LINKTELLER: Recovering Private Edges from
Graph Neural Networks via Influence Analysis

Fan Wu! Yunhui Long!

1University of Illinois at Urbana-Champaign
{fanw6, ylong4, lbo}@illinois.edu

Abstract—Graph structured data have enabled several success-
ful applications such as recommendation systems and traffic pre-
diction, given the rich node features and edges information. How-
ever, these high-dimensional features and high-order adjacency
information are usually heterogeneous and held by different
data holders in practice. Given such vertical data partition (e.g.,
one data holder will only own either the node features or edge
information), different data holders have to develop efficient joint
training protocols rather than directly transferring data to each
other due to privacy concerns. In this paper, we focus on the edge
privacy, and consider a training scenario where the data holder
Bob with node features will first send training node features to
Alice who owns the adjacency information. Alice will then train
a graph neural network (GNN) with the joint information and
provide an inference API to Bob. During inference time, Bob is
able to provide test node features and query the API to obtain
the predictions for test nodes. Under this setting, we first propose
a privacy attack LINKTELLER via influence analysis to infer the
private edge information held by Alice via designing adversarial
queries for Bob. We then empirically show that LINKTELLER is
able to recover a significant amount of private edges in different
settings, both including inductive (8 datasets) and transductive
(3 datasets), under different graph densities, significantly outper-
forming existing baselines. To further evaluate the privacy leak-
age for edges, we adapt an existing algorithm for differentially
private graph convolutional network (DP GCN) training as well
as propose a new DP GCN mechanism LAPGRAPH based on
Laplacian mechanism to evaluate LINKTELLER. We show that
these DP GCN mechanisms are not always resilient against LINK-
TELLER empirically under mild privacy guarantees (¢ > 5). Our
studies will shed light on future research towards designing more
resilient privacy-preserving GCN models; in the meantime, pro-
vide an in-depth understanding about the tradeoff between GCN
model utility and robustness against potential privacy attacks.

Index Terms—Graph Neural Networks, Edge Privacy Attack

I. INTRODUCTION

Graph neural networks (GNNs) have been widely applied
to different domains owing to their ability of modeling the
high-dimensional feature and high-order adjacency informa-
tion on both homogeneous and heterogeneous graph struc-
tured data [1]-[3]. The high-quality graph structured data have
enabled a range of successful applications, including traffic
prediction [4], recommendation systems [5], and abnormal
access detection [6]. As these applications are becoming more
and more prevalent, privacy concerns in these applications are
non-negligible given the sensitive information in the graph
data. Thus, undesirable outcomes may arise due to lack of
understanding of the models and application scenarios.

Ce Zhang? Bo Li'
2ETH Ziirich
ce.zhang@inf.ethz.ch

o) @ fi[1]o]1]0
@ @ ueries ®)
fslof1]1]0 fol1]0111
Q@ @@ predictions ‘ o @

fal1]ofolo] fslof1]1]1

Data Holder Alice Data Holder Bob

Fig. 1: Vertically partitioned graph data for different data holders.

In this paper, we aim at understanding the edge privacy
in applications of GNN models. We focus on one specific
scenario as training/serving GNN models in a vertically parti-
tioned graph setting. As illustrated in Figure 1, in this setting,
node features and adjacency information (edges) are isolated
or hosted by different data holders. Our interest in this setting
is inspired not only by recent academic research (e.g., Zhou et
al. [3] proposed a privacy-preserving GNN (PPGNN) mecha-
nism via homomorphic encryption under this setting) but also a
real-world industrial example we see and the potential privacy
risks it incurs. In such an example, an international Internet
company hopes to train a single GNN model jointly using
data collected by two of its subdivisions (namely, data holder
Alice and Bob). Because these subdivisions focus on different
products, their data are heterogeneous in nature. Specifically,
in this example, Alice collects user interaction (social network)
data (i.e., adjacency information), and Bob collects user be-
havior data (i.e., node features). Noticing the potential benefit
of integrating user interaction data into its predictive model,
Bob hopes to enrich the model using data collected by Alice.
Although they belong to the same company, directly copying
the user interaction data from Alice to Bob is not allowed due
to privacy concerns. Thus, Bob will first send training data
containing node features and labels to Alice, and Alice will
train a GNN model jointly with her edge information. Then
Alice will release an inference API to Bob. During inference,
Bob would send a new set of test nodes with their features to
query the API and obtain corresponding predictions. Different
users can query the API to enjoy the service from Alice. For
instance, in practice there are several ML/AI service platforms
that provide similar interactions—taking the training data from
users to train an ML model and providing inference APIs for
users to make queries with their test data—such as Vertex
Al [7] from Google Cloud, ParlAl platform [8] from Face-
book, and InfoSphere Virtual Data Pipeline [9] from IBM.

During this type of interaction, the fundamental question
is to understand the risks of edge privacy (mainly for data

holder Alice) for training and releasing a GNN inference API
on graph data, as well as possible ways to amortise such risks.

Challenges and Problem Formulation. The main motiva-
tion and challenge of the problem attributes to the hetero-
geneity of data—one data holder owns the features of users
(i.e., node features), while the other holds the “connections”
or “interactions” among users (i.e., adjacency information) as
shown in Figure 1. Inspired by this real-world example, we
abstract it into the following technical problem. Let there be n
users and A € {0,1}"*" be the adjacency information. Data
holder Alice has full access to adjacency information A while
it is kept secret from the data holder Bob. Bob interacts with
Alice during both training and inference stages.

1) Training: During training, Bob (or some other users) col-
lects (training) node features and labels for a subset of
users, forming a feature matrix X with label vector y, and
sends them to Alice. Alice then trains a GNN model using
all the node features from Bob and her collected adjacency
information A, and releases an inference API to Bob.

2) Inference: During inference, Bob collects features for an-
other (test) subset of users X', and sends them to Alice via
the inference API, who will run inference using the trained
GNN model, and return corresponding predictions.

Given this interaction model, we aim to ask: Whether the
inference API will leak private information of the adjacency
information to a potentially malicious user Bob indirectly?
How can we better protect the adjacency information from
privacy leakage while preserving high model utility?

Apart from this specific case, there have been similar con-
cerns from different real-world cases. For instance, the adver-
tisement department of Facebook would usually hold certain
public features of individuals (i.e., node features), and needs
to query the predictions from another department that holds
the social network connection information which is private.
Thus, how to protect the edge privacy in this setting is critical.
However, directly conducting such privacy attacks is challeng-
ing. For instance, given a large graph, naively comparing the
similarities between nodes to infer their connections is clearly
not enough. On the other hand, it is known that the trained
GNN is based on the node influence propagation [10]: If two
nodes are connected, there is a high chance that changing the
features of one would affect the prediction of the other. Thus,
we hope to address the research question: Is it possible to
design an effective edge re-identification attack against GNNs
based on the node influence information?

Different from existing work [11] which collects node pairs
with and without connections to train a model to infer the exis-
tence of an edge, in this paper, we aim to analyze and leverage
the node influence to predict potential edge connections. In
particular, we first propose an attack strategy LINKTELLER
under such a vertically data partitioned setting based on the
node influence analysis, and explore how much the private
adjacency information could be revealed from Alice via an-
swering queries from Bob. Then we will evaluate the proposed
LINKTELLER attack against both an existing and a proposed

differentially private graph convolutional network (DP GCN)
mechanisms to analyze whether the LINKTELLER could fur-
ther attack the privacy preserving GCN models. In addition,
we explore what is the safe privacy budget to choose in order
to protect the trained GCN models from being attacked by
privacy attacks such as LINKTELLER on different datasets via
extensive empirical evaluation.

Technical Contributions. In this paper, we focus on under-
standing the edge privacy risk and the strength of the privacy
protection mechanisms (e.g., DP) for vertically partitioned
graph learning. Specifically, we make following contributions.

1) We propose the first query based edge re-identification
attack LINKTELLER against GNN models by considering
the influence propagation in GNN training. We show that
it is possible to re-identify private edges effectively in a
vertically partitioned graph learning setting.

2) We explore and evaluate the proposed LINKTELLER attack
against different DP GCN mechanisms as countermeasures.
Since there is no DP GCN mechanism proposed so far,
we evaluate LINKTELLER against a standard DP strategy
EDGERAND on graph, and a proposed DP GCN approach
LAPGRAPH.

3) We provide formal privacy analysis for the two DP GCN
approaches and an upper bound for general edge re-
identification attack success rate on DP GCN mechanisms.

4) We design extensive experiments on eight datasets
under the inductive setting and three datasets under
the transductive setting to show that the proposed
LINKTELLER is able to achieve high attack precision and
recall, and significantly outperforms the random attack and
two state of the art methods. We show that both DP GCN
approaches are not always resilient against LINKTELLER
empirically under mild privacy guarantees.

