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Abstract

Let C be a set of n axis-aligned cubes of arbitrary
sizes in R3 in general position. Let U := U(C) be
their union, and let  be the number of vertices on
@U;  can vary between O(1) and O(n2). We show
that cl(R3 \U) can be decomposed into O( log4 n) axis-
aligned boxes with pairwise-disjoint interiors. Given a
boundary representation of U, such a decomposition can
be computed in O(n log2 n +  log6 n) time. We also
show that a decomposition of size O(� log4 n+  log2 n),
where � is the number of input cubes that appear on
@U, can be computed in O(n log2 n+ � log8 n+  log6 n)
time. The complexity and runtime bounds improve to
O(n log n) if all cubes in C are congruent.

1 Introduction

Decomposing the common exterior of a set of geometric
objects is an important problem in motion planning
[19] and solid modeling [13, 18]. In this paper we
study a natural instance of this problem in which each
object is an axis-aligned cube in R3. Formally, let
C := {C1, . . . , Cn} be a set of n axis-aligned cubes in
R3 in general position. By this we mean that no two
vertices of any pair of distinct cubes have the same x-,
y-, or z-coordinate.

Let U := U(C) denote their union, and let K :=
cl(R3 \U) denote the closure of its complement. Denote
by  the complexity of U, which we measure by the
number of vertices of @U; the number of edges and
vertices of @U is proportional to the number of its vertices.
The value of  can be anywhere between O(1) and O(n2),
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and it is ⇥(n2) in the worst case; see, e.g., [6]. However,
when the cubes of C are all congruent,  = O(n); again,
see [6]. If the sizes of the cubes are chosen randomly
from an arbitrary probability distribution, the expected
value of  is O(n log2 n) [1]. The question we study is
whether K can be partitioned into a collection of axis-
aligned boxes with pairwise-disjoint interiors, so that
the number of boxes depends almost linearly on , and
do so by a procedure with comparable running time.

Besides its application in motion planning, the
problem of decomposing K also arises naturally in
divide-and-conquer approaches to problems that involve
the construction of the union of such a collection of
cubes. We are not aware of any previous near-linear-
time algorithm for constructing the union of axis-aligned
congruent cubes in R3, or an output-sensitive algorithm
for computing the union of axis-aligned cubes of arbitrary
sizes. A potential approach for computing U(C) is the
geometric divide-and-conquer approach based on random
sampling. Typically, one draws a random sample R of
r ⌧ n cubes from C, constructs the union U(R) of R, and
decomposes (the closure of) its complement K(R) into a
small number of boxes with pairwise-disjoint interiors.
One then constructs the union of the (unsampled) cubes
of C within each box B of the decomposition, exploiting
the property that, with high probability, every such box
B is crossed by only O

�
n

r
log r

�
cubes of C [17] (see

also [16]). This yields a simple and e↵ective divide-
and-conquer mechanism, whose complexity crucially
depends on the (expected) number of boxes B in the
decomposition. See below for a further elaboration of
this approach.

Background. Motivated by applications in various
fields (e.g., physical simulation, computer graphics,
robotics), decomposing a complex geometric region into
simply-shaped regions, such as simplices or boxes, has
been a central problem in computational geometry for
more than four decades. For example, there has been
extensive work on triangulating a polygonal region in
2D or a polyhedral region in 3D [5, 7, 14]. In this
line of work the region that needs to be decomposed
is given explicitly. However, in many applications, the
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region to be decomposed is specified implicitly, e.g., as
the arrangement of a set of geometric objects or as the
common exterior of a set of geometric regions — our
problem of decomposing K is an instance of the latter.
The latter setting, as mentioned above, also arises in
the context of collision-free motion planning [19]. In
either case, the combinatorial complexity of the region
(K in our case) and the complexity of decomposition
thereof may di↵er significantly (see, e.g., [9]), making
the decomposition task an even harder problem. As
an indiciation of this phenomenon, Schwartz and Sharir
[23] described a general decomposition scheme based
on the so-called cylindrical algebraic decomposition of
Collins [11], but it leads to a decomposition with too
many pieces.

A widely popular approach to decompose a region of
complex shape into simpler regions, which is more par-
simonious than the cylindrical algebraic decomposition,
is the “vertical decomposition;” see, e.g., [8, 22]. In
our context, it will decompose K into axis-aligned boxes.
However, the size of the vertical decomposition of  could
be ⌦(n2) even if  = O(n). The known algorithms for
triangulating non-convex polyhedra into simplices also
produce a triangulation whose size may be quadratic in
the complexity of the polyhedron [10], and the known
lower bounds show that one cannot hope to do better [9].
The construction in [9] actually gives a set of pairwise-
disjoint prisms in R3 such that any convex decomposition
of the common exterior has quadratic size. Paterson and
Yao [21] construct a set of n pairwise-disjoint axis-aligned
boxes in R3 such that any decomposition of their com-
mon exterior into boxes (or any convex decomposition)
has size ⌦(n3/2); note that  = O(n) in this case. So
the only hope to obtain a decomposition of K in our
setting into roughly  boxes is to exploit the geometry
of axis-aligned cubes.

Another common technique called binary space
partition (BSP), which divides the space hierarchically
into convex regions using local cuts by planes [3, 15,
20, 21, 24], is a possible approach to decompose K into
axis-aligned boxes, but its worst-case complexity can
be O(2). This can be improved, using the technique
of [21], in which, for a given set R of n pairwise-
disjoint axis-aligned rectangles in R3, the space can
be partitioned hierarchically into O(n3/2) boxes so that
no rectangle of R intersects the interior of any box [21].
By decomposing @U into O() rectangles and using the
result just mentioned, K can be decomposed into O(3/2)
axis-aligned boxes with pairwise-disjoint interiors, still a
far cry from our desired bound which is nearly linear in .
Agarwal et al . [3] and Tóth [24] have shown that a BSP
of near-linear size can be constructed if the rectangles
in R are fat, i.e., they have bounded aspect ratio (the

ratio between its largest and smallest edge lengths).
Unfortunately, the faces of @U need not have bounded
aspect ratio, so it is not possible to decompose @U
into O() fat rectangles and apply the results of [3, 24]
directly. Nevertheless, by exploiting the properties of
cubes, we obtain a much simpler decomposition scheme
with the desired bound on the size of the decomposition.

Our results. The main result of the paper is an e�cient
algorithm that decomposesK intoO( polylog(n)) boxes,
whose running time is comparable to the size of the
decomposition. Our algorithm takes the cubes in C as
input, as well as the faces of @U, where each face is
represented by a sequence of edges on each connected
component of its boundary. By the general-position
assumption, every face of @U lies on a face of a distinct
cube in C, which is an important property to have for our
algorithm and analysis. Our first result is the following:

Theorem 1.1. Let C be a set of n axis-aligned cubes in
R3, and let  be the number of vertices on @U(C). The
complement of U(C) can be decomposed into O( log4 n)
axis-aligned boxes with pairwise-disjoint interiors. Given
a boundary representation of U(C), such a decomposition
can be constructed in O(n log2 n+  log6 n) time.

By further exploiting the structure at hand, we show
that a slightly smaller decomposition can be computed
at the cost of a slightly higher runtime:

Theorem 1.2. Let C be a set of n axis-aligned cubes in
R3, let  be the number of vertices on @U(C), and let
�  min{n,} be the number of cubes in C that appear
on @U. The complement of U(C) can be decomposed into
O(� log4 n +  log2 n) axis-aligned boxes with pairwise-
disjoint interiors. Given a boundary representation
of U(C), such a decomposition can be constructed in
O(n log2 n+ � log8 n+  log6 n) time.

We remark that our algorithm can be extended
to degenerate configurations of cubes using symbolic
perturbation (also known as simulation of simplicity
[12]), but the running time will be proportional to the
union-size of the perturbed configuration, which may
be much larger than the original  depending on how
the combinatorial complexity of the union is defined for
degenerate configurations.

We observe that a fat box B, namely a box with
a bounded aspect ratio can be decomposed into a
family CB of O(1) possibly overlapping cubes such that
U(CB) = B, so our algorithm also extends to a set of
fat boxes. There is a technicality that the cubes in CB

are not in general position but if the input boxes are in
general position, then symbolic perturbation will increase
the union complexity by a constant factor. Therefore we
obtain the following:
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Corollary 1.3. Let B be a set of n fat boxes in
R3 in general position so that the aspect ratio of
every box is bounded by a constant ↵. Then the
complement of U(B) can be decomposed into O( log4 n)
or O(� log4 n +  log2 n) boxes in time O(n log2 n +
 log6 n) or O(n log2 n+� log8 n+ log6 n), respectively,
where  is the number of vertices on @U(B) and � 
min{n,} is the number of boxes in B that appear on
@U.

Agarwal et al . [1] have shown that if the sizes of the
cubes in C are chosen from an arbitrary probability
distribution (but their centers are fixed), then the
expected complexity of U(C) is O(n log2 n). However,
their technique does not give an e�cient algorithm for
computing U(C). Using Theorem 1.1, we obtain the
following:

Corollary 1.4. Let C be a set of n axis-aligned cubes
in R3 whose sizes are chosen from an arbitrary probabil-
ity distribution (but their centers are fixed). Assuming a
boundary representation of U(C) is given, the complement
of U(C) can be decomposed into O(n log6 n) expected num-
ber of axis-aligned boxes with pairwise-disjoint interiors,
by an algorithm with expected running time O(n log8 n).

The expected bounds in the result above are only with
respect to the random sizes of the cubes; the algorithm
remains deterministic.

We note that the random-sampling approach does
not lead to an output-sensitive algorithm for computing
U(C) if the sizes of the cubes of C are chosen by an
adversary, because the expected complexity of U(R) for
a random subset R ✓ C of cubes can be quite large
compared to that of U(C).

If the cubes in U are congruent, then we obtain the
following improved result:

Theorem 1.5. Let C be a set of n axis-aligned congru-
ent cubes in R3. The complement of U(C) can be decom-
posed into O(n log n) axis-aligned boxes with pairwise-
disjoint interiors, in O(n log n) time.

Analogous to Corollary 1.3, we obtain the following:

Corollary 1.6. Let B be a set of n boxes in R3 in
general position so that the aspect ratio of every box
is bounded by a constant ↵ � 1 and the ratio of the
largest to the smallest size box is bounded by a constant
�. Then the complement of U(B) can be decomposed
into O(n log n) boxes in time O(n log n).

By plugging the bounds in Theorems 1.1 and 1.5
into the randomized divide-and-conquer framework
mentioned earlier in this section, we obtain the following:

�v �w �v

u

v w

�w

�u
u

v w

�u

Figure 1. Two planar renderings of BBD subtrees with identical

regions �u at the root nodes. On the left, �u is partitioned into

�v ,�w by a splitting plane. On the right, �u is partitioned by a

splitting box.

Corollary 1.7. Let C be a set of n axis-aligned cubes
in R3. If the cubes are congruent or if their sizes are
chosen randomly from an arbitrary probability distribu-
tion (but their centers are fixed), U(C) can be computed
in O(n1+") time for any arbitrarily small constant " > 0.

At a high level, our decomposition techniques are
inspired by the BSP construction schemes described
in [3, 21, 24], but their implementation exploits the
geometry of cubes and attains significantly improved
performance bounds.

