g., AutoEncoders [4, 19]), or based on the inability
of the model to predict future variations in the time series (e.g.,
DeepLog [13]). Given a deep learning model 𝐹 , the entire session
is marked as anomalous if an anomaly occurs at any point in the
session (i.e., there exists 1 ≤ 𝑡 ≤ 𝑇 such that 𝐹 (𝑠𝑒𝑞𝑡) = 𝑇𝑟𝑢𝑒).

For the deep learning model 𝐹 , we consider the following two
state-of-the-art models in this work.

Deeplog: Deeplog uses an LSTM model to detect anomalies in
system logs. LSTM is a specially designed deep learning architecture
that excels in learning temporal variations in data. At each time
instance 𝑡 , the model takes as input a fixed length of sequence
𝑠𝑒𝑞𝑡 and learns the conditional probability of the next logkey 𝑥𝑡+1.
DeepLog is trained on a benign set of samples. During the anomaly
detection, at each time instance, the model outputs 𝑔 (a user defined
parameter) logkeys that are most likely to arrive next. If the logkey
that arrives in reality is not among the 𝑔 logkeys, then an anomaly
flag is raised.

AutoEncoder: AutoEncoder is a Deep Learning model that ex-
cels at learning hidden representations of data. AutoEncoder has
two main components – an encoder and a decoder – which are
generally Feed Forwarding Deep Neural Networks. The encoder
learns a hidden representation of an input, which is then fed back
into the decoder to reconstruct the input from the hidden repre-
sentation. To perform system log anomaly detection, AutoEncoder
obtains an input sequence of logkeys 𝑠𝑒𝑞𝑡 at each time step, and
tries to reconstruct the sequence. The normalized error associated
with this reconstruction is used as an anomaly score. If the error is
greater than a fixed threshold, then an anomaly flag is raised. At the
training time, AutoEncoder learns to minimize its reconstruction
error for a set of benign samples with no anomalies.

3 PROBLEM FORMULATION AND THREAT
MODEL

In this work, we consider real-time evasion attacks against deep
learning-based anomaly detection systems developed to identify
suspicious activities from distributed system logs. Anomaly detec-
tion systems are often designed to operate in an online manner
[13, 22, 29, 44]. It is important to detect anomalous behaviors in
computer systems in a timely and online manner so that system
administrators can detect an ongoing attack or address a system
performance issue as soon as possible [13, 26]. As the size of the
parsed logkeys (numeric values) is much smaller than that of the
raw logs, to ensure that the logs are processed in real-time, it is
more efficient to send the logkeys than raw logs to the anomaly
detection model over the network.

Following adversarial evasion attacks in other domains [3, 40, 43],
we generate attacks that aim to perturb the input to anomaly de-
tection models such that anomaly samples would be mistakenly
identified as being benign. Similar to many existing evasion at-
tacks, we aim to fool the operational anomaly detection models
(i.e., DeepLog and AutoEncoder) without changing any internal
parameters such as trained weights. In such an attack, the objec-
tive is to identify the modifications to the streaming logkeys such
that it can be carried out before the input arrives at the anomaly
detection model deployed. We consider imperceptibility to be a
negligible percentage of the logkeys in an entire session that need
to be modified by a given adversarial attack. Our intuition is that
the fewer changes, the more invisible the attack appears to the
defender. Formally speaking, our work is aimed at addressing the
following question: given a target anomaly detection model 𝐹 and
an anomalous logkey session 𝑋 , is it possible to perturb 𝑋 in real time
with minimal modifications so that no anomaly is raised by model 𝐹
throughout the session?

Assumptions and threat model: In anomaly detection, an
anomaly raised at any location of a session makes the entire ses-
sion anomalous. When an attacker modifies e.g., the execution of
a Virtual Machine (VM), multiple places in the log session may
change. An anomaly detection model that can identify any of those
changes can successfully detect the malicious activity. Therefore, to
successfully fool the anomaly detection model, multiple modifica-
tions may be needed in the log stream. We assume that an attacker
has the ability to intercept or modify a logkey before the logkey
is processed by an anomaly detection model. We also assume that
an attacker can use a surrogate anomaly detection model to find
the places where anomalies are likely to be raised. We consider the
following three types of attacks:

• Whitebox attack: In a whitebox attack, the adversary has all
the information about the target model, i.e., the surrogate
model is an exact replica of the target model. This implicates
that any anomaly flag raised by the surrogate model should
match exactly the one raised by the target model.

• Graybox attack: In a graybox attack, the adversary knows the
hyper-parameters and the architecture of the target model,
but not its internal parameter values. In deep learning based
anomaly detection, models with the same architecture can
still have different weights because they are initialized with

different random numbers at the beginning of model train-
ing.

• Blackbox attack: In a blackbox attack, the adversary has no
information about the target model. The surrogate model
used by the adversarymay be totally different from the target
model. Due to the discrepancy in model architectures, the
differences in anomalies identified between the surrogate
model and the target model should be more significant than
the other two types of attacks.

4 DESIGN OF LAM
In this section we present the high-level design goals of LAM. Fig-
ure 2 gives the architecture of LAM, which manipulates the parsed
logkey stream before it arrives at the anomaly detection model.
LAM observes the most recently parsed logkeys in the stream (i.e.,
the observation window), identifies possible anomaly situations,
and determines the logkey to manipulate. Once the logkey is iden-
tified, LAM intercepts and perturbs the logkey.

LAM consists of two components: a surrogate model (SM) and a
perturber (P). The surrogate model plays two roles: to identify attack
entry points and to act as a reference model for the perturber. The
perturber learns to make adversarial modifications in the logkey
stream using the anomaly detection capability of the surrogate
model. If an anomaly is identified by the surrogate model, then the
perturber identifies the best possible adversarial action to perform
(e.g., replacing/dropping a logkey or keeping the logkey as it is),
in order to minimize changes to the input stream and thus be
able to keep up with the speed of the incoming flow of logkeys.
Note that the perturber does not require any knowledge about the
internal parameters of the surrogate model, rather it only needs an
indication of whether a sequence of logkeys is anomalous or not.

For a typical anomaly detection system, an anomaly flag raised
at any point in a session would result in the whole session be-
ing marked as anomalous. Therefore, the adversarial modification
of any logkey should not adversely affect other correlated future
logkey values. Failure to adhere to this criterion may increase the
probability of an anomaly being raised in the future within the
same session. To address this issue, LAM models the perturber as a
reinforcement learning agent leveraging a deep learning algorithm
that operates in a partially observable environment to capture the
future effect of the current action.

4.1 Why reinforcement learning?
We propose a solution based on reinforcement learning (RL) to
overcome the high computational overhead of a brute-force search
approach. During the attack, at each time instance 𝑡 , the RL agent
takes one of the two actions: (1) 𝑑𝑟𝑜𝑝 (𝑥𝑡) which drops the last
logkey 𝑥𝑡 in the observation sequence 𝑂 ; (2) 𝑟𝑒𝑝𝑙𝑎𝑐𝑒 (𝑥𝑡 , 𝑥 ′𝑡) which
replaces the last observed logkey 𝑥𝑡 in𝑂 with 𝑥 ′𝑡 . If 𝑥

′
𝑡 is the same as

𝑥𝑡 , then it means that the logkey 𝑥𝑡 remains unchanged. Therefore,
given 𝐿 logkey types, there are 𝐿 + 1 possible perturbation actions
at each time step.

Although it is possible to try each of the 𝐿 + 1 actions at each
time step, this approach is inefficient. As an action taken at time
step 𝑡 may affect the future actions, LAM must be able to forecast
how an action carried out in the present affects the future during

the attack. Assume that the sliding window used by the operational
anomaly detection model is𝑚. As the number of possible actions at
each time step is 𝐿 + 1 and an action taken at a time step will affect
at least 𝑚 future time steps, there are (𝐿 + 1)𝑚 combinations of
actions to be tried for𝑚 time steps. The combination of all possible
modifications in an attacker’s action space can be large even for
a small number of logkeys, making it hard to find in real time the
optimal action that can evade the operational anomaly detection
model. In LAM, the RL agent learns an optimal policy during its
offline training phase by taking into consideration the future impact
of current actions. During the attack, the RL agent directly identifies
an adversarial action without trying all possible actions.

