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Abstract. We propose a fast and scalable optimization method to solve chance or probabilistic constrained
optimization problems governed by partial differential equations (PDEs) with high-dimensional ran-
dom parameters. To address the critical computational challenges of expensive PDE solution and
high-dimensional uncertainty, we construct surrogates of the constraint function by Taylor approx-
imation, which relies on efficient computation of the derivatives, low rank approximation of the
Hessian, and a randomized algorithm for eigenvalue decomposition. To tackle the difficulty of the
non-differentiability of the inequality chance constraint, we use a smooth approximation of the dis-
continuous indicator function involved in the chance constraint, and apply a penalty method to
transform the inequality constrained optimization problem to an unconstrained one. Moreover, we
design a gradient-based optimization scheme that gradually increases smoothing and penalty param-
eters to achieve convergence, for which we present an efficient computation of the gradient of the
approximate cost functional by the Taylor approximation. Based on numerical experiments for a
problem in optimal groundwater management, we demonstrate the accuracy of the Taylor approxi-
mation, its ability to greatly accelerate constraint evaluations, the convergence of the continuation
optimization scheme, and the scalability of the proposed method in terms of the number of PDE
solves with increasing random parameter dimension from one thousand to hundreds of thousands.
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1. Introduction. Large-scale simulation in computational science and engineering is often
carried out not only to obtain insight about a system, but also as a basis for decision-making.
When the decision variables represent the design or control or data-driven inference of model
parameters of an engineered or natural system, and the system is governed by partial dif-
ferential equations (PDEs), the task of determining the optimal design, optimal control, or
inversion parameters leads to a PDE-constrained optimization problem. Over the past several
decades, research in the field of PDE-constrained optimization has exploded, and powerful
theory and algorithms are now available in the case of optimization governed by deterministic
PDEs (e.g., see the monographs [44,48,61,81]). However, many PDE models are characterized
by random parameters due to lack of knowledge or intrinsic variability. These include initial
or boundary conditions, sources, coefficients, and geometry. In many of these cases, the uncer-
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tainty arises from an (infinite-dimensional) random field, leading to high-dimensional random
parameters after discretization. It is critical to incorporate this uncertainty in the optimization
problem to make the optimal solution more reliable and robust. Optimization under uncer-
tainty has become an important research area and received increasing attentions in recent years
[3,5,6,8,11,21,24-26,28,31-33,35,37,39-43,45,46,49,51-59,63,65,67,73,74,78,80,82-86,88-90).
To account for the uncertainty in the optimization problem, different statistical measures of
the objective function have been studied, e.g., mean, variance, conditional value-at-risk, worst
case scenario, etc., [3,39,53,54,57,74,89]. Moreover, the treatment of chance constraints,
also known as probabilistic constraints, i.e., the probability that a certain function exceeds
a threshold or below a certain level, has also been investigated [32,37,43,46, 73, 78, 82, 88].
Several computational challenges arise in solving optimization problems under uncertainty,
especially with high-dimensional random parameters and inequality chance constraints.

The first prominent challenge is that high-fidelity discretizations of the (nonlinear) PDEs
often lead to large-scale (nonlinear) algebraic systems that are extremely expensive to solve
in practical applications. Therefore, only a limited number of high-fidelity PDE solves can
be afforded. This challenge prevents direct application of most of the conventional numerical
methods for computing statistics of the objective function, since they require a large number
of evaluations of the objective function and thus the PDE solution. To tackle this challenge,
multigrid, multilevel, and model reduction methods have been successfully applied to solve
stochastic PDE-constrained optimization problems [5,6,10,24,26,57,67,89,90]. The multigrid
discretization and multilevel statistical evaluation rely on a hierarchical discretization of the
PDE model and an efficient algorithm to balance the discretization error and the number
of samples required for statistical evaluation at each level. However, due to the nature of
the problem, it is not always possible to use multigrid discretizations or gain computational
savings by multilevel sampling because a sufficiently fine grid must be used to solve the
PDE model with reasonable accuracy (as is often the case with hyperbolic or multiscale
problems). Meanwhile, model reduction techniques become problematic for highly nonlinear
problems that require effective affine approximation or when the solution manifold becomes
high-dimensional, even if the objective function lives in a low-dimensional manifold.

The second key challenge arises in computing the statistical measures, which involves in-
tegration of the objective function with respect to (w.r.t.) the probability measure of the
high-dimensional random parameters. A classical approach known as sample average approx-
imation (SAA) or Monte Carlo quadrature is to take the average of the objective function at
a set of samples randomly drawn from the probability measure of the random parameters.
However, its convergence rate is only O(M -1/ 2), where an often expensive PDE has to be
solved for each of the M samples. The resulting deterministic optimization problem has M
PDE constraints that need to be solved to evaluate the objective function, and as such is
typically prohibitive to solve. In recent years, stochastic Galerkin and stochastic collocation
based integration methods have been used to compute the statistical moments (e.g., mean and
variance) of the objective function in stochastic optimization [10,24-26,45,49,52,55,56,74,80],
provided that a suitable finite dimensional parametrization of the random parameters, such as
a truncated Karhunen—Loeéve expansion, is available. These methods achieve fast convergence
when the objective function depends smoothly on the low-dimensional parameters, but suffer
from the so-called curse of dimensionality, i.e. the convergence rate quickly deteriorates as
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the parameter dimension increases. More recent advances in adaptive and anisotropic sparse
quadrature [19,77] and high order quasi Monte Carlo methods [36] have been shown to achieve
a convergence rate of O(M %), with s potentially much larger than 1/2 and independent of
the nominal dimension of the random parameters, thus mitigating the curse of dimensionality.
However, if the objective function is not sufficiently smooth or sufficiently anisotropic in the
parameter space, the convergence of these methods becomes very slow, or worse than that of
Monte Carlo.

The third critical challenge comes from the non-differentiability of the chance constraint,
which involve integration of a discontinuous indicator function. The discontinuity makes the
cost functional non-differentiable w.r.t. the optimization variable, so that rapidly convergent
derivative based optimization methods, e.g., steepest descent or Newton methods, cannot
be directly applied. Therefore, solving optimization problems with such non-differentiable
constraints not only requires a large number of PDE solves at each optimization iteration,
but also requires a large number of optimization iterations, especially when the optimization
variable dimension is high. To address this challenge, proper smoothing techniques have
been employed to approximate the indicator function by differentiable functions [18,72,82],
which introduces smoothing errors in the cost functional and optimal solution. However
considerable difficulties are still encountered in finding numerical approximations that satisfy
the probability constraints in the presence of high-dimensional random parameters.