Roadmap of the paper. We begin by giving a brief
overview of balanced-box decomposition trees [2], which
is a key component of our algorithm for cubes of di↵erent
sizes. Next, we describe our first algorithm (given in
Theorem 1.1) for cubes of arbitrary sizes in Section 3, and
our second algorithm (given in Theorem 1.2) in Section 4.
Finally, we describe the more e�cient algorithm for
congruent cubes (given in Theorem 1.5) in Section 5.
The algorithms are quite simple; only the notations and
analyses are somewhat involved.

2 Balanced-Box Decomposition (BBD) Trees

Let P ✓ R3 be a set of n points. Introduced by Arya
et al . [2], the BBD tree T for P is a binary tree that
represents a hierarchical decomposition of P . Each node
u of T is associated with a region �u, which is the set-
theoretic di↵erence �O

u
\ �I

u
of a pair of axis-aligned

boxes: an outer box �O
u

and a (potentially empty) inner
box �I

u
✓ �O

u
. If u is not a leaf, then u is also associated

with either a single splitting plane hu or a splitting
box �S

u
, where neither of which cross the boundary

of �I
u
. Furthermore, if u has a splitting box �S

u
and

�I
u
6= ?, then �I

u
✓ �S

u
✓ �O

u
. The splitting planes and

boxes partition �u into the two sub-regions �v and �w

associated with its two respective children, v and w. See
Figure 1. Any leaf u of T has |P \ �u|  1. The height
of T is O(log n) and T can be constructed in O(n log n)
time [2]. See Appendix A and the original paper [2] for
more details on BBD trees.

For our purposes, it is convenient to introduce the
notation ⌃u, for each node u of T, to be the set that
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�

U

h1 h2 h3

B

h4

C3

C2

C1

Figure 2. In each 2D illustration, U is depicted in blue. (left) The green boxes are passive and compatible with �, the yellow box is

active and compatible with �, and the red boxes are active but not compatible with h. (middle) A box B that is compatible with h1

and h4 but not compatible with h2 or h3. (right) A union of boxes C = {C1, C2, C3} such that only the green boxes are void of C; e.g.,

the bottom red box is void of {C1, C2} but not of {C3}.

contains either the single splitting plane hu at u, or the
axis-aligned planes that support the (at most 6) faces of
the splitting box �S

u
at u but not the faces of �O

u
. We

refer to ⌃u as the set of separating planes at node u.
We prove the following property of BBD trees (cf .

Appendix A for the proof), which is crucial for our
application.

Lemma 2.1. Let u be a node of a BBD tree T for a point
set P ✓ R3. There is a set Hu of at most 24 planes that
induces a subdivision of �u into O(1) axis-aligned boxes
such that any axis-aligned cube C that intersects �u but
none its vertices lie in the interior of �u contains an
edge of each box that it intersects.

3 Decomposing the Complement of the Union
for Cubes of Arbitrary Sizes

Let C,U,K be as defined at the beginning of the
Introduction. Let � be a cube containing U. We trivially
partition the exterior of � into O(1) boxes, so we focus
on partitioning K \ � into O( log4 n) boxes.

The algorithm maintains a partition B of � into
axis-aligned boxes with pairwise-disjoint interiors. It
successively refines the partition until the interior of
each box in B fully lies in U or in K. Each step of the
algorithm picks a box B of B whose interior intersects
@U and splits B by a carefully chosen axis-aligned plane
h, so that each of the resulting two boxes lies in one
of the two halfspaces bounded by h; we refer to the
rectangle B \ h as a cut, which splits B into two boxes.
For an axis-aligned plane h : xi = a, we use h� (resp.
h+ to denote the closed halfspace xi  a (resp. xi � a).
When this refinement process terminates, we return the
subset of boxes of B that lie in K. We begin by a few
preliminaries (Section 3.1), then describe the algorithm
(Sections 3.2 and 3.3), followed by the analysis of the
algorithm (Section 3.4).

3.1 Preliminaries A box B 2 B is called active
if int(B) \ @U 6= ?, and passive otherwise. Passive
boxes are not partitioned further and belong to the final
decomposition B. For a 3D region � (in our case �
will be a box or an annular region lying between two
nested boxes), let B� ✓ B be the set of boxes that
intersect �. Let A� ✓ B� be the subset of active boxes
B that intersect @U inside �, i.e., int(B)\@U\ int(�) 6=
?; B� \ A� may contain active boxes B for which
int(B) \ @U ✓ B \ �. A box B is compatible with
� if int(B) \ @U ✓ �, and a subset Z ✓ B is compatible
with � if every box of Z is compatible with �. See
Figure 2 (left).

Abusing the notation a little, we say that B is
compatible with a plane h if B is compatible with one of
the halfspaces bounded by h, i.e., int(B)\@U lies in one
of the two open halfspaces bounded by h; if B intersects
h, then B does not intersect @U in one of the two open
halfspaces. A subset Z is compatible with h if every box
in Z is compatible with h. We describe in Section 3.3 a
procedure GlobalCut(Z, h) that refines the boxes in Z
to make them compatible with h. See Figure 2 (middle)
for an illustration of these notions.

Let X ✓ C be a subset of input cubes. Let @UX

denote the portion of @U that appears on the faces
of cubes in X. A box B 2 B is called void of X if
int(B) \ @UX = ?, i.e., none of the cubes in X appear
on @U inside B. For a subset Z ✓ B, Z is void of X if
every box in Z is void of X. See Figure 2 (right).

3.2 Overall algorithm We now describe the overall
algorithm. Let V be the set of vertices of the input cubes;
|V | = 8n. We construct a BBD tree T on V with � as
the region associated with the root of T. Recall that
each node u of T is associated with an annular region
�u lying between two nested boxes �O

u
and �I

u
(where

the latter box may be empty) with �u := cl(�O
u
\ �I

u
).

A cube C 2 C intersecting �u is called short at u if at
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B

C

Figure 3. In both figures, a 2D box �u (black) and boxes of Au (grey) are shown; for better visualization, the boxes are slightly

shrunk towards their centers. (left) An example of invariant (I1): Au is compatible with �u. @U is shown in blue. (right) An example

of invariant (I2): Au is void of the three long (partially depicted) squares Lu, but not of {C}, where C 2 Su. The solid portions of the

square boundaries are part of @U, whereas the dashed portions lie in int(U). Note that the box B 2 Au is indeed void of Lu, although

dashed portions of the long squares intersect its interior.

�O
u

�I
u

Figure 4. A 2D illustration of red long and blue short cubes

(here squares) that intersect an annular region �u.

least one of the vertices of C lies inside �u, and long
otherwise. Note that vertices of a long cube C might lie
in the inner box �I

u
of �u. See Figure 4.

Let Su (resp. Lu) be the subset of cubes in C that
are short (resp. long) at u. Let Cu := Lu \ Lp(u), where
p(u) is the parent of u, be the set of cubes that are
long at u but short at p(u) (if u is the root, we have
Cu = Lu = ?). If a cube C 2 Lu contains �u, then
�u ✓ U and no refinement of �u is needed. Similarly
if Lu [ Su = ?, then �u ✓ K and there is no need to
refine �u. So assume @U intersects �u. Set Bu := B�u

and Au := A�u .
A box B admits a free cut if there is a face f of

@U that intersects the interior of B and the edges of @f
do not, i.e., f \B = span(f) \B where span(f) is the
plane that contains f . Since span(f) \ B ✓ f , such a
cut does not cross any other face of @U and f \B does
not lie in the interior of any box after B is split by this
cut. Therefore it is desirable to split a box by a free
cut whenever it admits one. See Figure 5. This notion
is similar to the one used in the construction of binary
space partitions [20].

The algorithm visits the nodes of T in a top-down
manner, i.e., performs a pre-order traversal of T, and
successively refines B. Initially B consists of a single

B� B+

f

B

Figure 5. An illustration of a box B with a free cut defined

by some face f of @U, where B
� := B \ span(f)

�
and B

+ :=

B \ span(f)
+
.

box, namely � itself. A node u of T is marked processed
immediately after executing the steps (i)–(iv) at u, as
detailed below, and before proceeding recursively to the
subtrees rooted at the children of u. The algorithm
maintains the following three invariants:

(I1) When the algorithm arrives at a node u of T, Au is
compatible with �u. That is, for any box B of Au,
int(B) \ @U ✓ �u. See Figure 3 (left).

(I2) When the algorithm finishes processing a node u
of T in the sense defined above, Au is void of Lu.
If u is a leaf, then Au is void of Su as well, which
implies that Au is void of C (and hence @U does
not intersect the interior of any box in Au). See
Figure 3 (right).

(I3) None of the boxes in B admit a free cut.

Assuming invariant (I2) holds after the algorithm
completes the traversal of T, the final set of boxes in B
forms the desired subdivision of � because the regions
associated with the leaves of T partition �, and Az, for
each leaf z, is void of C.

Next, we describe the steps taken by the algorithm
at each node of T, to maintain the invariants (I1)–(I3),
as it traverses T.
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B1 B2 B3 B4

h

B� B+h
B

Figure 6. (left) A 2D view of boxes B1, B2, B3, B4 2 A� before (top) and after (bottom) the call GlobalCut(�, h), where U \�

is depicted in blue. Boxes B1, B2, B3 are split by h during the call, but not B4. After the call, sub-box of B1 admitted free cuts

supporting each face of U and was split by them. The boundaries of the sub-boxes are shown slightly shrunk towards their centers for

better visualization. (right) An illustration of a box B 2 A� split by plane h during GlobalCut(�, h): int(B) \ U is defined by two

input cubes, one red and one blue. The portions of @U that lie strictly in the interior of the boxes are shown.

Suppose the algorithm has reached a node u of T.
Let Hu := {h1, . . . , hr} be the set of at most 24 planes
obtained by applying Lemma 2.1 to u, and let ⌅u be the
subdivision of �u consisting of O(1) boxes induced by
Hu. By Lemma 2.1, if a long cube C 2 Cu intersects a
box R 2 ⌅u, C contains an edge of R. The algorithm
performs the following steps at the node u:

(i) For each hi 2 Hu, we call the procedure
GlobalCut(�u, hi) to refine Au so that it be-
comes compatible with hi. By construction, after
this step, for all boxes R 2 ⌅u, AR is compatible
with R, i.e., for each box B 2 AR, int(B)\@U ✓ R.

(ii) Fix a box R 2 ⌅u and an edge e 2 R. Let
CR,e ✓ Cu be the set of long cubes that intersect
R and contain the edge e. We call the procedure
Staircase(R, e,CR,e) to ensure that AR becomes
void of CR,e. We repeat this procedure for all edges
e of R and for all boxes R 2 ⌅u.

(iii) If u is a leaf, then we also ensure that Au is
void of Su. If Su = ?, there is nothing to do.
Otherwise �u contains one vertex, say, ⇠, of one
short cube C and Su = {C}. Let g1, g2, g3 be the
three planes supporting the faces of C that contain
⇠; no other face of C intersects int(�u). We call
GlobalCut(�u, gi), i = 1, 2, 3, to ensure that Au

is compatible with gi. This step ensures that A�

is void of Su, which implies that Bu is void of C.

(iv) If u is an interior node with v and w as its children,
then let ⌃u be the set of at most 6 separating planes
at u. For each � 2 ⌃u, we call GlobalCut(�u,�)
to ensure that Au is compatible with each � 2 ⌃u,
which in turn ensures that Au becomes compatible
with �v and �w.

This completes the description of the (non-recursive)
processing of a node u of T. If u is an interior node, the

algorithm recursively visits the two children of u (in a
preorder fashion).