4.2 Why deep reinforcement learning?
One challenge in attacking anomaly detection models is the large
state space an RL agent needs to search during the training. The
anomaly detection models take a sequence of𝑚 logkeys as an input.
Similarly, the RL agent uses a sequence of 𝑛 logkeys as its state.
The number of states in the search space that the RL agent needs
to explore during the training is 𝐿𝑛 , which grows exponentially
when 𝑛 increases. Traditional reinforcement learning approaches
use a tabular method to store all the state transitions in order to
identify optimal actions resulting in desirable states. In our problem
setting, we need to identify actions that can convert an anomalous
sequence to a benign sequence. As the search space is large, the
tabular method requires a large amount of memory to store the
state transition table.

To address this issue, we employ a Deep Neural Network (DNN)
to construct the RL agent. We treat the relationship between an
input sequence (the state) and a desirable adversarial action as a
non-linear mapping where the DNN is used as a blackbox function
approximator for the mapping. This removes the need to store the
state transitions in a tabular way. The RL agent is also model-free, so
the agent does not need to know how the logkeys are generated by
the actual system and hence does not need to individually compute
the transition probabilities for each state action pair.

4.3 Dealing with a large search space
Using DNN reduces the memory usage of RL agent, but does not
circumvent the issue regarding the need to explore a large search
space. To address this issue, we train the RL agent in an offline
setting to create adversarial perturbations on a sample of system
log sessions with known anomalies. We utilize two approaches in
our offline training phase to ensure that the agent explores the state
space sufficiently while learning an optimal policy. The first method
is called experience replay [35]. During experience replay, the agent
learns to perturb logkeys of anomalous sessions. The result from
each perturbing attempt may be different for each training iteration
(epoch). All perturbing attempts (successful or not) are valuable
experience that is used iteratively when updating parameters of the
DNN. At each training epoch, we store the information pertaining
to these perturbing attempts in a cyclic buffer called the replay
memory. When the RL agent updates its internal parameters, the
agent trains on a subset of its past experience stored within its
replay memory. Therefore in a given epoch, the agent learns from

SM: Surrogate ModelP: Perturber

Observe Logkey Stream
Intercept for

Adversarial Attack

Parsed Logkey Stream

Observation Window

LAM

F: Anomaly
Detection

Model

xx t-n-2t-n-1xt-nxt-n+1x
t-n+2

xx tt+1xt+2xt+3 xt-1 xt-2

Figure 2: The architecture of LAM operating at time step 𝑡

multiple cycles of perturbing attempts made in the past, effectively
learning more about the state space.

As the second solution, we use a decay based approach that
gradually manages the exploration-exploitation in reinforcement
learning [36]. The RL agent must explore a sufficient portion of the
search space while ensuring exploiting the best actions that result in
desirable states. Exploitation without exploration may result in the
RL agent learning a sub-optimal local policy that may only work for
some anomalous sessions. To address this issue, we use a threshold
(𝜖 ∈ [0, 1]) based search during our offline training. If a randomly
generated number is greater than the threshold, then a known
optimal action will be taken; otherwise a random action will be
taken. We define 𝜖 as a decreasing threshold that starts with a large
value (∼1) and decreases to a smaller value with each epoch. This
is represented as 𝜖 = 𝜖𝑒𝑛𝑑 + (𝜖𝑠𝑡𝑎𝑟𝑡 − 𝜖𝑒𝑛𝑑) exp {

−1.𝑒𝑝𝑜𝑐ℎ
𝜖𝑑𝑒𝑐𝑎𝑦

}, where
𝜖𝑠𝑡𝑎𝑟𝑡 , 𝜖𝑒𝑛𝑑 , and 𝜖𝑑𝑒𝑐𝑎𝑦 are user defined parameters that determine
the rate at which the threshold decreases and 𝑒𝑝𝑜𝑐ℎ is the current
iteration of training. In this approach, the RL agent explores the
state space more often during the initial epochs of training because
𝜖 is a larger value. Gradually, as 𝜖 decreases, the agent exploits
more often. Our experimental results show that, the above two
approaches when used together lead to fast convergence in training
(Figure 4 in Section 6.2.3).

5 ALGORITHM DETAILS
In this section, we use 𝑂 to denote the observation sequence and 𝑛
to denote the size of the state of the RL agent. Below, we describe
the algorithmic details of LAM.

In LAM, the RL agent is trained offline to learn the best policy
in perturbing streaming logs with minimal changes to evade the
detection by the surrogate model. The attacker then uses this policy
to make immediate decisions when performing a real-time evasion
attack against the operational anomaly detection model.

The RL agent operates in a state space, where each state consists
of 𝑛 logkeys, to perturb the logkey stream. Its transition is assisted
with an observation sequence 𝑂 with the past 𝑛 + 1 logkeys in the
perturbed stream. Thus, at any time LAM only needs to remember
𝑛 + 1 past logkeys in a given session. During the bootstrapping
phase when fewer than 𝑛 + 1 logkeys are observed, the observation
sequence 𝑂 is constructed by appending a filler value −1 prior
to all observed logkeys up to a length of 𝑛 + 1. The initial state

𝑠1 = 𝑂 [2 : 𝑛 + 1] is given as an input to the DNN model, which
contains all logkeys in 𝑂 except the first one. We use an LSTM
model as our DNN because the LSTM model can better capture
the temporal correlation in time series data than alternative DNN
models such as feed forwarding neural networks and convolutional
neural networks [17]. At each state 𝑠𝑡 , the LSTM model outputs a
score for each possible action (i.e., the action-value). During the
attack, the RL agent selects the action that has the highest score
without exploring other options.

Moving forward, we use an intermediate state 𝑠 ′𝑡 to compute the
reward based on the action taken by the RL agent, which occurs
after an action taken by the RL agent but before the next logkey
𝑥𝑡+1 is observed. If the action is 𝑑𝑟𝑜𝑝 (𝑥𝑡), then 𝑠 ′𝑡 = 𝑂 [1 : 𝑛]. If the
action is 𝑟𝑒𝑝𝑙𝑎𝑐𝑒 (𝑥𝑡 , 𝑥 ′𝑡), then 𝑠 ′𝑡 = 𝑂 [2 : 𝑛] ◦ 𝑥 ′𝑡 where ◦ represents
the concatenation. Given an action 𝑎, the reward at time step 𝑡 is
computed using the surrogate model 𝑆𝑀 , the logkey observed 𝑥𝑡
(𝑠𝑡 [𝑛]), and the intermediary state 𝑠 ′𝑡 as follows:

𝑟𝑡 =


1.0 if 𝑆𝑀 (𝑠 ′𝑡) = False & 𝑠𝑡 [𝑛] = 𝑠 ′𝑡 [𝑛]
0.5 if 𝑆𝑀 (𝑠 ′𝑡) = False & 𝑠𝑡 [𝑛] ≠ 𝑠 ′𝑡 [𝑛]
−1.0 if 𝑆𝑀 (𝑠 ′𝑡) = True

(1)

𝑆𝑀 (𝑠 ′𝑡) is 𝑇𝑟𝑢𝑒 if the perturbation by the agent causes an anom-
aly. The goal of the RL agent is to learn an optimal policy that
maximizes the expected reward. If the perturbation causes an anom-
aly, then a negative reward of −1 is given; otherwise, a positive
award is given. Additional rewards are given when the RL agent
takes no action and no anomaly is flagged, which aims to train the
RL agent to make the least possible perturbations to maintain the
imperceptibility.

