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Abstract

Recent works apply Graph Neural Networks

(GNNs) to graph matching tasks and show promis-

ing results. Considering that model outputs are

complex matchings, we devise several techniques

to improve the learning of GNNs and obtain a

new model, Stochastic Iterative Graph MAtch-

ing (SIGMA). Our model predicts a distribution

of matchings, instead of a single matching, for

a graph pair so the model can explore several

probable matchings. We further introduce a novel

multi-step matching procedure, which learns how

to refine a graph pair’s matching results incremen-

tally. The model also includes dummy nodes so

that the model does not have to find matchings for

nodes without correspondence. We fit this model

to data via scalable stochastic optimization. We

conduct extensive experiments across synthetic

graph datasets as well as biochemistry and com-

puter vision applications. Across all tasks, our

results show that SIGMA can produce signifi-

cantly improved graph matching results compared

to state-of-the-art models. Ablation studies verify

that each of our components (stochastic training,

iterative matching, and dummy nodes) offers no-

ticeable improvement.

1. Introduction

Graph matching (Livi and Rizzi, 2013; Yan et al., 2016; Sun

et al., 2020) aims to find node correspondence among two

or more graphs. It has a wide range of applications such as

computer vision (Sun et al., 2020), computational biology

(Saraph and Milenković, 2014), and biochemistry (Kotera

et al., 2004). Given that many practical graphs cannot be

perfectly matched, graph matching often maximizes some

matching objective, such as the total number of matched

edges (Yan et al., 2020).
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Learning-based graph matching (Caetano et al., 2009; Zanfir

and Sminchisescu, 2018; Yu et al., 2020; Wang et al., 2019a;

Fey et al., 2018) aims to learn a model that can take a pair

of graphs and directly “predict” a matching between them.

Such models extract information for matching from graph

features and carry learned knowledge to new graph matching

problems. Unlike labels in typical classification problems,

the space of possible matchings is combinatorial, which

poses difficulties for learning such models.

Recently there has been remarkable progress in optimizing

distributions of discrete structures (Maddison et al., 2016;

Paulus et al., 2020). This class of methods approximate

discrete random variables with continuous ones and then

use the reparameterization technique (Kingma and Welling,

2013; Rezende et al., 2014) to optimize the distributions. In

particular, Linderman et al. (2018) and Mena et al. (2018)

use this method to learn distributions of permutations and

achieve good performances in tasks such as solving jigsaw

puzzles. However, learning distributions of matchings is an

area left to explore (Paulus et al., 2020).

In this work we apply the stochastic softmax trick (Paulus

et al., 2020) to the distribution of matchings and then ef-

ficiently learn this distribution through reparameterization.

We then use a learning model to parameterize such a dis-

tribution to address the graph matching problem, so that

the learned model can be applied to any new input graphs.

The model is learned to maximize the expected reward un-

der the matching distribution. Comparing to models that

directly predict only a single matching, this new model that

produces a distribution over matchings is able to explore a

wider range of solutions. Furthermore, the stochasticity of

the predictive distribution increases the robustness of the

learned model, because it is trained to predict a population

of good solutions.

An optimal matching for a graph pair often cannot be dis-

covered in one shot, and some refinement often improves

the quality of the solution. This is particularly true for a

learning model because of the generalization error: it is

even hard to guarantee that the predicted matching is a local

minimum on a new graph pair. Similar observations are also

reported in amortized inference (Marino et al., 2018).

To address this issue, we also design a learnable architec-

ture that can iteratively refine matchings. In addition to
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training the model’s ability to predict matchings, we also

train the model’s ability to refine an existing solution for a

given graph pair. By maintaining the best matching solution

with different refinements, the final prediction will never be

worse than the initial prediction.

In addition to our model design, we also have investigated

the importance of using dummy nodes (Wang et al., 2019b)

in graph matching. Our investigation is motivated by the

intended application of matching reactants in molecular reac-

tions. We have the prior knowledge that some nodes cannot

be matched. Such nodes can find their place by matching

to a dummy node. Our empirical study later indicates the

effectiveness of the dummy node on this problem.

With all these considerations, we develop a unified model,

Stochastic Iterative Graph MAtching (SIGMA). We then

test this new model on three graph matching tasks. The

results indicate that the proposed model produces better

matching results than state-of-the-art models. We also do an

extensive ablation study of the three elements of the model

and show the value of each element in graph matching.