3.3 The two procedures We now describe the two
subroutines called by the main algorithm.

The GlobalCut procedure. Given an annular region
(or box) � and a plane h, GlobalCut(�, h) ensures
that A� is compatible with h, i.e., for each box B 2 A�,
int(B) \ @U lies in only one of the two open halfspaces
bounded by h. As a result, no face of @U that lies on h
intersects the interior of any box in A� afterwards, i.e.,
int(B) \ @U \ h = ? for any box B 2 A�.

We visit each box B 2 A� one by one and perform
the following steps. If int(B) \ @U \ h = ? and B is
compatible with h, leave B as it is. Otherwise, we divide
B into two boxes B� := B \ h� and B+ := B \ h+ by
splitting B by h. See Figure 6. If the box B� (or B+)
admits a free cut, we split it by the free cut. We perform
this step repeatedly until the resulting boxes have no
free cuts.

We note that if B \ @U lies in one of the open
halfspaces bounded by h, then GlobalCut does not
split B even if h intersects its interior. See box B4 in
Figure 6 (left). This simple rule is crucial in keeping the
size of the decomposition small.

The Staircase procedure. Given a box �, where
A� is compatible with �, an edge e of �, and a set
X of cubes, each of which intersects � and contains e
(and thus it is long at �), Staircase(�, e,X) refines
A� so that it becomes void of X. Recall that for any
call Staircase(�, e, x) made during step (ii) of the
algorithm, � is indeed a box, not an annular region.

If � = ? or X = ?, � is trivially void of X,
and the procedure terminates. So assume that both
� 6= ? and X 6= ?. We assume that each cube C of
X appears on @U(X) \ int(�) because otherwise we
can simply ignore C in the present invocation of the
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Figure 7. An illustration of Staircase(�, e,X).

procedure (removing C does not alter @U(X) \ int(�)).
Suppose that � = [a�, a+] ⇥ [b�, b+] ⇥ [c�, c+] and
e = [a�, a+]⇥ {b�}⇥ {c�} for concreteness. For a cube
Ci 2 X, let [y�

i
, y+

i
] (resp. [z�

i
, z+

i
]) be its projection

on the y-axis (resp. z-axis). Let C1, C2, . . . , Cr be the
cubes in X sorted in increasing order of their upper
y-coordinates, i.e., y+1 < y+2 < · · · < y+

r
. As we only

consider cubes in X that appear on @U(X) inside �, we
have z+1 > z+2 > · · · > z+

r
. Let gy be the plane y = y+dr/2e

and gz be the plane z = z+dr/2e. We partition � into
four boxes by the planes gy and gz. See Figure 7. The
box lying in the quadrant g�

y
\ g�

z
lies inside U and the

box lying in the quadrant g+
y
\ g+

z
is disjoint from X, so

neither of these two boxes need to be processed further at
this invocation of Staircase. We first make A� void of
{Cdr/2e}, and then solve the problem recursively in the
two remaining boxes that lie in the quadrants g�

y
\ g+

z

and g+
y
\ g�

z
, as follows.

We first call GlobalCut(�, gy) and
GlobalCut(�, gz) to ensure A� is compatible
with both gy and gz, and hence no face of @U on gy or
gz intersects the interior of any box in A�; in particular,
A� is void of {Cdr/2e}. Note that if r  2, we could
have y+dr/2e � b+ or z+dr/2e � c+, in which cases A� is
already compatible with gy or gz, and so there is no
need to call GlobalCut(�, gy) or GlobalCut(�, gz),
respectively.

Let �� (resp. �+) be the box �� := � \ g�
y
\ g+

z

(resp. �+ := � \ g+
y
\ g�

z
), let

e� := [a�, a+]⇥ {b�}⇥ {z+dr/2e}, and

e+ := [a�, a+]⇥ {y+dr/2e}⇥ {c�},

and let X� := {C1, . . . , Cdr/2e�1} and X+ :=
{Cdr/2e+1, . . . , Cr}. By construction, @U(X�) \
int(�) ✓ �� and @U(X+) \ int(�) ✓ �+. See Figure 7
again. We recursively call Staircase(��, e�, X�) and
Staircase(�+, e+, X+) to ensure that A�� and A�+ ,

and thus A�, become void of X. (Note that, indeed,
immediately before the recursive calls, �� (resp. �+)
is void of X+ [ {Cdr/2e} (resp. X� [ {Cdr/2e}), A��

(resp. A�+) is compatible with �� (resp. �+), and
each box B 2 X� (resp. B 2 X+) contains the edge e�

(resp. e+) of �� (resp. �+).)

3.4 Analysis In this subsection, we prove the correct-
ness of the algorithm, bound the size of the subdivision
that it produces, and analyze its running time. We
first introduce two concepts that will be useful for the
analysis.

History tree. We note that theGlobalCut procedure
is the only procedure that refines the subdivision B (the
main procedure and Staircase refine B only through
calls to GlobalCut) by subdividing a box of B into two
boxes B�, B+ by a cut (which is a rectangle of the form
B \ h for some axis-aligned plane h); see Figure 6. Let
B0,B1, . . . ,BF be the sequence of subdivisions that arise
during the execution of the algorithm, so that B0 = {�},
Bi+1 is obtained from Bi by splitting a box of Bi into
two boxes, and BF is the final subdivision. We define a
binary tree H := (V,E), which we refer to as the history
tree of the algorithm. V is the set of boxes that appear
in at least one Bi. If a box B was split into two boxes
B1, B2 by a cut, we add the edges (B,B1) and (B,B2)
to H, making B1 and B2 the children of B. The leaves
of H are the set of boxes in the final subdivision BF .

Fragments. A fragment is a maximal connected portion
of a face of @U that is contained in the interior of a box
of some Bi. See Figure 8 for an illustration. Fix a
face f of @U. The face f itself is a fragment because
it is the unique maximal connected portion of f lying
in the interior of the initial box � of B0. Let ' be a
fragment of f lying in the interior of a box B of B. As
the algorithm progresses, ' is repeatedly divided into
smaller fragments by cuts, until it is “trapped” by a cut
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Figure 8. Examples of fragments that are alive in a common box

(not shown) that is cut by plane h. '1 becomes eternal, '2 and

'3 die, and the maximally connected portions of '2,'3 in h
�
, h

+

are newly created fragments — two for '2 and three for '3.

that contains ' (i.e., as B is split by the plane supporting
'), and then ' stops being a fragment and will not be
divided further anymore — see below. If ' does not
touch @f , then ' is rectangular and corresponds to a
free cut, so the box that contains ' is split by this cut as
soon as ' materializes, and ' is never subdivided again.

If ↵ is the highest node of H at which ' appears, we
say that ' is created at ↵ (every original face of @U is
created at the root). Fragment ' continues to appear at
nodes along a (unique) path starting from ↵ in H until
one of the following two events occurs at a descendant
� of ↵, for which ' is still a fragment in the box �:

(i) The box � is split by a cut orthogonal to ' that
divides ' into multiple fragments, each of which
is created in one of the two children of �. In this
case we say that ' dies at node �.

(ii) The box � is split by a cut supporting ' so that
' no longer appears in the interior of any box of
B, and is no longer further divided. In this case,
we say that ' becomes eternal at �; o�cially, ' is
no longer a fragment, but we regard it as staying
alive. See '1 in Figure 8.

We note that while an eternal fragment ' is not further
divided, a box B whose boundary contains (a portion of)
' may be split by a cut orthogonal to '. Although this
cut may intersect ', it cannot cross ' — it terminates
at ' and does not subdivide '. Since the leaves of H are
void of C, each fragment either dies or becomes eternal
during the execution of the algorithm. Let �F denote the
set of eternal fragments when the algorithm terminates,
and let � be the set of vertices of fragments in �F . Set
µ := |�F | and ⌫ := |�|. At most four fragments share any
vertex in �, so we have µ  4⌫. Since the multiplicity of
any element in � is at most four, with a slight abuse of
notation, we will use � to denote both the set and the
multiset of vertices of fragments in �F . We will prove in
Lemma 3.2 that the size of the final subdivision, BF , is

O(µ), and then bound ⌫ by O( log4 n) in Corollary 3.8.
Together, these bounds imply the stated upper bound
for |BF |.
Proof of correctness. We now prove the correctness
of the algorithm.

Lemma 3.1. The algorithm maintains invariants (I1),
(I2), (I3).

Proof. Free cuts are created by the GlobalCut proce-
dure, which is the only procedure that refines B. Since
GlobalCut splits boxes by free cuts as soon as they
appear, (I3) is maintained — none of the boxes of B
admit a free cut.

Next, we prove that invariant (I1), namely that
upon reaching a node u of T, Au is compatible with �u,
holds, by induction on the depth of the nodes v of T.
It is trivially true initially at the root of T because �
contains @U. Suppose the algorithm arrives at a node
v. By induction hypothesis, (I1) holds at p(v), so if (I1)
is not true at v, there is a box B 2 Av such that B
intersects one of the separating planes � 2 ⌃p(v) and
int(B) \ @U lies in both open halfspaces bounded by
�, i.e., B is not compatible with �. However, this is
impossible because step (iv) of the algorithm at p(v)
calls GlobalCut(�p(v),�) with all planes � in ⌃p(v),
which would have made Ap(v), and thus Av, compatible
with �v. Hence (I1) holds at v too.

We now prove that (I2), namely that upon finishing
processing a node u of T, Au is void of Lu (and of Su
when u is a leaf), holds by induction on the depth of
the nodes v of T. The invariant is trivially true at the
root u of T because Lu = ?. Suppose the algorithm has
processed a node v of T. Since p(v) is processed before v,
by induction hypothesis, Ap(v) was void of Lp(v) when
the processing of v began. Hence, Av is void of Lp(v),
so it su�ces to prove that Av is void of Cv = Lv \Lp(v).
Since (I1) holds, for any box B 2 Av, B \ �v is void of
Cv, so we only focus on portions that lie inside �v. Let
⌅ be the subdivision of �u provided by Lemma 2.1.

It su�ces to prove that A� is void of Cv for each
� 2 ⌅v. Step (i) ensures that for each � 2 ⌅v, A� is
compatible with �. Let C 2 Cv be a (long) cube that
intersects the interior of a box � 2 ⌅v. By Lemma 2.1,
C contains one of the edges of �, say, e. Then the call to
Staircase(�, e,C�,e) makes � void of C. Hence, after
the procedure Staircase(�, e,C�,e) is invoked for all
edges of �, A� is void of Cv. After repeating this step
for all boxes � 2 ⌅v, Av becomes void of Cv. Finally, if
v is a leaf then, in addition to the argument just given,
step (iii) of the algorithm ensures that Av is void of Sv
as well.

Putting it all together, we conclude that the algo-
rithm maintains the invariants (I1)–(I3).
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Figure 9. A 2D view of the subdivision ⇧f (red) of a face f of

@U.

The decomposition size. The following sequence of
lemmas bound the size of BF .

Lemma 3.2. The size of the final subdivision BF is at
most 2µ, where µ is the total number of fragments that
are alive (and eternal) at the end of the algorithm.

