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Abstract—Recently, cloud platforms play an essential role in
large-scale big data analytics and especially running scientific
workflows. In contrast to traditional on-premise computing
environments, where the number of resources is bounded,
cloud computing can provide practically unlimited resources
to a workflow application based on a pay-as-you-go pricing
model. One challenge of using cloud computing is the pro-
tection of the privacy of the confidential workflow’s tasks,
whose proprietary algorithm implementations are intellectual
properties of the respective stakeholders. Another one is the
monetary cost optimization of executing workflows in the cloud
while satisfying a user-defined deadline. In this paper, we
use the Intel Software Guard eXtensions (SGX) as a Trusted
Execution Environment (TEE) to support the confidentiality
of individual workflow tasks. Based on this, we propose
a deadline-constrained and SGX-aware workflow scheduling
algorithm, called SEED (SGX, Efficient, Effective, Deadline
Constrained), to address these two challenges. SEED features
several heuristics, including exploiting the longest critical
paths and reuse of extra times in existing virtual machine
instances. Our experiments show that SEED outperforms the
representative algorithm, IC-PCP, in most cases in monetary
cost while satisfying the given user-defined deadline. To our
best knowledge, this is the first workflow scheduling algorithm
that considers protecting the confidentiality of workflow tasks
in a public cloud computing environment.

Keywords-Scientific workflows, Cloud computing, Confiden-
tial workflows, Confidential big data processing, Intel SGX and
big data security

I. INTRODUCTION

Recently, cloud platforms play an essential role in large-
scale big data analytics and especially running scientific
workflows [1]. Cloud platforms provide a cost-efficient and
enormous amount of computing and storage resources to
workflow applications and help them handle more extensive
and more complex scientific problems, also known as big
data scientific workflows [2]–[5]. One main challenge of
using cloud computing is protecting the confidentiality of the
confidential workflow’s tasks, whose proprietary algorithm
implementations are the intellectual properties of the respec-
tive stakeholders. Virtual machines (VM)s in the cloud are
often subject to insider or outsider attacks, including hyper-
visor attacks. External adversaries may find vulnerabilities in
the cloud hypervisor or cloud system management software,
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then by using those vulnerabilities, getting unauthorized
access, or modifying workflow tasks’ code and data. Another
main challenge of using cloud computing is the optimization
of performance, cost and/or their trade-off, since using VMs
in the cloud is costly and the use of more VMs does not
necessarily imply better performance due to data movement,
the time cost of provisioning and de-provisioning VMs, and
the inherent structure of workflow applications. To address
these issues, the big data workflow scheduling problem is
formulated to answer a series of questions: given a workflow
w, how many VMs are needed? When do these VMs need
to be provisioned and de-provisioned? To which VM should
a workflow task be assigned and when? Which data product
should be moved from which VM to which VM and when?
When is a workflow task ready to be executed? And, how
shall we measure the performance of a workflow execution
in time and monetary cost? One sub-problem is the so-
called deadline-constrained big data workflow scheduling
problem, which focuses on the monetary cost optimization
of executing workflows in the cloud while satisfying a user-
defined deadline. However, existing workflow scheduling
algorithms have not considered the presence of confidential
workflow’ tasks, which need their confidentiality to be as-
sured, during their execution in a public cloud. In this paper,
we leverage Intel Software Guard eXtensions (SGX) [6]
as a tool to create a trusted execution environment (TEE)
that guarantees the confidentiality of individual workflow’s
tasks and data during the runtime. Intel SGX is a set of
new CPU instructions introduced to the x86 architecture,
aiming to provide confidentiality of code and data at runtime.
Intel SGX enables users to create a secure and encrypted
area referred to as enclave inside the system memory that
protects the confidentiality of code and data against strong
adversaries. Therefore, when workflow tasks are executed
inside enclaves, their confidentiality is assured.
The main contributions of this paper are as following:
1)- We propose a novel deadline-constrained and SGX-
aware big data workflow scheduling algorithm, SEED (SGX,
Efficient, Effective, Deadline Constrained), that considers
confidential tasks, which will be executed in some dedicated
SGX-enabled machines.
2)- SEED features several heuristics, including exploiting