Contributions. In this work we address the above computational challenges by proposing
a Taylor approximation based continuation optimization method to solve chance constrained
optimization problems governed by PDEs with high-dimensional random parameters. Follow-
ing our recent work [3,28], we extend the Taylor approximation—including constant, linear,
and quadratic approximations—of the objective function used to evaluate its mean, to approx-
imation of the constraint function used to accelerate the evaluation of the chance/probability
of the constraint function. In particular, a double-pass randomized algorithm is employed
to solve a generalized eigenvalue problem, where the eigenvalues and eigenfunctions are used
to construct the quadratic term of the Taylor approximation. A set of linearized PDEs are
derived for the computation of the gradient and action of the Hessian of the objective and
constraint functions w.r.t. the random parameters. To solve the optimization problem, we
present a continuation BFGS algorithm, which features (1) smooth approximation of the in-
dicator function, (2) a penalty method to transform the inequality constrained optimization
problem to an unconstrained one, (3) a continuation scheme with an outer loop of increasing
the smoothing and penalty parameters and an inner loop of BFGS optimization. The compu-
tation of the approximate cost functional and its gradient w.r.t. the optimization variable are
presented in detail for both SAA and Taylor approximation. For the proposed method, we
demonstrate (1) the accuracy of the Taylor approximations, (2) the efficiency on the surrogate
acceleration, (3) the convergence of the continuation optimization algorithm, and (4) the in-
dependence of the number of PDE solves from increasing random parameter dimension. The
demonstrations are carried out by numerical experiments for an example of water manage-
ment in agricultural irrigation, where the PDE model is a Darcy flow equation that describes
groundwater flow in the presence of an uncertain permeability field. The optimization objec-
tive is to extract water at given well locations that meets a target extraction rate, while a
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chance constraint is imposed on an integrated pressure field to prevent a pressure that is low
enough to lead to collapse or damage of the aquifer.

Notations. Let X be a Banach space and X’ the dual space; x(-,-)xs then denotes the
duality pairing between the spaces X and X’. For ease of notation, we will omit specification
of the subscritps X and X’ and simply write (-,-) when the spaces can be inferred from the
context without ambiguity. Given two Banach spaces X and Y and a map f : X x ) — R,
O, f(x,y) € X’ denotes the Fréchet derivative of f(x,y) with respect to x evaluated at (z,v),
which satisfies

(1.1) i L@+ Y) = f@y) = (7,00 (2,y))

= =0.
i—0 ||Z| 2

Let Oyyf(z,y) : Y + X’ denote the Fréchet derivative of 0, f(z,y) with respect to y
evaluated at (x,y), or the second order (mixed) Fréchet derivative of f(x,y) with respect to
x and y evaluated at (z,y). Similarly, 0y, f(x,y) : X — )’ denotes the Fréchet derivative of
Oy f(x,y) with respect to x evaluated at (x,y), which is the adjoint operator of 0., f(z,y) and
satisfies

(12) <jaamyfg)> = X<jaaxyfy>X’ = y(ya 8yzfj:>y’ = <gvayxfj>a Vi e Xv 39 € ya

where we have omitted the argument (z,y) for simplicity.

The rest of the paper is organized as follows. In Section 2 we present the general formula-
tion of PDE and chance constrained optimization problems, which is followed by Section 3 on
SAA, Taylor approximation, a randomized algorithm for low rank approximation, and com-
putation of the gradient and Hessian action of the objective and constraint function w.r.t. the
random parameters. Section 4 is devoted to the presentation of a continuation gradient-based
optimization method that involves smooth approximation of the indicator function, a penalty
method for the inequality constraint, a continuation scheme to increase the smoothing and
penalty parameters, and the computation of the gradient of the approximate cost functional
w.r.t. the optimization variable. Numerical experiments and results are reported in Section 5
for the demonstration of the accuracy, efficiency, convergence, and scalability of the proposed
method. Conclusions and perspectives are drawn in Section 6.

2. Chance constrained optimization. We consider a system to be optimized under un-
certainty, which is modeled by PDE presented in an abstract (residual) form as: find u € U,
such that

(2.1) R(u,m,2) =0 in ),

where m € M is an uncertain or random parameter field that lives in a separable Banach space
M, which has a probability distribution y; z € Z is an optimization variable in a separable
Banach space Z; and R(-,m,2) : U — V' denotes a (possibly nonlinear) operator from U to
V', the dual of V, where U and V are two separable Banach spaces. The weak form of (2.1)
is given by means of duality pairing as: find u € U, such that

(2.2) r(u,v,m,z) = p(v,R(u,m,z))y» =0 Yve,
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where v is a test variable or an adjoint variable in the optimization context. By definition,
r(u,v,m, z) is linear with respect to (w.r.t.) v, and may be nonlinear w.r.t. u,m, and z.
Byg:UXxMxZ—Rand f: U x M x Z+— R we denote an objective function and
a constraint function for the optimization as real-valued, continuous, and possibly nonlinear
maps of u, m, z. Since u depends on m and z through (2.2), for simplicity we write ¢(m, z) =
q(u(m, z),m, z) and f(m,z) = f(u(m, z),m, z) by slight abuse of notation.
For the optimization problem, we consider a cost functional

(2.3) J(z) = Elq(-, 2)] + P(2)

where the first term is the mean of the objective function ¢ defined as

(2.4) lwuﬁzﬁﬂmmwm»

the second term P(z) represents a penalty or regularization term for the optimization variable
z. Moreover, we consider a chance constraint

(2.5) P(f(,2)>0)<a

for a critical chance 0 < o < 1, where the probability is given by

(2.6) P(f(-;2) 2 0) = Elljp,00) (f (-, 2))] :/ L0,00) (f (m, 2))dp(m),
M
where Ijg ooy (f(m, 2)) is an indicator function defined as

1) Toso(Fm ) ={ o it hom D20

Then the PDE and chance constrained optimization problem can be formulated as

(2.8) grélg J(z), subject to the chance constraint (2.5).

3. Taylor approximation. We first present a sample average approximation (SAA) for the
optimization problem (2.8). Then we introduce an (up to quadratic) Taylor approximation for
both the objective function and the constraint function, which requires an efficient eigenvalue
decomposition of the Hessian of the objective and constraint functions w.r.t. the random
parameter field. We present a double-pass randomized algorithm for this task, which requires
only actions of the Hessian in random directions without direct access to the entries of the
Hessian matrix.

3.1. Sample average approximation. The mean of the objective function can be evalu-
ated by the sample average approximation (SAA)

(3 Bla( ) ~ aui(2) i= 30 > alms.2),
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where m;, i = 1,...,M,, are independent identically distributed (i.i.d.) random samples
drawn from the probability distribution p. Similarly, the chance constraint (2.6) can be
approximated by

My
1
(32) P(f(-,2) 2 0) = fu(z) == M > T o) (f(mi, 2)),
i=1
where m;, ¢ = 1,..., My, are i.i.d. random samples drawn from p. Note that to obtain an

accurate approximation qys and especially fas for a close to 0, a large number of samples are
required due to the slow convergence (with rate O(M~'/2)) of the SAA approximation, thus
making this approach computationally prohibitive if the PDE solve at one sample is expensive.

