
A Survey of Modern Scientific Workflow Scheduling Algorithms and Systems in the
Era of Big Data

Junwen Liu∗, Shiyong Lu∗
Department of Computer Science

Wayne State University∗

Detroit, Michigan, USA
Email: {junwen, shiyong}@wayne.edu∗

Dunren Che†

School of Computing
Southern Illinois University†

Carbondale, Illinois, USA
Email: dche@cs.siu.edu†

Abstract—This paper provides a survey of the state-of-
the-art workflow scheduling algorithms with the assumption
of cloud computing being used as the underlying compute
infrastructure in support of large-scale scientific workflows
involving big data. The survey also reviews a few selected
representative scientific workflow systems in light of usability,
performance, popularity, and other prominent features. In
contrast to existing related surveys, which most try to be
comprehensive in coverage and inevitably fall short in the
depth of their coverage on workflow scheduling, this survey
puts an emphasis on the two dominant factors in workflow
scheduling, the makespan and the monetary cost of workflow
execution, resulted in a useful taxonomy of workflow scheduling
algorithms as an additional contribution. This survey tries
to maintain a good balance between width and depth in its
coverage – after a broad review, it spotlights on selected top
ten representative scheduling algorithms and top five workflow
management systems leveraging cloud infrastructure with an
emphasis on support for big data scientific workflows.

Keywords-Workflow; Workflow Scheduling; Workflow Sys-
tems; Cloud; Constraints; Optimization.

1. INTRODUCTION

In the last two decades, scientific workflow becomes the
mainstream for empowering scientists to accelerate scientific
discoveries in all fields of science. Traditionally, scientific
workflows are described as directed-acyclic graphs (DAGs),
in which nodes represent computational tasks and edges
represent data dependencies among tasks. Many scientific
experiments leverage scientific workflows to organize com-
plex computations to process and analyze data. As more
data is collected by various scientific experiments, scientific
workflows become more and more data and computation
intensive. To meet such needs, a number of workflow
management systems have been developed over the past
decade, including Pegasus [24], DATAVIEW [25], Kepler
[26], Taverna [27], Swift [28], etc. They are extensively used
by various research communities, covering astronomy, bioin-
formatics, ecology, computational engineering, etc. In order
to facilitate users to design, execute and monitor scientific
workflows throughout the whole workflow life-cycle, most
Scientific Workflow Management Systems (SWFMSs) take a
layered architecture that consists of four or more layers, e.g.,

a presentation layer, a workflow management layer, a task
management layer, and an infrastructure layer, etc.

In order to handle the increasingly data-intensive scien-
tific applications, various compute resources that facilitate
disparate types of parallelism have been incorporated in
scientific workflow execution environments, such as clusters,
grids and clouds. Cloud computing is the recent trend in
distributed scalable computing. It fulfills the vision to deliver
on-demand, reliable, and scalable services over the Internet,
with easy access to virtually infinite compute, storage and
networking resources. Users can outsource complex tasks
to very large data centers operated by numerous cloud
providers and access their resources through services based
on a convenient pay-as-you-go pricing model.

In this exciting era of big data, intelligent connectivity is
quickly embracing the new advancement of IoT, Edge Com-
puting and 5G networking. Meanwhile, providing efficient
workflow scheduling and execution by novel scheduling
algorithms in workflow systems remain an important and
challenging issue. As large amounts of data are collected
and need to be processed in real time in numerous scien-
tific fields, scientists realize their increasing need for more
advanced SWFMSs to accelerate their scientific discoveries
under both budget and deadline constraints.

In this survey, we focus on reviewing the state-of-the-
art workflow scheduling algorithms that were designed with
particular consideration of supporting big data and leverag-
ing cloud computing infrastructure for expedited execution
of large-scale scientific workflows. In addition, the survey
reviews five representative scientific workflow systems in
light of prominent features, usability, performance, and pop-
ularity. Different from existing related surveys, which typ-
ically aim at making comprehensive reviews on SWFMSs,
inevitably lacking the desired focus and depth in the core
workflow scheduling algorithms, this survey particularly put
its emphasis on workflow scheduling algorithms leveraging
the cloud infrastructures to achieve two dominant objectives,
minimizing both the makespan and the monetary cost of
workflow execution. A secondary focus is put on reviewing
representative workflow management systems. Therefore
the survey achieves an enjoyable balance between breadth



Table I: A summary of scheduling algorithms and systems.

Category 1 IC-PCP [1], LPOD [2], iCATS [3], WRPS [4], Heuristic GA [5], CGA [6], BORRIS [7], CEGA [8]
Category 2 BAGS [9], Scheduling-first [10], PCP [11], BARENTS [12]
Category 3 SHEFT [13], MOHEFT [14], HEFT [15], CPOP [15], N-DNSGA-II [16], EMS-C [17], MOELS [18]
Category 4 DPDS [19], SPSS [19], HPSO [20], DBCS [21], BDAS [22], DBWS [23]
Systems Pegasus [24],DATAVIEW [25], Kepler [26], Taverna [27], Swift [28], Galaxy [29], VisTrails [30],

TimeStudio [31], KNIME [32], Pipeline Pilot [33], ClowdFlows [34], TextFlows [35], VIEW [36], U-
Compare [37], SecDATAVIEW [38]

Table II: Comparison on representative scheduling algorithms.

Algorithms Constraints Optimization Objectives Types D/S Time Complexity
IC-PCP Deadline Monetary cost Path-based Static O(n2)
LPOD Deadline Monetary cost Path-based Static O(n2 + kn)
iCATS Deadline Monetary cost Workflow-based Static O(K ×NlogN)
BAGS Budget Makespan BoT-based Dynamic O(n×O(milp))

Scheduling-first Budget Average makespan Task-based Static O(ΣiNi × k)
SHEFT No Constraints Monetary cost, makespan Task-based Static O(n2 + n× k)

MOHEFT No Constraints Monetary cost, makespan Task-based Static O(e× k ×K)
DPDS Deadline, Budget # of workflows Task-based Dynamic O(n)
SPSS Deadline, Budget # of workflows Task-based Static O(n2)
HPSO Deadline, Budget Monetary cost, makespan Workflow-based Static O(K ×m×NlogN)

Table III: Comparison on representative workflow systems.

Systems Domains Execution Envs SaaS UI API Language support Open Source
Pegasus Scientific com-

puting
local, cluster, grid,
clouds

No Cmd Yes Java, Python, Perl https://pegasus.isi.edu/

downloads/

DATAVIEW Big data analyt-
ics

local, clouds Yes Web Yes Java, Python https://github.com/

shiyonglu/DATAVIEW

Kepler Big data analyt-
ics

local, clusters, web
services

No Desktop Yes Java, R https://kepler-project.

org/

Taverna Bioinformatics local, web services No Desktop,
Cmd

Yes Scufl2 https://taverna.incubator.

apache.org/

Swift Scientific com-
puting

local, cluster, grid,
clouds

No Cmd Yes Swift https://github.com/

swift-lang

and depth in its review of both the workflow scheduling
algorithms and SWFMSs.