5) We systematically depict the empirical tradeoff space
between (1) model utility—the quality of the trained GCN
model, and (2) privacy vulnerability—the risk of a GCN
model being successfully attacked. We carefully analyze
different regimes under which a data holder might want
to take different actions via evaluating a range of privacy
budgets, and we also analyze such tradeoff by selecting a
privacy budget via a validation dataset.

II. PRELIMINARIES

A. Graph Neural Networks

Graph Neural Networks (GNNs) [12] are commonly used
in semi-supervised node classification tasks on graphs. Given
a graph G = (V, E) with V denoting the nodes (n = |V|)
and F the edges, the adjacency matrix A C {0,1}"*™ is
a sparse matrix, where A;; = 1 denotes the existence of
an edge from node ¢ to node j. Since Graph Convolutional
Network (GCN) [13] is one most representative class of GNN,
we next introduce GCN, which is a stack of multiple graph
convolutional layers as defined below:

H*' = g(AH'WY), (1)

where A is the normalized adjacency matrix derived using a
certain normalization technique and o is the activation func-
tion. For the [-th graph convolutional layer, we denote the input
node embeddings by H', the output by H'*!, and the learnable
weight by . Each graph convolutional layer constructs the
embeddings for each node by aggregating the embeddings of
the node’s neighbors from the previous layer. Specifically, H
is the node feature matrix X.

GNNs were first proposed for transductive training where
training and testing occur on the same graph. Recently, induc-
tive learning has been widely studied and applied [14]-[17],
which is a setting where the trained GNNss are tested on unseen
nodes/graphs. There are two main application scenarios for the
inductive setting: 1) training on an evolving graph (e.g., social
networks, citation networks) for future use when more nodes
arise in the graph; 2) training on one graph belonging to a
group of similarly structured graphs, and transfer the model to
other graphs from the similar distribution. We consider both
the inductive and transductive settings in this paper.

B. Differential Privacy

Differential privacy [18] is a privacy notion that ensures an
algorithm only outputs general information about its training
data without revealing the information of individual records.

Definition 1 (Differential Privacy). A randomized algorithm
M with domain NI*! is (e, 0)-differentially private if for all
S C Range(M) and for all z,y € NI*l such that ||z —y||; < 1:

PriM(z) € 8] < exp(e) PriM(y) € S]

There are two extensions of differential privacy to pre-
serve private information in graph data. Edge differential pri-
vacy [19] protects the edge information, while node differential
privacy [20] protects the existence of nodes. A recent work has
proposed an algorithm to generate synthetic graphs under edge
local differential privacy [21], which provides privacy protec-
tion when the graph data is distributed among different users.
We consider a practical privacy model in the data partitioning
scenario where one data holder only owns either the edge or
node information, and we aim to protect the edge information
from being leaked during the training and inference processes.

III. LINKTELLER: LINK RE-IDENTIFICATION ATTACK

In this section, we focus on understanding the risk of edge
privacy leakage caused by exposing a GNN trained on private
graph data via an inference API. We first describe the interac-
tion model between data holders, and then the LINKTELLER
algorithm that probes the inference values between pairs of
nodes and uses these values as our confidence on whether
edges exist between pairs of nodes. As we will see, this attack
allows us to recover a significant number of edges from the
private graph structured data.

A. Interaction Model between Data Holders

We consider an ML application based on graph structured
data, where different data holders have access to different
information of the graphs (e.g., nodes or edges). More specifi-
cally, the graph edge information is not available to everyone,

~

VT,X(T],y(T) Training Stage‘:

]
]
]
]
]
|
1

v, xD
e [} Bob

|' LinkTeller
I Attack

GNN

Fig. 2: The interaction model. In the training stage, first, some
users send Alice the node set V(77 the associated features X (7
and labels y(T). Next, Alice trains a GNN model with corresponding
adjacency matrix Ay (), X (T), and y(T). In the inference stage, an
adversarial user Bob queries Alice with a test node set v and
associated features X, Alice outputs the prediction matrix P,

since the edge connections or interactions between the node
entities usually contain sensitive information, which can be
exploited for malicious purposes. Thus, we first make the
following abstraction of the data holder interaction.

As shown in Figure 2, the data holder Alice holds private
edge information of a graph, while other users hold the node
information, and due to privacy concerns, the sensitive edge
information from Alice cannot be directly shared. During the
training stage, in order to jointly train a GNN model on the
graph data, some users will first send the node features of the
training graph X (7) together with their labels y(7) for a set
of nodes V{T) to Alice; and Alice will train a GNN model
together with her edge connection information for future infer-
ence purpose by releasing an inference API to external users.

During the inference stage, a potential adversarial user Bob
will collect the node features of the inference graph X0 (e.g.,
patients in the next month) and obtain their predicted labels
from Alice via the inference API. Alice will then send the
prediction matrix P) formed by the prediction vector for
each node to Bob. Without loss of generality, in the following
we will use “Bob” to denote both the general users during
training and inference time and the adversary during inference,
although they are usually independent users in practice.

Next, we will define such training interaction formally. In
particular, we will use the lower case letter to denote a vector
and the upper case letter to denote a matrix. We denote the
set of nodes of the training graph held by Bob as V(T) =

v%T), véT), . ,vy(l,T)} C V. In the training stage, data holder
Bob will first send the corresponding node features X (7) and
labels y(T) to Alice. Here each label yi(T) takes the value
from a set of c classes. Then the data holder Alice who holds
the node connection information will generate the adjacency
matrix Ay C {0,1}"*", where AV(T)ij =1 if and only if
there is one edge between node v,ET) and vj(.T). This way, Alice
can leverage the node features and labels from Bob together
with her adjacency information to train a GNN model and

provide the model as a blackbox API, Ggg(-,-), for Bob.

The learned model parameters are denoted as {W?*}, where
Wi € R%>dit1 represents the weight of the i-th layer.

During the inference stage, the data holder Bob who owns
another set of nodes from the inference graph will query the
inference API for node prediction. In particular, given a set
of inference nodes V() C V, Bob will send the associated
node features X () to the trained GNN API Gpp(-,-). Then
together with the private adjacency matrix of inference graph
Ay, the API from Alice will make inference on the nodes,
and following the standard commercial ML inference services
such as Clarifai [22] and Google Vision API [23], Alice will
send the logits information back to Bob as below.

Gpa(VD XDy = GNN(Ay oy, XD {W).

For ease of reference, we denote the output prediction matrix
of Gpp(VWD X)) as PU), which is of shape [V]| x c.
Each row of the prediction matrix corresponds to one node in
V) and each column corresponds to the confidence for one
class. Alice will then send P() back to Bob.

We discuss more on the properties of V(T), V() and V.
It is worth noting that V' may not necessarily be a fixed set.
New nodes and edges may arise with time elapsing, though
Alice always has an up-to-date view of the graph structure. In
this case, V(7) can be nodes in the stale graph, and V) can
be the newly arisen nodes. There is also no restriction that all
nodes in V' should form a connected component. Rather, V' can
contain nodes in a group of graphs, as long as the grouping
makes logical and practical sense. Under this setting, V' (*)
and V) can be the nodes of different graphs in the group.

B. Overview of the Attack

We will first introduce the capability/knowledge of the at-
tacker, and then provide overview of the attack method. During
the attack, the attacker has access to a set of node features
and their labels which are required during training. During
inference, Bob is able to query the trained API for multiple
times with the subset of nodes that are of interest. That is to
say, the attacker’s capability includes the query access to a
blackbox GNN model and the obtained prediction probability
for a set of nodes during inference. Note that the attacker has
no information about the API model except that it is a GNN
model with unknown architecture and parameters. Unlike He
et al. [11] which assumes the knowledge of partial graphs or a
shadow dataset, here, we have no such additional assumptions.

The overview of the proposed link re-identification attack
LINKTELLER is as follows. The attacker plays the role of Bob
in the interaction model (Figure 2). The goal of the attacker is
to recover the connections among the inference node entities.
Concretely, during inference, attacker Bob will query the GNN
API with a set of inference nodes. With the returned prediction
probability vectors, Bob will infer the connections between
certain pairs of nodes. The attack succeeds if the attacker can
correctly determine whether two given nodes are connected by
a link or not. We use the standard metrics precision, indicating
what fraction of pairs inferred to be connected are indeed
connected in the graph; and recall, indicating what fraction of

the connected pairs are revealed, to measure the attack success
rate. We also evaluate the AUC scores.