3.2. Taylor approximation. We assume that the objective function ¢ admits the k-th order
Fréchet derivative with respect to m at m € M, denoted as V¥ g(m, z), for k =1,..., K. A
K-th order Taylor expansion of the objective function ¢ evaluated at m € M is given by

(3.3) Trq(m,z) Z 1 z)(m — m)~.
Note that V¥ g(m, z) : MF — R is a multilinear map defined in the tensor-product space

k
(3.4) MF =T Mi, where M; = M.

i=1
For the random field m, we consider a Gaussian measure y = N(m,C) with mean m and
covariance C given by a pseudodifferential operator [60,79], see an example later in (5.7),
which plays a dominant role in spatial statistics. For such a measure p, we have the analytic
expression [3]

Q(m7z)7 K:0717

(35) FlaG ol = BTl A= oy 4 Strace(H,), K =2,

where trace(H,) represents the trace of H, = C'/?V2,q(m, 2)C*/2, which is the covariance-
preconditioned Hessian of the objective function q. We remark that (3.5) also holds for non
Gaussian measure 4 as long as the random field m has covariance C.

Similar to (3.3), under the assumption that the constraint function f admits the k-th order
Fréchet derivative with respect to m at m € M for k= 1,..., K, we construct a K-th order
Taylor expansion of the constraint function f at m, denoted Tk f. Then we can approximate
the probability P(f(m,z) > 0) by SAA (3.2) with the Taylor approximation Tk f as

(3.6) P(f(m,z) > 0) ~ fij(z) fZH[oo@ (Tx f(mi, 2)).

The attractiveness of the Taylor approximations of the objective and constraint, (3.5) and
(3.6), is that once they are constructed, no further PDE solves are required. In the next
section, we shall see how these Taylor approximations can be efficiently constructed.
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3.3. Low-rank approximation. To compute the trace in (3.5), we can use
oo
(3.7) trace(Hy) = » A,
n=1

where (A}),>1 are the eigenvalues of H, = C'/2V2 q(m, 2)CY/?, which are equivalent to the
generalized eigenvalues of (V2 q(m,z),C!). In practice, the (absolute) eigenvalues decay
rapidly, [Ai] — 0 as n — oo, as proven for some model problems and demonstrated numerically
for many others in forward uncertainty quantification, Bayesian inversion and experimental
design, and stochastic optimization [1-3,7,12-17,20, 22,23, 27-30, 34, 38, 50, 64, 71, 87]. This
is because the function ¢ is typically not equally sensitive to all directions in the parameter
space, as reflected by the decay of the eigenvalues of its Hessian V2 ¢(1m, z), which measures
the curvature of the function. Moreover, the covariance C is often assumed to be compact
with its eigenvalues converging to zero [60,79]. Given rapid decay of the eigenvalues, we can

approximate the trace by the N, largest (in absolute value) eigenvalues A}, n = 1,..., N,
ie.,

Nq
(3.8) trace(Hq) ~ Z AL

n=1

For computational efficiency, we consider the generalized eigenvalues of (V2 q(1m, 2),C™!)
by solving the generalized eigenvalue problem: find (A}, 41), n =1,..., Ny, such that

(3.9) V2q(m, 2l = XCT 8, n=1,...,N,,

with [A{| >+ > \X}Vq] corresponding to the N, largest eigenvalues in absolute value and the

eigenfunctions satisfying the orthonormality condition with respect to C71, i.e.,
(3.10) ( Z,C’1w2,> =0pnr, n,0 =q,...,Ny.

We remark that the action of C~! in a given direction v, i.e., C~ 11, can be efficiently computed
by solving an elliptic differential equation [60].

To compute the Taylor approximation Tk f(m, z) at m for K = 2, we need to evaluate
V2, f(m,z)(m — m)?. If the eigenvalues of Hy = CY/2V2, f(1m, 2)C/? decay rapidly to 0, we
can approximate V2, f(m, z)(m — m)? by a low-rank approximation as

Ny
(3.11) Vi (m,2)(m —m)? = Y N (m —m,C1y])?,

n=1
where (/\fl, w,{), n=1,..., Ny, are the solution of the generalized eigenvalue problem
(3.12) Vo f(m, ) = MeT'wl, n=1,... Ny,

with |)\{ | > > |)\{Vf| corresponding to the Ny largest eigenvalues in absolute value and the

eigenfunctions satisfying the orthonormality condition with respect to C71, i.e.,

(3.13) Wl,c !y =6, non' =1,...,Ny.
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With the low-rank (LR) decomposition of the Hessian V2, f(1m) in (3.11), we define the qua-
dratic Taylor approximation of f corresponding to (3.3) as

Ny
(3.14) T¥Rf(m, 2) == f(im, 2) + Vi f(im, 2)(m — m) + % Z M (m —m,c7 1))
n=1

To solve the generalized eigenvalue problems (3.9) and (3.12) for the dominant eigenvalues,
we apply a double-pass randomized algorithm [47,76], presented in Algorithm 3.1. Here, by
H and C~! of size Nj, x N}, each, we denote discrete approximations of the Hessians V2 q
or V2, f and the covariance C™!, e.g., by a finite element method. In Algorithm 3.1 only the
action of H and C on a given vector is required, which does not require access to the entries
of H and C.

Algorithm 3.1 Double-pass randomized eigensolver for (H,C~!)

Input: the number of desired eigenpairs N, an oversampling factor ¢ < 10.
Output: (Ay,¥y) with Ay = diag(A1,...,Ay) and Uy = (Y1,...,¥N).

Draw a Gaussian random matrix Q € RV»x(N+c)

Compute Y = C(HQ).

Compute QR-factorization Y = QR such that QTC71Q = In...

Form T = QTHQ € RIN+x(N+¢) and compute eigendecomposition T = SAST.
Extract Ay =A(1: N,1: N)and ¥xy = QSy with Sy = S(;,1: N).

Gl e

In the next section, we present the computation of the Hessian actions H{2 and H(), which
dominates the cost in Algorithm 3.1, by solving linearized PDEs. As observed in [?, 20, 28]
and in the numerical results in Section 5, the advantages of Algorithm 3.1 are: (i) the error
in the approximation of the eigenvalues A\,, n = 1,..., N, is bounded by the remaining ones
An, n > N, which is small if they decay rapidly; (ii) the computational cost is dominated by
2(N + ¢) Hessian actions, where the multiplication of C' with a vector is inexpensive, e.g.,
for C' discretized from a differential operator as in (5.7), it takes only O(NV}) operations by a
multigrid solver or using multigrid as preconditioner for an iterative solver; (iii) it is scalable in
terms of the number of PDEs to solve, because N typically does not change when NV}, increases;
and (iv) computing the Hessian actions HQ? and H(@) can be asynchronously parallelized.