the longest critical paths and reuse of extra times in exist-
ing VMs. Our experiments show that SEED outperforms
the representative algorithm, IC-PCP [7], in most cases
in monetary cost while satisfying the given user-defined
deadline. Our comparison uses the C score, a performance
metric introduced to compare deadline-constrained workflow
scheduling algorithms that aim to minimize monetary cost.
3)- The proposed SEED, as well as IC-PCP, have been
implemented in a modified version of DATAVIEW, which
is one of the most usable big data workflow management
systems in the community, to support confidential tasks
in a workflow DAG with Intel SGX. Our experiments
demonstrate the feasibility and usability of the proposed
approach.

II. RELATED WORK

Though there are a number of strategies to solve schedul-
ing problems in the clouds, there remains an opportunity
to get better result considering QoS. Several metaheuristic
approaches, such as particle swarm optimization (PSO) and
genetic algorithm (GA) on grids and clouds, are found in
the literature [8] which demand a longer period to achieve
satisfactory result. An alternate approach [9] optimizes the
number of resources that need to be granted for minimizing
the execution cost. In [10], VM possession delay was not
considered. Another “DCP-C” algorithm initiates instances
on Amazon EC2 platform for task scheduling without con-
sidering the transfer time from one task to another [11].
SHEFT algorithm optimizes not only the execution time
but also the overall cost. However, SHEFT fails to achieve
significantly better performance when the number of tasks
lies under 200. Moreover, to the best of our knowledge,
there is no confidential workflow scheduling algorithm in
the literature. In [12] the capacity and implications of using
Intel SGX for securing a range of applications from small
application to the enterprise and cloud-based workloads has
been discussed. VC3 [13] proposed a secure Map/Reduce
framework with Intel SGX to protect the integrity and confi-
dentiality of Map/Reduce job execution and its results. Also,
researchers in [14] used Intel SGX and AMD SEV [15] to
protect the big data workflow execution in the heterogeneous
cloud environments.

III. SCHEDULING SYSTEM MODEL

This section describes the overall application model, cloud
resource model and problem formulation for workflow in
clouds.

A. Application model
An application model can be configured by the four

distinct tuple W (T,D, TSize,Dsize) [16], [17], where:
• T represents the set of tasks.
• D ⊆ T ×T is a set of data dependency edges between

tasks. We use Di,j to represents data product which is
created by ti and consumed by tj .

• DSize : D → R+ is the data product size function,
and DSize(Di,j) returns the size of data product Di,j

in MB.
As our algorithm requires two dummy nodes Tstart and
Tend, they are connected with zero execution time and zero
transfer time to the workflow from beginning and end points
to avoid having multiple starting and exit nodes. A sample
workflow is shown in Figure 1, depicting all tasks and their
dependencies in between, a start node and an end node.

B. Problem definition

Given a DAG workflow W , actual finish time AFT
of each of the task and a deadline δ,an IaaS computing
environment C, the deadline-constrained workflow schedul-
ing problem is to find the optimal chedule schopt that
optimize the operational cost of executing workflow W
within deadline δ [16]:

schopt = argmin
sch

WC(sch)

subject to sch.AFT (sch.texit) 6 δ
(1)

C. Some definitions

In order to understand our proposed algorithms, some
basic definitions are needed.

1) EST, EFT, and AST: The earliest start time (EST) of
a task denotes the time of the task that can executes at its
earliest convenience without breaking the given constraints.
The minimum execution time (MET). SV (ti) denotes the
selected virtual machine instance for task ti in a particular
schedule. ET (ti, SV (ti)) stands for the execution time of
the predefined service virtual machine SV (ti) for task ti.
EST is defined by following equation:

max
tp∈parents(ti)


0, (i)
EST (tp)+ET (tp,SV (tp))+TT (ep,i), (ii)
EST (tp)+MET (tp)+TT (ep,i), (iii)

(2)

Similarly, the earliest finish time (EFT) is defined below:

EFT (ti)=

EST (ti)+ET (ti,SV (ti)), if SV (ti) is defined.
EST (ti)+MET (ti), otherwise.