In summary, this survey makes the following contribu-
tions:

1) We provide an overview on workflow scheduling, espe-
cially with regard to the parallelization techniques used
and the challenges regarding workflow scheduling in
the cloud (The review can be potentially useful as a
quick and concentrated introduction to the state-of-the-
art workflow scheduling algorithms for those relevant
readers and researchers).

2) We propose a new practical taxonomy of workflow
scheduling algorithms in the cloud and identify four
categories of scheduling algorithms by considering
two dominant factors, makespan and monetary cost of
workflow execution (see Table I). A survey with in-
depth comparison of selected representative scheduling

algorithms is made, as summarized in Table II.
3) We provide a condensed survey on five representative

scientific workflow systems regarding their respective
prominent features, scientific impact, literature citations
and open source accessibility. We compare them in
terms of their targeted application domains, execution
environments, and other features such as third-party
API support and programmatic language support. A
side-by-side comparison is made in table III.

2. WORKFLOW SCHEDULING: PROBLEM, CHALLENGES,
AND TAXONOMY

This section briefly describes the problem, challenges, and
taxonomy of workflow scheduling.

A. Workflow Scheduling

Workflow scheduling is the procedure of mapping work-
flow tasks to computing resources (e.g. VMs) needed for

https://pegasus.isi.edu/downloads/
https://pegasus.isi.edu/downloads/
https://github.com/shiyonglu/DATAVIEW
https://github.com/shiyonglu/DATAVIEW
https://kepler-project.org/
https://kepler-project.org/
https://taverna.incubator.apache.org/
https://taverna.incubator.apache.org/
https://github.com/swift-lang
https://github.com/swift-lang


the tasks’ execution. The goal of scheduling is to get
an efficient scheduling plan (SP) that optimizes certain
objectives, such as minimizing makespan and/or monetary
cost. Workflow scheduling algorithms can be categorized
into three types: static, dynamic and hybrid, of which
static algorithms generate schedules statically – i.e., before
workflow execution starts; dynamic algorithms flexibly in-
termingle the scheduling and execution steps; and hybrid
algorithms typically construct a (preliminary) schedule first,
then start its execution, and continue to adapt/optimize (parts
of) the schedule during execution based on newly available
dynamics of the actual execution of the workflow.

B. Challenges of workflow scheduling in clouds

We identify three main challenges for running workflows
in the cloud: 1) Workflow scheduling strategy: since we
are using a utility based pricing model, the overall cost
and makespan are two conflicting factors when running
workflows in the cloud, a good scheduling strategy should
achieve a good trade-off between these two factors. Pursuing
a better (or perfect) trade-off by spending a minimum
scheduling time will remain to be a big challenge. 2)
Resource provisioning and de-provisioning strategy: a
good provisioning and de-provisioning strategy is needed
to decide how many and what types of VMs need to be
provisioned and de-provisioned at any specific time. 3)
Dynamic cloud computing environments: the cloud is a
dynamic computing environment in which the performance
of VMs and networks can vary from time to time. A good
workflow scheduling algorithm must appropriately address
such dynamics of the underlying cloud infrastructure during
workflow execution.

C. A taxonomy of workflow scheduling algorithms in clouds

In the following, based on the two dominant factors, time
and monetary cost, we differentiate four scenarios of work-
flow scheduling and accordingly classify existing cloud-
based workflow scheduling algorithms into four categories:
• Category 1: Given a deadline, minimize the monetary

cost. Usually the scheduling algorithms in this category
focus on how to distribute the time constraints of a
given deadline among the various workflow tasks, so
that when each task completes within its sub-deadline,
the whole workflow is guaranteed to finish within the
given overall deadline. The scheduling goal is more
focused on minimizing the monetary cost of executing
the workflow while satisfying the given deadline.

• Category 2: Given a budget, minimize the makespan.
The scheduling algorithms in this category focus on
how to allocate the overall budget to sub-workflows
or tasks so that if each sub-workflow or task can
be scheduled on resources within its allocated sub-
budget, the whole workflow can complete within the
overall budget. The scheduling goal is more focused on

minimizing the makespan of the workflow’s execution
while satisfying the given budget.

• Category 3: Given no constraints, minimize the
makespan and/or the monetary cost. Essentially, this
is a mono-objective or multi-objective optimization
problem. For the later, one approach is to use a tradi-
tional multi-objective optimization technique to solve
this problem. A second approach is to convert the
problem into a mono-objective optimization problem
by aggregating two objectives into one.

• Category 4: Given both deadline and budget con-
straints, optimize some other performance metrics.
With both deadline and budget constraints given, the
scheduling algorithms in this category focus on opti-
mizing one or several performance metric(s), such as
makespan, monetary cost, or both, or success rate (the
chance that the actual schedule will succeed within the
constraints).

3. WORKFLOW SCHEDULING ALGORITHMS IN THE
CLOUD

In this section, we select several representative scheduling
algorithms from each category per their performance and
impact. Based on the scheduling approaches, we introduce
four types of scheduling algorithms:
• Task-based (scheduling task-by-task): In the literature,

they are also called list-based scheduling. In these
algorithms, tasks are ordered based on some priority
ranking and then a scheduling decision is made for each
task in that order.

• Path-based (scheduling path-by-path): In these algo-
rithms, a workflow is partitioned into paths based on
some criteria and then a scheduling decision is made
for each path.

• BoT-based (scheduling BoT-by-BoT): In these algo-
rithms, a workflow is partitioned into BoTs (Bag of
Tasks) such that each BoT is a set of tasks that have
no data dependencies among them, and a scheduling
decision is made for each BoT.

• Workflow-based (scheduling workflow-by-workflow):
In these algorithms, all tasks in a workflow are simulta-
neously scheduled and then the schedule for each task is
improved using some procedure to improve the quality
of the global workflow schedule.

There exists two types of billing models that are applica-
ble to workflow scheduling in the cloud:

1) Fine-grained billing model: a VM instance is charged
precisely based on the real usage time of the instance
and the unit price, usually $/minute, of the VM.

2) Coarse-grained billing model: A VM instance is
charged based on the number of billing cycles (τ
minutes/cycle) leased for the instance and the per-cycle
price of the VM. Partial usage of a billing cycle is
charged at the price of a full billing cycle.