3.4. Computation of the gradient and Hessian action. For a given optimization variable
z, we first compute u(m) by solving the state equation (2.2) at m, which can be equivalently
written as: find v € U such that

(3.15) (0,0,7) =0 VeV,

where for ease of notation we use 7 to represent the weak form (2.2) at m, i.e.,
(3.16) 7 =r(u,v,m,z).

Then we can evaluate the objective function g(m,z) = q(u(m,z),m,z) and the constraint
function f(m,z) = f(u(m, z),m, z). The gradient and Hessian of ¢ is computed the same way
as for f, so we present only the derivation for ¢ and then state the result for f.
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We use the Lagrangian formalism to derive the expressions for the gradient V,,q(m, z)
evaluated at m and for the action of the Hessian V2,q(m, z) evaluated at m in given direction
m, as in [48]. First, we define the Lagrangian functional

(3.17) L(u,v?,m, z) = q(u,m, z) + r(u,v?,m, z),

where the adjoint v? is the Lagrange multiplier for the state equation in the computation
w.r.t. the objective function ¢. In what follows, for ease of notation, we define

(3.18) 7q = r(u,v?,m, 2), and ¢ = q(u(m, z),m, 2).

By setting the first order variation of (3.17) at m with respect to the state u to zero, we obtain
the adjoint problem: find v¢ € V, such that

(3.19) (@, 0uTq) = —(U,0,q), Yu€U.
Then, the gradient of ¢ at m acting in direction m is given by
(3.20) (M, V@) = (M, 0 L) = (M, Omq+0mTq), Y € M,

where u solves the state problem (3.15) and v solves the adjoint problem (3.19). Similarly, for
the computation of the Hessian of ¢ acting in direction m?, we form the Lagrangian

(3.21) LH (u, 09, m, 209,99, M%) := (M9, 0y G+0mTy) + (09, 0u7y) + (0, DuTy + uq),

where ¢ and 99 denote the incremental state and incremental adjoint, respectively. By taking
the variation of (3.21) with respect to the adjoint v? and using (1.2), we obtain the incremental
state problem: find u? € U such that

(3.22) (B, puTq @9) = — (0, omPg ), V0 €V,

where the derivatives Oy,7q : U +— V' and Oymry : M +— V' are linear operators. The
incremental adjoint problem, obtained by taking variation of (3.21) with respect to the state
u and using (1.2), reads: find v? € V such that

(3.23) (T, Oy Tq D7) = — (i, OyuTq 19 + Ogu@ 09 + OumTq I+ D@, Vi € U,

where Oy, 7q : V +— U’ is the adjoint of 0y, 7q : U — V' in the sense of (1.2). The Hessian of ¢
at m acting in direction m? can then be computed by taking variation of (3.21) with respect
to m and using (1.2) as

(m, V2,qm?) = (i, 0 L)

3.24
( ) = (M, OmoTq 07 + OmuTq W +0muG 0! + OmmTg MI4+-Ommqm?), Ym € M,

where the incremental state 4? and adjoint 97 solve (3.22) and (3.23), respectively.
Similarly, we can compute the gradient and Hessian action of f. For ease of notation we
define

(3.25) Ty =7r(u, vf,m,z), and f = f(u(m, 2),m, z).
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By solving the adjoint problem: find v/ € V, such that

(3.26) (@, OuTf) = — (W, 0uf), Vuel,

we obtain the gradient of f at m as

(3.27) (M, Vi f) = (M, O [ + OmTys), Vi € M.

Then by solving the incremental state problem: find 4 € U such that

(3.28) (0, 0puTs @) = —(0,0pmiyin?), VO EV,

and the incremental adjoint problem: find 4/ € V such that

(3.29) (i, Dy ) = —(@, Oyup 07 + Ouu f @ + O™ p 10 +-0um f ), Vi €U,

we obtain the Hessian action of f at m in direction m/ as
(3.30) B B B
(i, V2, il ) = (1, Oy 07 + Oy 0 +0mu f 07 + Oy 1 +0mm fia?), Vi € M.

4. Gradient-based optimization. In this section, we develop a gradient based optimiza-
tion method to solve the chance constrained optimization problem (2.8). The method employs
(1) a smooth approximation of the indicator function involved in the chance evaluation, (2)
an exterior penalty method for the inequality chance constraint, (3) a continuation scheme to
refine the smooth approximation and the penalty for inequality constraint, and (4) an approx-
imate cost functional, with both SAA and Taylor approximations, and their gradients with
respect to the optimization variable.

4.1. Smooth approximation of the indicator function. The evaluation of the probability
(2.6) involves the indicator function Ijg .y (f(m,2)), which is discontinuous at f(m,z) = 0.
To use a gradient-based optimization method, we consider a smooth approximation of the
indicator function by a logistic function

N 1 . 2[e 2P
where a larger [ corresponds to a sharper transition at z = 0, as shown in Figure 1. With
the definition Iy oy (0) = 3, we have the convergence

(4.2) lim £g(7) = jpo)(z) and lim Vig(x) = VIjo o) (7) except at z = 0.

B—o0 B—00

4.2. A penalty method for inequality constraint optimization. To solve the optimization
problem (2.8) with the inequality constraint (2.5), for simplicity we employ a quadratic penalty
method [68] by first defining the exterior penalty function

gl

(4.3) 8y () = (max{0,z})?, with VS,(z) = ymax{0,z},
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Figure 1. Left: Smooth approrimation of the discontinuous indicator function Iy y(x) by a logistic function
lg(z) = 1#»5%2&1 with 8> 0. Right: Penalty function S (z) = % (max{0,2})* with v > 0.

for a constant v > 0 controlling the weight of the penalty. Note that a proper reformulation
technique combined with a Newton method can be used to alleviate the ill conditioning for
large v [68]. We remark that other methods, e.g., an interior-point method, or an augmented
Lagrangian method could also be used [68]. Then the chance constrained optimization problem
(2.8) can be approximated by the unconstrained problem

(4.4) min 7 (2) + S, (E[s(/)] - ).

For general inequality constrained optimization problems, convergence of the optimization
variable as v — oo by the penalty method is studied in, e.g., [68].