(3)
Finally, AST (ti) is the actual starting time of ti on a VM.
2) LFT: Latest finish time (LFT) refers to the time by

which an unscheduled task completes its execution so that
the whole workflow finishes without breaking the constraint
deadline δ. Usually, LFT is calculated recursively from the
end task backward in the workflow. Initially, the end task
is first calibrated per the given deadline δ and other tasks’
LFT (ti) are then derived as follows in respect to three
conditions: i) if ti = tend, ii) if SV (tc) is defined.

min
tc∈children(ti)


δ, (i)
LFT (tc)−ET (tc,SV (tc))−TT (ei,c), (ii)
LFT (tc)−MET (tc)−TT (ei,c), (iii)

(4)
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3) Critical child and critical path: The critical child
(CC(ti)) of a particular task ti is an unassigned task which
has the maximal completion time among all its siblings as
defined as follows, respectively fulfilling conditions i) if
SV (ti) is defined and ii) otherwise.

argmaxtc∈children(ti)

EST (ti)+ET (children(ti),SV (children(ti))), (i).
EST (ti)+MET (children(ti))+TT (ei,c), (ii).

(5)
The critical path is constructed as follows: 1) Every task

of the critical path must finish its execution within its LFT.
2) This new schedule utilizes the unused time quota of
previously assigned instances.

IV. THE PROPOSED WORKFLOW SCHEDULING
ALGORITHM

Our scheduling approach tries to minimize the execu-
tion cost of confidential workflow by first considering the
cheapest available resources in IaaS clouds as long as the
given deadline constraint can be satisfied. Implementation
of our scheduling approach involves three core algorithms,
respectively presented and discussed in this section.

A. Initialization algorithm

Algorithm 12, as preparation step of the main algorithm
SEED, initializes an input workflow graph for scheduling
and then calls for the next core subalgorithm. Line 5 deter-
mines the available virtual machines and the corresponding
billing time units. Line 6 and 7 initialize the EST of tstart
and the LFT of tend by 0 and δ, respectively. Lines 8-9
calculate EST, EFT, LFT recursively for the graph G. Line
11 transforms control to Algorithm 2 on the prepared graph
G.

Algorithm 1: ScheduleWorkflow (G)
1 startNodes← nodesWithoutParent in G;
2 endNodes← nodesWithoutChildren in G;
3 connect tstart with startNodes;
4 connect tend with endNodes;
5 determine the available virtual machines with cost and billing unit

cycle;
6 EST (tstart)← 0;
7 LFT (tend)← Deadline δ;
8 calculate EST , EFT from tstart to tend recursively;
9 calculate LFT from tend to tstart recursively;

10 G← remove tstart, tend, and edges in between from G;
11 AssignChildren(G);
12 return optimized schedule;

B. Assigning children algorithm

Algorithm 2 is the procedure of assigning children. In line
1, graph G is sorted in topological order and assigned to a
LinkedList list. At lines 2-21 the algorithm iterates on the
list till it becomes empty. Line 3 initializes criticalPath as
empty. The algorithm picks the first element of list and
assign it to ti (lines 4-5); then add ti to criticalPath.

Afterward, via the while loop (lines 7-10) the algorithm
constructs the critical path by recursively adding a critical
child along the path (level by level). The critical path is then
split (at line 11) as multiple paths by confidential tasks along
the path as separators. Afterwards, each of the paths is in
turn allocated to a virtual machine (lines 12-20).