We will describe each algorithm in terms of its category,
type, constraints, optimization objectives, assumptions of the
cloud computing model (VM types, network, storage, and
billing), and the main idea of the algorithm. A comparison
of these algorithms is summarized in Table II. We also
provide a video presentation for each algorithm at https:
//www.youtube.com/user/shiyonglu.

A. Category 1: given a deadline, minimize the monetary cost

1) IC-PCP: IC-PCP [1] is a typical path-based static
workflow scheduling algorithm of Category 1. It assumes
a homogeneous network in its cloud computing model, so
that the bandwidth between two arbitrary virtual machines
is similar. On the other hand, the computing environment
is heterogeneous - every VM might be of different type,
with different computation speed, size of memory and IO
performance. It assumes a coarse-grained billing model. The
performance metric for this algorithm is the total cost of
the whole workflow execution. The time complexity of this
algorithm is O(n2), where n is the number of tasks.

The main idea of IC-PCP is to identify the so called
partial critical path p of a node ti and then schedule all the
tasks on p to one VM instance. Initially, the EST (Earliest
Start Time) and LFT (Latest Finish time) (also called the
sub-deadline) for each task are estimated as follows:

EST (ti) = max
tp∈t′is parents

{EST (tp)+MET (tp)+TT (ep,i)}
(1)

LFT (ti) = min
tc∈t′is children

{LFT (tc)−MET (tc)−TT (ei,c)}
(2)

where MET (ti) is the execution time of ti on the fastest
machine and TT (ep,i) is the data transfer time from parent
task tp to child task ti. The algorithm identifies the partial
critical path of a task ti as follows: the critical parent
of ti is the parent tp such that 1) it is unscheduled, and
2) it has the latest data arrival time, that is, the largest
EFT (tp)+TT (ep,i); the partial critical path of ti is identi-
fied recursively (backward) via the critical parent tp of ti, the
critical parent of tp, and so on. Once a partial critical path
p is identified, it is then scheduled on the cheapest virtual
machine instance such that each task in p will satisfy its
sub-deadline. After p is scheduled, the EST , EFT (Earliest
Finish Time) and LFT of each task in p is adjusted, and the
EST of each descendant of p and the LFT of each ancestor
of p are adjusted accordingly. The procedure of identifying
and scheduling a partial critical path is invoked from the
exit task node texit backward recursively. As a result, the
scheduling of each partial critical path improves the estimate
of ESTs and LFTs of the remaining unscheduled tasks,
and thus improves the performance of the schedule of the
remaining tasks.

2) LPOD: LPOD [2] is another typical path-based static
workflow scheduling algorithm of Category 1. It assumes
a homogeneous network environment and a heterogeneous

cloud computing environment. It assumes a coarse-grained
billing model. The performance metric adopted by LPOD
is the C score, which ranges from 0 to 1 and combines
two performance factors (one for monetary cost and one for
makespan) into one metric. If the makespan is smaller than
the deadline δ, a reward between 0.0 to 0.5 is added to C,
otherwise a penalty between 0.0 to 0.5 is subtracted from
C. The definition of C is as follow:

C =

{
0.5 + 0.5 ∗ maxcost−cost

maxcost−mincost , if makespan ≤ δ
0.5− 0.5 ∗ makespan−δ

maxmakespan−δ , otherwise
(3)

where maxcost (mincost) is the monetary cost of running
the whole workflow in one instance of the most (least)
expensive VM type and maxmakespan is the makespan of
running the whole workflow in one instance of the slowest
VM type. The time complexity of LPOD is O(n2 + kn),
where n is the number of tasks in the workflow and k is the
number of VM types.

The main idea of LPOD is as follows. First, calculate the
priority rank for each task ti, which measures the longest
path from ti to the exit node texit, and is defined as follow:

Pri(ti) =

0, if ti = texit

ET (ti)+ max
tj∈t′

i
s children

(DTT (Di,j)+Pri(tj)), otherwise

(4)
where tj is the child task of ti, ET (ti) denotes the execution
time of task ti and DTT (Di,j) denotes the data transfer time
between task ti and tj in the workflow. Second, identify the
unvisited task ti that has the highest priority rank and then
recursively select its critical child - the unvisited child that
has the highest priority rank, to form a partial critical path.
This procedure is repeated until all tasks are visited. As a
result, the whole workflow is partitioned into a list of partial
paths PP . Third, for each path Pi ∈ PP , schedule as many
tasks as possible in the prefix of Pi to existing VM instances,
and then use a dynamic programming technique to schedule
the remaining tasks in Pi to new VM instances, with the
goal of minimizing the monetary cost while satisfying each
task’s sub-deadline. After each Pi is scheduled, the EST ,
EFT and LFT for each task in Pi will be adjusted, then
the EST for each descendant of Pi and the LFT for each
ancestor of Pi will also be adjusted. In contrast to IC-PCP,
which always assigns a path to one VM instance, LPOD can
assign a path to one or more VM instance(s), resulting in a
more optimized solution.

3) iCATS: iCATS [3] is a workflow-based static work-
flow scheduling algorithm of Category 1. It assumes a
homogeneous network environment where data transfer rates
among all virtual machine types are fixed, and a het-
erogeneous cloud computing environment where different
VM types can be utilized for computations. It assumes a
coarse grained billing model. The performance metric/fitness
function for this algorithm is the C score, which combines

https://www.youtube.com/user/shiyonglu
https://www.youtube.com/user/shiyonglu


monetary cost and makespan into one metric, as defined
in equation (3). The time complexity of this algorithm is
O(K×NlogN), where K is number of iterations, N is the
number of solutions that is kept in the comprehensive elite.

The main idea of iCATS is to adopt an improved version
of Cultural Algorithm (CA) [39] as a knowledge intensive
evolutionary search process, to synthesize a globally opti-
mal solution called the comprehensive elite, and to exploit
multiple knowledge sources to collaborate in the generation
of a new population of individuals called the population
space. In contrast to traditional evolutionary algorithms,
which have no implicit or explicit mechanism for storing and
transferring the knowledge from one generation to another,
CA provides an explicit mechanism called the Belief Space,
for storing, evolving and transferring the knowledge. It also
supports dual inheritance in which the Population Space
and the Belief Space are updated at each step based upon
feedback from each other. iCAT first constructs a Belief
Space by ranking the current population set based on their
fitness values, and select the best solutions and update the
Normative Knowledge (lower bound and upper bound of
fitted VM instance numbers for each task). Second, it will
construct the comprehensive elite by ranking the normalized
frequency of each VM for specific task (similar to a voting
process), thus the VM with the highest normalized frequency
will be selected and assigned to the corresponding task in
the comprehensive elite. Third, it generates a new population
set by searching within the Normative Knowledge range
in the Belief Space and apply crossover and mutation to
randomly selected individuals in the population set. Finally,
the comprehensive elite is added to the next generation. The
above steps are repeated until a termination condition is met.
The best solution as the final schedule is returned by iCATS.

