This CVPR 2021 paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

Inferring CAD Modeling Sequences Using Zone Graphs

Xianghao Xu Wenzhe Peng
Brown University MIT
Abstract

In computer-aided design (CAD), the ability to “reverse
engineer” the modeling steps used to create 3D shapes is
a long-sought-after goal. This process can be decomposed
into two sub-problems: converting an input mesh or point
cloud into a boundary representation (or B-rep), and then
inferring modeling operations which construct this B-rep.
In this paper, we present a new system for solving the sec-
ond sub-problem. Central to our approach is a new geo-
metric representation: the zone graph. Zones are the set
of solid regions formed by extending all B-Rep faces and
partitioning space with them; a zone graph has these zones
as its nodes, with edges denoting geometric adjacencies be-
tween them. Zone graphs allow us to tractably work with
industry-standard CAD operations, unlike prior work using
CSG with parametric primitives. We focus on CAD pro-
grams consisting of sketch + extrude + Boolean operations,
which are common in CAD practice. We phrase our prob-
lem as search in the space of such extrusions permitted by
the zone graph, and we train a graph neural network to
score potential extrusions in order to accelerate the search.
We show that our approach outperforms an existing CSG
inference baseline in terms of geometric reconstruction ac-
curacy and reconstruction time, while also creating more
plausible modeling sequences.

1. Introduction

Many real-world 3D objects begin their existence as
parametric CAD programs. If one could recover such pro-
grams for everyday objects, it would enable powerful edit-
ing and re-purposing abilities, with many applications in
mechanical and industrial design. As such, it’s unsurpris-
ing that this problem has become a popular research topic
in the graphics, vision, and machine learning communities,
with multiple recent papers examining how to infer CAD-
like programs for an input shape [22, 7, 30, 8, 16].
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Figure 1: A solid shape (top-left) can be decomposed into a
graph of zones which make up its interior volume and sur-
rounding space (top-right). This representation permits ef-
ficient search for modeling sequences that reconstruct the
shape, using industry standard modeling operations (bot-
tom). Light red lines in the zone graph indicate connections
between zone nodes. In the bottom modeling sequence,
green denotes sketch + extrude + union and red denotes
sketch + extrude + difference.

One property shared by these works is their use of con-
structive solid geometry (CSG) as a modeling language. In
CSQG, shapes are formed by combining primitive solids (e.g.
spheres, cylinders, boxes) with Boolean union, intersection,
and difference. Its small library of parametric primitive
shapes makes it appealing for CAD program inference, as
this reduces the search space of possible programs.

Unfortunately, parametric primitive CSG is not the mod-
eling language used by CAD practitioners today. Instead,
modern CAD workflows use feature-based modeling, in
which a solid object is created by iteratively adding fea-
tures such as holes, slots, or bosses [13]. Feature creation is
typically performed via operations on surfaces, as these are
intuitive for users to reason about: for instance, creating a
slot in the surface of an object by sketching the profile of the
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slot and then specifying how deep it goes. Throughout this
process, the object’s geometry is stored as a boundary rep-
resentation, or B-rep, which is a watertight assembly of sur-
face patches which enclose the object’s solid volume [27].
Feature-based modeling with B-reps supports Boolean op-
erations between solids, making it strictly more expressive
than parametric primitive CSG. This expressiveness comes
at a cost for program inference, though, as the space of
feature-based modeling programs is much larger.

How can we enable tractable inference of feature-based
CAD programs? We first note another common property
of prior work: solving CAD program inference “in one
shot,” going directly from input unstructured geometry to
a CAD program. However, this problem actually decom-
poses into two sub-problems: (1) convert the input geom-
etry into a B-rep, (2) infer a CAD program which gener-
ates that B-rep. The first sub-problem is of huge impor-
tance to the CAD industry, where it is known as reverse
engineering. Many semi-automatic commercial tools ex-
ist [15, 14] and recent work has begun to leverage learn-
ing based approaches [23, 26]. The second problem is sup-
ported by all major CAD software using a rule-based ap-
proach, e.g. [1, 24]. However, such systems often require
active input from a human designer, can fail to automati-
cally infer earlier steps of longer modeling sequences, and
struggle to generalize beyond pre-defined rules.