To summarize, our contributions in this work include

• the design of a stochastic softmax trick for learning a

matching distribution;

• the proposal of a graph matching model that defines a

matching distribution;

• the design of iterative refinement for graph matching;

• the premium performances of the proposed model in

three graph matching tasks.

2. Related Work

Graph Matching. Traditionally graph matching has been

treated as an optimization problem and addressed by vari-

ous optimization methods. Livi and Rizzi (2013); Yan et al.

(2016); Sun et al. (2020); Yan et al. (2020) have made exten-

sive surveys on this topic. Among these traditional methods,

the most related works include sampling methods (Lee et al.,

2010; Suh et al., 2012). However, these sampling methods

are usually computationally expensive.

Graph Neural Networks (GNNs) (Wu et al., 2020) were

recently used as learning models for graph matching (Zanfir

and Sminchisescu, 2018; Xu et al., 2019b; Wang et al.,

2019a;b; Yu et al., 2020; Fey et al., 2020; Nowak et al.,

2018; Rolı́nek et al., 2020). The main idea in this class of

work is to use a GNN to encode graph structures into node

representation, then nodes are matched based on their vector

representation.

Distributions of Permutations. Recently Mena et al.

(2018) and Paulus et al. (2020) have developed new methods

of learning distributions of permutations. Sharing the idea

of the Gumbel-softmax trick (Maddison et al., 2016), these

methods devise a continuous sampling procedure that can

approximately draw samples of discrete permutation ma-

trices. The sampling procedure allows reparameterization

(Rezende et al., 2014; Kingma and Welling, 2013), which

enables efficient optimization of the distribution parameters.

This work will develop a new distribution for matching from

these distributions.

Iterative Refinement in Learning Models. Marino et al.

(2018); Krishnan et al. (2018) pointed out that the general-

ization error of an amortized inference model impedes the

inference accuracy on test instances. Then they proposed a

learning model that can iteratively refine its solution. This

idea is further applied to policy optimization (Marino et al.,

2020). Chen et al. (2020) used a similar idea in the task

of matching text to images. We will also incorporate the

refinement mechanism into the model so it can improve

graph matching iteratively.

3. Background

Suppose there are a pair of graphs, Gs = (V s, Es,Xs) and

Gt = (V t, Et,Xt). Here V s = {1, . . . , ns} the node set

of Gs, and Es is the edge set. We assume graph nodes have

known attributes or feature vectors; let Xs ∈ R
ns×d denote

these node features. Similarly, V t, Et, Xt, and nt are,

respectively, the node set, the edge set, node features, and

the number of nodes of graph Gt. Without loss of generality,

we always assume ns ≤ nt.

Graph matching identifies a set of node correspondences

between V s and V t. Here we add a “dummy node” with id

(ns+1) to Gs and one with id (nt+1) to Gt: if some nodes

in one graph cannot be matched with a node from the other

graph, they will be matched to the dummy node of the other

graph. The correspondences between nodes from the two

graphs are indicated by a matrix M ∈ {0, 1}(ns+1)×(nt+1),

M =

[

M
0

mt

m
⊤
s 0

]

,

1
⊤
M

0 +m
⊤
s = 1

⊤, M
0
1+mt = 1. (1)

Mi,j = 1 indicates node i in Gs is matched to node j in Gt.

The submatrix M
0 is the matching between normal nodes

in Gs and normal nodes in Gt. The two equality constraints

say every normal node in Gs or Gt must match exactly one

node (either a normal node or the dummy node) from the

other graph.

Graph matching aims to find a matching M that is optimal

with respect to an objective f(M;Gs, Gt), that is,

argmax
M

f(M;Gs, Gt).
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Relaxation to continuous variables. The GS distribution

(Mena et al., 2018) is developed to imitate the discrete dis-

tributions above but uses continuous random variables that

make gradient-based training easier. The GS distribution

p̂Φ(S) is over the space of doubly stochastic matrices of the

same size as S, and it is reparameterizable with standard

i.i.d. Gumbel noise. We can draw samples from p̂Φ(S) by

running a Sinkhorn procedure over a random matrix (Mena

et al., 2018). The resulting samples can accurately approxi-

mate samples from pΦ(S).