Proof. The size of BF is the same as the number of
leaves in the history tree H. Let B be a leaf of H, and
let B0 be the parent of B in H, so B0 was split into
two boxes, B and, say, B, by a plane h made at B0.
We claim that h supported a live fragment ' lying in
int(B0). Suppose h did not support a fragment inside
B0, i.e., either h divided an alive fragment in B0 into two
fragments or h \ int(B0) \ @U = ? (see Figure 6). In
either case, both int(B) and int(B) intersect @U, which
contradicts the assumption that B is a leaf, so our claim
is true. We charge the leaf B to the fragment ' 2 �F ,
which becomes eternal after the node B0 is processed
and does not appear in the interior of any descendant
of B0. Hence, ' is charged at most twice, namely, once
for each child of B0 that is a leaf. Furthermore, ' 2 �F .
Hence, |BF |  2µ.

The next four lemmas bound the value of ⌫, the
number of fragment vertices. Specifically, we prove that
a face f of @U with f vertices contains O(f log

4 n)
fragment vertices. To prove this bound, we consider
the evolving subdivision e⇧f of f induced by the cuts
that cross f throughout the execution of the algorithm
and monitor how e⇧f evolves over time. In particular,
whenever a box B with f \ int(B) 6= ? is split by an
axis-aligned plane h crossing f , each segment (connected
component) of f \ (B \ h) creates a new edge of e⇧f .
(Cuts that intersect f but do not cross it do not subdivide
f .) The endpoints of a new edge lie on the existing edges
of e⇧f (possibly on edges of f), become new vertices of
e⇧f , and subdivide those existing edges.

Let ⇧f denote the final subdivision of f when the
algorithm terminates. The faces of ⇧f are the eternal
fragments of �F that lie on f . See Figure 9. By
definition, every edge of ⇧f is a portion of a segment
� corresponding to some cut used during the algorithm
that crosses f . Many edges may lie on such a segment �
as subsequent segments whose endpoints lie on � may

have subdivided �. We say that an edge of ⇧f was
created when its corresponding segment � was created in
e⇧f during the execution of the algorithm. Additionally,
we label an edge � of ⇧f with a node v of the BBD tree
T if the call to GlobalCut that created � was executed
while processing v.

We call an axis-parallel segment contained in a face
of @U a mast (as in [24]).

Lemma 3.3. Let � be a mast lying on a face f of @U.
Let E�,h be the set of edges of ⇧f that were created
by cuts made by some single call to GlobalCut(�, h).
If � is parallel to h, then � crosses no edge in E�,h;
otherwise � crosses at most one edge of E�,h.

Proof. By definition, none of the free cuts made by
GlobalCut(�, h) cross any face of @U, so they do
not create any edges of E�,h. Hence, all the edges
of E�,h created by GlobalCut(�, h) lie on the line
` := h \ span(f). If � is parallel to h, then � is parallel
to ` so � crosses no edges in E�,h. Otherwise � crosses
` at most once, so it crosses at most one edge of E�,h.

Lemma 3.4. Let � be a mast lying on a face f of @U.
Let E�,e,X be the set of edges of ⇧f that were created by
cuts made by a single call of Staircase(�, e,X). Then
� crosses O(log|X|) edges of E�,e,X .

Proof. Following the notation in the description of the
Staircase procedure, assume that e is parallel to the
x-axis, let gy and gz be the two “median” planes for
which the procedure called GlobalCut(�, gy) and
GlobalCut(�, gz), and let �� and �+ be the two
sub-boxes of � for which the Staircase procedure
was called recursively, as Staircase(��, e�, X�) and
Staircase(�+, e+, X+).

We first note that if � is parallel to e, then � does not
cross any edge of E�,e,X because all cutting planes with
which GlobalCut is called inside Staircase(�, e,X),
including recursive calls, are parallel to e and thus to
�. By Lemma 3.3, none of the edges of E�,e,X (which
lie in these cutting planes) are crossed by �. So assume
� is orthogonal to e, say, � is parallel to the y-axis; a
symmetric argument holds if � is parallel to the z-axis.

Since � is parallel to the y-axis, it is not crossed
by the plane gz. By Lemma 3.3, � crosses no edge
created by GlobalCut(�, gz) and at most one edge
created by GlobalCut(�, gy). See Figure 10. Since
� misses gz, � also misses �+ (resp. ��) if it lies
in the halfspace g+

z
(resp. g�

z
). If � misses �+ (resp.

��), it is only crossed by the edges of E�,e,X that are
created by the recursive call Staircase(��, e�, X�)
(resp. Staircase(�+, e+, X+)). Using the fact that
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Figure 10. A 2D view of the edges E�,e,X (red) created in

subdivision ⇧f on � \ span(f) after calling Staircase(�, e,X).

The shaded regions (blue) form the cross section U \ �. The

boundaries of �
�
,�

+
in the initial call are shown slightly shrunk

towards their centers for better visualization.

|X�|, |X+|  d|X|/2e � 1  |X|/2, a simple recursive
argument shows that � crosses O(log|X|) edges of E�,e,X .

Lemma 3.5. Let � be a mast lying on a face f of @U.
For any node v of T, � crosses O(log n) edges of ⇧f

labeled v.

Proof. Let Ev be the set of edges of ⇧f that are labeled
v. Consider the cuts made by the algorithm while
processing v. Step (i) calls GlobalCut O(1) times, and
� crosses at most one edge of Ev created by each call,
by Lemma 3.3. These calls split � into O(1) segments,
each of which lies in one of the boxes of the subdivision
⌅v of �v. Fix a box R 2 ⌅v intersecting � and let
�R := � \ R. For each edge e of R, by Lemma 3.4,
�R crosses O(log|CR,e|) = O(log n) edges of Ev that are
created by Staircase(R, e,CR,e). Summing over all
O(1) such calls, �R is crossed by O(log n) edges of Ev

that are created at step (ii). Next, summing over the
O(1) boxes R 2 ⌅v, � is crossed by O(log n) edges of Ev

created at step (ii).
If v is a leaf, � crosses at most three edges of Ev that

are created at step (iii). Finally, if v is an interior node,
� crosses O(1) edges of Ev that are created at step (iv).

Putting everything together, � crosses O(log n)
edges of Ev.

Lemma 3.6. A mast � lying on a face f of @U crosses
O(log2 n) edges of ⇧f .

Proof. Let C 2 C be the cube whose boundary contains
the face f . For a node v of T, let iv  F be the index
such that Biv is the subdivision immediately before the
algorithm begins processing v. Let A<

v
be the set of

active boxes B in Biv ; int(B) \ @U \ �v 6= ? for all

B 2 A<
v
. By invariant (I1), int(B) \ @U ✓ �v for all

B 2 A<
v
.

By invariant (I2), if f lies in the interior of a box
of A<

v
then C is short at p(v). Since the interiors of

the regions �u are pairwise-disjoint for all nodes at a
fixed level of T, there are at most 16 nodes v (twice the
number of vertices of C) at any level of T for which f
intersects the interior of a box of A<

v
, i.e., f contains

a fragment that is alive at node v and may be further
subdivided. Hence, there are O(log n) nodes v of T for
which A<

v
is not void of {C}, and thus the edges of ⇧f

have O(log n) distinct labels. By Lemma 3.5, � crosses
O(log n) edges of each label, so � crosses O(log2 n) edges
of ⇧f .

To bound the number of vertices of ⇧f , we construct
a standard 2D vertical decomposition of the face f :
Without loss of generality, assume that f is parallel
to the xy-plane. From each vertex q of f , we draw a ray
in the (+y)-direction or in the (�y)-direction within the
interior of f until it hits another edge of f . (Only one of
the two rays lies in the interior of f in the neighborhood
of q.) The resulting subdivision f || of f consists of a set
of O(f ) axis-aligned rectangles with pairwise-disjoint
interiors.1 Consider any rectangle ⇢ of f ||. The x-edges
of ⇢ are portions of @f but the y-edges may not lie in
@f or may partially overlap with @f . Let ⇧⇢ be the
subdivision of ⇢ induced by ⇧f by clipping ⇧f in the
interior of ⇢ and adding @⇢ to it; see Figure 11(a). Each
vertex of ⇧f lying in ⇢ is a vertex of ⇧⇢, so it su�ces
to bound the number of vertices of ⇧⇢. If a vertex ⇠ of
⇧f lies in the interior of ⇢, ⇠ is a vertex of ⇧⇢ but if ⇠
lies on @⇢ then it might not be a vertex of ⇧⇢ (e.g. grey
vertices in Figure 11(a)). However, ⇠ will be a vertex of
⇧⇢0 for some other rectangle ⇢0 of f ||.

The following lemma, which is similar to Proposi-
tion 7 in [24], bounds the number of vertices of ⇧⇢.

Lemma 3.7. For each rectangle ⇢ of f ||, ⇧⇢ contains
O(log4 n) vertices.

Proof. We call a vertex of ⇧⇢ lying in int(⇢) an inner
vertex, and outer otherwise. Since each edge " of ⇢ is a
mast and each outer vertex of ⇧⇢ on " (except possibly
for its corners) is formed by the intersection of " with an
edge of ⇧f , Lemma 3.6 implies2 that " contains O(log2 n)
vertices of ⇧⇢. Hence, ⇧⇢ has O(log2 n) outer vertices.

1
The subdivision of f

||
is constructed only for the analysis. It

is not part of the algorithm.
2
Since vertices of ⇧f that are not vertices of ⇧⇢ might lie on ",

we should apply Lemma 3.6 to the segment "
0
that is the slight

translation of int(") into int(⇢); the number of edges of ⇧f crossed

by "
0
correspond to the outer vertices on ", which is what we want

to bound here.
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Figure 11. (a) An illustration of ⇧f clipped within ⇢ is shown in red, where the outer vertices, inner vertices, and vertices of ⇧f that

are on edges of @⇢ but not in ⇧⇢ are depicted in blue, red, and grey, respectively. (b) An exposed face ' of e⇧ is split by segment �,

where the solid blue edges (resp. dashed red edges) lie on @⇢ (resp. in int(⇢)). b is an outer vertex, which a charges, being an inner

vertex. (c) Similar to (b), except that a and b are both inner vertices and a (resp. b) charges the outer vertex ⇠a (resp. ⇠b). Edges

ea, eb of ⇢ are shown slightly shifted inwards for better visualization. (d) An illustration of mast �p, all of whose incident inner vertices

(red) charge the outer vertex p.

See Figure 11(a). We carefully charge each inner vertex
to an outer vertex so that each outer vertex is charged
by O(log2 n) inner vertices. This would imply that the
number of inner vertices in ⇧⇢ is O(log4 n), as claimed.
We now describe the charging scheme and argue that
each outer vertex is indeed charged only O(log2 n) times.

To analyze the charging of the inner vertices of ⇧⇢,
instead of viewing ⇧⇢ as a static subdivision, we monitor
the evolution of ⇧⇢ as the algorithm progresses and the

subdivision is being refined. Let e⇧ denote this dynamic
subdivision of ⇢. Initially, e⇧ = ⇢, and e⇧ = ⇧⇢ when the

algorithm terminates. A face ' of e⇧ lying completely in
the interior of ⇢ is a face of ⇧f that lies completely in
the interior of f , and thus ' corresponds to a free cut in
some box containing '. Since the algorithm splits boxes
by free cuts as soon as they appear, ' becomes eternal
(and is never further refined).

We call a face ' of e⇧ exposed if at least one of its
edges lies on @⇢. At each step, e⇧ is refined by splitting
an exposed face ' of e⇧ into two rectangles '�,'+ by
a segment �. The endpoints of �, denoted by a and b,
create new vertices of e⇧. If an endpoint of � is an outer
vertex, it is already acccounted for in the sense that we
have already bounded the number of outer vertices ever
created by O(log2 n), so assume that at least one of a
and b is an inner vertex. There are two cases to consider.
The first case is when a is an inner vertex and b is an
outer vertex (or vice versa). In this case, we charge a to
the newly created outer vertex b. Each outer vertex is
charged at most once by this case. See Figure 11(b).