At the next time step 𝑡 + 1, the new state 𝑠𝑡+1 is computed from
the intermediate state 𝑠 ′𝑡 and the new logkey 𝑥𝑡+1 as 𝑠𝑡+1 = 𝑠 ′𝑡 [2 :
𝑛] ◦ 𝑥𝑡+1. Similarly, the observation sequence 𝑂 is updated as 𝑂 =

𝑠 ′𝑡 ◦ 𝑥𝑡+1.
Below, we use an example to explain the RL agent’s behavior. Sup-

pose that at time instance 𝑡 = 8,𝑂 is {−1,−1,−1, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6,
𝑥7, 𝑥8}. Here 𝑛 = 10, 𝑥1, . . . , 𝑥8 are logkeys, and -1 is the filler value.
If the RL agent opts to replace 𝑥8 with 𝑥 ′8, then the intermediate
state 𝑠 ′8 is {−1,−1, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥

′
8}. If the agent drops the

logkey 𝑥8, then 𝑠 ′8 = {−1,−1,−1, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7}. When a
new logkey 𝑥9 arrives, the agent’s observation sequence 𝑂 is up-
dated as 𝑠 ′8 ◦ 𝑥9 and state 𝑠9 is computed as 𝑠 ′8 [2 : 10] ◦ 𝑥9.

5.1 Offline Training Algorithm

Procedure OfflineTraining
Data: The number of training iterations 𝑛𝑢𝑚_𝑒𝑝𝑜𝑐ℎ, the

anomaly sessions X′, the decay parameters 𝜖𝑠𝑡𝑎𝑟𝑡 , 𝜖𝑒𝑛𝑑
and 𝜖𝑑𝑒𝑐𝑎𝑦 , the discount factor 𝛾 , the target policy
update period𝑀

Result: The trained model𝑄𝑝𝑜𝑙𝑖𝑐𝑦

1 Randomly initialize the weights of LSTM for𝑄𝑝𝑜𝑙𝑖𝑐𝑦

2 𝑄𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑄𝑝𝑜𝑙𝑖𝑐𝑦

3 for 𝑒𝑝𝑜𝑐ℎ ∈ [1, 𝑛𝑢𝑚_𝑒𝑝𝑜𝑐ℎ] do
4 Randomly pick a session 𝑋 ′ ∈ X′

5 𝑂 = {−1, . . . ,−1, 𝑋 ′ [1] }
6 𝑠1 = 𝑂 [2 : 𝑛 + 1]
7 for 𝑡 ∈ [1, |𝑋 ′ |] do
8 𝑥𝑡+1 = 𝑋 ′ [𝑡 + 1] or 𝑛𝑢𝑙𝑙 if 𝑡 == |𝑋 ′ |
9 𝜖 = 𝜖𝑒𝑛𝑑 + (𝜖𝑠𝑡𝑎𝑟𝑡 − 𝜖𝑒𝑛𝑑) exp { −1.𝑒𝑝𝑜𝑐ℎ

𝜖𝑑𝑒𝑐𝑎𝑦
}

10 if random(0..1) > 𝜖 then
Select an optimal action 𝑎𝑡 =
𝑎𝑟𝑔𝑚𝑎𝑥𝑎 (𝑄𝑝𝑜𝑙𝑖𝑐𝑦 (𝑠𝑡 , 𝑎))

else
11 Randomly select an action 𝑎𝑡

end
12 Compute the intermediate state 𝑠′𝑡
13 Compute the reward 𝑟𝑡 based on 𝑆𝑀 (𝑠′𝑡)
14 𝑂 = 𝑠′𝑡 ◦ 𝑥𝑡+1
15 𝑠𝑡+1 = 𝑠′𝑡 [2 : 𝑛] ◦ 𝑥𝑡+1
16 Add training sample < 𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1, 𝑟𝑡 > to replay

memory 𝐸

end
17 Randomly pick a subset of training samples 𝐸′ ⊂ 𝐸

18 for each training sample < 𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1, 𝑟𝑡 >∈ 𝐸′ do
19 Compute action value 𝑦𝑡 = 𝑄𝑝𝑜𝑙𝑖𝑐𝑦 (𝑠𝑡 , 𝑎𝑡)
20 Compute next state action value 𝑦𝑡+1 ={

𝑚𝑎𝑥𝑎 (𝑄𝑡𝑎𝑟𝑔𝑒𝑡 (𝑠𝑡+1, 𝑎)) if 𝑠𝑡+1 is a non-terminal state
0 otherwise

21 Compute the loss between (𝑦𝑡 , (𝑟𝑡 + 𝛾 · 𝑦𝑡+1))
according to Eq. (2)

22 Adjust weights in𝑄𝑝𝑜𝑙𝑖𝑐𝑦 (𝑠𝑡 , 𝑎𝑡) based on the loss
computed

end
23 if 𝑒𝑝𝑜𝑐ℎ %𝑀 == 0 then
24 𝑄𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑄𝑝𝑜𝑙𝑖𝑐𝑦

end
25 return𝑄𝑝𝑜𝑙𝑖𝑐𝑦

Algorithm 1: Offline training of the RL agent

Algorithm 1 gives the pseudocode for the offline training proce-
dure of the RL agent. In the pseudocode, we use X′ to denote all
anomaly sessions, 𝑋 ′ a single anomaly session, and |𝑋 ′ | the length
of 𝑋 ′.

Lines 1−2 in Algorithm 1 initialize the RL agent. In each training
epoch (i.e., a loop in Line 3), the algorithm works in two stages.
First, the algorithm perturbs a randomly chosen anomaly session
(Lines 4 − 16) and then performs one training cycle (Lines 17 − 22).

The purpose of the offline training algorithm is to train an LSTM
model that can be used to predict the action value of each state-
action pair. During the attack, given a current state 𝑠 , the attacker
always takes the action that results in the largest action value pre-
dicted by the LSTMmodel. The LSTMmodel outputs a scalar action
value [36] associated with each state-action pair (𝑠 , 𝑎). Algorithm 1
trains two LSTM models, 𝑄𝑝𝑜𝑙𝑖𝑐𝑦 and 𝑄𝑡𝑎𝑟𝑔𝑒𝑡 . Model 𝑄𝑝𝑜𝑙𝑖𝑐𝑦 is re-
turned by the algorithm (Line 25) and is used later by the adversary
in real-time evasion attacks (see Section 5.2). We next explain the
reason for the additional model 𝑄𝑡𝑎𝑟𝑔𝑒𝑡 .

Chattering is a common issue when using DNN models within
reinforcement learning [36]. This issue implies that using a deep
learning model as a function approximator to identify the mapping
between a state and an action may not always result in stable
convergence of the RL agent towards learning an optimal policy.
A workaround to this problem is to instantiate two LSTM models
of the same architecture during the training time, each predicting
the action value in a given state. The target model 𝑄𝑡𝑎𝑟𝑔𝑒𝑡 acts as
a reference or a target for the training objective, while the policy
model 𝑄𝑝𝑜𝑙𝑖𝑐𝑦 is updated for each training epoch. Given a state
𝑠 and an action 𝑎, 𝑄 (𝑠, 𝑎) returns a scalar action-value where 𝑄
is either 𝑄𝑡𝑎𝑟𝑔𝑒𝑡 or 𝑄𝑝𝑜𝑙𝑖𝑐𝑦 . Initially both 𝑄𝑡𝑎𝑟𝑔𝑒𝑡 and 𝑄𝑝𝑜𝑙𝑖𝑐𝑦 are
initialized with the same random weights (Line 2). In each 𝑒𝑝𝑜𝑐ℎ,
the policy model is trained (Lines 18− 22) whereas the target model
is left untouched. The target model is then updated to be the same
as the policy model every 𝑀 epochs where 𝑀 is a user-defined
variable (Lines 23 − 24).