B. Category 2: given a budget, minimize the makespan

1) BAGS: BAGS [9] is a typical BoT-based dynamic
workflow scheduling algorithm of Category 2. BAGS as-
sumes a homogeneous network model, a heterogeneous
cloud computing model and a centralized data storage model
with no monetary cost associated with data transfer. It uses
a coarse-grained billing model with a billing cycle of τ
minutes. A provisioning delay is considered for each VM
instance. The performance metrics for this algorithm are
cost/budget and makespan. The first metric tells the degree
of budget constraint satisfaction, with <= 1 being full satis-
faction. The later is the main goal for optimization. The time
complexity of this algorithm is O(n×O(milp)), where n is
the number of tasks and O(milp) is the complexity of mixed
integer linear programming, which is highly dependent on
the input of fine-grained constraints.

The main idea of BAGS is as follows. First, the workflow
is partitioned into three sets of BoTs: BoThom, a set of
bags of homogeneous tasks; BoThet, a set of bags of
heterogeneous tasks; and BoTsin, a set of bags containing a

single task. Second, the overall budget is distributed over all
BoTs as sub-budgets as follows: initially, pick the same VM
type for all tasks and that is as fast as possible such that the
total cost of running the workflow on the VM will not exceed
the given budget β, and then if possible, upgrade each BoT
to the next fastest VM type within the total budget β; the
monetary cost of running each BoT on the corresponding
VM type is assigned as the sub-budget for that BoT; the
remaining spare budget is then proportionally allocated to
each BoT as new VM provisioning budget so that when
necessary a new VM instance can be provisioned . Third,
a ready queue is used to place the tasks that are ready to
execute. During each scheduling cycle, for the first task t in
the queue, the bag bot that t belongs to is identified, and then
check whether there exists a resource provisioning plan for
bot. If not, then a similar budget redistribution procedure
will be applied, and a resource provisioning plan will be
generated for bot using a MILP (Mixed Integer Linear
Programming) solver based on the sub-budget for bot. Then
all tasks in bot will be scheduled based on the generated
resource provisioning plan. In particular, t will be scheduled
on an idle VM instance either from the bot specific idle
VM pool or from the general idle VM pool when possible,
otherwise, a new VM instance will be provisioned according
to the resource provisioning plan for bot, and t will be
scheduled on this newly provisioned VM instance. If there
is no idle VM instance and the spare budget is not sufficient
for provisioning a new VM instance, then t is put back to
the queue for the next cycle of scheduling. Both resource
provisioning and scheduling are done at run time.

2) The Scheduling-first algorithm: The scheduling-first
algorithm [10] is another typical task-based static workflow
scheduling algorithm of Category 2. It assumes 1) each
workflow/job with a priority, 2) every task inherits the same
priority from its workflow, 3) a cloud storage model that
stores intermediate data products in a centralized storage
and 4) a heterogeneous computing model in which each
VM type has a price and provisioning delay. The goal is to
minimize the weighted average turnaround time (the weight
is the priority of tasks), which is subject to the constraint
that the cost of all VM instances added up is smaller than
the budget set for any particular time point. The weighted
average makespan, Σjmakespanj ∗ priorityj/Σjpriorityj
is used as the performance metric, in which makespanj
and priorityj are the makespan and priority of workflow wj ,
respectively. This algorithm is designed for service providers
that need to schedule a stream of workflows on an online
cloud service under a budget in the form of $/hour instead
of $/workflow. This form of budget restricts the types and
numbers of VM instances that can be allocated at each time
point. The time complexity of this algorithm is O(ΣiNi×k),
where Ni is the number of tasks in workflow Wi, and k is
the number of VM types.

The main idea of the scheduling-first algorithm is as



follows. First, the overall budget B is proportionately dis-
tributed over workflows based on their priorities, resulting
in a sub-budget Bj for each workflow Wj . Second, sched-
ule each workflow Wj based on its sub-budget Bj . More
specifically, for each ready task ti of Wj , schedule ti on the
fastest VM instance without exceeding Bj and then adjust
Bj . After scheduling Wj , any remaining budget in Bj is
returned back to B. Finally, any remaining budget in B will
be used to schedule the ready and wait for running tasks
with the highest priority on the fastest VM instance without
exceeding B.

C. Category 3: given no constraints, minimize both the
makespan and/or monetary cost

1) SHEFT: The SHEFT [13] algorithm is a simple but
effective task-based static algorithm of category 3, which is
an improved version of the HEFT algorithm [15] by consid-
ering the new opportunity of allocating VMs from the cloud.
It assumes 1) a heterogeneous network model between VMs
in different resource clusters, 2) a homogeneous network
model between VMs in the same resource cluster, so the
bandwidth between two arbitrary virtual machines in the
same resource cluster is similar, and 3) a heterogeneous
computing environment with different VM types that can be
utilized for task execution. SHEFT has no specific billing
model since this algorithm does not consider the monetary
cost. The performance metric for this algorithm is the
makespan of the whole workflow execution. The SHEFT
algorithm has an O(n2 +n×k) time complexity for n tasks
and k VM types.

The main idea of SHEFT is to schedule first the task
that can potentially affect the makespan the most, and aims
to assign each task to a VM instance so that the task can
complete as soon as possible. First, calculate the priority
rank for each task ti, which measures the longest path
from ti to the exit node texit, as defined in equation 4.
Second, let PL be a queue that contains all the tasks of
the workflow in descending order of their priority ranks
and R be the current VM pool, which is set to be an
empty set initially. Each task ti in PL is then scheduled
in that order by assigning ti to a VM instance that results
in the least EFT : pick up a VM instance r from R such
that EFT (ti, r) is minimized, and then select a VM type
V from the cloud such that EFT (ti, V ) is minimized; if
EFT (ti, r) < EFT (ti, V ), then ti will be scheduled on the
existing VM instance r, otherwise, a new VM instance v of
type V will be provisioned for ti to be scheduled on. After
that, v will be added to R. Finally, the de-provisioning time
for each VM instance in R can be calculated as the EFT of
the last task in each VM. In contrast to HEFT, which only
considers a fixed resource pool R, SHEFT considers both
R and new VM instances from the cloud, as a result, the
schedule produced by SHEFT is always better than or equal
to the schedule that is produced by HEFT.