The second case is when both a and b are inner
vertices. We regard the face ' of ⇧⇢ that is split by
� as a rectangle, and let ea (resp. eb) be the edge of
this rectangle that contains a (resp. b). Note that ea
(resp. eb) may contain vertices of e⇧ in its interior; see
Figure 11(c). Neither ea nor eb lies on @⇢. Since '
is exposed, at least one of the other two edges of (the

rectangle) ' lies on @⇢. Let ⇠a (resp. ⇠b) be an endpoint
of ea (resp. eb) lying on @⇢, i.e., ⇠a, ⇠b are outer vertices
in e⇧. We charge a (resp. b) to the outer vertex ⇠a (resp.
⇠b). See Figure 11(c).

We claim that each outer vertex p is charged by
O(log2 n) inner vertices. Indeed, let �p be the segment
connecting p to its opposite point on @⇢. (Note that at
least part of �p, but not necessarily all of it, is covered
by edges of ⇧⇢.) Each inner vertex charged to p lies on
�p and is an intersection point of �p with an orthogonal
edge of ⇧f (which is orthogonal to �p). By Lemma 3.6,3

�p contains O(log2 n) such intersection points. See
Figure 11(d). Hence, p is charged by O(log2 n) inner
vertices, as claimed. This completes the proof of the
lemma.

An immediate corollary of the above lemma is the
following:

Corollary 3.8. A face f of @U with f vertices is
split into O(f log

4 n) eternal fragments.

Putting everything together, we conclude that the
size of BF is O( log4 n), thereby proving the first part
of Theorem 1.1.

Runtime analysis. We now show that the algorithm
described above can be implemented in O(n log2 n +
 log6 n) time by carefully maintaining some auxiliary
information.

Recall that, at any time during the execution of the
algorithm, B and � denote the current set of boxes and
fragments, respectively. Let ' 2 � be a fragment. For
each connected component of @', we store the sequence
of its vertices in cyclic order in a doubly linked list. Let
L' be this list. For each box B 2 B, let �B ✓ � be the

3
As similarly remarked earlier, to use the lemma, we choose a

mast parallel and very close to �p.
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set of fragments that lie in the interior of B, and let �B

be the multiset of vertices of fragments in �B ; since at
most four fragments share any vertex, each element in
�B has multiplicity at most four. For each box B, we
maintain the set �B and three lists XB ,YB ,ZB storing
�B sorted by their x-, y-, and z-coordinates, respectively.
We store L', XB , YB , and ZB as doubly linked lists and
store cross pointers among them so that for a vertex
in one of the lists, we can locate it in the other lists
in O(1) time. In addition, whenever we make a call
GlobalCut(�, h), we ensure that we have the set A�

of active boxes at our disposal, so that the procedure
does not have to compute A� from scratch.

Since GlobalCut is the only procedure that mod-
ifies B, we sketch how to implement GlobalCut(�, h)
e�ciently, omitting various tedious details:

1. Without loss of generality, assume that h : z = z0 is
parallel to the xy-plane. For each box B 2 A�,
we scan Z and find the last vertex ⇠� with z-
coordinate less than z0. Next, we scan the set �B

of its fragments. For each fragment ' 2 �B, by
scanning the list L', we test in O(|'|) time whether
' intersects h, where |'| is the number of vertices
of '. If the answer is no, we determine in O(1) time
whether ' lies in h� or in h+.

2. If a fragment intersects h or if both h� and h+

contain fragments, we split B into two boxes B� :=
B \ h� and B+ := B \ h+.

3. If B is split into B+ and B�, then we perform the
following steps:

(a) By scanning the list L', for each fragment
' 2 �B, we first generate the intersection
points of h with the edges of '. Using ⇠� and
cross pointers, we can store each new vertex
in the lists XB ,YB , and ZB in O(1) time.

(b) After having computed all new fragment ver-
tices in B, we scan the lists XB and YB and
compute the new fragment edges that lie on h.

(c) We then split the fragments intersecting h
and create the lists L' for each newly created
fragment '. A fragment ' may be split into
many fragments (see Figure 8). Each fragment
now either lies in B� or in B+.

(d) By scanning the lists �B , XB , YB , and ZB we
construct the lists �B� , �B+ , XB� , XB+ , YB� ,
YB+ , ZB� , and ZB+ .

(e) We identify fragments in �B� ,�B+ that in-
duce free cuts. All these fragments are parallel
to each other and orthogonal to h, i.e., all of

them are parallel to the xz-plane or to the
yz-plane. We split D by each free cut and con-
struct the lists �D,XD,YD, and ZD for each
newly created box D. The fragments that be-
come eternal — either because they lie on h
or they become free cuts — are discarded.

4. Finally, set �+ := � \ h+ and �� := � \ h�.
GlobalCut ensures that A�+ (resp. A��) is
compatible with �+ (resp. ��). The procedure
partitions the modified set A� into A�+ and A��

and returns them.

Next, we analyze the total time spent by
GlobalCut(�, h). Let ⌫B := |�B | denote the
number of vertices of the fragments that lie in box
B 2 A�, when the procedure is called. Note that �B

is a multiset here, and we count its elements with
multiplicity. For each box B 2 A�, at most one new
fragment vertex is created on any edge of a fragment in
�B during the execution of the procedure, namely in
step (3.a). Thus, for each box B 2 A�, steps (1)–(4)
are performed in O(|�B |) time. It follows that the total
running time of GlobalCut(�, h) is O(⌫�), where
⌫� :=

P
B2A�

⌫B is the number of vertices in the
fragments that lie in a box of A� when the procedure
was called.

Next, we note that Staircase(�, e,X) spends
O(|X|) time to compute the cutting planes gy and
gz, calls GlobalCut(�, gy) and GlobalCut(�, gz),
each of which takes O(⌫�) time, where ⌫� is the
number of vertices in � when GlobalCut is called,
and then recursively calls Staircase(��, e�, X�) and
Staircase(�+, e+, X+). Using the list of active boxes
returned by the two calls of the GlobalCut procedure,
A�� and A�+ can be computed in O(⌫�) time. Each
call to GlobalCut creates new fragment vertices, so
the value of ⌫� increases after each call. To handle
this increase in the value of ⌫�, for a region �, we
define e⌫� := |� \ �| to be the number of vertices
of the eternal fragments that lie inside � at the end
of the algorithm, counted with multiplicity. Then
⌫�  e⌫� and e⌫�� + e⌫�+  e⌫�. Using the fact that
|X�|, |X+|  |X|/2, a simple recurrence shows that
Staircase(�, e,X) takes O((|X|+ e⌫�) log n) time.

For a node u of T, let ⌫u := |�\�u| and nu := |Su|+
|Cu|. We note that

P
u2T ⌫u = O(⌫ log n) = O( log5 n)

by Lemma 3.2 and Corollary 3.8. The analysis in
Arya et al . [2] implies that

P
u2T nu = O(n log n). A

straightforward analysis shows that steps (i)–(iv) of
the overall algorithm at a node u can be performed in
O((nu+⌫u) log n) time as a result of the O(1) calls made
to Staircase and GlobalCut. Summing over all
nodes of T, the total running time isO(n log2 n+ log6 n).
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'2

'3

'1
B

S

Figure 12. A 2D view of a boundary square S of some cube

that induces a free cut, by the new definition, in the dashed box

B (green), but none of the fragments '1,'2,'3 (grey) on S \B

induce a free cut in B by the old definition. S \ int(U) is shaded

in blue.

This proves the second part of Theorem 1.1.

4 A Smaller Decomposition for Arbitrary
Cubes

In this section we show that a small modification
of the previous algorithm improves the size of the
decomposition to O(� log4 n +  log2 n), where � 
min{n,} is the number of input cubes that appear on
@U. The only di↵erence in the new algorithm is how we
define a free cut for a box B of the current decomposition.
Recall that a box B admits a free cut if there is a face
f of @U that intersects int(B) but @f \ int(B) = ?, i.e.,
f \ B = span(f) \ B. The algorithm splits B along
span(f)\B as soon as f induces a free cut in B because
such a cut does not cross any fragments and f \ B no
longer lies in the interior of the resulting boxes (and thus
the name free cut). We observe that this property of
“free” cuts holds even under a weaker condition. Namely,
we say that B admits a free cut if B contains a fragment
' that lies on a boundary square4 S of an input cube and
@S \ int(B) = ?, i.e., S \B = span(S) \B. Note that,
unlike the previous definition, @' may lie in the interior
of B (see Figure 12), and S may cross the interior of U.
If we split B using the plane span(S), ' will no longer
lie in the interior of the resulting boxes and span(S)\B
will not cross any face of @U (though (a) it may meet the
boundary of such a face, and (b) it may cross a portion
of a boundary square that is disjoint from @U). We
run the algorithm described in Section 3.2 but use this
definition of a free cut in the GlobalCut procedure.

We postpone the discussion on an e�cient implemen-
tation of the modified GlobalCut until the runtime
analysis given later in this section, and we first bound
the size of the resulting decomposition BF . It is easily
seen that Lemmas 3.1 and 3.2 still hold; the proof of the

4
To distinguish from the face of the union U, we call the

boundary face of an input cube a boundary square.

latter relies crucially on the fact that the splitting plane
corresponding to a free cut contains a fragment. As in
Section 3, it su�ces to bound the number of eternal
fragments, which we estimate by bounding the number
of fragment vertices. In particular, we show that if a
boundary square S of an input cube contains S vertices
of @U, then S contains O(log4 n + S log2 n) fragment
vertices, which will lead to the desired bound on the size
of BF .

The overall structure of the proof is similar to that
in Section 3.4 except that we use a more global argument.
For a boundary square S, let KS := @K\S = @U\S be
the (possibly disconnected) portion of S that does not
lie in int(U). Throughout the execution of the algorithm,
the splitting of boxes B with S \ int(B) 6= ? by any
plane h crossing S induces an evolving (rectangular)
subdivision e⇧S of S. Specifically, we have e⇧S = S at
the start (i.e., it consists of only the edges of S), and
whenever such a split occurs, the axis-aligned segment
� := S\(B\h) creates a new edge of e⇧S . The endpoints
of � lie on orthogonal edges of e⇧S become new vertices
of e⇧S and subdivide those edges.

We color the features of e⇧S as follows: Initially, we
color the edges of e⇧S = S as black. When a segment �
is created on S, we color (the interior of) � as red if it
intersects KS , and color it as black otherwise. Then we
color each new vertex of e⇧S induced by the endpoints
of � as red if it is incident to a red edge (which could
be �), and color it as black otherwise. When an edge of
e⇧S is subdivided, the sub-edges inherit the same color.

Let ⇧S be the final (rectangular) subdivision of S
when the algorithm terminates. By definition, every edge
of the subdivision ⇧S lies on a segment � once created on
e⇧S , and many edges may lie on the same � as subsequent
cuts may have subdivided � further. We say that an
edge of ⇧S was created when its containing segment �
was created during the execution of the algorithm, and
note that its color is that of � when it was created.