We define our own distribution pΘ(M) through pΦ(S): use

Θ to decide Φ, draw samples from pΦ(S), and then trans-

form these samples to samples of pΘ(M). Let’s first con-

sider the transformation, then we can decide Φ in a meaning-

ful way. Suppose S is a permutation matrix of size (ns+nt),
then the transformation M = BSC gives a sample M:

B =

[

Ins

1
⊤
nt

]

, C =

[

Int

1ns

]

. (7)

Here I is the identity matrix and 1 is a column vector, with

sizes indicated by subscripts. The rest of the matrix is all

zeros. After applying the transformation M = BSC, the

top-left (ns × nt) block of M0 is the same as in the top-

left block of S, which denotes the correspondence between

normal nodes in Gs and Gt. The last row and column of M

simply condense all dummy nodes to one aggregate dummy

node in each graph.

With this transformation, the matching distribution pΘ(M)
is automatically defined.

pΘ(M) =
∑

S:M=BSC

pΦ(S).

With the same linear transformation M = BSC, we convert

a sample from the continuous distribution p̂Φ(S) to a sample

from p̂Θ(M). Then samples of p̂Θ(M) are approximate

samples from pΘ(M). Because the linear transformation is

constant, the approximation error of p̂Θ is bounded by the

approximation error of p̂Φ by a constant factor.

We now show how to decide the parameter Φ from Θ,

Φ =

[

Θ 0ns×ns

0nt×nt
0nt×ns

]

. (8)

The matrix Θ as a block of Φ mainly affects the top-left

(ns × nt) block of S. Every element Θi,j indicates the pref-

erence of matching i in Gs to j in Gt: a large positive value

favors the matching while a negative value is against the

matching. It is not necessary to differentiate nodes matched

to either dummy node, so their corresponding parameters

are set to zero.

The computation of Θ. Finally we design the neural

network nn(Gs, Gt; γ) that computes Θ. A GNN is a pow-

erful model for encoding graph structures into vector forms.

GNNs have been previously used for graph matching (Fey

et al., 2020). We compute the distribution parameter Θ via

a GNN:

Θ = H
s(Ht)⊤, H

s = GNN(Gs; γ),

H
t = GNN(Gt; γ). (9)

Here H
s and H

t are node representations of the graph pair.

γ denotes all parameters of the GNN.

Now we have completed the two steps in (5) and have a

learning model pγ(M;Gs, Gt) for graph matching. To sum-

marize, we use the GNN with weights γ to compute Θ

which in turn determines the parameter Φ of the permuta-

tion distribution. Then, we draw samples from p̂Φ(S), and

apply the transformation M = BSC to obtain approximate

samples from pγ(M;Gs, Gt). We can estimate the gradient

of an expectation over this distribution with respect to Φ

using the reparameterization trick.

4.2. Iterative Refinement of the Matching

So far we have a learning model that can predict Θ for a

pair of graphs. However, it is difficult to produce an optimal

matching for two complex graphs in one step. A strategy

in searching algorithms is to match “easy” nodes first and

gradually expand the matching. We want our learning model

to mimic this strategy and refine Θ in multiple steps.

A Refinement Model. We first design a learning model

Θ1 = nnr(Θ0;G
s, Gt) that can refine a prediction Θ0.

The goal for nnr(Θ0;G
s, Gt) is to move Θ0 toward a “bet-

ter” value, that is, increasing the expected objective.

EpΘ1
[f(M)] ≥ EpΘ0

[f(M)] . (10)

The model nnr(Θ;Gs, Gt) and the previous network

nn(Gs, Gt) share the same goal: maximizing the expected

objective. The difference is that nnr(·) can get information

about the previous matching from Θ0, which helps to revise

prior matchings.

Ideally the model nnr(·) should preserve good partial match-

ing and use it to inform further matching of more nodes.

Guided by this principle, we give more weights to nodes that

are better matched in the previous step. We first compute

weight vectors for the two graphs from Θ0. Let M̄ be an

average of ℓ samples of pΘ0
(M), and let

as = M̄1:ns,1:nt
1, at = M̄

⊤
1:ns,1:nt

1. (11)

Each entry in vector as ∈ [0, 1]ns indicates the probability

that a node in Gs is matched to a normal node in Gt. It is

similar for the vector at ∈ [0, 1]nt .