We next explain the details of each training epoch. The agent
initializes its observation sequence𝑂 and its initial state 𝑠1 in Lines
5−6. For each randomly selected anomaly session𝑋 ′, the algorithm
perturbs the logkeys in this session. Given the next logkey 𝑥𝑡+1, the
agent identifies the adversarial action to take based on the threshold
𝜖 , where 0 ≤ 𝜖 ≤ 1 (Lines 9 − 11). With probability 1 − 𝜖 , the agent
selects the action 𝑎𝑡 associated with the maximum action-value (i.e.,
𝑎𝑡 = argmax𝑎𝑄𝑝𝑜𝑙𝑖𝑐𝑦 (𝑠𝑡 , 𝑎)). With probability 𝜖 , the agent selects
a random perturbation action.

Afterwards, the algorithm computes the intermediate state 𝑠 ′𝑡
(Line 12) followed by calculating the reward as per Equation 1
(Line 13). Then the observation 𝑂 is updated and the next state
𝑠𝑡+1 is computed (Lines 14-15). The training sample ⟨𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1, 𝑟𝑡 ⟩
is then added to the replay memory (Line 16). At each training
cycle, the RL agent picks a random subset of training samples from
its replay memory to train from (Line 17). For each sample, the
agent computes the loss and updates the weights of 𝑄𝑝𝑜𝑙𝑖𝑐𝑦 (Lines
19 − 22). The loss is computed as a smooth L1 loss [15] between
the current action value 𝑦𝑡 = 𝑄𝑝𝑜𝑙𝑖𝑐𝑦 (𝑠𝑡 , 𝑎𝑡) and the summation
of the immediate reward obtained from the current time step and
the discounted best action value for the next time step (i.e., 𝑟𝑡 + 𝛾 ·
𝑦𝑡+1). More specifically the loss function is given in the following
equation:

𝑙𝑜𝑠𝑠 =

{
0.5(𝑦𝑡 − (𝑟𝑡 + 𝛾 · 𝑦𝑡+1))2 if |𝑦𝑡 − (𝑟𝑡 + 𝛾 · 𝑦𝑡+1) | < 1
|𝑦𝑡 − (𝑟𝑡 + 𝛾 · 𝑦𝑡+1) | − 0.5 otherwise

(2)
We utilize the smooth L1 loss because it is less sensitive to outliers

than the mean squared error loss (MSELoss) and in some cases
prevents exploding gradients [15]. The action value for the next

time step 𝑦𝑡+1 is discounted by a factor 𝛾 ∈ [0, 1], a user defined
parameter. Note that in Line 20, 𝑦𝑡+1 is computed with respect to
the target LSTM model 𝑄𝑡𝑎𝑟𝑔𝑒𝑡 due to the chattering issue. With
the loss computed in Line 21, the weights of 𝑄𝑝𝑜𝑙𝑖𝑐𝑦 are updated
using RMSProp [37] as the optimizer in Line 22. Once the training
completes, the algorithm returns the policy model 𝑄𝑝𝑜𝑙𝑖𝑐𝑦 .

5.2 Real-time Evasion Attack
Algorithm 2 shows how LAM performs the real-time attack at time
step 𝑡 . Before any logkey arrives, the observation 𝑂 ′ is initialized
to be [−1,−1, ...,−1] of length 𝑛. For each incoming logkey 𝑥𝑡 ,
the algorithm updates 𝑂 ′ and the current state 𝑠𝑡 (Line 1). The
current state is then probed using the surrogate model 𝑆𝑀 for a
potential anomaly flag (Line 2). If an anomaly flag is not raised (i.e.
𝑆𝑀 (𝑠𝑡) == 𝐹𝑎𝑙𝑠𝑒), then 𝑂 ′ is updated (Line 3) and the perturber 𝑃
takes no action (Line 4). If an anomaly is likely to be flagged, an
optimal perturbation action 𝑎𝑡 is identified to avoid the anomaly
(Line 5 − 8).

Procedure Attack
Data: incoming logkey 𝑥𝑡 in the session, the observation𝑂′

1 𝑂′ = 𝑂′ ◦ 𝑥𝑡 ; 𝑠𝑡 = 𝑂′ [2 : 𝑛 + 1]
2 if 𝑆𝑀 (𝑠𝑡) == 𝐹𝑎𝑙𝑠𝑒 then
3 𝑂′ = 𝑠𝑡

4 return ⊲ No perturbation action is needed
else

5 Select action 𝑎𝑡 = argmax𝑎𝑄𝑝𝑜𝑙𝑖𝑐𝑦 (𝑠𝑡 , 𝑎)
6 Compute the intermediate state 𝑠′𝑡 based on sequence𝑂′

7 𝑂′ = 𝑠′𝑡
8 Perform perturbation action 𝑎𝑡

9 return
end

Algorithm 2: Real-time evasion attack

6 EVALUATION
In this section, we first describe the datasets used in our experi-
ments and the architectures and hyper-parametric tuning of the
anomaly detection models and the RL agent. We then present our
experimental results on attack effectiveness, speed, and impercepti-
bility.

6.1 Datasets and model parameters
We have evaluated LAM using two distributed system log datasets:
HDFS [42] and the system logs collected from the DATAVIEW
scientific workflow management system [22].

6.1.1 HDFS logs: HDFS is a commonly used benchmark dataset for
log based anomaly detection systems [13, 38, 46]. The dataset con-
tains Hadoop file system logs for map-reduce jobs on more than 200
Amazon EC2 Virtual Machines (VMs). The raw log files are grouped
into sessions based on the field block_id, where each session is la-
beled for anomaly status by domain experts. The parsed dataset
contains 24,396,061 log entries from 29 logkey events amounting to
around 974, 762 sessions. We train the anomaly detection models
on a random dataset containing 8000 benign sessions.

6.1.2 DATAVIEW logs: DATAVIEW is a scientific workflow man-
agement system that runs workflows inside Amazon EC2 VMs [23].
Logs collected from DATAVIEW record the status of scientific work-
flows executed on EC2 VMs, which includes the VM provisioning
status, the communication between a local machine and a EC2
VM, and the task execution status. The system logs contain the
interleaved execution traces of three scientific workflows, namely
Ligo, WordCount and DiagnosisRecommendation [22]. The logs are
grouped into sessions based on the type of workflow executed. The
dataset contains synthetic anomalies due to workflow structural
changes where the workflow structure is modified to manipulate
the final results. The dataset contains 14,362 log sequences gen-
erated from 104 logkey events. We train the anomaly detection
models on a dataset of 8000 benign samples.

6.1.3 Anomaly detection models: Table 2 gives the architectures
and the hyper-parameters used to tune the Deeplog and AutoEn-
coder anomaly detection systems. The table also contains the true
positive rate (TPr) and the false positive rate (FPr) associated with
anomaly detection. In DeepLog, the Linear Layer outputs the con-
ditional probabilities for all the logkeys for the next time step. In
AutoEncoder, the inputs/outputs are a one hot encoded sequence
of values equal to 𝐿 ×𝑚, where 𝐿 is the number of logkeys and𝑚
is the sliding window size.

6.1.4 RL agent architectures: Table 3 gives the architecture and
the hyper-parameters of the RL agent tuned for the whitebox at-
tack, in which the target model and the surrogate model are the
same. In our experiments, we maintain a replay memory 𝐸 (Line 16
of Algorithm 1) of 20000 samples. For all experiments, the hyper-
parameters 𝜖𝑠𝑡𝑎𝑟𝑡 , 𝜖𝑒𝑛𝑑 , 𝑀 , and |𝐸 ′ | in Algorithm 1 are kept at con-
stant values of 0.90, 0.05, 150, and 256, respectively. The training
datasets for the RL agent contain 50 anomaly sessions (i.e., |X′ |),
which are randomly sampled without replacement for both HDFS
and DATAVIEW datasets.