Algorithm 2: AssignChildren (G)
1 list← sort tasks in G in topological order;
2 while list 6= ∅ do
3 criticalPath← ∅;
4 ti ← list[1] . Selecting first task
5 add ti in criticalPath;
6 while ti has children do
7 ti ← criticalChild(ti);
8 add ti in criticalPath;
9 end

10 paths← split apart criticalPath by confidential tasks as
separators;

11 foreach path ∈ paths do
12 AllocateV irtualMachine(path);
13 foreach ti ∈ path do
14 recalculate LFT of the ancestors {tk : tk /∈ path}

of ti;
15 recalculate EST, EFT of the descendants

{tk : tk /∈ path} of ti;
16 end
17 G← remove all tasks and edges involving tasks in path

from G;
18 list← remove all tasks involving in path from list;
19 end
20 end
21 return optimized scheudle;

C. Allocating Virtual Machines

Algorithm 3 allocates the tasks in path (input parameter)
to a virtual machine. We use variable VMIc to keep track of
all existing VM instances launched for the workflow G under
processing; We introduce variable vmit to generally denote a
VM instance of type t. Algorithm 3 starts by initializing (line
1) VMIc to the set of all existing VM instances launched for
workflow G. If a secure execution environment is required
for the tasks in path, a secure VM instance vmiSGX is
launched for path and added to T c (lines 3-4). The big loop
(line 6-32) then iterates on each of the existing instance
vmi ∈ VMIc in ascending order of cost rates. Line 8
retrieves the queue of tasks previously assigned to vmi in
turn into Q. Then it tries to find the cheapest (but capable)
existing VM instance for executing the tasks in path. Three
different cases are in turn explored. Case 1 (lines 10-17)
succeeds when a task tk ∈ Q is found being a child of
the last task in path – in this case, the algorithm inserts
path into Q after task tk and recalculates EST, EFT, LFT of
the affected tasks in Q. If the updated assignment of tasks
to vmi is a valid one (satisfying the deadline constraint),
we are simply done. Otherwise, we restore the old task
assignment of vmi and continue to explore subsequent cases.
Case 2 (lines 19-24) tries to insert path at the beginning of
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Q, if resulting in a new valid assignment, we are simply
done. Otherwise, we restore the old assignment of vmi and
continue to the next case. Case 3 (lines 26-31) tries to insert
path at the end of Q. Similar to prior cases, if resulting in
a new valid assignment, we are simply done. Otherwise, we
restore the old assignment of vmi, and continue with the
next iteration. After quitting the loop (lines 6-32), we know
we cannot find an existing VM instance suitable the tasks
in path.

Algorithm 3: AllocateVirtualMachine (path)
1 VMIc ← existing-VM-instances;
2 if secure environment is required for path then
3 launch a new instance vmiSGX for path;
4 VMIc ← vmiSGX ;
5 return;
6 foreach existing VM instance vmi ∈ VMIc in ascending order

of cost do
7 oldAssignment ← assignment(vmi);
8 Q← assignment(vmi); . queued tasks at vmi
9 . Case 1: Insert path into middle of Q

10 if there exists a task tk ∈ Q such that tk
∈ path[last].children then

11 insert path into Q before tk and recalculate EST, EFT,
LFT of affected tasks in Q;

12 if assignment(vmi) is valid then
13 return; . keep current assignment(vmi)
14 else
15 assignment(vmi) ← oldAssignment;
16 end
17 end
18 . Case 2: Insert path at head of Q
19 insert path at head Q and recalculate EST, EFT, LFT of

affected tasks in Q;
20 if assignment(vmi) is valid then
21 return; . keep current assignment(vmi)
22 else
23 assignment(vmi) ← oldAssignment;
24 end
25 . Case 3: Insert path at end of Q
26 insert path at end of Q and recalculate EST, EFT, LFT of

affected tasks in Q;
27 if assignment(vmi) is valid then
28 return; . keep current assignment(vmi)
29 else
30 assignment(vmi) ← oldAssignment;
31 end
32 end
33 . No existing VM instance can accommodate path
34 launch a new cheapest but capable VM instance vmic for

executing the tasks in path before their LFT;
35 VMIc ← vmic;
36 return VM allocation of tasks;

D. An illustrative example

Figure 1 includes ten tasks starting from t1 to t10 connect-
ing by edges which represents the dependencies in between
them. Two additional tasks tstart and tend are added to
the graph. While connecting these two tasks in the graph,
transfer time is omitted and considers zero execution cost.
We assume there are three different types of T such as T 1,
T 2 and T 3 for executing this workflow considering T 1 is

Figure 1: Sample workflow representing nodes as tasks and
arcs as dependencies.

the fastest machine, demanding more money, while T 3 is the
slowest with the cheapest rate. Table II portrays numerous
execution times for various tasks into above mentioned Ts.
We also assume the time interval for leasing VM instance is
30 minutes and the overall deadline is 70 minutes. Further-
more, each of the Ts charges 5$, 8$ and 13$, for T 3, T 2

and T 1 accordingly. We also consider TSGX for confidential
execution of tasks and we also consider the execution time
t9 in SGX machine demands 7 minutes accordingly.