In this paper, we show that assuming a B-rep as input
allows us to tractably attack the problem of automatically
inferring industry-standard, feature-based CAD programs.
Specifically, it allows us to use a new geometry represen-
tation that enables tractable program search. Extending all
surface faces of the input B-rep into infinite surfaces and
then partitioning space with those surfaces results in an ar-
rangement of solid zones. The spatial connectivity of these
zones forms a data structure which we call the zone graph
(Figure 1, top-right). Searching for a CAD program that
reconstructs the input shape then becomes a search for a
sequence of modeling operations that fill in all the zones
which are inside the input B-rep (Figure 1, bottom). This
perspective reduces the search space of possible programs
from an infinite set (a space of programs with many con-
tinuous parameters) to a finite set (the set of operation se-
quences that fill particular zones).

In this paper, we focus on modeling via sketch + ex-
trude + Boolean operations, which are commonly-used in
CAD workflows to create new solid masses and cut holes
and slots out of existing ones. In addition, we learn how
to guide the search using a large dataset of CAD model-
ing sequences. We train a graph neural network that takes
the zone graph as input and predicts scores for different
candidate modeling operations, allowing search to focus on
higher-scoring options first. This allows our approach to in-
fer modeling sequences which use meaningful design pat-

terns without active guidance from a human designer.

In experiments on real-world CAD shapes, our zone
graph method outperforms a recent state-of-the-art CSG
inference method: it achieves better reconstruction accu-
racy by inferring more plausible programs that use industry-
standard CAD operations.

In summary, the contributions of this paper are:

* The zone graph representation of B-rep solids, which

reduces CAD program search space to a finite size.

* A search algorithm for inferring CAD modeling se-

quences from zone graphs.

* A graph neural network for learning to score candidate

CAD operations during program search.

2. Related Work

Space Partitioning The zone graph is a partition of space
formally known as an arrangement of surfaces [12]. Use of
spatial partitioning data structures is common in computer
graphics to accelerate spatial queries, particularly in ray
tracing [3]. A more recent body of work has explored space
partitioning for geometry reconstruction tasks. Polyfit [18]
performs surface reconstruction from point clouds by ex-
tracting and intersecting planar primitives; other recent re-
construction works use a similar method [10, 2]. Learning-
based methods have also begun to use space partitioning
representations [5, 6]. BSP-Net [5] uses binary space par-
titioning to build up a constructive solid geometry (CSG)
tree for compact mesh generation. The zone graph repre-
sentation differs from prior work as it builds up an incidence
graph of an arrangement of parametric surfaces and consid-
ers curved surfaces in addition to planar surfaces. We also
apply zone graphs to a different reconstruction task: finding
a sequence of modeling operations to reproduce a shape.

CAD Reconstruction CAD reconstruction involves re-
covering a sequence of CAD modeling operations from
meshes, point clouds, or B-rep models. Such sequences are
critical for preserving editability of CAD models, enabling
downstream edits, such as model simplification for simula-
tion, or adjusting tolerances for manufacturing. Although
CAD reconstruction has been the subject of significant re-
search [21], it remains a challenging problem due to the
diverse ways that CAD models are constructed. Commer-
cial CAD software uses rule-based feature recognition, of-
ten with user assistance, to detect and remove features such
as holes, pockets, and fillets before re-applying them para-
metrically [1]. This strategy can recover some modeling
operations but may fail to completely rebuild the paramet-
ric modeling history from the first step. We focus on a fully
automatic approach that can recover the entire construction
sequence in a manner consistent with human designs.

CAD reconstruction can also be framed as a program
synthesis problem. InverseCSG [7] is one example; it uses a
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constraint-based program synthesizer to find CSG programs
whose output is consistent with the input geometry. More
recently, learning-based approaches have been developed.
CSGNet [22] leverages a neural network to infer a sequence
of CSG operations on simple primitives such as spheres and
cuboids. Other works in this area [8, 25, 16] also utilize sim-
ple primitives with CSG operations. However, professional
mechanical design tools use a different paradigm, first cre-
ating 2D engineering sketches then lifting them to 3D using
operations such as extrude, revolve, and sweep.