In the whitebox attack, the attacker has direct access to the
anomaly detection models trained. In the graybox attack, we train
a surrogate model separately, which has the same architecture and
hyper-parameters as the target model, but different trainingweights
(which are randomly initialized). In the blackbox attack, when at-
tacking DeepLog, we use AutoEncoder as the surrogate model.
When attacking AutoEncoder, the surrogate model is DeepLog.

6.2 Experimental results
This section presents the experimental results of LAM. All experi-
mental results pertaining to the real-time attack effectiveness, the
attack imperceptibility, and the attack speed (shown in Figure 3
and Table 4) were obtained on a dual two-core 3.30 GHz Intel Xeon
machine with 8 GB memory. The pre-trained deep learning mod-
els were used in all experiments. The deep learning models were
trained and tuned on a 2.3-3.7 GHz Intel Xeon Gold 6140 machine
with NVIDIA Tesla P100 12GB GPU.

6.2.1 Attack effectiveness: Figure 3 shows the effectiveness of LAM
on DeepLog and AutoEncoder. Figure 3(a) gives the true positive
rate of LAM on the HDFS dataset. The figure shows that, for the
whitebox attack, the true positive rate of DeepLog and AutoEncoder
is reduced by approximately 80% and 60%, respectively. For the

Datasets Models Architecture Hyper-Parameters TPr FPr

HDFS DeepLog LSTM(#weights = 64, #layers = 2),
Linear(64×29)

sliding window (𝑚) = 10,
learning rate = 0.01,
of candidates (𝑔) = 9

0.9066 0.0023

AutoEncoder

Encoder: { Linear(290×256), Linear(256×128),
Linear(128×64), Linear(64×32) }
Decoder: { Linear(32×64), Linear(64×128),
Linear(128×256), Linear(256×290) }

sliding window (𝑚) = 10,
learning rate = 0.01,
threshold (𝜃) = 0.1

0.9997 0.0019

DATAVIEW DeepLog LSTM(#weights = 128, #layers = 2),
Linear(128×104)

sliding window (𝑚) = 10,
learning rate = 0.01,
of candidates (𝑔) = 17

1.0000 0.0224

AutoEncoder Encoder: { Linear(1040×1024), Linear(1024×512) }
Decoder: { Linear(512×1024), Linear(1024×1040) }

sliding window (𝑚) = 10,
learning rate = 0.01,
threshold (𝜃) = 0.2

1.0000 0.0613

Table 2: Anomaly detection model architectures

Datasets &
Models RL agent Architecture Hyper-Parameters

HDFS

DeepLog LSTM(#w = 128, #l = 4),
Linear(128×30)

state size (n) = 11
𝛾 = 0.85
𝜖𝑑𝑒𝑐𝑎𝑦 = 2000

AutoEncoder LSTM(#w = 256, #l = 4),
Linear(256×30)

state size (n) = 10
𝛾 = 0.85
𝜖𝑑𝑒𝑐𝑎𝑦 = 3000

DATAVIEW

DeepLog LSTM(#w = 128, #l = 4),
Linear(128×105)

state size (n) = 11
𝛾 = 0.85
𝜖𝑑𝑒𝑐𝑎𝑦 = 3000

AutoEncoder LSTM(#w = 128, #l = 4),
Linear(128×105)

state size (n) = 10
𝛾 = 0.95
𝜖𝑑𝑒𝑐𝑎𝑦 = 3000

Table 3: The architecture and hyper-parameters of tuned RL
agent where #w and #l represent the number of weights and
layers in the LSTM module, respectively

DATAVIEW dataset (Figure 3(b)), we observe a drop of 100% in the
true positive rate with DeepLog and a reduction of around 87%
with AutoEncoder. As expected, the whitebox attack demonstrates
the greatest damage to the anomaly detection capability of the two
models, with an average of around 89.9% for DeepLog and 73.5%
for AutoEncoder.

We study the transferability of LAM via graybox and blackbox
attack scenarios. Transferability means the likelihood of success
for an indirect attack by using a different model as the target. LAM
succeeds in evading anomaly detection in the graybox attack, but
not to the same degree as the whitebox attack. This is because, even
though both the target and the surrogate models have superior
anomaly detection capability, their internal model parameters are
not the same. As the two models may raise anomalies at different lo-
cations in the same session, anomalies detected by the target model
may not always be masked by LAMwhich uses a different surrogate
model to decide which logkeys should be perturbed. Figure 3(a)
shows that, for the HDFS dataset, the graybox attack reduces the
true positive rate of DeepLog from 91% to 41% and AutoEncoder

(a) HDFS

(b) DATAVIEW

Figure 3: Attack effectiveness of LAM

from 99% to 52%. For the DATAVIEW dataset, the graybox attack
performs as well as the whitebox attack, as shown in Figure 3(b).

The blackbox attack is the hardest of the three types of attacks,
as evidenced by the least decreases in the true positive rates for all
the cases in Figure 3. Interestingly, the figure shows that the black-
box attacks targeting the AutoEncoder model with DeepLog as the
surrogate model are more transferable than those in the opposite
direction. Figure 3(a) shows that the blackbox attack reduces the

Datasets Attacked Models Real-Time Responsiveness
(Time for a single attack)

Attack Imperceptibility
Avg. #Modifications per Session Avg. Session Length Modified Percentage

HDFS DeepLog 0.65ms 1.58 25.28 6.24 %
AutoEncoder 0.23ms 3.10 25.28 12.27 %

DATAVIEW DeepLog 0.62ms 3.15 36.85 8.55 %
AutoEncoder 0.37ms 4.64 36.85 12.59 %

Table 4: Properties of real-time adversarial attack

true positive rate of the AutoEncoder model by 45.9% for the HDFS
dataset, whereas the reduction for the DeepLog model is only 17.3%.
We see a similar trend in Figure 3(b), which shows a larger drop in
the anomaly detection accuracy when targeting the AutoEncoder
(73.3%) as opposed to the DeepLog (33.3%). The above results in-
dicate that the attacks generated with DeepLog as the surrogate
model are more transferable than those using AutoEncoder.

6.2.2 Attack speed and imperceptibility: Table 4 shows the real-
time responsiveness and attack imperceptibility of LAM. We ob-
serve from the table that the speed of perturbing one logkey is
fast irrespective of the datasets used, which is about 0.63ms for
DeepLog and 0.29ms for AutoEncoder. Regarding attack imper-
ceptibility, for a single session in HDFS that contains around 25
logkeys, on average LAM changes 1.5 and 3.1 logkeys when attack-
ing DeepLog and AutoEncoder, respectively. We see a similar trend
for the DATAVIEW experiments. Our experimental results show
that AutoEncoder is more robust against our attacks. When consid-
ering all dataset and model combinations, LAM perturbs around
9.9% logkeys on average to evade anomaly detection.

To illustrate the real-time effectiveness of LAM, we experiment
with attacking sessions of logkeys using a brute force search al-
gorithm assisted by the surrogate model. For each session, the
surrogate model is used to identify the attack entry points. Once an
anomaly is identified by the surrogate model, a brute force search
is performed to traverse through all possible transitions until an ac-
tion that results in fooling the surrogate model is observed. Unlike
LAM, the brute force search needs to probe the surrogate model at
each iteration to ensure that an adversarial action does not result
in any anomaly flag raised throughout the entire observed session.
In the worst case, the total number of searches required for each
iteration can be exponentially large, i.e., 𝐿𝑛 where 𝐿 is the total
number of logkeys and 𝑛 is the size of the state. For example, when
DeepLog is used as the surrogate model, the state size for the HDFS
dataset is 2911 and the state size for the DATAVIEW dataset is 10411.
In our experiment, we attacked 20 randomly selected sessions from
both the HDFS and the DATAVIEW datasets where the surrogate
model is DeepLog. Given that the search time of LAM is bounded by
an order of seconds, we consider an upper limit of 24 hours as the
total search time for a single session using the brute force search.
The brute force search is terminated if the search time exceeds 24
hours. Our experimental results show that the average time for
attacking a single session in HDFS and DATAVIEW datasets using
the brute force search is 12.87 hours and 17.03 hours respectively.
Considering an attack on the whole session, this is approximately
2.8 × 106 times slower than LAM, which illustrates the gains in
speed during the attack phase using the RL agent. Overall, the brute

force search perturbs approximately 30.4% logkeys. We expect sim-
ilar results for brute force search when the surrogate model is the
AutoEncoder.