First, let us consider that the workflow does not have any
confidential tasks. EST, EFT, LFT values are initialized in
Table I. The numbers which are altered from the previous
step, a (†) symbol is inserted after the corresponding values.
At the very beginning, running topological sorting produces
sorted order: t1, t4, t2, t5, t8, t7, t6, t3, t9 and t10. In Step
1.0, task t1 from this list constructs critical path {t1, t4, t6}.
Since T 3 gives us the cheapest strategy, we instantiated the
first instance VMI31 and updated their EST, EFT, LFT. In
Step 2.0, choosing t2 from the first element of list, produces
critical path {t2, t5.t8}. Step 3.0: selecting first element
t7 from list, creates critical path, {t7}. We observe that
the unused time of VMI31 is greater than the execution
time of this critical path, then we insert this path before
t6 and and shifting t6 right side produces {t1, t4, t7, t6}.
In Step 4.0, choosing t3 from list generates new critical
path {t3, t9, t10}. When the scheduling procedure is finished,
then all the tasks are allocated into different VM instances
according to Figure 2a. The overall cost is $41 while IC-PCP
charges $51 according to 2b.

Now let us consider that t9 is required to execute in
confidential environment TSGX . Since the Step 1.0, 2.0
and 3.0 are identical to previous non-confidential schedules,
confidential task t9 splits apart this critical path into three
different paths: {t3}, {t9}, and {t10}. Then these three
different paths are assigned one after another. Table V
depicts the changes of EST, EFT, and LFT for each steps.

V. SECURING DATAVIEW WITH SGX TEE

DATAVIEW [2] allows us to execute big data workflows
in the cloud. This system leverages Amazon EC2 AWS for
running tasks in the cloud. However, the existing solution
does not protect the confidentiality of the security-sensitive
tasks during the runtime. We refer our reader to the original
DATAVIEW paper for detailed information [2]. We have
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Table I: Changes of EST, EFT and LFT for execution of SEED for non-confidential tasks.
Tasks t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

EST 0 0 0 6 5 21 15 11 11 19
Primary EFT 4 3 3 14 9 31 18 36 18 37

LFT 43 36 41 53 42 70 57 70 51 70
EST 0 0 0 16† 5 36† 37† 11 11 19

Step 1.0 EFT 16† 3 3 36† 9 54† 40† 36 18 37
LFT 32† 36 41 52† 42 70 49† 70 51 70
EST 0 0 0 16 6† 36 37 15† 17† 25†

Step 2.0 EFT 16 6† 3 36 15† 54 40 51† 24† 43†

LFT 32 25† 41 52 34† 70 49 70 51 70
EST 0 0 0 16 6 48† 37 15 17 25

Step 3.0 EFT 16 6 3 36 15 66† 48† 51 24 43
LFT 32 25 41 52 34 70 49 70 51 70
EST 0 0 8† 16 6 48 37 15 17 33†

Step 4.0 EFT 16 6 17† 36 15 66 48 51 33† 58†

LFT 32 25 29† 52 34 70 49 70 45† 70
Final allocation VMI31 VMI21 VMI32 VMI31 VMI21 VMI31 VMI31 VMI21 VMI32 VMI32

Table II: Execution time matrix.
t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

T 1 4 3 3 8 4 10 3 25 7 18
T 2 10 6 6 12 9 15 7 36 10 20
T 3 16 10 9 20 12 18 11 50 16 25

(a) Schedule generated by
SEED on non-confidential
workflow.

(b) Schedule generated by
IC-PCP on non-confidential
workflow.