CAD reconstruction is a visual program induction prob-
lem [4]. One common approach for such problems is
neurally-guided search, in which a neural network guides
a search algorithm by prioritizing search options [20, &, 9].
We also leverage neurally-guided search, developing novel
search proposal and ranking algorithms for zone graphs.

3. Task & Approach

Given a 3D shape specified as a B-rep B,
our goal is to find a sequence of modeling op-
erations  [01,02,...,0,]  which  reproduce  B.
We focus on sketch +
extrude + Boolean op-
erations, in which the
user (a) sketches one
or more closed profile
curves on a plane (b)
extrudes this sketch to
form one or more solid
regions, and (c) ap-
plies the extrusion to
the current partial B-rep by union or difference (see inset).

To solve this problem, we first turn the input B-rep B
into a zone graph G (Section 4). We then search for a se-
quence of operations that reproduces this zone graph by
enumerating and evaluating sketch + extrude + Boolean op-
erations that are consistent with the zone graph (Section 5).
As there may be a large number of such operations, we use a
learned guidance network to prioritize ones that are similar
to those seen in a large dataset of example CAD programs
(Section 5.2). We leverage the recently-released Fusion 360
Gallery reconstruction dataset that provides ground-truth,
human-designed CAD programs created with sketch and
extrude modeling operations [29].

Sketch — Extrude —Sketch — Extrude — Union

spLe

B

4. The Zone Graph Representation

CAD modeling operates via the addition and removal of
solid volumes to create 3D shapes, using intuitive feature-
based operations. To search for CAD programs that can re-
construct a given target shape, one could explore the space
of all parameterizations of all such modeling operations.
This is a huge search space. Instead, we note that the target

2D

3D

Figure 2: (Left) Input 2D and 3D shapes. (Middle) Shape
decomposition into solid zones. (Right) The zone graph.

shape contains strong “clues” as to the operations used to
create it. For example, suppose that a hole was created in a
shape by subtracting some solid volume. While that volume
is not present in the target, the interior faces of the hole it
created reveal its shape. Our key idea is to formalize this
notion of such “hidden volumes” and then restrict search to
consider only the modeling operations that produce them or
target shape interior volumes.

Our fist step is to construct from each input B-rep B a
spatial data structure G that we call a zone graph (Figure 2).
While we focus on 3D shapes in this paper, zone graphs are
also well-defined in 2D; Figure 2 includes a 2D example for
illustrative purposes. A zone graph in 3D (2D) is a graph
G = (Z,&) whose nodes Z = {Zy, Zs, ..., Z,} represent
solid regions (areas) called zones and whose edges & rep-
resent surface patches (curves) connecting those regions. A
zone graph has the property that the union of all zones is the
axis-aligned bounding box (AABB) of the input B-rep. In
Figure 2, zones are colored black if they are interior zones
Z* that fill inside the volume enclosed by B, and gray if
they are exterior zones Z°.

Face Extension Zone graph construction begins by ex-
tending faces of B into infinite surfaces that partition space:
* Planar faces are extended into an infinite plane.

» Generalized cylindrical faces are extended along the
face’s direction of zero curvature.

* Spherical faces are extended into a complete sphere.

e Free form faces are not extended, as there is no known
parametric form by which to extend them.
After extension, all faces are clipped by AABB(B).

Simplification The number of zones increases superlin-
early with B’s face count, leading to a larger search space.
It helps to skip face extensions that are not likely to be use-
ful for extrusion-based modeling. We search B for “face
loops,” sets of faces where (a) the faces form a cycle, (b)
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Figure 3: Zone graph construction statistics. (Left) Zone
count vs. B-rep face count. (Right) Zone count vs. zone
graph construction time (in seconds).

the edges shared by each consecutive pair of faces are par-
allel (we call this direction the extrusion direction), and (c)
each face has exactly 4 edges in its outer wire. Faces in a
loop are only extended along their extrusion direction. See
the supplement for details.

Figure 3 visualizes some statistics for zone graphs extracted
from the Fusion 360 Gallery reconstruction dataset [29]. On
the left, we plot zone count against face count. On the right,
we plot zone count against the time required to construct the
zone graph (in seconds). Build time increases linearly with
zone count, with most zone graphs taking under a minute.
The build tests were run on an Intel Core i15-8259U proces-
sor using OpenCASCADE’s general fuse algorithm (GFA)
for solid partitioning via FreeCAD.