Next, let ⇧r
S

be the subdivision of KS obtained by
overlaying ⇧S with KS and clipping it within KS . The
faces of ⇧r

S
are eternal fragments. See Figure 13. We

color the edges of ⇧r
S

that lie on @KS as blue and the
edges that lie in the interior of KS (i.e., the clipped red
edges of ⇧S) as red. Note that a red edge of ⇧r

S
is a red

edge of ⇧S or is contained in a red edge of ⇧S , and that
the black edges of ⇧S lie in the interior of S \ int(U)
and do not intersect ⇧r

S
. Each vertex in ⇧r

S
is one of

three types: a vertex of @KS , a vertex of ⇧S lying in the
interior of KS (all edges incident to it are red), or an
intersection point of an edge of @KS and an edge of ⇧S

which is not a vertex of @KS ; such a vertex is incident
to both red and blue edges. We color the vertex as blue,
red, or purple, respectively. We note that the vertices of
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Figure 13. A 2D view of ⇧S (left) and ⇧
r
S (right) on a square

S. On the left, the red edges are dashed, and the black edges are

thick. On the right, the red edges are dashed, the blue edges are

solid, and the purple vertices are shown as crosses. S \ int(U) is

shaded in blue, whose interior does not belong ⇧
r
S (only its blue

boundary edges belong to ⇧
r
S ).

⇧S lying in the interior of KS , which are also vertices
of ⇧r

S
, were colored red. (⇧S may have red vertices

lying outside KS , namely the endpoints of black edges
incident on red edges; see the red vertex incident on edge
�3 in Figure 14.) The number of blue vertices is S , by
definition, so we need to bound the number of red and
purple vertices.

As before, we define a mast to be an axis-aligned
segment contained in S. The following lemma is
analogous to Lemma 3.3.

Lemma 4.1. Let � be a mast in S. Let E�,h be the
set of red edges of ⇧S created by a single call to
GlobalCut(�, h). If � is parallel to h it does not
cross any edge of E�,h. If � is orthogonal to h then it
crosses at most one edge of E�,h.

Proof. DuringGlobalCut(�, h), for each box B 2 A�,
B is possibly split by the plane h, and if so, the resulting
sub-boxes of B are split by free cuts until none admit
a free cut. Recall that a free cut cannot cross KS .
Therefore, while a free cut may cross S and generate
edges of ⇧S , these edges do not lie on a edge that
intersects KS , and hence are black. Thus, any red edges
created during the call lie on h \ S. The proof now
follows from the same argument as in Lemma 3.3.

Using Lemma 4.1 and following the same arguments
as in the proofs of Lemmas 3.4–3.6, we obtain the
following:

Corollary 4.2. A mast in S crosses O(log2 n) red
edges of ⇧S.

We are now ready to prove the main lemma, which
is analogous to Lemma 3.7.

Lemma 4.3. ⇧r
S

has O(log4 n+ S log2 n) vertices.

�1
�2

�3

⇢1
⇢2

3

q

21

4

s t

p

5 6

Figure 14. A 2D view of e⇧S that illustrates the various cases

for new edges with segments �1, �2, �3. We assume that all other

segments were created before them. S\ int(U) is shown in blue. �1

intersects blue edges of KS , �2 lies in KS , and �3 lies in S\ int(U).

Immediately before the edges are created on ⇧S , all faces of ⇧S

are exposed; afterwards, the resulting faces ⇢1 and ⇢2 are the only

shielded faces of ⇧S . Vertices 2, 4, 5, and 6 are charged to q, p, s,

and t, respectively.

Proof. It su�ces to estimate the number of red and
purple vertices. Each edge of @KS is a mast, so by
Corollary 4.2, each edge of @KS contains O(log2 n)
purple vertices. (As in the proof of Lemma 3.7, strictly
speaking, we choose a mast parallel and very close to
the edge so as to use Corollary 4.2). Hence, the total
number of purple vertices is O(S log2 n).

Next, we bound the number of red vertices of ⇧r
S
.

We note that each such vertex is also a vertex of ⇧S .
We charge each red vertex of ⇧r

S
to a purple vertex

of ⇧r
S

or to a red vertex of ⇧S lying on @S. To describe
the charging scheme, it will be more convenient to work
with the dynamic subdivision e⇧S of S that was refined
as the algorithm progressed and pay attention to the
creation of the red vertices of ⇧r

S
. Recall that e⇧S = S

initially and e⇧S = ⇧S at the end. We call a face of
e⇧S exposed if one of its edges lies on an edge of S and
shielded otherwise. (For example, in Figure 14, ⇢1 and ⇢2
are shielded faces of ⇧S , and the rest are exposed.) If a
shielded face ⇢ intersects KS , then by the new definition
of free cut, B admits a free cut (along S). The algorithm
splits boxes by free cuts as soon as they become available.
Thus, ⇢ is not further refined, ⇢ becomes a face of ⇧S ,
and all fragments on ⇢ become eternal. Therefore no
red vertex of ⇧r

S
lies inside ⇢. If ⇢ does not intersect

KS , then ⇢ does not contain any vertex of ⇧r
S
, so it

su�ces to focus on how a vertex of ⇧r
S

is created inside

an exposed face of e⇧S .
Suppose an exposed face ⇢ of e⇧S was split into two

faces by the creation of an axis-aligned segment � with
endpoints a and b, which become vertices of e⇧S (and
thus of ⇧S). If � lies in the interior of S \ int(U), then
a and b are not vertices of ⇧r

S
. If a (resp. b) lies in the
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interior of KS , it is a red vertex of ⇧r
S
. We charge a

(resp. b) as follows: We walk from a (resp. b) on � until
we reach a point ⌘ on @KS and charge a (resp. b) to ⌘,
which is a blue vertex of ⇧r

S
(if it is a vertex of KS , e.g.

vertex 4 is charged to p in Figure 14), or it is a purple
vertex of ⇧r

S
(if ⌘ lies in the relative interior of an edge

of KS , e.g. vertex 2 is charged to q in Figure 14). It is
easily seen that ⌘ is charged at most twice5 in this way,
so the number of such red vertices of ⇧r

S
is O(S log2 n).

Next, assume that � lies in KS , i.e., both a and b
are red vertices of ⇧r

S
. Let ⇢ be the exposed face of

e⇧S , which we view as a rectangle, that is being split
by �. If at least one of a and b lies on @S, say a for
concreteness, we charge both a and b to a. At most two
vertices are charged to a in this way. Next, we assume
that both a and b lie in the interior of S. As in the
proof of Lemma 3.7, let ea (resp. eb) be the edge of ⇢
that contains the endpoint a (resp. b); e.g., segments
2s and 3t for �2 in Figure 14. Neither ea nor eb lies
on @S. Since ⇢ is an exposed face of S, at least one of
the other two edges of the rectangle ⇢ lies on @S, and
hence at least one endpoint ⇠a (resp. ⇠b) of ea (resp. eb)
lies on @S. Note that the edge ea (resp. eb) of e⇧S may
be later subdivided by subsequent cuts, but since ea
(resp. eb) intersects KS , all edges of the final subdivision
⇧S lying on it will be colored red, so ⇠a (resp. ⇠b) is
a red vertex of ⇧S . We charge a (resp. b) to ⇠a (resp.
⇠b). Following the same argument as in the proof of
Lemma 3.7 and using Corollary 4.2, any red vertex of
⇧S on @S is charged O(log2 n) times. Finally, using
Corollary 4.2, only O(log2 n) red edges of ⇧S have any
endpoint incident on an edge ! of S, which implies that
! contains O(log2 n) red vertices of ⇧S . Hence, the total
charge to the red vertices on an edge of S is O(log4 n).
This completes the proof of the lemma.

Putting everything together, the first part of Theo-
rem 1.2 is proved.

Runtime analysis. Since the modification lies strictly
in GlobalCut, it su�ces to describe how to modify
GlobalCut to identify and split by the new free cuts.
We then bound the resulting runtime by adapting the
previous analysis at the end of Section 3.4.

In the GlobalCut procedure, we replace only
step (3.e) of the original procedure; all other steps
are performed as stated there. We also maintain the
same auxiliary information as before, including the lists
�B ,XB ,YB , and ZB for each box B 2 A�. Recall that
�B denotes the list of fragments that lie in box B, each

5
A purple vertex of ⇧

r
S lying on an edge of S is a red vertex

of ⇧S and this red vertex may be charged O(log
2
n) times by a

later stage.

B B0 B00

S1
S4

S2
S3

Figure 15. A 2D view of a box B intersected by three cubes

(squares here) long at B (i.e., their vertices lie outside B). By

the new definition of free cuts, only the boundary square S1 (a

segment here) induces a free cut in B. By splitting B by this

cut, S2 induces a newly available free cut in resulting sub-box B
0
.

By splitting B
0
by this cut, boundary squares S3 and S4 induce

newly available free cuts in the resulting sub-box B
00
. By the old

definition of free cuts, there are no available free cuts in B.

represented by a list of its vertices in cyclic order, and
that �B is the multiset of the vertices of these fragments,
represented as a list. In the original implementation of
step (3.e), all free cuts in B are available in the beginning
of this step, and no free cuts become newly available
after being split by a free cut. In contrast, with the
new definition of free cuts, splitting B by a free cut may
create new free cuts in the resulting sub-boxes B�, B+

that did not exist in B (see Figure 15). We therefore
carefully find free cuts, one at a time, in a recursive
manner. We sketch the process, as follows.

Consider a newly created box D with set of frag-
ments �D; initially, D is either B� or B+. Then we
iterate from each end of the sorted lists XD,YD, and
ZD in a lock-step manner; each full iteration consists
of six steps (two per list). We do the following at each
step: For concreteness, assume we are at a vertex v while
scanning the list ZD from left to right. If the fragment
'v containing v lies in a xy-plane (i.e., span('v) is or-
thogonal to the z-axis), we test whether the boundary
square Sv supporting 'v induces a free cut in D. If the
answer is yes, we pause the scan at v. We split D into
D� and D+ by the free cut g := D\ span(Sv). Next, we
split the lists �D,XD,YD, and ZD to create the lists for
D� and D+, as follows. Let �g

D
✓ �D denote the set of

(xy-)fragments that lie on g, and let �g

D
be the list of

vertices of these fragments. Then �D = �D�[�g

D
[�D+

and �D = �D� [ �g

D
[ �D+ . By breaking ties in the

lists XD, YD, and ZD carefully, we can ensure that all
vertices in �D� (resp. �D+) appear before (resp. after)
the vertices in �g

D
in ZD. We resume the scan of ZD from

the vertex v to the right until a vertex v+ of a fragment
in �D+ (or the end of ZD) is reached. We remove the
vertices of ZD� and Z

g

D
from ZD. The remaining list is

Z
+
D
. We reconstruct the list ZD� . Next, we delete the

corresponding fragments from �D and fragment vertices
from XD and YD, and we reconstruct the lists �D� ,XD� ,
and YD� ; the last two lists require sorting the vertices
of �D� in the x- and y-order.

We recursively call the procedure to find free cuts
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in D� and D+. On the other hand, if no free cut was
found in D while scanning XD,YD, and ZD, we are done
with box D.