6.2.3 Convergence in training: Figure 4 shows the convergence of
the average reward per session obtained by the RL agent during
the training phase for the first 500 epochs. The average reward
obtained per session is plotted with respect to the training progress
for the models with parameters mentioned in Table 3.

The maximum reward an agent can obtain in each session is the
number of logkeys in the session. On average, each session in HDFS
and DATAVIEW contains around 25 and 36 logkeys, respectively.
In both datasets, the reward is negative at the beginning. This
is because, at the beginning, the perturber is not able to create
adversarial modifications that fool the surrogate model. However,
it quickly rises to a positive value and fluctuates slightly below 25
and 36 as shown in Figures 4(a) and 4(b). The reason behind the
sudden rise is that at each epoch, the perturber trains on a batch
of training samples stored in its replay memory. Additionally, we
observe that the RL agent obtained higher reward for DeepLog
than for AutoEncoder. This also implies that the RL agent learns to
attack DeepLog more successfully than AutoEncoder.

6.2.4 Hyper-parametric tuning: In this section, we provide insights
on hyper-parametric tuning for our real-time adversarial attack
method. Due to the space constraint, we present only results from
tuning the attack against DeepLog on the HDFS dataset. We observe
similar trends for other model-dataset combinations. Figure 5 shows
the true positive rate for varied values of 𝛾 , the hyper-parameter
used for calculating the loss and for varied architectural changes
in the LSTM model (see Eq. (2)). As shown in Figure 5, the attack
is more successful when 𝛾 increases, irrespective of the internal
architecture of the LSTM component. This is in line with many
standard RL agent tuning tasks where higher values of 𝛾 ∈ [0.8, 1]
seem to have better results. However, we note that once the RL
agent achieves a stable state (#layers = 4, #weights = 128), there is
no visible change even when 𝛾 increases further.

We make similar observations for 𝜖𝑑𝑒𝑐𝑎𝑦 (Line 9 in Algorithm 1),
where a substantially larger value (i.e., around 2000 or 3000) yields
better results. This is also expected as larger 𝜖𝑑𝑒𝑐𝑎𝑦 enables the RL
agent to explore the search space more often, thus circumventing
the issue of getting stuck at a local optima to a higher degree. We
note an interesting pattern with regards to selecting the optimal
architecture for the LSTM component. As seen in Figure 5, mod-
els with less depth (i.e., #layers = 2) are not able to successfully
make adversarial attacks. As the size of the model increases, either
through the number of stacked layers or the number of weights
used, we note a greater reduction in the true positive rate. However,

100 200 300 400 500

Epoch

-20

-10

0

10

20

30

A
v
er

ag
e

R
ew

ar
d

DeepLog

AutoEncoder

(a) HDFS

100 200 300 400 500

Epoch

-20

-10

0

10

20

30

40

50

A
v

er
ag

e
R

ew
ar

d

DeepLog

AutoEncoder

(b) DATAVIEW

Figure 4: Convergence in training for the RL agent

Figure 5: Impact of parametric change on attack perfor-
mance for 𝛾 = [0.80, 0.85, 0.90]

at a certain point (#layers = 4, #weights = 256 for HDFS + DeepLog),
we see a sudden increase in the true positive rate. We see similar
trends for the DATAVIEW dataset and the AutoEncoder model,

where the true positive rate decreases and then increases with an
increasing model size, albeit at different points. Therefore, our rule
of thumb for hyper-parameter tuning is to initially start with a
smaller model (i.e., #layers = 2, #weights = 64) and then double it
at each step until the true positive rate rebounds from a bottom
value.

7 DISCUSSIONS
In this section we discuss how to extend LAM for attacking raw
log streams directly as well as potential defense schemes.

Extension to attacking raw log streams: Our approach con-
siders logkeys as the input to the anomaly detection model for
transmission efficiency. The method can be extended to scenarios
where raw log entries are transmitted over the network and fed
to the anomaly detection system directly, which parses them into
logkeys for further anomaly detection. In the attack, the attacker
can intercept raw log entries, convert them to logkeys, use LAM to
optimize perturbations, and finally translate the modified logkeys
back to raw log entries. As the parameter values are discarded
for logkey anomaly detection upon parsing, the attacker can then
manipulate the raw logs by intercepting and replacing individual
log entries with valid text templates associated with the mapped
logkeys.

Potential Defensive Approaches: Below, we discuss potential
defense mechanisms against LAM. As LAM relies on interception
and modification of the logkey stream fed to the anomaly detection
module, it is possible to prevent the attack by ensuring the integrity
of the logkeys during their transmissions from their collection sites
to the machine where anomaly detection is performed. However, a
few technical challenges are involved here. First, a trusted pathmust
be established from the place where the raw logs are generated to
the anomaly detection module. For example, a common practice in
distributed systems is that data transmissions are secured between
two machines (e.g., using the popular scp utility). This may not be
sufficient because the adversary may run malware on the machine
collecting raw logs to modify the logkeys before their transmissions
or on the machine executing the anomaly detection model after
the logkeys are received. Second, although an application-level
end-to-end security protection scheme can be deployed to prevent
tampering of logkeys needed by the LAM attack, it introduces
extra overhead and complexity to key management in a distributed
system where other keys are also needed at the infrastructure level
(e.g., Kerberos for Hadoop). The co-existence of multiple sets of
unrelated keys in the same distributed system renders it difficult to
reason about trust relationships across different components.

Another potential defense strategy is to increase the adversar-
ial robustness by leveraging the disparity in transferability. Our
experimental results show that although LAM is able to transfer
attacks across different model architectures, the blackbox attack has
the least success rate. Instead of utilizing one operational anomaly
detection model, it is possible to deploy an ensemble of anomaly
detection models within the anomaly detection system. For each
session, one of the models within the ensemble is randomly chosen
for the purpose of detecting anomalies. If the model chosen is dif-
ferent from the surrogate model, then the attack success rate will
be less than an optimal whitebox scenario. From a defensive posi-
tion, the defender must ensure that all models within the ensemble

are trained adequately such that they all have reasonable anomaly
detection capability, which could be computationally intensive.

From an attacker’s perspective, LAM can be used to attack even
with this defense in place. If the attacker knows that an anomaly
model ensemble is used, then the entire ensemble itself can be
used as a group of surrogate models during the training phase.
For each training iteration, one of the models within the ensemble
can be chosen to derive the reward of the RL agent. This would
ensure that LAM learns to fool multiple model architectures at the
same time. However, this opens a possible question with respect to
achieving stable convergence during training, because each training
iteration could be anchored on a different surrogate model. This
also opens the question of identifying attack entry points within
the session, because different models may identify anomalies at
different sequential points in the stream. It is worth noting that
adversarial attacks and defences form a kind of cat and mouse game,
where one party may triumph over the other depending on the
information available to the other party. We leave the investigation
of this potential defensive strategy and how LAM may fair against
them as future work.

8 RELATEDWORK
In this section we survey the related works on log-based anomaly
detection and adversarmail machine learning attacks.