Our method can reconstruct 6900/8625 models in the
dataset. Failure cases are due to (1) erroneous output from
GFA caused by numerical robustness issues (such issues are
well known [28, 17] and the subject of ongoing research)
and (2) unsupported operations such as tapered extrude and
revolve. Of these 6900 models, the zone graph can repre-
sent the ground truth modeling sequence for 5175 of them.
Failure cases are due to (1) sequences not captured by our
extrusion proposals (Section 5.1) and (2) sequences not ex-
pressible by the zone graph because some operations do not
leave any trace in the target shape (see Section 7 for an ex-
ample). See the supplemental material for more details, in-
cluding ablation studies on zone graph simplification.

5. Searching for Modeling Sequences

Given a zone graph G for an input B-rep B, our goal
is to search for a sequence of CAD modeling operations
[01,09,...,0,] that satisfies two properties:

1. Executing this sequence produces the input shape B,

i.e. exec([01,02,...,0,]) = Z?
2. Each step produces a shape which is a combination of
zones in G, i.e. Vj,3Z' C Z s.t. exec([o1,...,0;]) =

Uz, e 2.
Our search algorithm satisfies property 2 by construction: it
only considers modeling operations whose output coincides
with available zones. If B is expressible as a sequence of
sketch + extrude + boolean operations, and search time is
unbounded, our algorithm also satisfies property 1. Other-
wise, property 1 is only approximately satisfied.

Figure 4 shows an overview of our search algorithm. The
input B-rep B is denoted as the target. The algorithm main-
tains a canvas, which contains the shape constructed by the
modeling operations chosen by search thus far and is ini-
tially empty. At each step, the algorithm enumerates all
combinations of zones which could be produced via a valid
sketch + extrude operation (Section 5.1); these are the valid
next steps for search to consider. The algorithm then scores
how likely each of these proposals is to lead to a correct re-
construction of the target (Section 5.2). It retains the top k
highest-scoring proposals and initially chooses the top 1 to
explore next (i.e. best-first search). We use k& = 5 unless
otherwise specified. If the search reaches a terminal state
(i.e. no valid extrusion proposals), but the canvas does not
match the target, it backtracks to the previous step and con-
siders the next extrusion in the top & set. Search terminates
when the canvas matches the target, or when a computation
time budget has been exhausted (in the latter case, the can-
vas with the highest reconstruction IoU is returned).

5.1. Generating Candidate Modeling Operations

Figure 4 right illustrates our process for identifying can-
didate modeling operations. It begins by finding pairs of
parallel planes—the start and end planes for an extrusion
(Figure 4 top-right). We define the extrusion direction d
as the vector from the start plane to the end plane. Next,
we identify the starting sketch S, a set of faces on the start
plane. Considering all possible such sets is intractable. For-
tunately, the zone that a face is adjacent to along d suggests
the operations it might be used in:

1. Faces d-adjacent to zones in the canvas C but not in
the target 7 could start an extrude + subtract (Figure 4
bottom-right, 1).

2. Faces d-adjacent to zones in 7 but not in C could start
an extrude + union (Figure 4 bottom-right, 2).

3. Faces d-adjacent to zones in 7 or empty zones could
start an extrude + union (Figure 4 bottom-right, 3).

Candidate starting sketches S are the connected compo-
nents of each group above, plus the union of these from each
group (e.g. Figure 4 bottom-right, 1). The supplemental
material describes other candidate enumeration strategies.

Each candidate sketch is then extruded along d to cre-
ate a generalized cylinder; the zones which fall within this
cylinder form the proposed extrusion volume &'. If ¥ C C,
it is marked as a subtraction. If X UC = &, it is marked
as a union. Otherwise, we create proposals of both types.
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Figure 4: Searching for modeling sequences that reconstruct a Target shape. (Left) Search maintains a canvas (the partial
shape constructed thus far), proposes possible next modeling operations, scores those operations, and then selects one of
them to further explore based on its score. (Right) Candidate extrude operations are found by first finding all pairs of parallel
planes and identifying which face groups could be used as the starting sketch (top-right) and then extruding this sketch to

create generalized cylinders (bottom-right).