4.3. Adaptive BFGS optimization. Let £(z) denote an approximate cost functional,
which is an approximation of the cost functional in (4.4) by SAA or Taylor approximations.
Let V.E(z) denote its gradient with respect to the optimization variable, which is computed
in next section. We present a continuation optimization scheme by increasing the smoothing
parameter § and the penalty parameter v in an outer loop and applying a gradient-based
quasi Newton optimization algorithm, BFGS [66,68], to solve the optimization problem (4.4)
(with possible bound constraint on the optimization variable z) using the approximate cost
functional £(z) and gradient V.£(z) in an inner loop. The optimization procedure is pre-
sented in Algorithm 4.1. For the continuation, we specify an initial smoothing parameter
Bo and penalty parameter 7o, and scale them with the power parameters og and o, in Line
6. We stop the outer loop if the maximum number of iterations is reached or the difference
between subsequent change of the optimization variable or the approximate chance, defined
in (3.2) for SAA or (3.6) for the Taylor approximation of the constraint function, is smaller
than a tolerance; see Line 3. The inner loop of BFGS optimization is stopped if the maximum
number of iterations is reached or the gradient of the approximate cost functional is smaller
than a tolerance; see Line 4. We remark that this tolerance can be set relatively large and
decreased in the outer loop to improve efficiency of the continuation [9].

4.4. Computation of the approximate cost functional and its gradient. Algorithm 4.1
requires the computation of the approximate cost functional £(z) and its gradient V,£(2) at a
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Algorithm 4.1 Continuation BFGS for chance constrained optimization

1: Input: initial value zp, bound constraint [zmin, Zmax), Smoothing parameter [y, penalty
parameter 7y, power parameters og and o, maximum number of iterations kmax and lyax,
and tolerances ¢i, for the inner loop and &5, £, for the outer loop.

2: Set [ = 0, compute the approximate chance fl at z;, where f, = fu(z) in (3.2) for SAA
or fi = fE(z) in (3.6) for Taylor. Set f_; fo +2ef L ay =204 267,

3. while ||z — z_1||z > 2, or |fi — fi_1] > aout and | < lnax do

Run an inner loop optimization by the Algorithm L-BFGS-B [66]

>

Zl+1 = L-BFGS—B(S(Z), 21, Vzg(Z), kmaxa €in; [Zmin, Zmax])a

with objective £(z) and gradient V,E(z) given by either SAA or Taylor approximation.

5 Compute the approximate chance fl+1 at zj41.
6:  Set fiy1 = Ug”lﬁl? Vg1 = oy, L1+ 1.

7: end while

8: return Optimal variable zop; = 2.

given optimization variable z, constrained by the state PDE (2.2). In this section, we present
their computation for both SAA and Taylor approximations.

4.4.1. Sample average approximation. By SAA of the mean and chance presented in
Section 3.1, the cost functional in (4.4) can be approximated as

J(2) + (e = E[ls(f (- 2)))
= Elq(., Z)] +P(2) + Sy (Els(f(:, 2))] —a)

~ 0 Z md, z) + P(z Zeﬁ =: &(2),

where M, and M/ independent random samples are taken such that the SAA errors of the
two approximate terms are balanced. A practical approach to determine M, and M; is to
first evaluate the variances of ¢ and £g(f) and then set the two numbers with the ratio equal
to that of the variances. For simplicity, one can use the same M, = My random samples.
Note that to compute g(m?, z) = q( (m?),m, z) and f(  2) = f(u(mlf),mzf,z), we need to
solve the state equation (2.2) at m; and m{ ) respectlvely.

To compute the gradient of this approximate cost functional, we define the Lagrangian

Lsaa(z {ul}, {ul}, {8}, {v]})

(4.5)

= ~
(4.6) M, Py et
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where {v]} and {vzf } are the Lagrangian multipliers, which can be computed by solving the
adjoint problems obtained by setting the variation of the Lagrangian w.r.t. u] to zero, i.e., for
each i = 1,..., My, find v} € V such that

1
(4.7) (@, Oypr (uf, v,mi, 2)v]) = —ﬁ(u Ouq(ul,ml. 2)), Vael,
q

where we recall that q(u m{,z) = q(m{,z) by a slight abuse of notation. Similarly, for each
t=1,..., My, find vz- € V such that

(4.8) <ﬁ,8m,r(uf v, mf ,2) 2f> ]\; (a, VS, V30, f(u mf ,2)), Yuel.
f

Then the gradient of the approximate cost functional can be evaluated as

(2,VE(z)) = (2,0,L544)

My M;
(4.9) Ai 2 Z,0:q(mi, 2)) + (2, VP(2)) + ]éf ;(z V8, V50, f(m], 2))

+Zz@zvru v,m, z)v —i—Zzﬁzvru v, m; z)f>

In summary, M, + M; state PDEs and M, + My linearized (adjoint) PDEs have to be solved
to evaluate the SAA of £(z) and its gradient VE(z) at any given z.

4.4.2. Taylor approximation. For simplicity, we present only the approximate cost func-
tional and its gradient by the quadratic Taylor approximation 75 of the objective and con-
straint functions. The computation corresponding to the constant and linear approximations
To and T7, which are contained within the quadratic approximation, are omitted.

Using the quadratic Taylor approximations of the objective function ¢ and the constraint
function f in (3.3), the low-rank approximations of the trace in (3.8) and the Hessian in (3.11),
as well as the sample average approximation for the probability (3.2), the cost functional in
the unconstrained optimization problem (4.4) becomes

J(2) + 8y (o = E[lp(f (- 2))]) = E[T2q(-, 2)] + P(2) + 5 (E[ls(T2f (-, 2))] — a)

Nq
(4.10) R+ Z M+ P(2) + Sy (98,0, (T3 (5 2)))
n=1
=:&(z)
where for simplicity we denote
(4.11) g, (T3 (- 2 = Zfﬁ TyR f(ms, 2)) — a,

where the quadratic Taylor approximation with low-rank decomposition TQLR f(my, z) is given
n (3.14). Note that ¢ and A}, n =1,..., N, which are part of the approximation of E[g|, as
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well as f, Vi f, A and w,{, n=1,..., Ny, which are part of the approximation of E[¢g(f)], all
implicitly (possibly also explicitly) depend on the optimization variable z through the state
equation (3.15), the adjoint equations (3.19) and (3.26), the generalized eigenvalue problems

(3.9) and (3.12) with orthonormal conditions (3.10) and (3.13), the incremental state and

adjoint equations (3.22) and (3.23) for the incremental state 49 = 47 and adjoint 99 = o7

at m? = 9, needed by the Hessian action V2,7 in (3.9) through (3.24), n = 1,...,N,, as
well as the incremental state and adjoint equations (3.28) and (3.29) for the incremental state
@/ = af and adjoint of = ol at ml = W; needed by the Hessian action V?nfd)fi in (3.12)
through (3.30), n = 1,...,Ny. To derive the gradient of the approximate cost functional
(4.10), we define a Lagrangian Lo to enforce all of the PDE constraint equations as follows:

(412)  Lo(z w007 (uf)™, AT} {wR ) {ad}, {00} {0, H A {@h) ™} {(0)
of () O AT} el () A, )" AWH) 1 @) 1 {(80)))

N
1 q
= g+ 5 E M+ P(2) + Sy (9.0, (T271))

n=1
+ (v*, 0pT)
+ ()", 0uTq + 0uq)