Figure 2: Task allocation comparison among Non-
confidential SEED and IC-PCP with 30 minutes time in-
terval.

modified DATAVIEW to support the SEED algorithm and
Intel SGX-enabled servers. In the modified part of the
DATAVIEW that visualized in Figure 3, there are two Java-
written modules referred to as Workflow Executor and Task
Executor. Workflow Executor is executed in secure premises,
and Task Executor is performed in SGX platforms. After
deploying the Task Executor, it first initializes its Java
component that includes non-sensitive code that only used
for invoking Java Native Interface (JNI) calls and passing
encrypted data and results. Then Task Executor creates an

Table III: Non-confidential execution cost distribution for
various VMIs

Type Start End Duration Interval
cycle

Cost Selected task

VMI31 0 66 66 3 15 {t1, t4, t7, t6}
VMI21 0 51 51 2 16 {t2, t5, t8}
VMI32 8 58 50 2 10 {t3, t9, t10}

Table IV: Confidential execution cost distribution for various
VMIs

Type Start End Duration Interval
cycle

Cost Selected task

VMI31 0 66 66 3 15 {t1, t4, t7, t6}
VMI21 0 51 51 2 16 {t2, t5, t8}
VMI32 0 9 9 1 5 {t3}
VMISGX

1 17 24 7 1 25 {t9}
VMI33 25 50 25 1 5 {t10}

Figure 3: The architecture of DATAVIEW Task Executor
with SGX support.

SGX enclave and invokes the crafted SGX task, including
workflow’s task code on its security-sensitive data after de-
crypting data inside the enclave. After a task job is finished,
Task Executor first encrypts its results and then it sends the
task’s encrypted results to its children tasks in the workflow.
We used Authenticated Encryption with Associated Data
(AEAD) in AES-256 GCM mode and SSL protocol for file
transfer and protecting data confidentiality at rest. In this
prototype we assume the presence of a secure key exchange
protocol through an SGX hardware and enclave attestation
mechanism such as Intel Remote Attestation protocol [18]
that assures the authenticity of Intel SGX CPU and Task
Executor’s enclave to provision the shared encryption secrets
between the enclaves and data owner. We also put the denial-
of-service, network traffic analysis, SGX side-channels, fault
injections, and access pattern leakage attacks out of this
paper’s scope.

VI. PERFORMANCE EVALUATION

A. Experimental testbed for confidential experiments
To conduct experiments on confidential workflow tasks,

we use AWS VM instances and a physical Intel SGX
server. Figure VI visualizes our testbed configuration. For
the software configuration, all Amazon AMI use Ubuntu
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Table V: Changes of EST, EFT and LFT for execution of SEED for confidential tasks.
Tasks t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

EST, EFT, and LFT of Step 1.0, 2.0, 3.0 are same as non-confidential tasks
EST 0 0 0 16 6 48 37 15 17 25

Step 4.0 EFT 16 6 9† 36 15 66 48 51 24 50†

LFT 32 25 41 52 34 70 49 70 51 70
Final allocation VMI31 VMI21 VMI32 VMI31 VMI21 VMI31 VMI31 VMI21 VMISGX

1 VMI33

Table VI: Testbeds Configuration.
Testbed Machine Intel SGX AWS
CPU Model Xeon E3-1275 V6 Intel(R) Xeon(R) CPU E5-2676 v3
CPU Physical Core Number 4 8
CPU Logical Thread Number 8 16
CPU Base Clock 3.8GHz 2.4GHz
CPU Boost Clock 4.2GHz 3.2GHz
Cache Type Smart Cache Smart Cache
Cache Size 8MB 20MB
Motherboard Supermicro X11SSW-F AWS
Memory 32GB DDR4 ECC 1GB DDR4 ECC
Storage HDD EBS
Operating System CentOS 7.0 Linux 16.04 LTS
Kernel Version 3.10.0-862.9.1.el7.x86 64 x86 64 4.4.0-1060-aws
SGX SDK Version SGX SDK Ver 2.2 SGX SDK Ver 2.0
AMI family N/A General purpose
AMI type N/A t2.micro
AMI Assigned CPU Core N/A 1

16.04 LTS OS with the kernel version 4.4.0-1060-aws. Since
AWS lacks the presence of real SGX TEE, we installed Intel
SGX SDK in software mode so, all AMI instances could
execute Intel SGX applications that compile with Intel SGX
simulation library.