Intuitions: Our attack is inspired by the intuition behind
the training of a GNN model—during training, if two nodes u
and v are connected by an edge, GNN would “propagate” the
information of w to v. As a result, if there is an edge from u to
v, we would expect that changing the feature vector of v would
impact the prediction of v. Thus, if we can compute the influ-
ence of one node on the other, we could use it to guess whether
there is an edge between the two nodes: If the influence value
is “large”, we would be more confident on the existence of
an edge; if the influence value is “small”, we would be more
confident that the nodes are not directly connected. Below, we
describe a concrete algorithm to approximate such an influence
value by probing the trained GNN inference APL

C. LINKTELLER: Edge Influence Based Attack

LINKTELLER attack proceeds in two phases. First, given
a collection of nodes V() at the inference time and the
inference API, Gpp(-,-), the attacker tries to calcluate the
influence value between each pair of nodes in V(). Second,
LINKTELLER then sorts all pairs of nodes by their influence
value, and predict the first m = k- @ node pairs with
highest influence values as “with edge” and all other pairs as
“without edge”. Herekisa hyperparameter specified by the
attacker, which indicates his prior “belief” of the graph density.
We call k the density belief, which is a key hyper-parameter
(details in Algorithm 1). In our experiments, we observe that
the attack performance will decrease slightly given the discrep-
ancy between estimated k and ground truth k. Nevertheless,
we show that LINKTELLER remains more effective than the
state-of-the-art attacks even with inaccurate estimation for k.
In practice, it is also possible for attackers to further
estimate k or the influence value rhreshold for edge re-
identification with additional knowledge. For instance, if the
attacker has partial graph information, she can either estimate
k, or directly calculate the influence values for known con-
nected/unconnected pairs and estimate the threshold for distin-
guishing them. More concrete descriptions of such actionable
strategies are deferred to Appendix E2, which we hope can
inspire more effective attacks as interesting future work.
Measuring Influence Values via the Inference API: Here
we describe the calculation of the influence value between a
node pair. Recall that in the interaction model, for any inquiry
involving a set of nodes and their features, the attacker Bob is
given a prediction vector for each node. With the hope of tak-
ing advantage of the prediction vectors to obtain the influence
value, we look into the structure of graph convolutional layers
and analyze the influence of an edge on its incident nodes.
We characterize the influence of one node v to the other
node v by measuring the change in the prediction for node
u when the features of the node v get reweighted. Formally,
let V() be the set of nodes involved in the inference stage
and X = [z],...,z),...]T be the corresponding feature
matrix. By upweighting the features of the node v by a
small value A, the attacker generates a new feature matrix

X' =[z{,...,(1+A)z],...]". The difference between the
two predictions P(Y) and P’Y) with respect to A denotes
the influence of reweighting v on the prediction of all other
nodes. We define the influence matrix of v on other nodes as
I, =lima_o (P — PU)) /A with size [V x ¢ Its u-th
Tow 1., € I, represents the prediction influence vector of v on
u for each class dimension. Finally, we compute the /5 norm of
the corresponding influence vector as the influence value of v
on u as ||iy,||. Since computing the influence matrix I, yields
the influence of one node v on all other nodes, to compute the
influence value between n? pairs of nodes (n is the number of
nodes of interest), we only need to compute n influence matri-
ces, each for one node in the interested node set. This requires
2n forward passes of the trained network in all, which does
not constitute a significant overhead during inference time. We
report the running time of LINKTELLER in Appendix G3.
Next, we will theoretically show that the influence value
|liyy|| comes with a nice property for GCN models, that is,
two nodes that are at least k+ 1 hops away have no influence
on each other in a k-layer graph convolutional network. We
start from the simple case of a 1-layer GCN in Proposition 1.

Proposition 1 (Influence value of a 1-layer GCN). For a I-
layer trained GCN model with parameters W, when its input
adjacency matrix is A and feature matrix is X, when there
is no edge between node u and node v, the influence value
liwull = 0.

We omit the proof in Appendix Al and next present a
natural extension of the above conclusion for a k-layer GCN.

Theorem 1 (Influence value for a k-layer GCN). For a k-
layer trained GCN model, when node vu and node v are at
least k + 1 hops away, the influence value ||i,,| = 0.

The complete proof is provided in Appendix A2. With the
guarantee provided by Proposition 1, we can identify the con-
nected pairs against a 1-layer GCN with high confidence; the
criterion is that the pair is connected if and only if the influ-
ence value is non-zero. For GCNs with more layers, though
this criterion does not directly apply, Theorem 1 can help to
rule out nodes that are k + 1 hops apart, thus eliminating
a significant number of negative examples (i.e., unconnected
pairs). Moreover, the node pairs that are directly connected
would have higher influence values, observed by studies on
local neighborhood properties [17]. Although there is no strict
guarantee that the influence values of the connected pairs
are the largest since the values also depend on the features
and the learned weights, in practice, the learned weights will
generally display a preference for connected pairs for better
label propagation, and thus the corresponding influence values
of connected pairs are larger.

IV. COUNTERMEASURES OF LINKTELLER:
DIFFERENTIALLY PRIVATE GCN

In this section, we aim to evaluate to what extent the pro-
posed LINKTELLER in Section III-B reveals the private con-
nection information effectively through a trained GCN, as well

Algorithm 1: Link Re-identification Attack (LINK TELLER)

Input: A set of nodes of interest V() C V(I); the associated node
features X; the inference API Ggp(-,-); density belief k,
reweighting scale A

Output: a 0/1 value for each pair of nodes, indicating the

absence/presence of edge

1 Function InfluenceMatrix (V) X, Geg(,),v):

2 P=Gpp(VD, X)

3 X' =[zf,...,QA+2)=z],...,]T

4 P =Gpp(VWD, X"

5 I=%(P'-P)

6 return [

7
8 for each node v € V() do

9 I + InfluenceMatrix (V) X, Ggeg(),v)

10 for each node u € V() do

11 L tuv < ||[I[u,:]]] > The norm of the u-th row of I

12 Sort all 744 in a descending order
1B n<+ |V|
umek-
15 Assign 1 to the first m pairs, and O to the remaining

n(n—1)

as the sufficient conditions of the attack, via considering differ-
ent countermeasure approaches. The most direct countermea-
sure or defense against such an attack would be a differentially
private GCN model. However, so far there is no existing work
directly training differentially private GCN models to our best
knowledge. As a result, we first revisit the general framework
and principles of developing a differentially private (DP) GCN
against such edge re-identification attacks (Section IV-A). We
then formally define the DP GCN, followed by two proposed
practical algorithms to train a DP GCN. We also discuss the
upper bound of the precision of general edge re-identification
attacks on DP GCNs. Importantly, we point out that the
theoretical guarantee of differential privacy is insufficient in
preserving both privacy and utility for a GCN. It is equally
important to empirically choose an appropriate privacy budget
to strike a better privacy-utility balance.

A. Overview of DP GCN Framework

In the following sections, we review the definition of edge
differential privacy for graph algorithms [19] and present two
practical DP GCN training algorithms via graph structure in-
put perturbation. Input perturbation for GCN is a non-trivial
problem since naively adding noise to the graph structure
would destroy the sparsity of the adjacency matrix. The loss
of sparsity greatly limits a GCN’s performance and increases
its memory and computation cost.

To preserve the sparsity of the adjacency matrix, we discuss
two approaches for GCN input perturbation: EDGERAND and
LAPGRAPH. EDGERAND adapts the idea in Miille er al. [24]
and randomly flips each entry in the adjacency matrix ac-
cording to a Bernoulli random variable. LAPGRAPH improves
upon EDGERAND by pre-calculating the original graph density
using a small privacy budget and using that density to clip the
perturbed adjacency matrix. Compared to EDGERAND, LAP-
GRAPH preserves the sparsity of the adjacency matrix under
a small privacy budget.

Differentially Private GCN: In edge differential pri-
vacy [19], two undirected graphs are said to be neighbors if
one graph can be obtained by the other by adding/removing
one edge. Definition 2 defines the neighboring relation using
the adjacency matrix representation.

Definition 2 (Neighboring relation). Let A be the set of ad-
jacency matrices of undirected graphs. Any pair of two sym-
metric matrices A, A’ € A are said to be neighbors when the
graph represented by A’ could be obtained by adding/removing
one edge from graph A, denoted as A ~ A’. Further, we
denote the differing edge as e = A @ A'.

Definition 3 (c-edge differential privacy). A mechanism M
is e-edge differentially private if for all valid matrix A € A,
and A’ ~ A, and any subset of outputs S C Range(M), the
following holds:

Pr[M(A) € S] < exp(e) - PriM(4") € S].)
The probability Pr is taken over the randomness of M.

Definition 3 formally presents the definition of -edge dif-
ferential privacy (e-edge DP). It guarantees that the outputs of
a mechanism M should be indistinguishable on any pair of
neighboring input graphs differing in one edge.

Next, we apply e-edge DP to a GCN. To protect against
link re-identification attacks, we need to guarantee that a
GCN’s inference results do not reveal the edge information
of its input graph. Specifically, in the inductive training, the
edge information of both the training graph and the inference
graph should be protected. In addition, the privacy protection
should hold even if the attacker submits an infinite number of
inference queries.