Ny
+ ) (W), VE,aul — MC Tl )
n=1

3 L) (s, € ) — G)

) {(@2)*, OunTq DL + OunTq 1 + Ouu@ U + OumTq Y+ Oum T L)
+ <(uf>*7 auff + 8u.f>

Ny
Y W) Vi Ful - el

n=1

Ny
+ 3 L) (W, L) = bm)

n,n'=1

Ny
+ ) (@8)", OuuTy @+ umTr )
n=1
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N
(413) S ()", Quals 0 + Ouuly th, + Do i + DTy L+ D T ).
n=1

We compute all the Lagrange multipliers by setting the variation of the Lagrangian L5 to
zero. Specifically, by setting the variation of the Lagrangian L w.r.t. AL, n =1,...,N,, to
zero, we obtain

L 1
Subsequently, for each n = 1,..., N,, by setting the variation of Lo w.r.t. 0} to zero, using

the Hessian action (3.24) and (1.2), we have: find (4s)* € U such that
(4.15) (0, OpuTq(U)*) = —(0, OpmTq(VL)*), YO €V,

which, together with (4.14) and (3.22) with (a4,m%) = (a4, 41), leads to

1
(4.16) (al)* = 5@%, n=1,...,N,.
Similarly, for each n = 1,..., N,, by setting the variation of £y w.r.t. @} to zero, using the

Hessian action (3.24) and (1.2), we have: find (97})* € U such that
(4.17) (@, OunTq (07)7) = —(@, OuuTq (05,)" + Ouu (07)" + OumTq () +0umq (V7)7),  Va €U,
which, together with (4.14), (4.16), and (3.23) with (64, 4%, %) = (o5, 4%, 1Y), leads to

N ¢
(4.18) (o) ziv%, n=1,...,N,.

Then by setting the variation of Lo w.r.t. v¢ to zero, we obtain: find (u?)* € U such that

Nq
(5, Qg (u9)*) = = S (B, DumaaF g (¥9)" + Dpmam Tt (160)")
(4.19) =l

Nq
=) (B, Do (0)* + Opum T (0)"), € V.
n=1

By setting the Lo w.r.t. )\fl, n=1,...,N¢, to zero, we obtain
(4.20) Wiy =cwf, n=1,...,Ny,

where the constant cfl is given by

My
1
(@2) =8 G (T )y S VI e ) i = €Nl
i=1
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where VS, and V/g are defined in (4.2) and (4.3), respectively. Subsequently, for each n =
1,...,Nyg, by setting the Variation of Lo w.r.t. 9l to zero, and using the Hessian action (3.30)
and (1.2), we have: find (4})* € U such that

(4.22) (5, OuuT £ (1)) = —(5, oy (B1)7), VB €V,

which, together with (4.20) and (3.28) with (af,m/) = (un,qbn) leads to

(4.23) @)y =claf, n=1,... Ny

Similarly, for each n = 1,..., Ny, by setting the variation of Ly w.r.t. al to zero, using the

Hessian action (3.30) and (1.2), we have: find (4;)* € U such that

(4.24) (i1, OuoTs (8))%) = — (@, OuuTs (&))" +0uu (@) +OumT s (V) +0um f ())%), Vi €U,
which, together with (4.20), (4.23), and (3.29) with (o7, 4/, mf) = (vg,un,djn) leads to
(4.25) hH =clof, n=1,...,Ny.

Then by setting the variation of £ w.r.t. v/ to zero, we obtain: find (u/)* € U such that
Ny
(@, 0puTp (u!)*) = = > (T, DomuT £y (V1) + Dm0 (V1))
n=1
(4.26) f
- Z<7~)7 (‘3wuffa£(ﬁ£)* + 8vumffw7{(ﬁ£)*>
n=1

— (B, QT pm?), B EV,

where the last term is due to the gradient (3.27), which appears in the quadratic Taylor
approximation (3.14) that is used in S, (gg, Mf (TIR £), with m/ given by

(4.27) m! = VS, (gp, (T3" ng Ty f(mi, 2))(mi — m).

Finally, by setting the variation of Lo w.r.t. u to zero, we obtain v* € V by solving an
equation presented in Appendix A. With all the Lagrange multipliers computed above, we
can evaluate the gradient of the cost functional (4.10) as (2, V,€(z)), which is explicitly given
in Appendix A.

We remark that the constraints of the orthonormal conditions in the Lagrangian £ do not
explicitly depend on the optimization variable z, so that for computing the gradient V,E(z)
we do not need the Lagrange multipliers {(A\? ,)*} and {(Ain,)*}, neither of which are used
in computing all other Lagrange multipliers. To solve the chance constrained optimization
problem under uncertainty with the unconstrained penalty formulation (4.4) and its approxi-
mation in (4.10), we apply a gradient-based BFGS algorithm, where the evaluation of the cost
functional £(z) and its gradient V;£(2) at z, and their computational cost in terms of PDE
solves, are summarized in Algorithm 4.2. In summary, one evaluation of the cost functional
takes 1 state PDE solve and 2(N, + ¢) + 2(Nf + ¢) + 2 linearized PDE solves, while one
evaluation of its gradient takes 2N, 4+ 2Ny + 3 linearized PDE solves, where N, and Ny are
the ranks in (3.8) and (3.11), ¢ is a small oversampling parameter in Algorithm 3.1.
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Algorithm 4.2 Compute £(z) and its gradient V,&£(z)

1: Compute &(z):

2: solve the state equation (3.15) for u; // 1 state PDE
3: solve the linearized PDE (3.19) for v?; // 1 linear PDE
4: solve the linearized PDE (3.26) for v7; // 1 linear PDE

5: solve the generalized eigenvalue problems (3.9) for (A, wn)n 1; // 2(Ng + ¢) linear PDEs
6: solve the generalized eigenvalue problems (3.12) for ()\,J;, zpn)n 1 // 2(Ny + c) linear PDEs

7. compute the cost functional £(z;) by (4.10).

8: Compute V. E(2):

9: solve the linearized PDEs (3.22) and (3.23) at (wn) | for (ag, %)27‘11, // 2Ny linear PDEs
10: solve the linearized PDEs (3.28) and (3.29) at (wn) fl for (ad, f)fi)n 1; // 2Ny linear PDEs
11: set ((vp)*, (ad)*, (O)* )n 1 by (4.14), (4.16), and (4.18);

12: solve the hnearlzed PDE (4. 19) for (u?)*; // 1 linear PDE
13: set ((¢h)*, (ad)*, (04)* )n 1 by (4.20), (4.23), and (4.25);

14: solve the linearized PDE (4.26)for (ul)*; // 1 linear PDE
15: solve the linearized PDE (A.1) for v*; // 1 linear PDE
16: compute the gradient V,E(zx) by (A).