B. Performance comparison between SEED and IC-PCP
with non-confidential tasks

To perform a comparison between these two algorithms,
we synthetically generate several workflow samples based
on the structure of the Montage workflow, in which the
computation code of each task is simulated by a bubble
sorting algorithm that performs sorting on varying size of
numbers. We use three different types of Amazon VM,
t2.micro, t2.large and t2.xlarge to execute these tasks, where
they offer different computational power. Here, t.micro is the
slowest VM whereas t2.large is the fastest VM. The average
network traffic bandwidth between tasks in Amazon VMs is
20MBps. Since the above mentioned Amazon VM types
do not provide a stable performance, the overall workflow
execution time might not meet the deadline. We introduce
the C score formulated below as the performance metric for
comparing two schedules produced by different algorithms.

C=

0.5+0.5∗ (maxcost−cost)
maxcost , if makespan ≤ D

0.5−0.5∗ (makespan−D)
(maxmakespan−D)

, otherwise
(6)

The C score assigns 0.5 to each schedule initially and
then provides a reward between 0.0 to 0.5 to those schedules
that meet the deadline, and imposes a penalty between 0.0
to 0.5 on those schedules that miss the deadline. Therefore,
the C score provides a value between 0.0 and 1.0 and has
the following three nice properties. P1: all schedules that
meet the deadline have a score between 0.5 and 1.0 and all
schedules that miss the deadline have a score between 0.0
and 0.5; P2: for the schedules that meet the deadline, lower
cost implies larger C score, and in particular, when the cost is
near 0.0, the C score reaches near 1.0; P3: for the schedules

that miss the deadline, cost becomes irrelevant to the C score
since for this case, the execution time becomes the critical
component, and the larger the makespan, the more penalty to
the C score, and in the worst case, when the execution time
reaches maxmakespan, the largest penalty 0.5 is applied, and
the C score becomes 0.

Before running the experiment, we run each workflow
task in three different types of amazon VM to collect their
execution time of each task on each VM type. We denote
the makespan for the fasteset schedule of the workflow as
Mf and then set the deadline of the workflow is the arrival
of the the workflow plus χ ∗ Mf , where χ ranges from
1.5 to 5.0 and from 15.0 to 20.5 with a step of 0.5. The
Montage workflow condists of 28 tasks. Our experiments
are conducted for two different billing unit cycles: 10s and
60s. We assume the fastest machine charges roughly 3X
than the slowest machine. For every configuration, we run
the workflow execution 10X and record the average values.
Figure 4 depicts the experimental results for running both
algorithms, when χ ranges from 1.5 to 5, both algorithms
miss the deadline, resulting in schedules with C scores
smaller than 0.5. The reason for failing the deadline is
because sending files, network connection instability takes
extra time. Since both algorithms fail to meet the dead-
line, their C scores suffer from a penalty. However, SEED
performs better in most cases by taking less amount of
additional time in comparison with IC-PCP, as SEED uses
the longest critical path and utilization of unused time of
existing instances. Hence less amount of transfer time is
needed for sending required files from one machine to
another. When we increase the deadline factor, the schedules
produced by both algorithms have relatively better C scores.
In particular, when χ ≥ 15, the schedules produce by both
algorithms meet the deadline, and the C-scores reach around
0.8. For billing cycle of 60s, the C score is relatively smaller
than that for 10s. As relatively longer billing cycle might
have longer unused time, it requires an extra budget for
VM allocation and hence the C score falls down. We also
conduct experiments on the LIGO workflow with 28 tasks
and observe a similar performance result.

C. Confidential tasks performance evaluation

In the first experiment, we use Algorithm 1 task from [19],
which is a real medical diagnosis workflow task and by
varying different input size of the patients for both a physical
SGX and regular machine as the baseline, we record the
execution time. To make a fair comparison environment
for Algorithm1, the conventional machine uses the same
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(a) 10s billing unit cycle.