Computation of these proposals is memorized, as proposals
frequently re-occur at different search iterations. To prevent
search cycles, we discard a proposed extrusion if it is the
inverse of one performed earlier in search (e.g. re-adding a
volume that was previously subtracted).

While we have focused on extrude, a similar procedure
could be applied to construct proposals for other operations.
For example, fillet, chamfer, and taper all affect the zone
graph in well-defined ways; it is possible to identify combi-
nations of zones which can result from such operations.

5.2. Ranking Candidate Modeling Operations

Given a set of proposed modeling operations, our search
algorithm must decide which ones to prioritize in its best-
first exploration. We propose to learn what operations are
best from a dataset of CAD modeling sequences. We train
a neural network that takes as input the zone graph G, the
current canvas C C Z (i.e. which zones are “filled”), the
target shape 7 = {Z?} (i.e. the set of interior zones), and
a modeling operation o = (X C Z,t € {U,—}), where
X is a generalized cylinder extrusion and ¢ denotes the type
of operation (union or difference). The network’s task is to
predict p(o|G,C, T'), how likely o is to be the next modeling
operation, based on the patterns it has seen in its training set.

Network architecture Figure 5 shows our network ar-
chitecture, which is a message passing graph convolutional
network (GCN) [11]. The node features are derived from
the geometry of the zone it represents and the information
in the target shape 7, canvas C, and proposed extrusion o.
Each zone is represented as a point cloud with per-point:
positions x, normals fi; binary labels indicating whether the
zone is part of 7, C, and/or &’; the type ¢ of the proposed
extrusion. These point clouds are encoded using a Point-
Net [19] to produce the GCN initial node vectors. After 3
rounds of message passing, node vectors are aggregated via
global max pooling and fed into a 3-layer MLP to produce
the final output probability. The supplemental material con-
tains ablations on the number of message passing rounds
and the influence of point cloud features.

Training To create training data, we use the zone graphs
constructed from modeling sequences in Section 4. We use
3000 sequences for training and hold out 440 for testing.
Each step in each sequence is one training datum. One
could treat the “ground truth” (GT) extrusion used at this
step as a positive example, all others as negative exam-
ples, and minimize a binary cross entropy loss. This ap-
proach yields poor performance: there are often multiple
approaches to construct a shape, and an approach that is not
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Figure 5: Architecture of our search proposal scoring net-
work. Each zone is represented as a point cloud with posi-
tions x and normals i; labels for whether the zone is part
of the target shape 7T, current canvas C, or proposed extru-
sion X’; and the type ¢ of the proposed extrusion. Zones are
encoded via a PointNet [19] to form the input node feature
vectors for a graph convolution network (GCN). The output
node vectors from the GCN are pooled and fed through an
MLP to produce the final network output.

taken for one shape in the dataset may be taken for another.
Treating all non-GT extrusions as negative examples thus
confuses the network. We instead use ternary labels: pos-
itive, negative, and neutral. Positive labels are assigned to
GT extrusions. Non-GT extrusions are labeled as neutral
or negative via Monte Carlo tree search. For each extru-
sion, we perform N random modeling sequence comple-
tions starting with that extrusion (N = the number of re-
maining steps in the ground truth sequence) and record the
percentage p of these completions which yield a match to
the target shape. If any extrusion has p = 0, that extrusion
is labeled as a negative example. Otherwise, if all extru-
sions have p > 0, the one with the smallest p is labeled as
negative. All other extrusions are labeled as neutral. We
then minimize a binary cross entropy loss using only posi-
tive and negative examples.

Heuristic Ranking We also considered whether heuris-
tics could work in our setting. The best heuristic we found
is one that executes a candidate extrusion and, like IoU, pe-

nalizes the filled zones that the resulting canvas and target
\ZI*(\TL‘J‘gI*\TﬁCI)
ken using volumetric IoU between canvas and target. This
performs considerably better than random but not as well as

our network; the next section provides more detail.

do not have in common: . Ties are bro-

0.486
Random

0.070
Ours Heur {

0.036
Ours Net
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Average Predicted Relative Rank of Ground Truth Operation

Figure 6: Comparing how different methods rank the
ground truth extrusions used in modeling sequences from
. s+ predicted rank of ground truth
the Fusion 360 dataset..The X aXis 18§ per of candidate extrusions
averaged over all steps in all test sequences. Lower is better.
90% confidence intervals are shown as error bars. Ours Net

performs about 2x better than Ours Heur.