Based on the above criteria, we first perturb the graphs
before training a GCN. Since the training and the inference
steps are both post-processing on the perturbed DP graphs,
the edge information is protected for both the training and
inference graphs. Moreover, submitting more queries would
not reveal sensitive edge information.

We present the detailed algorithm of perturbation, train-
ing, and inference in a differentially private GCN framework
in Algorithm 2 in Appendix DI1. First, the adjacency matrix
A is perturbed to meet the DP guarantee. Second, a DP GCN
model is trained on a subset of training nodes in the perturbed
graph. Finally, during inference, the DP GCN model is used
to predict the labels for a subset of inference nodes in the
perturbed graph. Essentially, e-edge DP is achieved in the step
of adjacency matrix perturbation (line 1-2), and the guaran-
tee is provided by the privacy guarantee of the perturbation
mechanism. Since the same perturbed graph is used for both
the training and inference steps, making multiple inferences
would not consume additional privacy budget.

The following theorem provides differential privacy guaran-
tee for the training procedure in Algorithm 2 for GCN models.

Theorem 2 (e-edge differentially private GCN). The DP GCN
model trained by Algorithm 2 is c-edge differentially private

if the perturbation mechanism M. is c-edge differentially pri-
vate.

We omit all proofs for the DP guarantees in Appendix B.
Next, we show that the Inference step in Algorithm 2 guar-
antees e-edge DP for edges in both the training and testing
graph (Ay r and Ay-r)). To prove this privacy guarantee, we
first introduce the parallel composition property of e-edge DP.

Lemma 1 (Parallel composition of e-edge DP). If the per-
turbation mechanism M. is e-edge differentially private and
Ay, A, ..., Ay, are adjacency matrices with non-overlapping
edges, the combination of M:(A1), Mc(As),..., M (Ay,) is
also c-edge differentially private.

The following theorem guarantees differential privacy for
any inference using the DP GCN model.

Theorem 3 (c-edge differentially private GCN inference).
The Inference step in Algorithm 2 is c-edge differentially
private for any V) C V.

The above analysis of the general DP GCN framework
provides privacy guarantees for GCN models trained following
the principles in Algorithm 2. Next, we will introduce two
such concrete training mechanisms.

B. Practical DP GCN

In Algorithm 2, the perturbation step M, takes the adjacency
matrix of the input graph and adds noise to the adjacency
matrix to guarantee e-edge DP. In this section, we present two
practical DP mechanisms for this process.

The intuition behind perturbing the adjacency matrix is to
add enough noise in the adjacency matrix to guarantee the
indistinguishability between any pair of neighboring adjacency
matrices A and A’—the ratio of the probability of getting the
same perturbed matrix from A and A’ should be bounded by a
small constant €. The smaller ¢ is, the stronger the protection
is.

In addition to the privacy requirements, the perturbed ad-
jacency matrix A’ also needs to satisfy the following two
requirements in order to be used as a training/inference graph
for DP GCN. First, for large graphs, A’ needs to preserve a
reasonable level of sparsity to avoid huge memory consump-
tion when training a GCN model. Second, each row in the
perturbed adjacency matrix A’ should represent the same node
as its corresponding row in the original adjacency matrix A.
This requirement ensures that the node features and labels can
be associated with the right graph structure information in the
perturbed adjacency matrix during training and inference.

However, the second requirement is often not satisfied by
prior work on DP synthetic graph generation [21], [25]-[28].
This line of work aims at generating graphs that share similar
statistics with the original graphs. Though the desired statistics
of the graphs are preserved, the nodes in the generated graph
and the original graph are intrinsically unrelated. Therefore,
the new DP graph structure cannot be connected with the node
features and labels to train a DP GCN model. More discussions
on prior works are provided in the related work section.

To satisfy the privacy and utility requirements for DP GCN,
we introduce two perturbation methods that directly add noise
to the adjacency matrix.

1) Edge Randomization (EDGERAND): We set out with a
discrete perturbation method proposed in Miille et al. [24].
This algorithm was originally proposed as a pre-processing
step for DP node clustering. Since the algorithm naturally pre-
serves the sparse structure of the adjacency matrix, we adopt
it as the input perturbation algorithm for DP GCN and name
it EDGERAND. We present the algorithm for EDGERAND
in Algorithm 3 in Appendix D2. We first randomly choose
the cells to perturb and then randomly choose the target value
from {0, 1} for each cell to be perturbed.

In EDGERAND, the level of the sparsity of the perturbed
adjacency matrix is purely determined by the sampling param-
eter s, which can be conveniently controlled to adapt to the
given privacy budget €. The relationship between s and ¢ is
characterized in Theorem 4.

Theorem 4. EDGERAND guarantees e-edge DP for ¢ >
In(2-1), se(0,1].

S

EDGERAND guarantees differential privacy for the per-
turbed adjacency matrix. However, the privacy protection
comes at the cost of changing the density of the perturbed
graph. Let the density of the input graph to EDGERAND be
k, the expectation of the density of the output graph is k' =
(1—s)k+s/2. Take € = 1 as an example, in this case, s shall
be at least 0.5379 according to Theorem 4, and &’ is therefore
larger than 1/4. As such, when ¢ is small, the perturbed graph
generated by EDGERAND could have a much higher density
compared to the original one. This would increase the memory
consumption for training DP GCNs on large graphs and may
cause memory errors when the perturbed adjacency matrix
becomes too dense to fit into the memory.

2) Laplace Mechanism for Graphs (LAPGRAPH):
EDGERAND is not applicable to large graphs under small pri-
vacy budgets due to the huge memory consumption caused by
a dense adjacency matrix. Therefore, we propose LAPGRAPH
to address this problem.

The classical idea of adding Laplace noise to the private
value is also applicable to our scenario. The difference is that,
in traditional scenarios, Laplace noise is applied to entities
such as a database entry, while in our case, the private entity is
the adjacency matrix. Therefore, additional care shall be taken
to tailor the Laplace mechanism to the graph scenario.

By the definition of Laplace mechanism [18], adding a
certain amount of noise to each cell in the adjacency matrix
will lead to any two neighboring adjacency matrices being
indistinguishable. However, directly applying this mechanism
will add a huge amount of continuous noise to each cell of
the adjacency matrix, which inevitably undermines the sparse
property of the matrix. The loss of sparse property introduces
two problems: First, it drastically increases the computation
and memory cost of training a GCN. Second, adding the con-
tinuous noise in the adjacency matrix is equivalent to adding
new weighted edges between almost every pair of nodes in

the graph, which greatly impairs the utility of the adjacency
matrix and, consequently, the GCN trained on it.

To retain the sparsity, after adding noise, we only keep
the largest T cells as existing edges in the perturbed graph.
To preserve the original graph structure, we set 7' to be the
approximation of the number of edges in the original graph
using a small portion of the differential privacy budget. We
name the perturbation method LAPGRAPH and present the
details in Algorithm 4 in Appendix D2. The privacy guarantee
for this method is given in Theorem 5.

Compared with EDGERAND, LAPGRAPH has the advantage
of better preserving the density of the original graph, espe-
cially for large graphs and small €. Since the number of edges
in a large graph is often orders of magnitude higher than the
sensitivity of adding/removing a single edge, it is possible to
estimate 1" even under a very limited privacy budget. Thus, the
density of the perturbed graph is much closer to the original
one than EDGERAND. This improvement makes it possible to
train DP GCN on large graphs under small privacy budgets
without causing memory errors.

Theorem 5. LAPGRAPH guarantees c-edge DP.

Due to the lack of DP GCN approaches, here we focus on
the existing technique EDGERAND and the proposed LAP-
GRAPH to provide DP guarantees for GCN as countermeasures
to further evaluate the proposed attack LINKTELLER. We have
provided the formal analysis for the privacy guarantees for
EDGERAND and LAPGRAPH above, and next, we will discuss
a general upper bound of edge privacy on DP GCN models.

C. Discussion: Upper Bound of Edge Re-Identification Attack
Performance on DP GCN

As implied by e-edge DP in Definition 3, it is generally
difficult to tell, among the two neighboring adjacency matri-
ces A and A’, which one leads to the observed prediction.
The direct consequence of the indistinguishability is that the
existence of the differing edge e = A& A’ cannot be inferred.
In this section, we aim to analyze the upper bound of edge
re-identification attacks against DP GCN.

Same as the attack model introduced in Section III-B, we
assume the attacker has access to a set of node features and
their labels without any knowledge about the GCN structure
and parameters.

To start with, we formalize the link re-identification attack
proposed in Section III-B as the following game between the
graph owner Alice and the attacker Bob:

1) Let V be a set of nodes and Ay be the set of all possible
adjacency matrices for graphs with nodes V. First, Alice
selects an adjacency matrix A € Ay uniformly at random
and uses it to generate a graph.

2) Bob selects a set of training nodes V(T) C V. He sends
V(1) with the features and labels of V(7) to Alice.