8.1 Log-based anomaly detection
There have been a number of attempts at identifying malicious be-
haviors from computer system logs (e.g., [7, 9, 21]). Machine learn-
ing based system log anomaly detection can be broadly classified as
supervised, unsupervised, and deep learning based methods. The
work in [21] provides a comparison between existing supervised
and unsupervised machine learning based system log anomaly de-
tection models. Support Vector Machines (SVM) [25], Decision Tree
based methods [10], and data mining techniques such as MapRe-
duce [6] have been used as supervised machine learning methods
to detect anomalies based on system logs. Unlike supervised meth-
ods, unsupervised techniques have the advantage of not needing
a labeled dataset at its learning stage. LogCluster [26] is one such
unsupervised model that uses clustering based techniques to de-
tect anomalous events by generating clusters for normal/abnormal
samples. Other unsupervised machine learning techniques include
Statistical methods such as Principal Component Analysis (PCA)
[42] that operate by reducing a high dimensional data space to a
lower dimension, and techniques such as Invariant Mining [28]
that identify common linear relationships in benign log sessions
and use them to flag anomalies.

Recently, Deep Learning based models have been used for anom-
aly detection with great success [9]. DeepLog [13] uses the LSTM
model to learn the conditional probabilities of log sequences and
raises an anomaly flag whenever newly arrived logs are not pre-
dicted by the model. Desh [11] uses LSTM to predict the lead time
for future node failure in HPC logs. Researchers have also pro-
posed to combine the LSTM architecture with the attention mecha-
nism [8, 46] to provide an additional level of interpretability for root
causes of anomalies identified in system logs. AutoEncoders have
also been widely used for anomaly detection (e.g., [4, 5, 19, 34]). In

recent years, there have been models constructed by combining Au-
toEncoder models with LSTM [18], where the AutoEncoder is used
to identify a hidden representation of the data, which is then given
as the input to an LSTM model to detect anomalies. As anomalies
occur sparingly, a common problem plaguing anomaly detection is
the imbalance between benign and abnormal training samples. To
address this issue, Generative Adversarial Networks (GANs) have
been used to improve anomaly detection models [38].

8.2 Adversarial machine learning attacks
Although Deep Learning models have achieved superior perfor-
mance in many areas, there have been successful attempts at mis-
leading many DNNs at test time by carefully crafting input sam-
ples [3]. Some of the existing adversarial attacks are summarized
in [40, 43]. Although many attacks were initially proposed in the
domain of image classification [1, 27, 40], some recent works have
focused on generating adversarial examples targeting text-based
NLP domains [2, 45]. Many existing evasion attacks generate adver-
sarial samples in an offline manner [40, 43, 45]. LAM, in contrast, is
aimed at real-time evasion of anomaly detection systems. Moreover,
attacks targeting NLP applications operate on character/word mod-
ifications and do not work well for system logs that have stricter
syntactical structure. In addition, newly proposed systems such as
LogRobust [46] can successfully parse unstable raw logs, which
further reduces the effectiveness of previous attacks.

Recently, there have been some works on creating real-time
adversarial attacks. CAG (Content-Aware Adversarial Attack Gen-
erator) [30] is one such attack that uses a generative model in the
form of U-Net [33] to make adversarial perturbations to images.
GAP (Generative Adversarial Perturbations) [31] is another similar
image-based generative model that uses a ResNet model within its
architecture. Li et al. [24] propose to use an offline-trained fixed
discriminator and a generator that is trained to create adversarial
perturbations against the discriminator for real-time video clas-
sification. The work in [14] introduces an evasion attack against
anomaly detection in cyber-physical systems. These previous ef-
forts use generative models to craft adversarial samples, which
differ from the reinforcement learning approach developed in our
work. Xie et al. [39] propose an attack against speech recognition
by generating universal perturbations from repeated playback of
fixed-length universal noise.The adversarial attacks proposed by
Gong et al. [16] targeting speech recognition models the attack
generator as a RL agent. Their approach modifies speech patterns
based on imitation of pre-exiting attack trajectories performed by
offline attack models. Our approach, in contrast, does not require
any pre-known adversarial attacks on anomaly detection models.
To the best of our knowledge, there are no adversarial evasion at-
tacks against deep learning based anomaly detection on distributed
system logs.

9 CONCLUSION
In this paper, we propose LAM, a real-time evasion attack that
perturbs streaming logs in distributed systems with minimal modi-
fications to evade anomaly detection. LAM models the perturber as
a reinforcement learning agent that operates in a partially observ-
able environment. The RL agent is trained offline using a surrogate

model to predict the best perturbation action from its observations
made in the current environment and then uses this prediction
to make immediate decisions during the attack. Our experimental
results show that LAM significantly reduces the true positive rate of
DeepLog and AutoEncoder while achieving attack imperceptibility
and real-time responsiveness. In the future, we plan to extend LAM
to consider both logkeys and parameter values and investigate fur-
ther defense mechanisms against LAM.

ACKNOWLEDGMENTS
This work is supported in part by the National Science Foundation
under grant OAC-1738929. We also thank the anonymous reviewers
for their constructive comments.

REFERENCES
[1] Naveed Akhtar and Ajmal Mian. 2018. Threat of adversarial attacks on deep

learning in computer vision: A survey. IEEE Access 6 (2018), 14410–14430.
[2] Yonatan Belinkov and James Glass. 2019. Analysis methods in neural language

processing: A survey. Transactions of the Association for Computational Linguistics
7 (2019), 49–72.

[3] Battista Biggio and Fabio Roli. 2018. Wild patterns: Ten years after the rise of
adversarial machine learning. Pattern Recognition 84 (2018), 317–331.

[4] Andrea Borghesi, Andrea Bartolini, Michele Lombardi, Michela Milano, and
Luca Benini. 2019. Anomaly detection using autoencoders in high performance
computing systems. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 33. 9428–9433.

[5] Andrea Borghesi, Antonio Libri, Luca Benini, and Andrea Bartolini. 2019. Online
anomaly detection in hpc systems. In 2019 IEEE International Conference on
Artificial Intelligence Circuits and Systems (AICAS). IEEE, 229–233.

[6] Jakub Breier and Jana Branišová. 2015. Anomaly detection from log files using
data mining techniques. In Information Science and Applications. Springer, 449–
457.

[7] Jakub Breier and Jana Branišová. 2017. A dynamic rule creation based anomaly
detection method for identifying security breaches in log records. Wireless
Personal Communications 94, 3 (2017), 497–511.

[8] Andy Brown, Aaron Tuor, Brian Hutchinson, and Nicole Nichols. 2018. Recurrent
neural network attention mechanisms for interpretable system log anomaly
detection. In Proceedings of the First Workshop on Machine Learning for Computing
Systems. 1–8.

[9] Raghavendra Chalapathy and Sanjay Chawla. 2019. Deep learning for anomaly
detection: A survey. arXiv preprint arXiv:1901.03407 (2019).

[10] Mike Chen, Alice X Zheng, Jim Lloyd, Michael I Jordan, and Eric Brewer. 2004.
Failure diagnosis using decision trees. In International Conference on Autonomic
Computing, 2004. Proceedings. IEEE, 36–43.

[11] Anwesha Das, Frank Mueller, Charles Siegel, and Abhinav Vishnu. 2018. Desh:
deep learning for system health prediction of lead times to failure in hpc. In
Proceedings of the 27th International Symposium on High-Performance Parallel and
Distributed Computing. 40–51.

[12] Min Du and Feifei Li. 2016. Spell: Streaming parsing of system event logs. In 2016
IEEE 16th International Conference on Data Mining (ICDM). IEEE, 859–864.

[13] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. 2017. Deeplog: Anomaly
detection and diagnosis from system logs through deep learning. In Proceedings
of ACM Conference on Computer and Communications Security.

[14] Alessandro Erba, Riccardo Taormina, Stefano Galelli, Marcello Pogliani, Michele
Carminati, Stefano Zanero, and Nils Ole Tippenhauer. 2019. Real-time evasion
attacks with physical constraints on deep learning-based anomaly detectors in
industrial control systems. arXiv preprint arXiv:1907.07487 (2019).