Then we use the two vectors to reweight the importance of
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node features in the GNN computation.

Θ1 = nn(Gs
u, G

t
u), Gs

u = (V s, Es, diag(as)X
s),

Gt
u = (V t, Et, diag(at)X

t). (12)

Here the neural network nn(·, ·) is the same one in (9). For

simplicity, we train one nn(·, ·) model, but we do make

sure the model capacity is enough in practice (e.g. try large

hidden dimensions and deep models). Putting (11) and (12)

together, we have the refinement model nnr(Θ;Gs, Gt).

In this design, clustered matched nodes tend to have small

changes in their representations so their matching is unlikely

to change in the refinement step. Furthermore, these nodes

encode the matched structure in their messages to their

unmatched neighbors. Note that the message passing in

the first layer of the GNN is as if from a weighted graph

now. Then the refinement can expand the matching using

information from the matched structure. It shares the same

principle as searching algorithms (McCreesh et al., 2017).

Note that the iterative procedure works on the distribution

parameter Θ instead of discrete matchings. The computa-

tion nnr(·) is thus stochastic since M̄ in (11) is the average

of a small number of samples. The stochasticity allows the

model to explore different directions in multiple steps.

Multi-step Refinement. We apply the refinement model to

a multi-step procedure. Let Θ∗
0 = nn(Gs, Gt) be the initial

matching distribution. At each step t = 1, . . . , T ,

Θt = nnr(Θ∗
t−1;G

s, Gt) (13)

Θ
∗
t =

{

Θt if EpΘt
[f(M)] ≥ EpΘ∗

t−1

[f(M)] ,

Θ
∗
t−1 otherwise.

(14)

The two expectations are estimated by samples. To train

the refinement model, we need to track gradients for each

Θ
∗
t . We do not track gradients with respect to the previous

iteration parameter Θ∗
t−1 to stabilize the training procedure.

The refinement procedure will not return a solution worse

than the beginning one since the best Θ∗
t is always kept.

If the beginning solution is already very good and hard to

improve, then the model will make multiple attempts to

improve it. These attempts will not be the same due to the

randomness of M̄. Differing from DGMC’s deterministic

refinement (Fey et al., 2020), our refinement is stochastic.

Algorithm 1 summarizes our multi-step matching refine-

ment.

4.3. Training and Prediction

The goal of training is to optimize the parameter γ, the

parameters of the GNN used in both the first-step prediction

as well as the refinement procedure.

Algorithm 1 Iterative Refinement

1: Input: Gs, Gt, T , f(·)
2: Initialize Θ

∗
0 = nn(Gs, Gt)

3: for t = 1 to T do

4: Compute Θt = nnr(Θ∗
t−1;G

s, Gt)
5: if EpΘt

[f(M)] ≥ EpΘ∗

t−1

[f(M)] then

6: Θ
∗
t = Θt

7: else

8: Θ
∗
t = Θ

∗
t−1

9: end if

10: end for

11: Return {Θ∗
0,Θ

∗
1, . . . ,Θ

∗
T }

This work considers the following matching objective,

f(M) = fqap(M) + λfsup(M). (15)

Here fqap(M) and fsup(M) are from (2) and (3). It covers

a wide range of applications. In unsupervised problems,

we don’t have the second term; in supervised problems,

the hyperparameter λ balances the importance of the two

objectives. We will give more details in the calculation of

these objectives in the experiment section.

After we have included the refinement procedure, the train-

ing objective of the entire model for one graph pair (Gs, Gt)

becomes
∑T

t=0 EpΘt
[f(M)]. Here each Θt is computed

by the GNN with parameter γ. We weigh loss at each step

t equally: the first steps are important because they impact

later steps, while the last steps are also important because

they are likely to give the final solution.

After training, we need to compute a single matching as the

prediction of the model. Our matching model uses the same

principle as a typical classification model: using the mode

of the predictive distribution as the prediction, though it is

harder to find the mode of the matching distribution. The

prediction from the distribution pΘ∗

T
(M) is computed from

the following problem,

M = argmax
M

trace(M⊤pad(Θ∗
T )) (16)

= argmax
M=BSC

trace(S⊤
Φ). (17)

Here pad(Θ∗
T ) adds a row and a column of zeros to Θ

∗
T ; Φ

contains Θ∗
T as its top-left block as in (8). We use Hungar-

ian algorithm to solve the form in the second line.