3) Alice then trains an e-edge differentially private GCN
model and exposes the inference API Gpp to Bob.

4) Bob selects a set of inference nodes V) C V and nodes of
interests V() C V), Let k(©) denote the graph density

over V(©). For each pair of nodes < u,v >€ V(€ x V()
Bob launches a link re-identification attack R¢, , (u, v) to
infer whether an edge exists between nodes u and v, and
Rayps(u,v) € {0,1}.

To obtain an upper bound for the above attack, we assume
the attacker knows the inference node density %(©). Formally,
we bound the expected precision of the link re-identification
attack R by the following theorem.

Theorem 6. The precision of Ragy, over nodes of interests
V(O with density k'©) is upper-bounded by:
— — (@)

uv) - S °)
<uyv>€5’(rc)xv(c) [A 1| Rapg(u,v) =1] <exp(e) -k
where the probability is calculated over the randomness in the
graph selection, the noise introduced by the DP GCN training,
and the selection of node pair < u,v >.

Proof Sketch. Based on Definition 3 and Bayes’ theorem,
the ratio between the posterior probability Pr[A,, = 1 |
Gpp € S] and the prior belief on Pr[A,, = 1] is bounded by
exp(e). Since the precision of a random guess based on the
prior probability (i.e., the graph density) is at most k£(©), the
upper bound for the precision of a link re-identification attack
on an e-edge differentially private GCN is exp(e) - k(©). The
complete proof is provided in Appendix C.

Although Theorem 6 provides a theoretical upper bound for
the precision of an edge re-identification attack, it may not
be sufficiently tight to provide the best privacy-utility trade-
off. For example, given a graph with 1% density, the attack
precision is bounded below 2% (i.e., no more than two times
higher than random guessing using the prior probability) if
and only if € < In 2. However, in practice, the same empirical
protection might be achieved by a model with weaker privacy
protection (i.e., higher privacy budget) and therefore better
utility. Thus, in Section VI-B, we empirically evaluate the
privacy-utility trade-off of DP GCN across multiple datasets.

In addition to DP GCN approaches, it may also be possible
to leverage some heuristics to detect such attacks. For instance,
one may distinguish the abnormal behavior of querying the
same set of inference nodes V/) multiple times (with the
node features of one node slightly altered in each query). The
defender could also optimize a query limit () which decreases
the attack performance while maintaining reasonable benign
query accuracy, although there is no guarantee for such detec-
tion. More discussions on the detection strategies are deferred
to Appendix El, and in this paper, we will focus on the DP
GCN mechanisms with privacy guarantees.

V. EVALUATION OF LINKTELLER

We evaluate the effectiveness of the LINKTELLER attack
on multiple graph datasets under various scenarios compared
with three baselines. In particular, we investigate how different
factors such as node degree affect the attack performance.

A. Datasets

We evaluate LINKTELLER on eight datasets in the induc-
tive setting and three datasets in the fransductive setting (Ap-
pendix F1) and provide a brief description of the data below.

Under the inductive setting, the first dataset is the rwirch
dataset [29] which is composed of 6 graphs as disjoint sets
of nodes. Each of the graphs represents a set of people in
one country; the nodes within a graph represent users in one
country, and the links represent mutual friendships between
users. The dimension of the features is the same across differ-
ent graphs and each dimension has the same semantic mean-
ing. Some sampled features include games they like, location,
and streaming habits. The task is a binary classification task
which classifies whether a streamer uses explicit language.
This dataset is proposed for transfer learning, i.e., applying the
model learned on one graph to make inferences on the other
graphs corresponding to different countries. In our evaluation,
we train the GNN model on the graph twitch-ES, and trans-
fer it to other five countries (RU, DE, FR, ENGB, PTBR).
PPI [14] and Flickr [16] are another two standard datasets
used in graph inductive learning setting. PPI is a dataset for
multi-label classification task, which aims to categorize the
function of proteins across various biological protein-protein
interaction graphs. Flickr is an evolving graph for the classifi-
cation task, which contains descriptions and common proper-
ties of images as node features. For both PPI and Flickr, we
use the standard splits for training and testing following the
previous works. Under the transductive setting, we adopt three
standard datasets (Cora, Citeseer, and Pubmed). More details
of the data can be found in Appendix F1.

B. Models

We mainly experiment with GCN models. The configu-
rations/hyperparameters include the normalization techniques
applied to the adjacency matrix, the number of hidden layers,
the number of input units, hidden units, and output units, as
well as the dropout rate. For each combination of hyperparam-
eters, we train the network to minimize the cross-entropy loss
for the intended tasks. We performed grid search to get the best
set of hyperparameters on the validation set. The search space
for the hyperparameters and the formulae for different normal-
ization techniques are provided in Appendix F. To measure
the performance of a GCN model, we follow previous work
and use F1 score for their corresponding binary classification
tasks. We leave the description of the best hyper-parameters
we achieve in Appendix F5. In addition to the 2-layer GCNs
evaluated in the main paper, in Appendix G2, we also ex-
perimented with the 3-layer GCNs and include a discussion
about GCNs of 1 layer and more than 3 layers. We conclude
that LINKTELLER is a successful attack against most practical
GCN models. In addition, we evaluate LINKTELLER on Graph
Attention Networks (GATs). The details are in Section V-F.

C. Setup of the Evaluation

In this section, we first describe the metrics we use to
evaluate the attack effectiveness of LINKTELLER. We then
present the baseline attack methods.

1) Evaluation Metrics of the attack: We use the standard
metrics: precision (the fraction of existing edges among the
pairs recognized as true by Bob) and recall (the fraction of
edges discovered by Bob over all existing edges among the

subset of nodes). We also compute the F1 score (the harmonic
mean of precision and recall). The reason we adopt the met-
ric is that our problem here (distinguishing connected pairs
from unconnected ones) is an imbalanced binary classification
problem where the minority (the connected pair) is at the core
of concern. See Appendix F2 for more details. Additionally,
for fair comparison with baselines, we follow the evaluation
in He et al. [11] and compute the AUC score.

2) Baseline Attacks: We compare LINKTELLER with two
baselines: random attack and LSA2 attacks in He et al. [11].

For the random attack, we follow the standard notion and
construct a random classifier as a Bernoulli random variable
with parameter p which predicts true if and only if the random
variable takes the value 1 [30]. Given a set of instances where
a of them are true and b are false, the precision of this classifier
is a/(a + b) and the recall is p. In our case, a is the number
of connected pairs of nodes, while a + b is the number of
all pairs. Therefore, precision is exactly the density k of the
subset, which we formally define as k& = 2m/(n(n — 1)),
where n = |V(©)] is the size of the set of interest and m is
the number of connections among the set V(¢). The recall of
such a random classifier will be the density belief k.

We also compare LINKTELLER with the state of the art
LSAZ2 attacks [11]. In the paper, the authors discussed several
types of background knowledge including node attributes, par-
tial graph, and a shadow dataset for attackers. Among the com-
binations, their Aftack-2 is closest to our scenario where the
attacker has only access to the target graph’s node features. We
follow their best practices, computing the correlation distance
between 1) posteriors given by the target model and 2) node
attributes, referred to as LSA2-post and LSA2-attr attacks.

D. Evaluation Protocol

Think about the paparazzi who are fanatical about exploit-
ing the connections among celebrities, or the indiscriminate
criminals that are maliciously targeted at the mass mediocre
majority, their targets are substantially different. Consequently,
the subsets they gather for attack have diverse node degree dis-
tributions. Catering to the need of evaluating our attack against
nodes of different degree distributions, we design the scenario
as follows. We consider three types of subsets that are of
potential interest to the attacker: nodes of low degree, uncon-
strained degree, and high degree. For each type, we randomly
sample a fixed number (%) of nodes to form a subset V(¢ for
evaluation. When sampling nodes of low (or high) degree, we
place a threshold value dg (or dpign) and sample from nodes
whose degrees are no larger than dj,y, (or no smaller than
dhign). The value dioy and dpien are chosen empirically based
on the graph. When sampling nodes of unconstrained degree,
we sample nodes from the entire test set uniformly at random.

More specifically, for all datasets, we choose n(¢) =
|V(©)| = 500. For twitch datasets, to form the unconstrained
subset, we sample from each entire testing graph. For the low
degree subset and high degree subset, the threshold d, and
dnign are set to 5 and 10, respectively. We set the d)q,, value
to 10 for twitch-PTBR, since the graph is much denser with

abundant connections among a small number of nodes. For
PPI and Flickr graphs, the subsets for testing are sampled from
the testing graphs/nodes that are not involved in training. We
set digw as 15 and dpigh as 30 for these two large graphs.

We also evaluate different density belief k € {k/4,k/2,k,
2k, 4k}, where k is the true density. In the experiments, we
round the density k to the closest value in its most signifi-
cant bit (e.g., 5.61e-5 rounded to 6e-5). As we will see, the
effectiveness of LINKTELLER does not heavily depend on the
exact knowledge of the density k.