Next, we analyze the total time spent in splitting D
by free cuts with this recursive procedure. Recall that
splitting by free cuts do not create any new fragment
vertices. Let ⌫D := |�D| immediately before step (3.e),
where D = B� or D = B+. If no free cut was found in
D, then we spend O(⌫D) time at D. Assuming that a
free cut was found while scanning ZD from left to right,
then the procedure spends O(⌫D� log ⌫D� + ⌫g

D
) time in

splitting D and constructing the lists for D� and D+,
where ⌫D� := |�D� |, ⌫g

D
:= |�g

D� |, and ⌫D+ := |�D+ |.
Because we scan the lists in lock-step manner, we can
conclude that ⌫D�  ⌫D+ . Therefore, the time spent in
splitting D into D� and D+ is always O(b⌫ log b⌫ + ⌫g

D
),

where b⌫ := min{⌫D� , ⌫D+}. Let ⌧(⌫D) be the total
time spent in splitting by free cuts in D, including the
time taken by the recursive calls. Then we obtain the
following recurrence:

⌧(⌫D)  ⌧(⌫D�) + ⌧(⌫D+) +O(b⌫ log b⌫ + ⌫g
D
),

where ⌫D� + ⌫g
D

+ ⌫D+  ⌫D, and ⌧(⌫D) = O(⌫D)
if no free cut was found. By induction on ⌫D, we
can prove that the solution to above recurrence is
⌧(⌫D) = O(⌫D log2 ⌫D). Summing this quantity over
all sub-boxes B�, B+ for each B 2 A�, the total
running time of GlobalCut(�, h) is O(⌫� log2 ⌫�),
where ⌫� :=

P
B2A�

⌫B is the number of vertices of the
fragments that lie in a box of A� when the procedure
was called, counted with multiplicity.

For a node u of T, let ⌫u := |� \ �u| and nu :=
|Su| + |Cu|. Following the analysis in Section 3.4,
each of the O(1) calls to Staircase at u now take
O((|X| + ⌫u log

2 ⌫u) log n) = O((|X| + ⌫u log
2 n) log n),

using the fact that log ⌫ = O(log ) = O(log n). It
follows that processing any node u of T during the
overall algorithm takes O((nu + ⌫u log

2 n) log n) time.
Therefore, by summing over all nodes of T and using
the fact that

P
u2T nu = O(n log n) and

P
u2T ⌫u =

O(⌫ log n) = O(� log5 n +  log3 n), the total running
time is O(n log2 n+ � log8 n+  log6 n). This proves the
second part of Theorem 1.2.

5 Algorithm for Congruent Cubes

In this section, we describe an improved decomposition
scheme for a set of axis-aligned congruent cubes in R3.

5.1 Overall algorithm Let C := {C1, . . . , Cn} be a
set of n axis-aligned congruent cubes, say, unit cubes,
in R3 in general position. Unlike the setup in Section 3,
where we have enclosed U in some su�ciently large box
� and focused on constructing the decomposition of

K within �, here it is more convenient to treat the
unbounded version of K. Let G be the 3-dimensional
integer grid, which partitions R3 into unit cubes. For
i, j, k 2 Z, let ⇠i,j,k denote the grid cell [i, i+ 1]⇥ [j, j +
1]⇥ [k, k + 1]. Let G⇤ be the 2-dimensional integer grid
on the xy-plane, and let ⇠⇤

i,j
denote the unit square

[i, i+ 1]⇥ [j, j + 1]. For a pair (i, j), let ⇧i,j := ⇠⇤
i,j

⇥ R
denote the unbounded vertical prism erected on the
square ⇠⇤

i,j
, and let Gi,j := {⇠i,j,k | k 2 Z} denote the

column of grid cells stacked on ⇠⇤
i,j
; Gij partitions ⇧i,j

into a “stack” unit cubes. Let G ⇢ G denote the set of
non-empty grid cells, i.e., the ones that intersect a cube
of C, and let X be the set of pairs (i, j) such that ⇧i,j

intersects a cube of C; U(C) ⇢
S
G ✓

S
(i,j)2X ⇧i,j and

|G|, |X| = O(n).

Figure 16. A view from above of G⇤
with the set of cubes C

(grey), and the partition of cl(R2 \
S

�2X ⇠
⇤
�) into axis-aligned

rectangles (red).

We partition K into boxes in three stages. First, we
decompose cl(R3 \

S
(i,j)2X ⇧i,j) into a family B1 of O(n)

boxes, as follows. We partition cl(R2 \
S

(i,j)2X ⇠
⇤
i,j
) into

O(n) axis-aligned rectangles, using, say, the standard
2-dimensional vertical decomposition. For each rectangle
⇢ in the decomposition, we add the unbounded prism
⇢⇥ R to B1. See Figure 16.

Next, for each pair � 2 X, let Gi,j := G\Gi,j denote
the set of non-empty grid cells in column (i, j). We
partition the union of empty grid cells in column (i, j),
i.e., cl(⇧i,j \ U(Gi,j)), in a straightforward manner, into
a family B� of at most |G�| + 1 boxes. See Figure 17.
Set B2 :=

S
(i,j)2X Bi,j . Note that

X

(i,j)2X

|Bi,j | 
X

(i,j)2X

|Gi,j |+ 1  |G|+ |X| = O(n).

B1 [ B2 partitions cl(R3 \
S

G) into O(n) axis-aligned
boxes.

Finally, we partition K \ ⇠, for all non-empty grid
cells ⇠ 2 G, into boxes. Fix a cell ⇠ 2 G. Let K⇠ := K\ ⇠,
and let ⇠ be the number of vertices of K that lie in
the interior of ⇠; we have

P
⇠2G ⇠ = O(n). Below we

describe the main part of our procedure, a recursive
algorithm that partitions K⇠ into a collection B⇠ of
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O(⇠ log ⇠) axis-aligned boxes, in O(⇠ log ⇠) time (cf .
Corollary 5.6). Repeating this procedure for all grid
cells ⇠ 2 G, we decompose (

S
G) \ K into a total ofP

⇠2G O(⇠ log ⇠) = O(n log n) boxes.
Putting everything together, B1[B2[

S
⇠2G B⇠ par-

titions K into O(n log n) axis-aligned boxes. Moreover,
as we will show, our algorithm runs in overall O(n log n)
time. This completes the proof of Theorem 1.5.

Figure 17. A 2D view of a prism ⇧� crossed by some cubes of C

(grey). cl(⇧� \
S

G�) is decomposed into axis-aligned boxes (red).

Decomposition within a single unit grid cell. Let
� := [xL, xR] ⇥ [yL, yR] ⇥ [zL, zR] be an axis-aligned
box in R3, each of whose side-lengths is at most 1, that
intersects K. We describe a recursive algorithm for
partitioning K� := K \ � into axis-aligned boxes. Let
E� be the set of edges of K� that lie in int(�) (these are
the edges of K that intersect the interior of �, clipped
within �), and let V� be the set of vertices of K that lie
in int(�). If E� = ;, then K� is a single box, bounded
by portions of @� and of up to two parallel faces of @U
(the fact that there is only one such box follows from the
fact that all the side lengths of � are at most 1). We
output {K�} and stop. So assume that E� 6= ;.

We call an edge of E� short if one of its endpoints lies
in the interior of �, and long otherwise. Let n� := |V�|
and m� be the number of long edges in E�. We further
classify the edges of E� into three families: an edge is
an x-edge (resp., y-edge, z-edge) if it is parallel to the
x-axis (resp., y-axis, z-axis).

We assume that � satisfies the following invariant,
and we will enforce the maintenance of this invariant
throughout the recursive execution of the algorithm. In
particular, it will hold initially, when � is a unit cell of
G, because, by the general position assumptions, such a
cell does not contain any long edge.

2-Family Invariant: E� contains at most two families
of long edges, i.e., there is at least one axis among
the x-, y-, and z-axes such that E� has no long edge
parallel to that axis.

In view of the above invariant, let us assume, without
loss of generality, that E� has no long z-edges. The
next two lemmas lie at the heart of our decomposition
procedure.

Lemma 5.1. Let e be a long x-edge (resp., y-edge) of E�,
and let �1, �2 be two long y-edges (resp., x-edges) of E�.
Then either both �1, �2 lie above e (in the z-direction) or
both of them lie below e.

q1

p1p2

�2

�1

y

x

e

f \ �

q2

Figure 18. An illustration of the proof of Lemma 5.1.

Proof. Suppose to the contrary that, say, �1 passes above
e and �2 passes below e. Denote by p1 and q1 the
respective points on e and �1 that lie vertically above
each other (with p1 lying below q1). Similarly, denote
by p2 and q2 the respective points on e and �2 that lie
vertically above each other (with p2 lying above q2). See
Figure 18.

The edge e is either a concave edge,6 namely a
portion of an original edge of some cube C 2 C, or a
convex edge, which is a portion of an edge formed by
the intersection of two non-parallel faces of two distinct
cubes C,C 0 2 C. In the former case, e is adjacent to an
xy-parallel face and to an xz-parallel face of C. In the
latter case, we take C to be the cube for which e lies on
one of its (top or bottom) xy-parallel faces. In either
case, let f be the xy-parallel face of C that contains
e, and assume, without loss of generality, that f is the
bottom face of C.

Denote the xy-projection of an object a as a⇤. In
the case where e is a concave edge, move q1 slightly along
�1 so as to make q⇤1 be contained in f⇤, and move p1
along f to make it co-vertical with q1. In the case of a
convex edge, p1 and q1 remain unchanged. Now the fact
that � is a box of side-lengths at most 1 implies that the
vertical segment p1q1 is fully contained in the interior of
C. In particular, q1 lies inside C, contradicting the fact
that it lies on an edge of the union. The case where f
is the top face of C is handled symmetrically, using �2
instead of �1.

The proof of the following corollary is now straight-
forward and omitted here.

Corollary 5.2. Either all long x-edges of E� lie above
all the long y-edges of E�, or all of them lie below all
the long y-edges.

6
The terminology comes from treating the edges as edges of K;

it would be reversed if we were to regard them as edges of U.
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⇡

x

z

y

z

y
⇡

Figure 19. An illustration of Lemma 5.3 for a box � with two

families of long edges. (left) The undecomposed scenario. (middle)

Separating the two families with a plane ⇡ that contains the

highest long y-edge in �. (right) Decomposing the portion of

� \K above ⇡ into O(mx) axis-aligned boxes (red), where mx is

the number of x-edges in �. The figure shows a yz-cross section

of the decomposition.

Similar claims hold for the other possible combinations
of long edges.

Lemma 5.3. If V� = ;, i.e., E� does not have any
short edges, then K� can be partitioned into O(m�)
axis-aligned boxes.

Proof. Suppose, without loss of generality, that all long
x- edges of E� lie above all the long y-edges. Let z0 be
the maximum z-coordinate of a long y-edge in �. We
first partition � into two boxes �x,�y by drawing the
plane ⇡ : z = z0, with �x (resp., �y) lying above (resp.,
below) ⇡. If there are no x-edges (resp. y-edges) then
we set �y := � (resp., �x := �) and �x := ; (resp.,
�y := ;). Since there are no z-edges inside B, ⇡ does
not cross any edge of E�, and all the x-edges (resp.,
y-edges) lie inside �x (resp., �y). Let mx (resp. my)
denote the number of x-edges (resp. y-edges) in �. We
describe how to partition Kx := K�x into O(mx) boxes.
See Figure 19 (right).

Let � be one of the two faces of �x parallel to
the yz-plane (it is a portion of a face of �), and let
K� := K \ �; it is a rectilinear polygonal region. Since
all the edges of E� that lie in �x are x-edges, it easily
follows that Kx = K� ⇥ [xL, xR]. We partition K� into
O(mx) axis-aligned rectangles by the standard planar
vertical-decomposition method, as at the beginning of
this section (see Figure 16). We extend each rectangle R
in the decomposition of K� to a prism (within �) in the
x-direction, i.e., we generate the box R" := R⇥ [xL, xR],
resulting in the desired partition of Kx into O(mx) boxes.