(b) 60s billing unit cycle.

Figure 4: Performance analysis in Montage workflow.

C/C++ and JNI code identical to the code that is used for
the confidential version which executes inside Intel SGX
enclave. Also, we isolate the Algorithm1 task and do
not consider the execution of the complete workflow to
remove possible noises and slowdown imposes by a network
issue or other dependency and tasks in the workflow. The
input dataset starts from 1, 000 labeled instances and 250
unlabeled instances, and gradually we increase the size to
150k labeled and 37.5k unlabeled instances of the patients.
The confidential task requires additional steps to get the
job done. First, it needs to initialize a 2.93GB enclave;
we use large enclave on purpose to record the performance
overhead of a large enclave in the big data context. After
that, it decrypts the received file and then executes the
Algorithm1 code on the plain data. Finally, it encrypts the
results and generates an encrypted file. The cryptography
algorithm is AEAD AES-256 in GCM mode, and we assume
the confidential task has received the shared secrets through
a secure protocol. Our results show a range of 1.24X to
1.31X performance overhead over its baseline execution
with 96k-150k labeled and 24k-37.5k unlabeled instances,
respectively. In Figure 5, we iterate each of the experiment
for ten trials and collect the average values. Figure 5a depicts
the performance result in ms.
In the second experiment, we leveraged Intel SGX in the

simulation mode and with AWS instances. We prepared an
SGX-enabled AMI by setting up Intel SGX SDK in software
mode. Since Amazon EC2 VMs do not support Intel SGX
in the hardware mode at this time, all confidential tasks
are compiled with the SGX simulation library, which is
part of the Intel SGX SDK. We generate a dummy LIGO
workflow with 10 tasks. Each task generates 100k random
integers and sorts it with the bubble sort algorithm and
afterward send the sorted result to the next child node in
the workflow. We start with 10% of confidential tasks and
gradually increase the percentage of confidential tasks in
our dummy LIGO workflow up to 50%. Figure 5b presents
the LIGO workflow results depicting the execution times
of certain confidential tasks. We notice that in our baseline
where all the tasks are non-confidential, the execution time
is the smallest one. When we increase the percentage of
confidential tasks, the overall execution time increases as
well. The LIGO workflow’s average performance overheads
show a range between 1.81X in 10% and increases to
2.50X in 50% confidential task assignments. In the third
experiment, we generate a Montage workflow with 10 tasks,
and then we follow the experiment identically to the LIGO
workflow, as mentioned earlier, then record the execution
times. Figure 5c depicts the Montage workflow results. We
observe that the execution time gradually increases as we
increase the number of confidential tasks. The performance
overhead of confidential workflow execution is varied since
SGX settings take some extra time for the initial setup and
apply cryptography on input and result data. Our results
show a range of 1.34X to 2.50X performance overhead
for the Montage workflow. These experiments demonstrate
that our proposed algorithm with modified DATAVIEW
provides security and confidentiality support with reasonable
overhead.

VII. CONCLUSIONS

This paper presents an efficient, cost-effective deadline
constrained algorithm SEED for scientific workflows in IaaS
clouds. To the best of our knowledge, this is one of the first
scheduling algorithms that can handle confidential workflow
tasks. The primary intention is to schedule confidential
tasks and achieve a low-cost scheduling algorithm within
the given deadline while the complexity remains feasible
for running large-scale workflows. We also modified the
DATAVIEW framework to support confidential tasks in a
workflow DAG with Intel SGX TEE. Our experimental
results with different workflows show an acceptable and low
amount of performance overhead while leveraging Intel SGX
TEE to protect confidential tasks execution at runtime.
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(a) Performance overhead of Algorithm 1 [19] in the Diagnosis
workflow

(b) Performance overhead of different percentage of the con-
fidential tasks in LIGO workflow

(c) Performance overhead of different percentage of the con-
fidential tasks in Montage workflow

Figure 5: Execution time overhead of running Algorithm
1 [19] of Diagnosis workflow, LIGO and Montage in SGX
and baseline.
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