E. Evaluation for LINKTELLER

We first evaluate the precision, recall, and AUC of LINK-
TELLER on eight datasets in the inductive setting, under 3 sam-
pling strategies (low, unconstrained, and high degree), using 5
density beliefs (k/4,k/2, k, 2k, 4k), compared with different
baselines. For each scenario, the reported results are averaged
over 3 runs using different random seeds for node sampling.

We report the precision, recall, and AUC results on some
datasets in Table I and Table II and the remaining datasets
in Appendix G4 due to the space limit. We leave the results of
the weak random attack baseline in Appendix G1. As a brief
summary, LINKTELLER significantly outperforms the random
attack baseline. We mainly focus on the comparison with
LSA2 attacks [11]. We show that LINKTELLER significantly
outperforms these two baselines. In Table I, LSA2-{post, attr}
fail to attack in most of the scenarios, while LINKTELLER
attains fairly high precision and recall. The AUC scores in Ta-
ble II also demonstrate the advantage of LINKTELLER. Since
the baselines LSA2-{post, attr} are only performed under
transductive setting in He et al. [11], to demonstrate the gener-
ality of LINKTELLER, we also compare with them following
the same evaluation protocol as in He er al. [11] on three
datasets in the transductive setting. The results are reported
in Appendix G5. We can see that the inductive setting is indeed
more challenging: the baselines always fail to attack in the
inductive setting while LINKTELLER is effective; the baselines
are able to re-identify some private edges in the transductive
setting, while LINKTELLER is consistently more effective.

Intuitively, the high attack effectiveness of LINKTELLER
compared to baselines is because that LSA2-{post, attr} only
leverage node-level information (posteriors or node attributes)
to perform the edge re-identification attack. Although these
node-level features can be correlated with the graph structure
in some graphs, this correlation is not guaranteed, especially in
the inductive setting. In comparison, LINKTELLER leverages
the graph-structure information inferred from the inter-node
influence in a GCN model according to Theorem 1. We defer
more detailed comparison and analysis in Appendix ES.

In addition, it is clear that given an accurate estimation
of the density (k = k), LINKTELLER achieves very high
precision and recall across different node degree distributions
and datasets. It is interesting to see that even when the density
estimation is inaccurate (e.g., k € {k/4,k/2,2k,4k}), the
attack is still effective. Concretely, when the belief is smaller
(l% = k/2), the precision values increase in all cases; when the

TABLE I: Attack Performance (Precision and Recall) of LINK-
TELLER on different datasets, compared with two baseline methods
LSA2-{post, attr} [11]. Each table corresponds to a dataset. We
sample nodes of low, unconstrained, and high degrees as our targets.
Groups of rows represent different density belief k of the attacker.

twitch-RU low unconstrained high
k Method precision recall precision recall precision recall
Ours 10004 oo 33.04 28 9514 11 2605 10 9894 02 1811 13
k/4 LSA2-post 0.0+ o0 0.0+ o0 0.0+ oo 0.0+ o0 0.2+ o3 0.0+ o1
LSA2-attr 0.0+ oo 0.0+ oo 1.3+ os 0.4+ o1 25+ 13 04+ 02
Ours 1000+ oo 6135 51 8794 o4 4814 235 9715 03 3562 26
k/2 LSA2-post 0.0+ o0 0.0+ o0 0.0+ 00 0.0+ 00 0.1+ 02 0.0+ o1
LSA2-attr 0.0 + 00 0.0 + 00 1.7+ 02 0.9 + o1 2.5+ os 09+ o1
Ours 7874 19 92,64 ss 7184 22 7854 24 8974 17 6574 39
k LSA2-post 0.0+ oo 0.0+ o0 0.0+ o0 0.0+ o0 0.1+ o1 0.0+ o1
LSA2-attr 0.0+ oo 0.0+ o0 L1+ o1 1.2+ o1 22+ 06 1.6+ 03
Ours 4274 34 100.04 oo 4354 19 9504 o5 6294 42 91.8- 13
2k LSA2-post 0.7 + 09 1.8+ 25 0.0+ o0 0.0+ o0 0.0+ o0 0.0+ o1
LSA2-attr 1.3+ 09 32+ 23 0.8+ o1 1.8+ 03 2.0+ 03 2.8+ 03
Ours 2134 17 10005 oo 2254 11 9815 o6 3364 25 98.05 04
4k LSA2-post 03+ os 1.8+ 25 0.0+ o0 0.1+ o1 0.0+ 00 0.0+ o1
LSA2-attr 0.7 + os 32+ 23 0.7 + o1 3.0+ os 1.6 + 03 4.6+ os
twitch-FR low unconstrained high
i Method precision recall precision recall precision recall
Ours 10004 oo 2834 24 9724 09 2274 06 9944 05 2412
k/4 LSA2-post 0.0+ o0 0.0+ oo 02+ 02 0.0+ o1 0.5+ 02 0.1+ oo
LSA2-attr 0.0+ oo 0.0+ o0 0.6+ 04 0.1+ o1 1.9+ o7 0.5+ o1
Ours 10004 oo 50.04 oo 9504 10 4435 13 9834 10 4775 as
k/2 LSA2-post 0.0+ o0 0.0+ oo 0.1+ o1 0.0+ o1 0.3+ o1 0.1+ oo
LSA2-attr 0.0+ oo 0.0+ o0 0.6 + 02 03+ o1 1.4+ o2 0.7+ o0
Ours 9254 54 9254 sa 8414 37 7824 19 8324 14 8062 67
k LSA2-post 0.0+ o0 0.0+ o0 0.0+ o1 0.0+ o1 0.1+ 00 0.1+ o0
LSA2-attr 0.0+ oo 0.0+ oo 0.8 + 02 0.7+ o2 1.4+ 02 1.3+ o1
Ours 5114 16 100.04 oo 5134 210 9534 13 4914 27 9485 2
2k LSA2-post 0.0+ oo 0.0+ oo 0.0+ o0 0.0+ o1 0.1+ o0 0.1+ oo
LSA2-attr 1.7+ 24 334+ 47 0.8+ o1 1.4+ 02 1.6 + 02 3.1+ 03
Ours 256+ o3 100.04 oo 2654 11 9834 10 2544 18 97.6- 16
4k LSA2-post 0.0+ oo 0.0+ o0 0.0+ o0 0.0+ o1 0.0+ 00 0.1+ o0
LSA2-attr 0.8+ 12 334 47 1.0+ o2 3.7+ o3 1.5+ o1 5.7+ oa
PPI low unconstrained high
k Method precision recall precision recall precision recall
Ours 10002 oo 2613 22 9953 o7 2591 27 9972 o3 216z os
k/4 LSA2-post 0.0+ oo 0.0+ o0 0.0+ o0 0.0+ o0 1.4+ o6 03+ o1
LSA2-attr 0.0+ o0 0.0+ o0 0.0+ o0 0.0+ o0 1.3+ o7 0.3+ o1
Ours 10004 oo 47.64 47 9954 o8 5154 54 9974 02 4332 16
k/2 LSA2-post 0.0+ o0 0.0+ oo 03+ 04 0.1+ o2 1.6+ os 0.7+ 02
LSA2-attr 0.0+ oo 0.0+ o0 0.0+ o0 0.0+ o0 0.6+ 03 03+ o1
Ours 9874 19 8924 79 8954 65 9194 37 98.04 o3 8511 32
k LSA2-post 0.0+ oo 0.0+ o0 03+ 02 03+ 02 2.1+ os 1.8+ o6
LSA2-attr 0.0+ oo 0.0+ o0 0.1+ o2 0.1+ o2 0.3+ 02 03+ o1
Ours 567+ 66 100.04 o0 49.04 54 10004 oo 5774 23 100.0=: oo
2k LSA2-post 0.0+ o0 0.0+ o0 0.3+ 02 0.5+ o4 2.1+ o1 3.6+ 03
LSA2-attr 0.0+ oo 0.0+ oo 0.1+ o1 0.1+ o2 0.2+ o1 03+ o1
Ours 2834 33 100.04 oo 2454 27 100.04 oo 2884+ 12 100.0- oo
4k LSA2-post 0.0+ oo 0.0+ o0 03+ o1 1.3+ 03 2.0+ o0 7.0+ o1
LSA2-attr 0.3+ os 1.1+ 16 0.0+ o0 0.1+ 02 0.1+ o0 0.3+ o1
Flickr low unconstrained high
k Method precision recall precision recall precision recall
Ours 833426 2614 55 6394307 1844 90 1494 33 38: 13
k/4 LSA2-post 0.0+ oo 0.0+ o0 0.0+ o0 0.0+ o0 1.4+ 20 0.4+ o6
LSA2-attr 0.0+ oo 0.0+ oo 0.0+ o0 0.0+ 00 0.7+ 10 02+ 03
Ours 6392 104 3832103 600425 29735107 19.64 28 99 19
k/2 LSA2-post 0.0+ oo 0.0+ oo 0.0+ o0 0.0+ o0 1.8+ 11 09+ o6
LSA2-attr 0.0+ o0 0.0+ o0 0.0+ o0 0.0+ o0 04+ o5 0.2+ 03
Ours 5104 70 5334 47 3384133 3214 133 1824 45 1854 a1
k LSA2-post 0.0+ o0 0.0+ oo 0.0+ oo 0.0+ oo 23+ 07 23+ 09
LSA2-attr 0.0+ oo 0.0+ o0 0.0+ o0 0.0+ o0 0.3+ o4 03+ 04
Ours 3454 67 7114 150 2734 84 5035 168 1334 17 2681 s6
2k LSA2-post 0.0+ oo 0.0+ o0 0.0+ o0 0.0+ 00 1.6 £ o6 32+ 13
LSA2-attr 0.0+ oo 0.0+ o0 0.0+ o0 0.0+ o0 0.4+ o4 0.8+ 09
Ours 2174 24 8614 104 1984 30 7194 w06 924 08 37331 w1
4k LSA2-post 0.0+ oo 0.0+ oo 0.0+ o0 0.0+ o0 1.3+ 03 53+ 12
LSA2-attr 0.0+ oo 0.0+ oo 0.0+ o0 0.0+ o0 0.3+ 02 1.3+ 09