2) MOHEFT: MOHEFT [14] is a task-based static
workflow scheduling algorithm of Category 3, aiming to
minimize both the makespan and the monetary cost. It
assumes a homogeneous cloud network model so that the
bandwidth between two arbitrary virtual machines is similar,
and a heterogeneous computing environment that every
VM might be of different type. It assumes a fine-grained
billing model. The performance metric for this algorithm
is called crowding distance that calculates the hypervolume
that enclosed the maximum of ROI (region of interest). The
time complexity is O(e×k×K) for e edges, k VM instances
and K iterations.

The main idea of MOHEFT is that the algorithm returns
a set of trade-off solutions, called the Pareto front, such
that each solution in this set cannot be further improved in
any of the considered objectives without degrading another
objective. A user can then select one of the solutions based
on some ad-hoc criteria. MOHEFT extends the classic HEFT
algorithm [15] (which aims to minimize only the makepan
on a fixed set of resources) in three ways: 1) to achieve
a trade-off between makespan and monetary cost; 2) to
return the Pareto front; and 3) to support cloud computing
environments. Initially, the Pareto front is initialized to N
empty solutions, S1, · · · , SN , where N is the size of the
Pareto front, a parameter of the MOHEFT algorithm. The
tasks of the workflow are ordered into a list L in decreasing
order of priority rank (aka B-rank) - which measures the
longest distance from a task ti to the exit node texit. For
each ti ∈ L in that order, it considers to schedule ti on
each VM instance (v1, · · · , vk), thus extending each SN
with k solutions, resulting in S′, a set of N ∗k intermediate
solutions. Then the Pareto front S is reassigned with the
top N solutions in S′ based on the metric of crowding
distance [14]. To support cloud computing environments, the
algorithm considers the number of resources as k = m ∗ I
where m is the maximum number of VM instances that a
customer can acquire for each VM type and I is the number
of VM types offered by the cloud provider. The algorithm
then invalidate all intermediate solutions in S′ in which the
number of VM instances for some VM type exceeds m. This
procedure is repeated until each ti ∈ L is considered, and
then the final Pareto front is returned.

D. Category 4: Given both deadline and budget constraints,
optimize the success rate or other metrics

1) DPDS: DPDS [19] is a task-based dynamic workflow
scheduling algorithm of category 4. The goal of DPDS is by
a given budget and deadline, to schedule as many workflows
as possible. DPDS assumes that all the virtual machine are
the same, the transfer time from one task to another is
always fixed, and every workflow has a different priority
in that the workflows comes earlier receive higher priorities
than the ones come afterwards. The performance metric of
this algorithm is an exponential scoring function defined



as Score(e) =
∑
ω∈Completed(e) 2−Priority(ω), which gives

out a value ranging from 0 to 1 and combines: 1) the
amount of completed workflows within the budget before
the deadline, and 2) the priority (or how big these workflows
are) into one metric. The time complexity of this algorithm
is O(n), where n is the number of tasks in the ensemble.

The main idea of DPDS is to separate the procedure
of resource provisioning and de-provisioning (Algorithm1
[19]) from the procedure of dynamic workflow schedul-
ing (Algorithm2 [19]) and run them in parallel. Initially,
NVM VM instances will be provisioned, where NVM is
the maximum number of VM instances that can be leased
up to the deadline D without exceeding the budget B.
Then, Algorithm1 will be executed periodically to either
terminate existing VMs or provision new VMs based on
deadline and budget constraints as well as VM utilization.
More specifically, DPDS will terminate some VM instances
whenever the remaining budget cannot sustain all existing
VMs or the deadline is exceeded. The number of VMs
that will be terminated is determined by the remaining
budget. Without exceeding the budget, in each cycle of
execution, DPDS will allocate a new VM whenever the
current VM pool is overutilized (> uh), or terminate half
of the idle VM instances whenever the current VM pool
is underutilized (< ul). In the meanwhile, Algorithm2 is
executed to schedule and execute workflow tasks in the
workflow ensemble based on their priorities. A priority
queue is used to maintain the ready tasks from different
workflows based on their priorities. A task becomes ready
when all its parents complete their executions. Each task
in the priority queue is then scheduled on an idle VM
instance until either there is no more idle VM or the priority
queue is empty. Next, it waits for one task to complete its
execution and return its VM instance to the idle VM pool,
and put new ready children tasks to the priority queue. The
same scheduling procedure is repeated until the deadline is
exceeded or all workflows complete. The budget constraint is
checked only by Algorithm1 (not by Algorithm2), while
both algorithms check the deadline constraint.

2) SPSS: SPSS [19] is a task-based workflow static
scheduling algorithm of category 4. By given budget and
deadline, the goal of SPSS is to schedule as many workflows
as possible. It has the same assumption of cloud network and
computing environment as DPDS. A workflow that comes
earlier in the priority queue has a higher priority than those
come afterwards. The performance metric of this algorithm
is the same exponential scoring function used for DSPS. The
time complexity of this algorithm is O(n2), where n is the
number of tasks in the ensemble.

The main idea of SPSS is as follow: workflows are
scheduled based on priorities, one after another until all
workflows are scheduled or the budget is exceeded. For
each workflow w, first, DPSS distributes the deadline d
over tasks in w by calculating the so called slacktime by

ST (w) = d−CP (w), where CP (w) is the execution time
of the longest path in w, then distribute ST (w) over w level
by level. In particular, the slack time for each level l, ST (l),
is calculated as follows:

ST (l) = ST (w)

[
α ∗ N(l)

N(w)
+ (1− α) ∗ R(l)

R(w)

]
(5)

where N(w) is the number of tasks in workflow w, N(l) is
the number of tasks in level l, R(w) is the total runtime of
all tasks in workflow w, R(l) is the total runtime of all tasks
in level l, and α is a parameter between 0 and 1 that causes
more slack time to be given to levels with more tasks (large
α) or to levels with more runtime (small α). Second, the
sub-deadline for each task t, DL(t) is calculated based on
the level l of t and ST (l). Finally, SPSS will schedule every
task according to its deadline in topological order. SPSS will
schedule a task t on an existing VM instance that minimizes
the cost while meeting the sub-deadline DL(t); otherwise,
schedule t on a new VM instance.