In a fully symmetric manner, K \ �y can be
partitioned into O(my) axis-aligned boxes. Hence, K�
can be partitioned into O(m�) boxes, as claimed.

The next lemma suggests a recursive procedure for
decomposing K� into boxes when V� 6= ;.

Lemma 5.4. The box � can be partitioned into at most
three cubes �1,�2,�3 such that each �i satisfies the

following properties. For i = 1, 2, 3, let ni, mi denote
n�i ,m�i , respectively.

(i) n1 + n2 + n3  n�,

(ii) ni  dn�/2e for every i = 1, 2, 3,

(iii) m1 +m2 +m3  m� + 2n�, and

(iv) each �i satisfies the 2-family invariant.

Proof. If � contains both long x-edges and long y-edges,
then, similar to the analysis in the proof of Lemma 5.3,
we partition � into two boxes �x and �y, such that the
long x-edges (y-edges) of E� lie in �x (resp., in �y),
by drawing the horizontal plane ⇡1 : z = z�, where
z� is the maximum z-coordinate of a long y-edge in �
(assuming, as above and without loss of generality, that
the long y-edges lie below the long x-edge); if � contains
only long x-edges (resp., long y-edges), we set �x (resp.,
�y) to �, and �y (resp., �x) is then ;.

If the interior of each of �x,�y contains at most
dn�/2e vertices of K�, then we have obtained a partition
of � into two boxes �1 := �x and �2 := �y, and there
is no need for the third box �3. If the interior of one of
them, say, of �x, contains more than dn�/2e vertices,
we partition �x further into two boxes by drawing some
suitable horizontal plane that partitions �x into two
sub-boxes, each containing at most dn�/2e vertices. In
either case, we obtain a partition of � into at most three
boxes �1,�2,�3.

We now prove that �1,�2,�3 satisfy the properties
(i)–(iv). Clearly, (i) and (ii) follow from the construction.
Concerning (iv), each �i contains either long x-edges or
long y-edges of L�, but not both. Since the partition is
only by horizontal planes, no new long x- or y-edge can
be produced. The only new long edges, in any �i are
portions of original short z-edges in E�. This implies
(iv).

Finally, each long (x- or y-)edge of E� lies in the
interior of at most one box �i. Furthermore, each short
z-edge of E� is split into at most two long z-edges (and
possibly a third short z-edge), so the total number of
long edges in the three boxes �i, i = 1, 2, 3, is at most
m� + 2n�, thereby proving (iii).

Let  (m�, n�) be the maximum number of boxes
into which K� is partitioned, where the maximum is
taken over all the sets of unit cubes such that |V�| = n�
and |E�| = m�. Lemmas 5.3 and 5.4 imply the following
recurrence:

 (m�, n�) 

8
>>>><

>>>>:

1 if m� = n� = 0,

c1m� if m� > 0, n� = 0,
3X

i=1

 (mi, ni) if m� � 0, n� > 0,
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where ni  dn�/2e, n1 + n2 + n3  n�, and m1 +m2 +
m3  m� + 2n�. A solution to the above recurrence is
 (m�, n�) = O(m�+n� log n�). We also note that the
total time spent in constructing the decomposition of
K� into boxes can be shown to be O((m� +n�) log n�).
In conclusion, we have obtained the following result.

Lemma 5.5. If K� contains at most two families of
long edges, then K� can be partitioned, in O((m� +
n�) log n�) time, into O(m� + n� log n�) boxes.

Returning to the overall algorithm, let ⇠ be a cell in G.
Since ⇠ is a unit cube with integer vertex coordinates, our
assumption of vertices of C not having integer coordinates
implies that no face of K lies on @⇠, which in turn implies
that K⇠ does not have any long edge, and thus trivially
satisfies the 2-family invariant. Hence, by Lemma 5.5,
K⇠ can be partitioned into a family B⇠ of O(⇠ log ⇠)
axis-aligned boxes in O(⇠ log ⇠) time, where ⌧ is the
number of vertices of U that lie in the interior of ⇠.

Corollary 5.6. For any cell ⇠ 2 G, K⇠ can be parti-
tioned into O(⇠ log ⇠) boxes in O(⇠ log ⇠) time.

6 Conclusion

We have described algorithms to compute a decomposi-
tion of the complement of the union of axis-aligned 3D
cubes (or fat boxes) into a number of boxes near-linear
in the complexity  of (the boundary of) the union, and
their runtimes are near-linear in the input and output
size. In particular, if the input cubes have di↵erent sizes
then a decomposition of size O(� log4 n+ log2 n), where
�  min{n,} is the number of input cubes that ap-
pear on @U, can be computed in O(n log2 n+ � log8 n+
 log6 n) time. If all cubes have the same size, then
a decompositon of size O( log n) = O(n log n) can be
computed in O(n log n) time.

We conclude by mentioning two open problems: Can
the complement of the union of a set of axis-aligned cubes
in R3 be decomposed into O() boxes? Can our results
be extended to higher dimensions?
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[24] Cs. D. Tóth, Binary space partitions for axis-aligned
fat rectangles, SIAM J. Comput. 38 (2008), 429–447.

A Appendix: Balanced-Box Decomposition
(BBD) Trees

Before we prove Lemma 2.1, we review additional
properties of BBD trees that were not required to
describe our algorithms but are needed for the proof here.
For the full details of BBD trees and their construction,
we refer the reader to [2].

For a box B, let x(B), y(B), z(B) denote its
projection on the x-, y-, and z-axis, respectively, and
we refer to them as its x-span, y-span, and z-span,
respectively.

Consider two nested boxes �O and �I such that
�I ✓ �O. For each axis q 2 {x, y, z}, let [q�

I
, q+

I
] (resp.

[q�
O
, q+

O
]) be the q-span of �I (resp. �O). Using the

terminology from [2], �I is said to be q-sticky for �O

if each of q�
I
� q�

O
and q+

O
� q+

I
is either 0 or at least

q+
I
� q�

I
, and �I is said to be sticky for �O if �I is

q-sticky for all axes q 2 {x, y, z}.
Let P ✓ R3 be a set of n points, and let T be a

BBD tree constructed on P . The following additional
properties hold for each node u of T: (i) �I

u
is sticky

for �O
u

(if �I
u
exists), and (ii) �O

u
and �I

u
have aspect

ratio at most three, i.e., the length of the longest span
(edge length) of �O

u
(resp. �I

u
) is at most three times

the length of the shortest span of �O
u

(resp. �I
u
).

Using these properties, we establish Lemma 2.1:

Lemma 2.1. Let u be a node of a BBD tree T for a point
set P ✓ R3. There is a set Hu of at most 24 planes that
induces a subdivision of �u into O(1) axis-aligned boxes
such that any axis-aligned cube C that intersects �u but
none its vertices lie in the interior of �u contains an
edge of each box that it intersects.

Proof. Let C be an axis-aligned cube that intersects
the interior of �u and has all vertices outside �u =
cl(�O

u
\ �I

u
). The proof is trivial if �O

u
✓ C, so assume

otherwise. For concreteness, we also assume �I
u
6= ?;

the proof for the other case is similar.
For each axis q 2 {x, y, z}, let [q�

I
, q+

I
] := q(�I

u
) be

the q-span of �I
u
, let [q�

O
, q+

O
] := q(�O

u
) be the q-span

of �O
u
, and let [q�

C
, q+

C
] := q(C) be the q-span of C.

Let q1
I
:= (q+

I
� q�

I
)/3 and q2

I
:= 2(q+

I
� q�

I
)/3 be the

points that trisect q(�I
u
), and let q1

O
:= (q+

O
� q�

O
)/3 and

q2
O
:= 2(q+

O
�q�

O
)/3 be the points that trisect q(�O

u
). Set

TI,q := {q�
I
, q1

I
, q2

I
, q+

I
} and TO,q := {q�

O
, q1

O
, q2

O
, q+

O
}.

Let Hu be the set of planes of the form q = t for each
t 2 TI,q [ TO,q and q 2 {x, y, z}. Clearly |Hu|  24. Let
⌅u be the set of boxes in the subdivision of �u induced
by Hu, and let B 2 ⌅u be a box whose interior intersects
C. We prove that C contains an edge of B.

First observe that if q(C) 6◆ q(B) for all q 2 {x, y, z}
then a vertex of C lies inside B, which contradicts the
assumption that no vertex of C lies in �v. Hence, assume
that x(C) ◆ x(B). To prove that an x-edge of B lies
inside C, we will prove that for each q 2 {y, z}, at least
one of the endpoints of the q-span q(B) = [q�

B
, q+

B
] lies

in q(C), as this will imply that both endpoints of an
x-edge of B lie inside C. Note that q�

B
, q+

B
2 TI,q [ TO,q,

by construction.
We claim that for each q 2 {y, z}, q(C) contains at

least one element of TI,q[TO,q. Assuming that the claim
is true, let qi 2 (TI,q [ TO,q) \ q(C). If qi is q�

B
or q+

B
,

we are done so assume that qi 6= q�
B
, q+

B
. On the other

hand, by construction, qi /2 q(B), so we conclude that
q(C) 6✓ q(B). But q(B)\ q(C) 6= ?. Hence, at least one
of the endpoints of q(B) lies in q(C), as desired. What
now remains is to prove the above claim.

The proof of the claim consists of two parts. We
first consider the case where no vertex of C lies in �I

u
.

Then all of the vertices lie outside �O
u
. If no span q(C)

contains q(�O
u
), a vertex of C lies in int(�O

u
), which

is a contradiction. Without loss of generality, assume
that x(�O

u
) ✓ x(C). By property (ii) of T, we have

that 3|x(�O
u
)| � |y(�O

u
)|, |z(�O

u
)|. Since C is a cube,

|x(C)| = |y(C)| = |z(C)|, so |y(C)| � |y(�O
u
)|/3 and

|z(C)| � |z(�O
u
)|/3. It follows that at least one point

yi 2 TO,y (resp. zi 2 TO,z) lies in y(C) (resp. z(C)),
thereby proving the claim in this case.

Next, suppose at least one vertex of C lies in �I
u
.

For each axis q 2 {x, y, z}, if q(C) ✓ q(�I
u
) we say

q(C) is enclosed, and crossing if q(C) ◆ [q�
O
, q�

I
] or

q(C) ◆ [q+
I
, q+

O
]. If all spans of C are enclosed, C

is contained in �I
u
, a contradiction. Hence, there is

a crossing span of C, say, x(C). Without loss of
generality, assume each crossing span q(C) contains
[q�

O
, q�

I
]. In particular, |x(C)| � x�

I
� x�

O
and x(C)

contains x�
I
2 TI,x and x�

O
2 TO,x. By property (i) of T,

we have x�
I
� x�

O
� |x(�I

u
)|, and by property (ii) of T,

we have 3|x(�I
u
)| � |y(�I

u
)|, |z(�I

u
)|. Since C is a cube,

|x(C)| = |y(C)| = |z(C)|, so |y(C)| � |y(�I
u
)|/3 and

|z(C)| � |z(�I
u
)|/3. Hence, if y(C) is enclosed, then it

contains either y1
I
or y2

I
; otherwise, y(C) is crossing and

contains y�
O

and y�
I
. In either case, at least one point

yi 2 TI,y [ TO,y lies in y(C). By a symmetric argument,
some point zi 2 TI,z [ TO,z lies in z(C). This completes
the proof of the claim and of the lemma.
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