6. Results & Evaluation

To evaluate our method’s performance, we are interested
in three questions:
1. How consistent are our method’s output sequences
with sequences it was trained on?
2. How well does our method reconstruct new input
shapes, given a particular compute budget?
3. How desirable are our method’s output sequences, as
judged by CAD designers?
For (1), we examine how our network scores the modeling
steps used in its training data (Section 6.1). For (2), we
quantify our method’s tradeoff between computation budget
and reconstruction accuracy (Section 6.2) and compare to
a recent CSG inference system (Section 6.3). For (3), we
conduct a perceptual study (Section 6.4).

6.1. Search Proposal Ranking

If our network has learned the design patterns within its
training data, then for each step in a dataset sequence, when
candidate extrusions are ordered by predicted score, the
“ground truth” extrusion should be ranked near the top. Fig-
ure 6 shows the average relative rank of the ground truth ex-
trusion computed by our network and other baselines. The
evaluation was conducted on the held-out test sequences
from the Fusion 360 Gallery reconstruction dataset [29].
We compare our network (Our Net) against the heuristic
(Our Heur), as well as a method which picks a random
extrusion (Random). Our network and the heuristic both
significantly outperform the random baseline, and the net-
work also dominates the heuristic by a factor of two. Search
guided by our network should thus mimic the design pat-
terns in the dataset. Ablation studies are shown in the sup-
plemental material.

Figure 7 shows modeling sequences inferred under dif-
ferent guidance (random, heuristic, network) for the same
input shape. While the heuristic produces the shortest se-
quence, the network produces a more intuitive one.
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Figure 7: Modeling sequences inferred under different search guidance. Green: addition; Red: subtraction; Grey: current.
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Figure 8: Reconstruction accuracy of the outputs of inferred
programs vs. the time used to infer them.

6.2. Reconstruction Performance Ablation Study

We next evaluate how well the modeling sequences in-
ferred by our method reconstruct the input shape (via volu-
metric IoU). As stated in Section 5, if a sketch + extrude
+ boolean sequence that reconstructs a shape exists, our
method is guaranteed to find it given unbounded time; here
we are interested in our method’s performance under finite
time constraints. Timings were collected on a machine with
a GeForce RTX 2080 Ti GPU and an Intel i9-9900K CPU.

Figure 8 compares the average IoU of inferred programs
on our held-out shapes (with a ground truth modeling se-
quence length of at least 3) using random, heuristic, and net-
work guidance. Zone graph construction time is excluded,
as this is a fixed cost incurred by all methods. Both network
and heuristic guidance converge to 100% reconstruction ac-
curacy after ~ 20 seconds, whereas random guidance does
not converge. Heuristic guidance is faster than the network
because (a) it does not incur the cost of network evaluation,
and (b) by construction it tries to use the fewest possible
modeling operations. However, shorter sequences are not
always better (e.g. Figure 7). Ablation studies for different
search widths k are shown in the supplemental material.

6.3. Comparison to InverseCSG

We next compare to InverseCSG [7], a recent system for
inferring CSG programs from complex input shapes. We

Method All Models Sketch + Extrude Models
Error (%) Time (s) Error (%) Time (s)
Ours Net 0.72 242 0.23 242
Ours Heur 0.50 197 0.15 197
InverseCSG 0.88 900 0.79 900

Table 1: Reconstruction results comparing InverseCSG and
our method using heuristic (Ours Heur) or network guided
(Ours Net) search. We report the median reconstruction er-
ror computed using IoU and the median search time in sec-
onds for all models in the InverseCSG test set and the subset
of sketch + extrude models. Lower values are better.

evaluate on InverseCSG’s test set of 50 3D shapes. As B-rep
files are not provided, we hired freelance CAD designers to
reproduce them using Autodesk Fusion 360. Our method
successfully build zone graphs for 33 of these, which we
use as our test set. From the test set, 27 shapes are express-
ible using sketch + extrude + boolean operations, which
our method can reconstruct exactly. By contrast, Inver-
seCSG uses parametric primitives that may introduce er-
ror when the primitive set is insufficiently expressive. As
these shapes are more complex than those in prior experi-
ments, for our method we set the search width £ = 15 and
decrease it by 0.5 for each search depth increment (giving
more search options to important early steps in the modeling
process). Finally, we note that InverseCSG takes a triangle
mesh as input to solve the CAD reconstruction problem in
one shot, whereas we focus on the second sub-problem of
inferring a modeling sequence from a B-rep.