3) HPSO: HPSO [20] is also a typical workflow-
based workflow scheduling algorithm of Category 4. The
HPSO algorithm is based upon the multi-objective PSO and
BDHEFT algorithms to solve a multi-objective workflow
scheduling problem in the cloud. It adopts the Pareto optimal
set, which is considered to be a set of potential solutions
that are optimal for multiple objectives. Any solution in the
Pareto optimal set is not dominated by other solutions in the
set. HPSO assumes a heterogeneous computing environment
and all VMs are in same physical region such that costs of
data storage and data transmission can be assumed zero.
It also assumes the bandwidths between arbitrary VMs are
equal, and the time to transmit data between different VMs
is considered. It assumes a coarse-grained billing model. The
performance metrics for this algorithm include a 1) fitness
function, fitness = α ∗ time+ (1− α) ∗ cost, where α is
the cost-time balance factor in the range of [0,1], to evaluate
feasible solutions iff budget and monetary constraints are
met; 2) Generational Distance (GD) as convergence metric,
to evaluate the quality against true front P∗, the true front
P∗ is obtained by merging solutions of algorithm over 20
runs; and 3) Spacing metric to evaluate diversity among
solutions. Small values of GD and Spacing metrics are
desirable in evolutionary algorithm. The time complexity
of the HPSO algorithm is O(K ×m ×NlogN), where K
is number of iterations, m is number of objectives, N is
number of solutions kept in the Pareto front.

The main idea of HPSO is as follow: First, it initializes
the population consisting of N swarm particles (solutions)
by randomly assigning the workflow tasks over the available
cloud resources, and insert the result of the BDHEFT
algorithm as one swarm particle. Second, based on the fitness
function, solutions are evaluated and sorted on the basis of
non-dominance order in elite archive for each solution as
A(i). HPSO introduces an extra diversity parameter I(y) to



order solutions that are with same dominance values. Third,
through binary tournament selection in the elite archive, it
initializes the global best position gbest(i) for particlei,
then updates the velocity and position for particlei, and
mutates the particle position in the adaptive possibility mar-
gin (the possibility margin turns to decrease as the number
of iterations grows). Lastly, the particles in the population
are evaluated to update the elite archive with the best N
non-dominant solutions. The above procedure is repeated K
iterations, in which K is defined by the user.

4. REPRESENTATIVE SCIENTIFIC WORKFLOW
MANAGEMENT SYSTEMS

A scientific workflow management system provides a
platform for domain scientists to compose and execute scien-
tific workflows, which are pipelined series of computational
and/or data processing tasks designed to solve complex
computation-intensive scientific problems. Scientists can re-
motely collaborate on complex scientific projects based on
scientific workflow platforms through GUI or command line
(CMD) tools.

In this section, we provide a survey on five represen-
tative workflow management systems. They were selected
due to their respective outstanding features. For example,
Pegasus contributed to LIGO (Laser Interferometer Gravi-
tational wave Observatory) that successfully helped detect
the gravitational wave - a discovery that won the Noble
prize; DATAVIEW manifested the notion of Workflow-as-a-
Service (a special kind of SaaS) that allows users to utilize
the system through the DATAVIEW website without the
need to download and install the system; Kepler and Tav-
erna both provide highly intuitive client-side UIs that ease
workflow construction and execution, while Swift comes
with a scripting based language tool that allows users to
use C-like syntax to enact rapid applications of workflows
involving big data. All these five selected systems are open-
source and can be freely downloaded from their respective
project websites (URLs are provided in table III for readers’
convenience). We particularly address them in terms of their
targeted application domains, execution environments, and
other features such as third-party API support, programmatic
language support, etc.

A. Pegasus
The Pegasus [24] workflow management system encom-

passes a set of technologies that facilitate scientific workflow
application execution. Pegasus was designed to manage
workflow execution on potentially distributed data and com-
pute resources, in close collaboration with domain scientists.
Pegasus workflows are based on Directed Acyclic Graphs
(DAG), a model that has been commonly assumed by various
scientific workflow management systems. Pegasus allows a
node in a workflow DAG be a sub-DAG, which facilitates
composition of very large workflows in the scale of millions

of task nodes. In Pegasus, tasks exchange data between
machines in the form of files, and workflow execution can
be arranged to take place in a local or remote cluster, or
in a grid or cloud. User interaction with Pegasus is through
either command line commands or API interfaces. Pegasus
provides programmatic API in python, Java and Perl for
workflow generation in the form of DAX (or DAG in XML).
The system also keeps variety of catalogs in order to support
workflow optimization.

Pegasus is open-source. It has contributed to the LIGO
software infrastructure and executes the main analysis
pipelines of LIGO to detect the gravitational wave. Pega-
sus uses HTCondor as its workflow engine and scheduler,
and can be setup on distributed or cloud environments.
In Pegasus, graph transformations and optimizations are
performed during mapping when a workflow is mapped onto
a distributed environment before its execution. Optimizations
is also performed during run-time by interleaving mapping
and just-in-time planning. In order to improve reliability
of workflow execution, during run-time, Pegasus performs
actions such as job retry and failed workflow recovery .

B. DATAVIEW
DATAVIEW [25] is a generic scientific workflow manage-

ment system. The applications of DATAVIEW range from
machine learning, medical image analysis, bioinformatics, to
automotive data analysis, etc. DATAVIEW is also based on
DAG and adopts a layered architecture design that includes
a presentation layer, a workflow management layer, a task
management layer, and an infrastructure layer. DATAVIEW
features a user-friendly Web portal for workflow creation
and execution, and workflow execution can be flexibly
arranged to run locally or on a cloud platform such as AWS.
DATAVIEW adopts a master-slave deployment architecture
and supports fast provisioning of virtual machines through
VM images created and saved on AWS. The DATAVIEW
VM images include the DATAVIEW kernel that schedules
and executes workflows. With a developer-friendly Java API,
DATAVIEW supports programmatic workflow development
through Java and Python. DATAVIEW seamlessly integrates
Dropbox as optional storage capacity for feeding workflow
input and storing workflow output products.

DATAVIEW is open-source. In addition to local instal-
lation, it can be used as a SaaS (Software-as-a-Service)
from www.dataview.org without download and installation
of the system. In DATAVIEW, web-based GUI allows users
to compose and edit workflows in an appealing visual style,
e.g., by dragging and dropping task components and data
elements onto the design panel and connecting them through
edges as executable workflows. Its workflow engine manages
the workflow schedulers, workflow specification mappers,
dataflow storage, provenance data, compute resources, run-
time monitor and analysis tools, etc. Workflow specifica-
tions are written in JSON-based SWL (Scientific Workflow

www.dataview.org


Language). Its elastic Cloud Resource Management module
dynamically provisions and de-provisions virtual machines
throughout workflow execution, based on user specified
preferences. DATAVIEW features an open extensible archi-
tecture for its workflow engine, which consists of a set
of workflow planners and a set of workflow executors. A
developer can easily choose any existing or to develop their
own custom workflow planners and executors.