5. Numerical examples. We consider the following PDEs that model a steady state Darcy
flow,
m

v+ S Vu=0 inD,
(5.1) p

V-v=h in D,

where a homogeneous Dirichlet boundary condition for the pressure w is imposed along the
boundary D of a physical domain D = (0,1). €™ represents a random permeability field,
while g is the fluid viscosity. For simplicity we specify 4 = 1 in a dimensionless setting.
The source term h depends on an L-dimensional (we take L = 25 in the numerical test)
optimization variable z = (z1,...,21), given by

L
(5.2) hz) == zh,
=1

where zy is a pointwise optimization variable with bound zy € [zmin, Zmax|, Where we take
Zmin = 0 and zpmax = 36; Ay is a smooth mollifier function defined at point z, € D as

1
(5.3) hy = exp <_€2 |z — :L‘gHz)

for a positive number ¢ > 0, which we take ¢ = 0.1. The system (5.4) models steady state
groundwater flow, z; represents the water extraction rate at location xy of L wells. Figure
2 illustrate the groundwater flow, where the velocity field v at the mean m and an optimal
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Figure 2. Groundwater flow in physical domain (0,1)?. Blue dots stand for the location of the extraction
wells. A wvelocity field v is shown at the mean of the log-permeability m = m and optimal variable z*, which is
obtained with quadratic approzimation of the constraint function; see Figure 6 for the value of z*.

extraction rate (with value given in Figure 6) is shown. Note that by eliminating the velocity
field v from (5.1), we obtain a single equation for the pressure

(5.4) —Vv. (ZVU) —h inD.

The objective of the optimization problem is to achieve a target groundwater extraction
rate z; at each well, which can be represented by

> (20— 2)°

1

SIS

L
(5.5) q(z) =
(=

We use a penalty term P(z) = 2||z||3 with n = 107° for the optimization variable z, represent-
ing the cost of the extraction. To prevent excessive extraction leading to potential collapse of
the aquifer, we consider the constraint function for the state (pressure field) u

(5.6) Flu) = /D 2(2)dz — o,

where D, C D is a region of interest, for which we take D, = (0.25,0.75)%; and f. > 0 is a
critical value, which we take f. = 2. We consider the chance or probability constraint (2.5),
i.e., P(f > 0) < «, such that the probability of f greater than or equal to zero should be less
than or equal to a given value a > 0 (we take o = 0.05), where the probability is defined with
respect to the probability distribution of the random field m.

We use a Gaussian random field m ~ N (m,C) with mean m and covariance field C, which
is represented as the square of the inverse of an elliptic operator [?,60,79],

(5.7) C=(—nV-(0V)+8)72,
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Figure 3. Mean of the log-permeability field m (left) and two random samples (middle and right).

V and V- are gradient and divergence operator. 4 > 0 and n > 0 are two parameters that
control the variance and correlation of the random field. The matrix © = [c1sin(8)?, (c; —
c2) sin(6) cos(0); (c1 — c2) sin() cos(f), ca cos(6)?]. Sampling from this Gaussian distribution is
equivalent to solving the elliptic equation

(5.8) — 9V - (OVm)+ém=W inD

with homogeneous Neumann boundary condition along dD, where W is a spatial white noise
with unit pointwise variance. The mean m is given in Figure 3, which is obtained as a random
sample from N (0,C) for the covariance C in (5.7) with n =0.1,§ =10 and ¢; = 1,0 = 2,0 =
/4. This choice of these parameters leads to pointwise variance of about 0.1, and 20% of the
noise-to-signal ratio as measured by the ratio between the pointwise standard deviation and
the maximum of the mean field. Two random samples drawn from N (m,C) are also shown in
Figure 3.

We use a finite element method implemented in FEniCS [62] to solve all of the PDEs,
with linear elements for the approximation of both the pressure field v and the parameter
field m in a uniform mesh of triangles of size 32 x 32, which leads to 332 dimension for the
discrete parameter. We run the optimization algorithm, Algorithm 4.2, to solve the chance
constrained optimization problem (2.8), with Taylor approximation of the constraint function
Tk f with K =0, 1,2, and a sample average approximation (SAA) with 1024 samples. We set
the tolerance for the gradient norm as €3, = 1073 for the stopping criterion for the inner BFGS
optimization loop in Algorithm 4.1 and e(fut = &2, = 1072 in the outer continuation optimiza-
tion loop. For the quadratic Taylor approximation, we compute 10 eigenpairs (3.12) by the
randomized algorithm, Algorithm 3.1. The smoothing and penalty parameters are specified
as (B,7) = (2"2,10"*2) for n = 1,2,---. The optimization solution at step n is used as the
initial guess for that at step n+ 1. After each optimization step with quadratic approximation
Ty f, we compute the chance P(g > 0) = E[[|p »)(g)] and the smoothed value E[¢5(g)], by SAA
approximation in (3.2) with different numbers of samples, where g represents the constraint
function f or its Taylor approximations Ty f for K = 0,1,2. The results are shown in Figure
4, from which we can observe: (1) the quadratic approximation T5f yields more accurate
approximation of the chance than that by the linear and constant approximations; (2) as the
smoothing parameter [ increases, the smooth approximation Eg(g) becomes more accurate
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Figure 4. The chance evaluated with different numbers of samples, by different Taylor approximations, and
using different smoothing and penalty parameters (8,7v) = (2"12,10""2) for step n =1,2,3,4.

and leads to more accurate approximation of the chance for g = f,Txf, K = 0,1,2; (3) as
the penalty parameter 7 increases, the violation of the chance P(g > 0) exceeding ao = 0.05
is more strongly penalized, and the chance converges to 0.05 by the quadratic approximation
Ts f, while the chance by linear and constant approximations become smaller than a = 0.05,
i.e., the violation is over penalized; and (4) with an increasing number of samples for the SAA,
the approximate chance becomes more accurate.

Table 1

Estimate of the chance ég(g) forg=f,Txf, K =0,1,2, by SAA with 102} samples, and the estimation
bias (/ MSE/1024) induced by 1024 samples for SAA and estimation errors by Taylor approzimations.

step | Ls(f) | SAA bias | [lg(f) — £s(Tof)| | [€s(f) = La(Trf)| | [€s(f) — €5(T2f)]
0 | 825E-1| 8.47E-3 1.52E-1 9.81E-3 6.14E-3
1 | 3.08E-1| 1.08E-2 1.75E-1 1.28E-3 6.24E-3
2 | 1.14E-1 | 8.31E-3 1.14E-1 2.04E-2 2.91E-3
3 | 6.02E2 | 6.77E-3 6.02E-2 2.26E-2 7.61E-4
4 [5.005-2 | 647E-3 1.93E-2 2.21E-2 8.60E-5
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Figure 5. Left: (absolute) values of the constraint function |f| at 1024 samples and their approzimation
errors by Taylor approximations Tk, K = 0,1,2,. Right: histograms of the approzimation errors |f — Tk f|.