Table 1 shows the results of this experiment. Our method
achieves a lower median reconstruction error (computed us-
ing IoU) and a shorter median search time in all cases. Our
method reconstructs 13 of the 33 models exactly, with a re-
construction error of less than 0.01%, in comparison to 1
exact reconstruction by InverseCSG. This result indicates
that our representation can more accurately represent typ-
ical CAD models when compared to parametric primitive
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Figure 9: Qualitative comparison of the output of our
model’s inferred programs vs. those of InverseCSG.

CSG. We provide per model reconstruction results and ad-
ditional details in the supplemental material.

Figure 9 shows reconstructions by our method and Inver-
seCSG. The first row shows a case where our method per-
fectly reconstructs the shape but InverseCSG incurs some
approximation error due to its use of primitives. The sec-
ond row shows a case where both methods perform well.
The third row shows a failure case for our method (a re-
volve operation is needed to express this shape).

6.4. Expert Perceptual Evaluation

Finally, we evaluate inferred programs via a perceptual
study. We recruited 16 experienced CAD users from the
fields of design (5) and engineering (11). Each participant
is asked to describe the type of modeling practice they en-
gaged in more often: reconstructing existing shapes, or ex-
ploratory design. Each participant then performs 45 com-
parisons of two modeling sequences shown in random or-
der. In each comparison, the participant is shown a target
shape along with two modeling sequences for it and asked
to (a) select the one most similar to how they would have
constructed that shape, or (b) indicate that they cannot de-
cide. Comparisons were between (1) Ours Net vs. Inver-
seCSG on the InverseCSG test set, (2) Ours Net vs. Ground
Truth from the Fusion 360 Gallery test set, (3) Our Net vs.
Ours Heur on the Fusion 360 Gallery test set.

Table 2 shows the results of this experiment. Partici-
pants strongly preferred Our Net sequences to those of In-
verseCSG. Our Net sequences were also judged as better
than the ground truth about a third of the time. Partici-
pants who focus on exploratory design preferred Our Net
sequences vs. Our Heur ones at a significantly higher rate
than participants focused on reconstruction. This indicates
that the sequences found by the learned guidance better

% Chosen
Ours Net vs.  Overall By “explorers” By “reconstructers”
Ground Truth 34.1 333 34.0
InverseCSG 84.7 76.7 86.4
Ours Heur 41.0 52.5 37.9

Table 2: Results of a perceptual study in which CAD users
compared modeling sequences inferred by our method to
those produced by InverseCSG.

support exploratory modification, whereas the heuristic se-
quences may be better suited to direct reconstruction.

7. Conclusion

In this paper, we presented a new representation for CAD
reconstruction, the zone graph. We showed how it reduces
the search space of CAD modeling sequences that recon-
struct a shape to finite size, and we presented an algorithm
for searching the space of sketch + extrude + Boolean mod-
eling sequences. We also introduced a graph neural network
that learns which search paths to explore first based on de-
sign patterns in a dataset of CAD modeling sequences. Our
experiments showed that our approach reconstructs a large
percentage of input shapes and does so with more desirable
modeling sequences than InverseCSG.

Some modeling sequences are not recover-
able from the zone graph of the output shape,
as they may include one or
more steps which leaves no
trace of itself in the output
B-rep (see inset). We can
still infer alternative (and po-
tentially equally-good) recon-
struction sequences for such
shapes, however.

Finally, we used a large CAD dataset to train our pro-
posal scoring network. Aside from the Fusion 360 Gallery
reconstruction dataset, such data is not widely available.
It is important to investigate weakly-supervised approaches
that require only a small amount of human input about what
constitutes a meaningful design pattern.
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