C. Kepler
Kepler [26] is a community-driven workflow system that

supports scientific workflow applications, and help scientists,
analysts and programmers to create and analyze scientific
data such as sensor data, medical images and simulations,
etc. Kepler provides a Java-based component assembly
framework with a graphical user interface to support the
assembly of concurrent task components. The key under-
lying principle of Kepler is to utilize well-defined models
of computation to govern the interactions between task
components in a workflow during execution. Using Kepler’s
graphical desktop GUI, scientists can create executable
scientific workflows by simply dragging and dropping task
components. Kepler supports workflow execution on a local
machine, a cluster or through web services. Kepler is capable
to invoke remote Restful web APIs and broadcasts the
response through its output port. Java and R are supported in
Kepler for programmatic workflow application development.

Kepler is open-source. It can perform type checking
at both design-time (static) and run-time (dynamic) on
workflows and data. Kepler adopted the “one thread for
each task” strategy, in which tasks are run as local Java
threads by default, while distributed execution threads are
provided via Grids and web services. The Web service
support in Kepler allows users to take a WSDL (Web
Service Description Language) description and the name of
a web service to customize a scientific workflow. The Grid
support in Kepler consists of certificate-based authentication,
job submission, third-party data transfer, and SRB (Storage
Resource Broker), etc. Kepler also supports execution of
MapReduce tasks on the Hadoop Master-slave architecture,
and the tasks can be executed in batch mode using Kepler’s
background execution.

D. Taverna
Taverna [27] is a tool suite written in Java, and can help

scientists in diverse domains, including biology, chemistry,
medicine, etc., to create and execute scientific workflows.
Taverna supports workflow execution locally or remotely
via WSDL-style web services or RESTful APIs. Taverna
system includes a workbench application that provides a
GUI interface for composition of workflows, and a Taverna
Server that executes remote workflows. Besides desktop GUI
support, Taverna also provides a command-line tool for
executing workflows from a terminal. Workflows in Taverna

are written in an XML-based language called Scufl2 (Simple
conceptual unified flow language). Taverna supports user-
interaction with a running workflow within a web browser
and has built-in support for myExperiment so that users
can browse the myExperiment website within the Taverna
Workbench. Users can access the full myExperiment search
options and publish their workflows on myExperiment for
others to use.

Taverna is open-source. In Taverna, a workflow consists
of three main types of entities: processors, data links, and
coordination constraints. processors take input data and
produce a set of output data; data links mediate the data
flow between a data source and a data sink; coordination
constraints bind two processors and control their execution
to ensure their executions are in a certain order. Workflows
can be executed in the Scufl workbench using its enactor
panel, which allows users to specify their input data for
a workflow and launch a local instance of the Freefluo
enactment engine. The Freefluo engine is not tied to any
workflow language nor to any execution architecture, thus in
effect is decoupled from both the textual form of a workflow
specification and the details of a service invocation.

E. Swift
Swift [28] represents an interesting and distinct category

of workflow management and is reviewed below in com-
parison with other systems presented above. By its nature,
Swift is both a general-purpose programming language and a
scripting language for distributed parallel scripting. It is used
for composing integrated parallel applications/workflows
that can be executed on multicore processors, clusters,
grids, or clouds. In Swift, the scripts express the execution
of constituent programs that consume and produce file-
resident datasets. Swift is a compiled language that uses
C-like syntax and supports local clusters, grids, HPCs, and
clouds. It explicitly declares files and other command-line
arguments as the inputs to each program invocation. A
focal point in Swift’s design is that it provides a simple
set of language constructs that regularize and abstract the
notions of processes and external data for distributed parallel
execution of large application programs.

Swift is open-source. Workflow execution is implicitly
parallel and location-independent in Swift. As the number of
processing units available on the shared resources varies with
time, Swift can exploit the maximal concurrency permitted
by data dependencies within the script and the resources
available. Swift can use whatever resources available or eco-
nomical at that moment when the user needs to run a swift
application, without the need to continuously reprogram the
execution scripts. The implicit parallelism achieved through
Swift functions is no necessarily executed in the source-
code order but rather based on their input data’s availability.
Applications should not assume that they will be executed
on a particular host, or in any particular order with respect



to other application invocations in a script, or whether their
working directories will be cleaned up after execution.

5. CONCLUSIONS AND FUTURE WORK

In this survey, we provided an in-depth review on the
state-of-the-art workflow scheduling algorithms in the cloud
and existing representative workflow management systems
with an emphasis on big data support. We started from a
general introduction to the workflow scheduling problem
and the challenges of workflow scheduling in the cloud,
and made an insightful presentation of 10 state-of-the-
art workflow scheduling algorithms and 5 representative
workflow management systems. We proposed a new tax-
onomy for workflow scheduling algorithms in the cloud
based on two dominant factors, makespan and monetary
cost of workflow execution, and group workflow scheduling
algorithms into four categories. We elaborated on each
of the selected scheduling algorithms with comparisons in
terms of their constraints, optimization objectives, types,
time complexity etc. We also surveyed 5 representative
workflow management systems regarding their scientific
impact, novel features, UI accessibility, etc. As future work,
we plan to introduce AI techniques in workflow management
systems with the hope to bring mutual improvement between
workflow management and machine learning/deep-learning.

ACKNOWLEDGEMENT

This work is partially supported by National Science
Foundation under grants CNS-1747095 and OAC-1738929.

REFERENCES

[1] S. Abrishami, M. Naghibzadeh et al., “Deadline-constrained work-
flow scheduling algorithms for infrastructure as a service clouds,”
FGCS, vol. 29, no. 1, pp. 158–169, 2013.

[2] C. Bai, S. Lu et al., “LPOD: A local path based optimized scheduling
algorithm for deadline-constrained big data workflows in the cloud,”
in BidData. IEEE, 2019, pp. 35–44.

[3] S. Z. M. Mojab, M. Ebrahimi et al., “iCATS: Scheduling big data
workflows in the cloud using cultural algorithms,” in IEEE BigData,
2019, pp. 99–106.

[4] M. A. Rodriguez and R. Buyya, “A responsive Knapsack-based
algorithm for resource provisioning and scheduling of scientific
workflows in clouds,” in ICPP. IEEE, 2015, pp. 839–848.

[5] A. Verma and S. Kaushal, “Deadline constraint heuristic-based ge-
netic algorithm for workflow scheduling in cloud,” IJGUC, vol. 5,
no. 2, pp. 96–106, 2014.

[6] L. Liu, M. Zhang et al., “Deadline-constrained coevolutionary genetic
algorithm for scientific workflow scheduling in cloud computing,”
CCPE, vol. 29, no. 5, p. e3942, 2017.

[7] M. Ebrahimi et al., “Scheduling big data workflows in the cloud
under deadline constraints,” in BigData. IEEE, 2018, pp. 33–40.

[8] J. Meena, M. Kumar et al., “Cost effective genetic algorithm for
workflow scheduling in cloud under deadline constraint,” IEEE
Access, vol. 4, pp. 5065–5082, 2016.