Note that when making predictions of the matching, we do

not assume any access to ground truth matchings because

they will not be available at test time. Thus, our iterative re-

finement reward function only includes unsupervised terms.
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Algorithm BA(500)§ BA(500) BA(1000) BA(2000) PPI§ PPI

MCSPLIT 100.0±0.0 (1) 43.7±0.3 (1000) 16.9±8.9 (1000) 33.0±7.3 (1000) 100.0±0.0 (1) 60.3 (1000)

S-GWL 47.5±0.5 (3) 32.0±1.5 (3) 22.9±0.3 (14) 16.2±0.4 (129) 83.1 (50) 81.1 (50)

SIGMA 99.2±0.2 (10) 93.8±0.3 (11) 97.3±0.2 (33) 99.0±0.1 (179) 99.2±0.2 (53) 84.7±0.4 (67)

Table 1. Node correctness (%) and runtime in parenthesis (in seconds). Datasets with § means 0% noises; without § means 5% noises.

Setting BA(500) BA(1000) BA(2000) PPI

T=0 93.5±0.1 97.2±0.1 98.9±0.1 83.1±0.3

T=3 93.7±0.2 97.2±0.3 98.9±0.1 83.8±0.2

T=4 (default) 93.8±0.3 97.3±0.2 99.0±0.1 84.7±0.4

T=9 93.8±0.2 97.3±0.1 99.1±0.1 85.0±0.4

Remove S 93.6±0.1 97.1±0.2 98.9±0.1 84.1±0.4

Remove D 50.3±4.1 75.0±5.9 80.4±3.1 83.2±0.2

Table 2. Ablation results on common graph matching. Results are

reported in node correctness (%). T: the number of refinement

after initial prediction; S: stochastic framework; D: dummy nodes.

5. Experiments

We test our model on three tasks: a common graph match-

ing task, a biochemistry application of matching reaction

centers among molecular reactants, and a computer vision

application of matching keypoints between images.

5.1. Common Graph Matching

Dataset We use two datasets in this task, and follow the

experiment setting from Xu et al. (2019a). In the first dataset,

we use a Barabási-Albert (BA) model to generate graphs of

{500, 1000, 2000} nodes. To create matching graph pairs,

we first sample a source graph from the BA model, then

corrupted the source graph by adding 5% noisy edges as

a target graph2. In the second dataset, we start from the

Protein-Protein Interaction (PPI) network of yeast (1,004

proteins and 4,920 interactions), and align its 5% noisy

version provided in Saraph and Milenković (2014). In both

datasets, each node’s input feature is assigned according to

its node degree. We also include the noise-free versions of

the two datasets to match, where the target graph is the same

as the source graph.

Experiment Setting We compare our model with MC-

SPLIT (McCreesh et al., 2017) and S-GWL (Xu et al.,

2019a). MCSPLIT, which uses branching heuristic to re-

duce the search space, is a state-of-the-art heuristic method

to find an isomorphic subgraph, but it performs poorly when

a few “noise” edges are added to the graph. S-GWL, on the

other hand, solves the matching problem under the Gromov-

Wasserstein discrepancy (Chowdhury and Mémoli, 2019)

and has shown robustness to moderate amount of “noise”

2We follow the script of S-GWL (Xu et al., 2019a): https:
//github.com/HongtengXu/s-gwl.

edges added to a graph. For these baselines, we use the au-

thors’ implementations with their default hyperparameters.

Xu et al. (2019a) shows that S-GWL has outperformed most

heuristic methods on matching noisy graphs.

For our model, we instantiate the GNN as a 5-layer Graph

Isomorphism Network (GIN) (Xu et al., 2018). Each layer

of GIN has a one-layer MLP with hidden dimension of 256

followed by a tanh(·) activation. The model is optimized by

an Adam optimizer (Kingma and Ba, 2014) at a learning rate

10−4 and trains for 100 epochs. For each dataset, the epoch

that produces the best objective is used for testing. We use

10 samples of M. T is set to 4 (1 initial prediction followed

by 4 iterations of refinement). To evaluate, we report node

correctness (NC) as in Xu et al. (2019a), which denotes the

percentage of nodes that have the same matching as ground

truth.