[15] Ross Girshick. 2015. Fast r-cnn. In Proceedings of the IEEE international conference
on computer vision. 1440–1448.

[16] Yuan Gong, Boyang Li, Christian Poellabauer, and Yiyu Shi. 2019. Real-time
adversarial attacks. arXiv preprint arXiv:1905.13399 (2019).

[17] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT
Press. http://www.deeplearningbook.org.

[18] Aarish Grover. 2018. Anomaly Detection for Application Log Data. (2018).
[19] SimonHawkins, HongxingHe, GrahamWilliams, and Rohan Baxter. 2002. Outlier

detection using replicator neural networks. In International Conference on Data
Warehousing and Knowledge Discovery. Springer, 170–180.

[20] Pinjia He, Jieming Zhu, Zibin Zheng, and Michael R Lyu. 2017. Drain: An online
log parsing approach with fixed depth tree. In 2017 IEEE International Conference
on Web Services (ICWS). IEEE, 33–40.

[21] Shilin He, Jieming Zhu, Pinjia He, and Michael R Lyu. 2016. Experience re-
port: System log analysis for anomaly detection. In 2016 IEEE 27th International

Symposium on Software Reliability Engineering (ISSRE). IEEE, 207–218.
[22] J Dinal Herath, Changxin Bai, Guanhua Yan, Ping Yang, and Shiyong Lu. 2019.

RAMP: Real-Time Anomaly Detection in Scientific Workflows. In 2019 IEEE
International Conference on Big Data (Big Data). IEEE, 1367–1374.

[23] Andrey Kashlev and Shiyong Lu. 2014. A system architecture for running big
data workflows in the cloud. In 2014 IEEE International Conference on Services
Computing. IEEE, 51–58.

[24] Shasha Li, Ajaya Neupane, Sujoy Paul, Chengyu Song, Srikanth V Krishnamurthy,
Amit K Roy Chowdhury, and Ananthram Swami. 2018. Adversarial perturbations
against real-time video classification systems. arXiv preprint arXiv:1807.00458
(2018).

[25] Yinglung Liang, Yanyong Zhang, Hui Xiong, and Ramendra Sahoo. 2007. Failure
prediction in ibm bluegene/l event logs. In Seventh IEEE International Conference
on Data Mining (ICDM 2007). IEEE, 583–588.

[26] Qingwei Lin, Hongyu Zhang, Jian-Guang Lou, Yu Zhang, and Xuewei Chen.
2016. Log clustering based problem identification for online service systems. In
2016 IEEE/ACM 38th International Conference on Software Engineering Companion
(ICSE-C). IEEE, 102–111.

[27] Yen-Chen Lin, Zhang-Wei Hong, Yuan-Hong Liao, Meng-Li Shih, Ming-Yu Liu,
and Min Sun. 2017. Tactics of adversarial attack on deep reinforcement learning
agents. arXiv preprint arXiv:1703.06748 (2017).

[28] Jian-Guang Lou, Qiang Fu, Shengqi Yang, Ye Xu, and Jiang Li. 2010. Mining
Invariants from Console Logs for System Problem Detection.. In USENIX Annual
Technical Conference. 1–14.

[29] Adam J Oliner, Alex Aiken, and Jon Stearley. 2008. Alert detection in system logs.
In 2008 Eighth IEEE International Conference on Data Mining. IEEE, 959–964.

[30] Huy Phan, Yi Xie, Siyu Liao, Jie Chen, and Bo Yuan. 2019. CAG: A Real-time
Low-cost Enhanced-robustness High-transferability Content-aware Adversarial
Attack Generator. arXiv preprint arXiv:1912.07742 (2019).

[31] Omid Poursaeed, Isay Katsman, Bicheng Gao, and Serge Belongie. 2018. Genera-
tive adversarial perturbations. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 4422–4431.

[32] Maria A Rodriguez, Ramamohanarao Kotagiri, and Rajkumar Buyya. 2018. Detect-
ing performance anomalies in scientific workflows using hierarchical temporal
memory. Future Generation Computer Systems 88 (2018), 624–635.

[33] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-net: Convolutional
networks for biomedical image segmentation. In International Conference on
Medical image computing and computer-assisted intervention. Springer, 234–241.

[34] Mayu Sakurada and Takehisa Yairi. 2014. Anomaly detection using autoencoders
with nonlinear dimensionality reduction. In Proceedings of the MLSDA 2014 2nd
Workshop on Machine Learning for Sensory Data Analysis. 4–11.

[35] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. 2015. Prioritized
experience replay. arXiv preprint arXiv:1511.05952 (2015).

[36] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

[37] Tijmen Tieleman and Geoffrey Hinton. 2012. Lecture 6.5-rmsprop: Divide the
gradient by a running average of its recent magnitude. COURSERA: Neural
networks for machine learning 4, 2 (2012), 26–31.

[38] Bin Xia, Junjie Yin, Jian Xu, and Yun Li. 2019. LogGAN: A Sequence-Based
Generative Adversarial Network for Anomaly Detection Based on System Logs.
In International Conference on Science of Cyber Security. Springer, 61–76.

[39] Yi Xie, Cong Shi, Zhuohang Li, Jian Liu, Yingying Chen, and Bo Yuan. 2020. Real-
time, Universal, and Robust Adversarial Attacks Against Speaker Recognition
Systems. arXiv preprint arXiv:2003.02301 (2020).

[40] Han Xu, Yao Ma, Haochen Liu, Debayan Deb, Hui Liu, Jiliang Tang, and Anil
Jain. 2019. Adversarial attacks and defenses in images, graphs and text: A review.
arXiv preprint arXiv:1909.08072 (2019).

[41] Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael Jordan. 2009.
Online system problem detection by mining patterns of console logs. In 2009
Ninth IEEE International Conference on Data Mining. IEEE, 588–597.

[42] Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael I Jordan. 2009.
Detecting large-scale system problems by mining console logs. In Proceedings of
the ACM SIGOPS 22nd symposium on Operating systems principles. 117–132.

[43] Xiaoyong Yuan, Pan He, Qile Zhu, and Xiaolin Li. 2019. Adversarial examples:
Attacks and defenses for deep learning. IEEE transactions on neural networks and
learning systems 30, 9 (2019), 2805–2824.

[44] Yali Yuan, Sripriya Srikant Adhatarao, Mingkai Lin, Yachao Yuan, Zheli Liu,
and Xiaoming Fu. 2020. ADA: Adaptive Deep Log Anomaly Detector. In IEEE
INFOCOM 2020-IEEE Conference on Computer Communications. IEEE, 2449–2458.

[45] Wei Emma Zhang, Quan Z Sheng, and Ahoud Abdulrahmn F Alhazmi. 2019.
Generating textual adversarial examples for deep learning models: A survey.
arXiv preprint arXiv:1901.06796 (2019).

[46] Xu Zhang, Yong Xu, Qingwei Lin, Bo Qiao, Hongyu Zhang, Yingnong Dang,
Chunyu Xie, Xinsheng Yang, Qian Cheng, Ze Li, et al. 2019. Robust log-based
anomaly detection on unstable log data. In Proceedings of the 2019 27th ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. 807–817.

http://www.deeplearningbook.org

	Abstract
	1 Introduction
	2 Background
	3 Problem Formulation and Threat Model
	4 Design of LAM
	4.1 Why reinforcement learning?
	4.2 Why deep reinforcement learning?
	4.3 Dealing with a large search space

	5 Algorithm Details
	5.1 Offline Training Algorithm
	5.2 Real-time Evasion Attack

	6 Evaluation
	6.1 Datasets and model parameters
	6.2 Experimental results

	7 Discussions
	8 Related Work
	8.1 Log-based anomaly detection
	8.2 Adversarial machine learning attacks

	9 Conclusion
	Acknowledgments
	References