TABLE II: AUC of LINKTELLER comparing with two baselines
LSA2-{post, attr}. Each column corresponds to one dataset. Groups
of rows represent sampled nodes of different degrees.

Method Dataset

RU DE FR ENGB PTBR PPI Flickr

Ours 1.00: 000 1.00= 000 1.00: 000 1.004 000 1.004 o0 1.004 000 1.00 2 000
low LSA2-post 0.58 004 0.58 £009 0.67 £006 0.56 002 0.59 £o001 0.70 £005 0.65 + 009
LSA2-attr 0.72 003 0.77 008 0.82+002 0.62+00s 0.74 000 0.48 o008 0.62+014

Ours 1.00 4 000 1.00 000 0.99= 000 1004 000 1.004 000 1.004 000 1.00 4 000
LSA2-post 0.51 +000 0.52+003 0.51 £001 0.54 £ 001 0.51 £ 001 0.64 000 0.70 + 0.08
LSA2-attr 0.53 £003 0.51 £002 0.53 o001 0.61 £002 049 £oo 048 £o02 0.49 + o004

Ours 1.004 000 1.00 4 000 0994 001 0.99 4 000 0994 000 1.004 000 0.97 4 000
high LSA2-post 0.52+o001 05100 0.52xo01 05400 0.51+00 0.57+00 0.69 o001
LSA2-attr 0.46 £ o001 0.50 002 0.50 £001 05500 0.46+00 048100 0.51+00

Degree

uncon-
strained

belief is larger (l% = 2k), almost all recall values are above
90% except for Flickr. Even under extremely inaccurate esti-
mations such as k = k /4 (or k= 4k), the precision values (or
the recall values) are mostly higher than 95%. This observation
demonstrates the generality of LINKTELLER. We notice that
LINKTELLER’s performance on Flickr is slightly poorer than
other datasets. This may be because that the trained GCN on
Flickr does not achieve good performance given its highly
sparse structure. This implies that the parameters of the trained
network on Flickr may not capture the graph structure very
well, and thus negatively influencing the attack performance.

F. Beyond GCNs: LINKTELLER on GATs

In this section, we aim to study the effectiveness of LINK-
TELLER on other GNNs. Since the rule of information prop-
agation holds almost ubiquitously in GNNs, we hypothesize
that our influence analysis based LINKTELLER can also suc-
cessfully attack other types of GNNs. We directly apply Al-
gorithm 1 on another classical model—Graph Attention Net-
works (GATs) [31], aiming to investigate the transferability of
our influence analysis based attack from GCNs.

We evaluate the attack on the two large datasets PPI and
Flickr introduced in Table IV. For both datasets, we train a 3-
layer GAT. We leave details of the architecture and hyperpa-
rameters to Appendix F6 and report the result in Table III. Al-
though LINKTELLER still significantly outperforms the base-
lines, it is less effective than that on GCNs. This is mainly due
to the different structures of GCNs and GATSs, which leads to
different influence calculations for the two models (one related
to the graph convolution and the other related to the attention
mechanism). We provide more discussion on conveniently
adapting LINKTELLER to other architectures in Appendix E4.

VI. EVALUATION OF DIFFERENTIALLY PRIVATE GCN

In this section, we aim to understand the capability of
LINKTELLER attack by experimenting with potential ways
to defend against it. In particular, we examine whether it
is possible to weaken the effectiveness of LINKTELLER by
ensuring the e-edge DP guarantee of the GCN model. We
further investigate the utility of the DP GCN models. In the
end, we demonstrate the tradeoff between privacy and utility,
which may be of interest to practitioners who wish to use DP
GCNs to defend against LINKTELLER.

In particular, we aim to evaluate the attack effectiveness of
LINKTELLER and the model utility on four types of models:
DP GCN models derived using DP mechanisms EDGERAND

TABLE III: Attack Performance (Precision and Recall) of LINK-
TELLER on GAT.

GAT, PPI low unconstrained high

k Method precision recall precision recall precision recall
Ours 834 us 214 29 2124 97 584 33 3605 s6 785 09
k/4 LSA2-post 0.0+ o0 0.0+ o0 0.0+ oo 0.0+ o0 34+ o5 0.7+ o1
LSA2-attr 0.0+ oo 0.0+ oo 0.0+ o0 0.0+ 00 1.3+ o7 03+ o1
Ours 143 17 534 53 1954 o3 994 44 2662 14 1152 oa
k/2 LSA2-post 0.0+ oo 0.0+ oo 03+ o4 0.1+ o2 38+ os 1.7+ o4
LSA2-attr 0.0+ oo 0.0+ o0 0.0+ o0 0.0+ o0 0.6+ 03 03+ o1
Ours 2054 36 1254 45 1274 64 1284 sz 1854 21 16.0- 17
k LSA2-post 0.0+ o0 0.0+ oo 0.4+ 03 0.4+ o4 33+ o8 2.8+ o6
LSA2-attr 0.0+ oo 0.0+ o0 0.1+ 02 0.1+ o2 03+ 02 03+ o1
Ours 107+ 19 1254 as 754 38 1514 65 1254 10 2175 14
2k LSA2-post 0.0+ oo 0.0+ o0 0.5+ o2 1.1+ os 3.0+ o4 53+ o5
LSA2-attr 0.0+ oo 0.0+ o0 0.1+ o1 0.1+ o2 0.2+ o1 03+ o1
Ours 531 09 1254 as 544 15 2174 s 794 o7 2754 13
4k LSA2-post 0.7+ 09 2.1+ 29 09+ o1 3.6+ 09 2.7+ 02 9.2+ o5
LSA2-attr 03+ os LI+ 16 0.0+ o0 0.1+ 02 0.1+ o0 03+ o1

GAT, Flickr low unconstrained high

k Method precision recall precision recall precision recall
Ours 33.3 4 471 834 us 834 us 244 34 1454 a2 3.6 03
k/4 LSA2-post 0.0+ o0 0.0+ oo 0.0+ oo 0.0+ oo 0.4+ os 0.1+ o1
LSA2-attr 0.0+ oo 0.0+ o0 0.0+ o0 0.0+ o0 0.7+ 10 02+ 03
Ours 16.7 + 256 834 us 484 67 244 34 734 17 3.6 03
k/2 LSA2-post 0.0+ o0 0.0+ o0 0.0+ o0 0.0+ oo 0.4+ o3 02+ o1
LSA2-attr 0.0+ oo 0.0+ o0 0.0+ o0 0.0+ 00 0.4+ o5 02+ 03
Ours 832 s 834 us 594 a3 574 a2 424 10 424 o7
k LSA2-post 0.0+ oo 0.0+ oo 0.0+ o0 0.0+ o0 0.2+ 02 02+ o1
LSA2-attr 0.0+ oo 0.0+ oo 0.0+ o0 0.0+ o0 0.3+ o4 03+ 04
Ours 424 s 834 us 3.04 22 574 a2 264 o6 514 o9
2k LSA2-post 0.0+ o0 0.0+ oo 0.0+ o0 0.0+ oo 0.4+ 02 0.7+ 04
LSA2-attr 0.0+ oo 0.0+ o0 0.0+ o0 0.0+ o0 0.4+ o4 0.8+ 09
Ours 224 31 834 us 154 11 574 a2 134 o3 514 o9
4k LSA2-post 0.0+ oo 0.0+ o0 0.0+ o0 0.0+ 00 0.3+ 00 1.2+ 02
LSA2-attr 0.0+ oo 0.0+ o0 0.0+ o0 0.0+ 00 03+ 02 1.3+ 09

and LAPGRAPH, vanilla GCN models which have no privacy
guarantee, as well as multi-layer perceptron (MLP) models
with only node features. We note that MLP can be viewed as
“perfectly” private since the edge information is not involved.