The observation on the accuracy of the Taylor approximations drawn from Figure 4 is
further demonstrated in Figure 5, where the approximation errors for 1024 samples (at the
optimal variable by the quadratic approximation) are shown on the left and their histograms
are shown on the right, from which we can observe the quadratic approximation is statistically
more accurate than the linear and constant approximations. Moreover, in Table 1, we report
the SAA of the chance @B(g) for g = f,Txf, K = 0,1,2 with the same 1024 samples at
each optimal variable 2z obtained by the quadratic approximation with different parameters
(B,7) = (2""2,10"2) at step n = 1,2, 3,4. We take the initial guess of the optimal variable as
2y = (18,...,18) at step 0. The SAA bias for the estimate of the chance fg(f) is computed as
VMSE/1024, i.e., the square root of the mean square error of £3(f) divided by the number of
samples, 1024, which is the bias from the true value induced by a finite number of samples. We
can see that the quadratic approximation gives a two orders of magnitude smaller estimation
error for the chance than the SAA bias with 1024 samples, while the linear and constant
approximations lead to larger estimation errors. In each optimization step, 1024 state PDEs
and 1024 adjoint PDEs have to be solved for the direct SAA ég(f), while 1 state PDE, and 55
linearized PDEs (see the counts in Algorithm 4.2) are solved by the quadratic approximation.
A speedup factor of 37 ~ 2048/56 in terms of PDE solves is achieved. A higher speedup
factor is achieved when (1) the number of samples is increased; and (2) the state PDE is more
expensive to solve than the linearized PDEs, as is the case for nonlinear state PDEs.

The target z = (18,...,18), and the optimal variables obtained by different approxima-
tions are shown in Figure 6, from which we observe that the optimal variable obtained by the
quadratic approximation of the constraint function, i.e., using SAA for £g(T>f), is very close
to that by SAA for £5(f). The distribution of the optimal variable by the quadratic approxi-
mation is shown in the right part of Figure 6, with the corresponding pressure field shown in
the right part of Figure 7, whose (absolute) value in the region of interest D, = (0.25,0.75)?
is effectively reduced from the initial state as displayed in the left part of Figure 7.

Finally, we plot the decay of the eigenvalues of (3.12) for the quadratic approximation T f
at different optimization steps and different dimensions of the discrete random parameters in
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Figure 6. Left: comparison of optimal variables z¢ at the £-th location obtained by different approximations
of the constraint function f, including Taylor approzimations Tk f for K = 0 (constant), K = 1 (linear),
K = 2 (quadratic), and sample average approzimation (SAA) with 1024 samples. Right: distribution of the
optimal variable z* obtained with quadratic approzimation of the constraint function.

Figure 7. Pressure field at the mean of the log-permeability m = m and the target z (left), the optimal
variable z* obtained with quadratic approzimation (right); see Figure 6 for the value of z*. The pressure (in
absolute value) at the optimal variable z* is effectively reduced from that at the target z.

Figure 8. By the similarity of the eigenvalue decay, we can conclude that the quadratic
approximation is scalable with respect to the parameter dimensions in that the number of
PDE solves are similar with increasing dimension. Moreover, the number of optimization
iterations stays similar with increasing smoothing and penalty parameters (3,7) as well as
increasing dimension, thus demonstrating that the optimization method is also scalable for
this example.

6. Conclusion. We proposed a Taylor approximation based continuation optimization
method to solve chance and random PDE constrained optimization problems. We presented
the derivation and efficient computation of the Taylor approximations using randomized al-
gorithms. To address the challenges of discontinuous indicator function and inequality con-
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Figure 8. Top: decay of the eigenvalues (3.12) for the quadratic approzimation Taf (left) and decay of the
gradient norm of the BFGS optimization (right) at different steps (corresponding to Figure /) with dimension
1,089 for discrete m. Bottom: the same plot at optimal variables with different dimensions.

straint, we employed a smooth approximation and a penalty method in a continuation BFGS
optimization algorithm. We compared the accuracy of the Taylor (constant, linear, and qua-
dratic) approximations and sample average approximation for both the chance evaluation and
the optimal variable, demonstrated the acceleration by the Taylor approximation, reported
the convergence of the continuation optimization algorithm in satisfying the chance constraint
and minimizing the objective functional, and showed the scalability of the proposed method
in that the number of PDE solves is essentially insensitive to increasing dimension of the
random parameters. In particular, for the test problem the quadratic Taylor approximation
achieves two orders of magnitude higher accuracy than SAA at 37X lower cost measured by
the number of PDE solves.

This work motivates the following research directions: (1) since the local and quadratic
Taylor approximation may become less accurate for highly nonlinear functions and large vari-
ance, higher order (beyond quadratic) and/or nonlocal Taylor approximations may improve
the accuracy and efficiency of the proposed method; these rely on efficient low-rank deriva-
tive tensor decompositions which only require the tensor action [4] and/or efficient Gaussian
mixture approximation of the measure p; (2) vector or function valued chance constraint
functions [37], e.g., representing pointwise pressure or the whole pressure field, require further
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development of the optimization method with respect to the Taylor approximations and La-
grangian approach to computing the gradient; (3) to deal with extreme chance with a critical
value a < 1, importance sampling [69, 70] with Taylor approximation in the failure region
rather than at the mean of the random parameters can be employed; and (4) theoretical
analysis of the convergence of the Taylor approximations and the continuation optimization

remain open; a promising approach is provided by the set/epigraphical convergence analysis
in [75].

Appendix A. Some equations in Section 4.4.2. By setting the variation of Lo w.r.t. u
to zero, we obtain: find v* € V such that

(A1)

(T, OypTv™) =

- (’fL, auq_ + dfauf+ aumffmf‘i‘aumfmf)
- (a OuuTq(u?)* + Oy q(u?)*)

q
=Sl Du g (52)” + Do (50)")
Nq
ity Dun P (18)” + Dua T (3)" + Do (1" + Db (0 + Dm0 (5))
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- <ﬂ O (u!)* + O f(u!)*)

- Z by Qumo ™ £ (W) + OumuT 11, (W) + Do S, (01" + Ourmm 103, (W) 4 Ouaran [ (W) )

- Z<a, QuonT 1, (03)* + Dm0} (8])")

- Z (i, O 503, (@) + Do i, () + O S, (1) + O 108, (0] ) +-Ougurn f 5, (01) %), Vit € U,
where the constant df in the first line is given by

My

(A.2) d! = VS, (g5.01, (T3 ) 57 Zwﬁ (TR f(my, 2)).
=1

We evaluate the gradient of the cost functional (4.10) as

(2,V.E(2)) = (2,0.L2)
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