[9] M. A. Rodriguez and R. Buyya, “Budget-driven scheduling of sci-
entific workflows in IaaS clouds with fine-grained billing periods,”
ACM TAAS, vol. 12, no. 2, pp. 1–22, 2017.

[10] M. Mao and M. Humphrey, “Scaling and scheduling to maximize ap-
plication performance within budget constraints in cloud workflows,”
in IPDPS. IEEE, 2013, pp. 67–78.

[11] C. Q. Wu, X. Lin et al., “End-to-end delay minimization for scientific
workflows in clouds under budget constraint,” TCC, vol. 3, no. 2, pp.
169–181, 2014.

[12] A. Mohan et al., “Scheduling big data workflows in the cloud under
budget constraints,” in BigData. IEEE, 2016, pp. 2775–2784.

[13] C. Lin and S. Lu, “Scheduling scientific workflows elastically for
cloud computing,” in CLOUD. IEEE, 2011, pp. 746–747.

[14] J. J. Durillo and R. Prodan, “Multi-objective workflow scheduling in
amazon EC2,” Cluster computing, vol. 17, no. 2, pp. 169–189, 2014.

[15] H. Topcuoglu, S. Hariri et al., “Performance-effective and low-
complexity task scheduling for heterogeneous computing,” TPDS,
vol. 13, no. 3, pp. 260–274, 2002.

[16] G. Ismayilov and H. R. Topcuoglu, “Neural network based multi-
objective evolutionary algorithm for dynamic workflow scheduling
in cloud computing,” FGCS, vol. 102, pp. 307–322, 2020.

[17] Z. Zhu, G. Zhang et al., “Evolutionary multi-objective workflow
scheduling in cloud,” TPDS, vol. 27, no. 5, pp. 1344–1357, 2015.

[18] Q. Wu et al., “MOELS: Multiobjective evolutionary list scheduling
for cloud workflows,” T-ASE, vol. 17, no. 1, pp. 166–176, 2019.

[19] M. Maciej, G. Juve et al., “Cost-and deadline-constrained provision-
ing for scientific workflow ensembles in iaas clouds,” in SC, 2012.

[20] A. Verma and S. Kaushal, “A hybrid multi-objective particle swarm
optimization for scientific workflow scheduling,” Parallel Computing,
vol. 62, pp. 1–19, 2017.

[21] H. Arabnejad, J. G. Barbosa et al., “Low-time complexity budget–
deadline constrained workflow scheduling on heterogeneous re-
sources,” FGCS, vol. 55, pp. 29–40, 2016.

[22] V. Arabnejad et al., “Budget and deadline aware e-science workflow
scheduling in clouds,” TPDS, vol. 30, no. 1, pp. 29–44, 2018.

[23] M. Ghasemzadeh et al., “Deadline-budget constrained scheduling al-
gorithm for scientific workflows in a cloud environment,” in OPODIS
2016. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

[24] E. Deelman, K. Vahi et al., “Pegasus, a workflow management system
for science automation,” FGCS, vol. 46, pp. 17–35, 2015.

[25] A. Kashlev et al., “Big data workflows: A reference architecture and
the DATAVIEW system,” STBD, vol. 4, no. 1, pp. 1–19, 2017.

[26] B. Ludäscher, I. Altintas et al., “Scientific workflow management and
the Kepler system,” CCPE, vol. 18, no. 10, pp. 1039–1065, 2006.

[27] T. Oinn, M. Addis et al., “Taverna: A tool for the composition
and enactment of bioinformatics workflows,” Bioinformatics, vol. 20,
no. 17, pp. 3045–3054, 2004.

[28] M. Wilde et al., “Swift: A language for distributed parallel scripting,”
Parallel Computing, vol. 37, no. 9, pp. 633–652, 2011.

[29] J. Goecks et al., “Galaxy: A comprehensive approach for supporting
accessible, reproducible, and transparent computational research in
the life sciences,” Genome biology, vol. 11, no. 8, p. R86, 2010.

[30] J. Freire, D. Koop et al., “Reproducibility using vistrails,” Implement-
ing Reproducible Research, vol. 33, 2014.

[31] P. Nyström et al., “The TimeStudio Project: An open source scientific
workflow system for the behavioral and brain sciences,” Behavior
research methods, vol. 48, no. 2, pp. 542–552, 2016.

[32] M. R. Berthold, N. Cebron et al., “KNIME-the Konstanz information
miner: version 2.0 and beyond,” AcM SIGKDD explorations Newslet-
ter, vol. 11, no. 1, pp. 26–31, 2009.

[33] W. A. Warr, “Scientific workflow systems: Pipeline Pilot and KN-
IME,” J Comput Aided Mol Des, vol. 26, no. 7, pp. 801–804, 2012.

[34] J. Kranjc, R. Orač et al., “ClowdFlows: Online workflows for
distributed big data mining,” FGCS, vol. 68, pp. 38–58, 2017.

[35] M. Perovšek, J. Kranjc et al., “TextFlows: A visual programming
platform for text mining and natural language processing,” Science
of Computer Programming, vol. 121, pp. 128–152, 2016.

[36] C. Lin, S. Lu et al., “A reference architecture for scientific workflow
management systems and the VIEW SOA solution,” TSC, vol. 2,
no. 1, pp. 79–92, 2009.

[37] Y. Kano et al., “U-Compare: A modular NLP workflow construction
and evaluation system,” J. Res. Dev, vol. 55, no. 3, pp. 11–1, 2011.

[38] S. Mofrad, I. Ahmed et al., “SecDATAVIEW: A secure big data
workflow management system for heterogeneous computing environ-
ments,” in ACSAC, 2019, pp. 390–403.

[39] R. G. Reynolds et al., “Cultural algorithms: modeling of how cultures
learn to solve problems,” in ICTAI. IEEE, 2004, pp. 166–172.


	Introduction
	workflow scheduling: problem, challenges, and Taxonomy
	Workflow Scheduling
	Challenges of workflow scheduling in clouds
	A taxonomy of workflow scheduling algorithms in clouds

	Workflow scheduling algorithms in the cloud
	Category 1: given a deadline, minimize the monetary cost
	IC-PCP
	LPOD
	iCATS

	Category 2: given a budget, minimize the makespan
	BAGS
	The Scheduling-first algorithm

	Category 3: given no constraints, minimize both the makespan and/or monetary cost
	SHEFT
	MOHEFT

	Category 4: Given both deadline and budget constraints, optimize the success rate or other metrics
	DPDS
	SPSS
	HPSO


	Representative Scientific workflow management systems
	Pegasus
	DATAVIEW
	Kepler
	Taverna
	Swift

	Conclusions and future work
	References