Our model is implemented in PyTorch (Paszke et al., 2017).

Each model runs on a server with 32 cores and an NVIDIA

A100 (40GB) GPU.

Results Results are shown in Table 1. Our model, SIGMA,

outperforms baselines in matching noisy graphs. As ex-

pected, the heuristic method MCSPLIT fails to cope with

noisy graphs. SIGMA outperforms S-GWL on all datasets.

We conjecture our improvement stems from learning a GNN

that can provide discriminative node embeddings suited for

matching. We see comparable matching results between

SIGMA and MCSPLIT when matching noise-free graphs.

SIGMA does not attain a perfect match; we speculate some

nodes lie in symmetric structures in both graphs, and the un-

derlying GNN cannot provide distinguishable embeddings

for them. The runtime of SIGMA is competitive to the other

two baselines.

We provide an ablation study of the three components: multi-

step matching (T), stochastic framework (S), and dummy

nodes (D). The ablation study is conducted on noisy graphs

to show noticeable performance differences. Results are

given in Table 2. By comparing different T , we see more

refinement steps yields noticeable improvements on the PPI

dataset, though minor improvements on the BA datasets. Us-

ing dummy nodes has a clear advantage on this task. When

removing the dummy node, the prediction correctness drops

up to 43% on the BA dataset, and 1.5% on the PPI dataset.

Some “hard” nodes may have been aligned with dummy

nodes and make the matching problem easier. Performance

gain using stochasticity is limited in this task.
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Algorithm PASCAL VOC SPair-71k

BB-GM 80.1±0.6 78.9±0.4

SIGMA 81.2±0.2 79.8±0.2

Table 5. Mean Hits@1 (%) on PASCAL VOC and SPair-71k. Com-

pared method is BB-GM (Rolı́nek et al., 2020). SIGMA results

are reported following BB-GM’s experiment setting.

score by 3.1%. On average, the effectiveness of dummy

nodes and multi-step matching is minor on this task.

Our unsupervised setting, SIGMAU , shows a 3.4% improve-

ment over GMN on the average score and is on par perfor-

mance with PCA-GM. Note that both GMN and PCA-GM

are supervised. The QAP objective determines the predic-

tive capacity of SIGMAU . Once the QAP objective can

recognize the input graph’s topology, SIGMAU has the po-

tential to perform matching well. In the first two columns of

Figure 3, we see SIGMAU successfully matches the bottle

image pair but partially matches the dog image pair. We

guess that the bottle image pair presents a more recognizable

graph structure to the QAP objective (edges in green lines)

than the dog image pair. The last four columns in Figure

3 visualize four correctly matched samples from SIGMA.

SIGMA recovers node correspondences under various pose

changes.

Lastly, we compare SIGMA with recent method BB-GM

(Rolı́nek et al., 2020) using BB-GM’s representation learn-

ing method. Note that BB-GM focuses on learning rep-

resentations and uses a match solver as a blackbox. We

follow BB-GM’s experiment setting, and the main differ-

ences from the previous experiment include: 1) fine-tuning

VGG16’s weights and 2) computing node affinities Θ from

a weighted inner product (the weights of the inner product

are from the final VGG16 layer). Then we evaluate both

models on PASCAL VOC and SPair-71 (Min et al., 2019).

SPair-71k is similar to PASCAL VOC, but contains higher

quality images and richer keypoints annotations. Table 5

shows that SIGMA outperforms BB-GM in terms of mean

Hits@1.

6. Conclusion

We have introduced a new learning model, SIGMA, that

addresses graph matching problems. We presented two in-

novations in the design of this new model. First, the model

learns a distribution of matchings, instead of a single match-

ing, between a pair of graphs. Second, the model learns

to refine matchings through attending to matched nodes.

SIGMA consistently shows better performance than other

methods in terms of the matching quality, and at the same

time, retains a comparable running speed as the baselines.

SIGMA opens many possible directions. Since matchings

sampled from SIGMA are still like discrete variables, high-

level graph structure can still be well defined on these sam-

ples. Therefore, SIGMA can be applied to match high-order

graph structures such as paths and hyper-edges. With slight

modification, SIGMA can be applied to matching problems

beyond graph matching, such as matching tabular data to

knowledge graphs. We hope that this work not only brings

a new tool for graph matching but also inspires further re-

search in this direction.
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