A. Datasets and Models

We use the datasets described in Section V-A. The DP
GCN models are derived using DP mechanisms EDGERAND
and LAPGRAPH under various privacy guarantees. For each
privacy budget €, we execute the procedure outlined in Algo-
rithm 2, first getting a perturbed copy of the adjacency matrix,
then using the perturbed training graph to train a GCN. We
follow the criteria in Section V-B for parameter searching and
model training, and leave more descriptions to Appendix F4.

We provide an evaluation of the model utility, aiming to
characterize the tradeoff between model utility and the suc-
cess rate of LINKTELLER. In evaluating the utility of the DP
GCNs, we compare with two baseline models: 1) vanilla GCNs
which are expected to have higher utility, though vulnerable to
LINKTELLER as previously shown; 2) MLPs trained only on
node features which may achieve lower classification utility
but provide perfect protection of the edge information due to
the non-involvement of edge information in the model.

B. DP GCN against LINKTELLER

We validate the effectiveness of LINKTELLER under various
levels of privacy guarantees. We first provide the experimental
setup, followed by concrete results including comparisons of
the attack effectiveness of LINKTELLER on different models.

1) Experimental Setup: We inspect the effectiveness of
LINKTELLER on DP GCN using the same setup as Sec-
tion V-D. Similar to Section V-E, we use precision and recall
to evaluate the attack. For each dataset, we consider all combi-
nations of 2 DP mechanisms (EDGERAND and LAPGRAPH),
10 privacy budgets (1.0,2.0,...,10.0), 3 sampling strategies
(low, unconstrained, and high degree), and 5 density beliefs
(k/4,k/2,k,2k,4k). The reported result of each scenario is
averaged over 3 runs with different random seeds for sampling.

2) Evaluation Results: We leave the full evaluation results
for all scenarios in Appendix G4 and focus on density belief
k = k here. In Figure 3(b), we plot the FI score of the attack
w.r.t. DP budget . We see that the effectiveness of LINK-
TELLER decreases as a result of applying DP. Particularly, the
F1 score becomes almost O when the privacy budget € becomes
smaller. When ¢ is large, however, the protection offered by
DP is limited. In these cases, LINKTELLER is able to achieve a
success rate close to that of attacking the non-private baseline.

We also note that the node degree distribution has an impact
on the performance of LINKTELLER. The trend is clear that
as the node degree increases, the attack success rate increases
substantially. Together with our previous observation in the
non-private scenario that the attack success rate does not differ
much for varying node degrees, we conclude that DP can offer
better protection to low degree nodes than high degree nodes.
We offer a simple and intuitive explanation as follows. By the
design of EDGERAND and LAPGRAPH, the perturbations in all
cells of the matrix are independent. As a result, nodes of low
degree (those incident to fewer edges) are more susceptible to
the influence, and therefore better protected by DP.

C. Model Utility Given DP Protection

We next present the evaluation of the model utility, not only
to complement the evaluation of the DP GCNs, but also to
provide insights about the tradeoff between model utility and
robustness against the LINKTELLER attack.

1) Experimental Setup: We evaluate the influence of ap-
plying DP (EDGERAND and LAPGRAPH) on the utility of
the GCN models by comparing the results with two baseline
models (a non-private vanilla GCN model and a “perfectly”
private MLP baseline). We adopt the same metric to evaluate
the utility of all four models: F1 score of the rare class for
the twitch datasets and micro-averaged F1 score for PPI and
Flickr datasets. The rationale is put in Appendix F2.

2) Evaluation Results: The figures for the model utility are
presented in Figure 3(a). We plot the change of the utility
with the increase of privacy budget of two DP mechanisms
EDGERAND and LAPGRAPH, as well as the utility of two
baseline models independent of the privacy budget. For each
privacy budget ¢, the reported results are averaged over 10 runs
for different random seeds. We examine Figure 3(a) to see how
the model utility of DP methods compares with the baselines.
We first compare the performance of two baseline models:
GCN (the black horizontal line) and MLP (the red line). We
note that GCN is almost always better than MLP except on
the PPI dataset. The observation is well suited to our intuition

—— EdgeRand —— LapGraph vanilaGCN —— MLP

twitch-RU twitch-DE twitch-FR

123 45678910 123456788910 %®
€

twitch-ENGB

0% 054 038 066 g)

=028 0.35 4 .

8oz 052 033 064 y

»).4(

— o2 050 g'x 062 040 y

L o022 ﬁ S= , 03

020 0.48 025 060 o ou

023 .06 S S S S W W

12345678910

twitch-PTBR Flickr

o o

8 %
coeo o0
£5838
o o o o
8 8 8

123 45678910 123 4567891 123 456 78 910
€

(a) Model utility

—— EdgeRand —— LapGraph —— vanilla GCN

twitch-RU twitch-DE twitch-FR

-
1 08
y 04
: 02
L 00

123 45678 910
10

X 08

06

4 04

: 02
0.

123 45867 8910
1.

low

F1 score
o o o o o
R
e © © 9 o -
ggg2s ¢
oo o o
gggs

123 4567 8 910

unconstrained
F1 score
s 828

00
123 4567 8 910
0

twitch-ENGB

123456 78 910

00 0.0
123456 78 910
10 10

twitch-PTBR Flickr

2 2 92 2 2 ;
o v » & ®
o o o o o
58 R & &
©o 90990 o0oc
o2V &R &

123 45678910 123 45678 910 123 45678910
0 10

e o 29
S 828 &
e o o o
S 888
oo oo

o 2R &R

123 45678910 123 45678910 12345678 910
10 06

high
F1 score
o oo
R
e & © 9 © =
gRes e
oo oo
gRgegsgse
gege

X
1234567 8910

123 456 78 910
€ €

123 4567 8 910
€

0 00
12345678910
€

e 9o 22
SR &8
e 2 2 o
[
©c oo oo
2838 &

.0 0
123 45678910 123 4567 8910 123 45678 910
€ € €

(b) Attack effectiveness on different models and node degree distributions (low, unconstrained, and high)

Fig. 3: (a) Model utility and (b) attack effectiveness on different models (l;; = k). Each column corresponds to a dataset. We consider four
types of models: EDGERAND, LAPGRAPH, vanilla GCN, and MLP, with the first two satisfying DP guarantees. In each figure, the vertical

bar represents the standard deviation.

=1 =5 = =10

twitch-RU

e N s

twitch-DE twitch-FR

F1 score

twitch-ENGB

twitch-PTBR

Flickr

os o

o o
||||| 0 a0 | | |
B » 55 6301115162021.2526 2071526 041454630 50- 55 610 1215162021252630 133 640 AL45 650 50

os
oa

os

% N o *° s e e

5 610 s

o
s
a
Do
ind
o1
s

LAPGRAPH EDGERAND

rs s

o
o o
o -
o
o
o || o
o I o)
.

‘ os
5 rY s o s

o

5

»
Degree Degree Degree

Degree Degree Degree Degree

Fig. 4: F1 score of nodes with different degrees under privacy budget ¢ € {1, 5,10} for two DP mechanisms (EDGERAND and LAPGRAPH).
Each bar group represents a degree range, e.g., 1-5, 6-10, 50-. Each bar within a group corresponds to one privacy budget.

that the knowledge of the graph structure can benefit learning.
For most datasets, the model utility increases with the growth
of the privacy budget, since the privacy protection to the graph
structure becomes weaker. However, twitch-ENGB is an ex-
ception that achieves slightly higher utility when more privacy
noise is added. This may be due to the following reason. For
twitch datasets, the model is trained on the graph of twitch-ES
and tested on graphs of other five countries. When the training
and testing graph distribution distance is too large, there is no
guarantee that the performance on the training graph can be
transferred to the testing graph. This is the case for twitch-
ENGB, which is an extremely sparse graph (see Table IV(a))
compared with the training graph. Thus, with slightly more

random noise added, its generalization may be improved. In
addition to the evaluation over a range of €, we also evaluate
such tradeoff of model utility and privacy resiliency by select-
ing appropriate € based on a validation dataset. The detailed
setups and results are omitted to Appendix G6.

D. Tradeoff between Model Utility and Privacy

We analyze the tradeoff between model utility and the attack
performance: models with high utility tend to be more vulnera-
ble to LINKTELLER. The sweet spot differs across datasets and
scenarios. Summarizing the observations, we derive a series
of conclusions on how to protect privacy given the gap of the
model utility between the vanilla GCN and the MLP model.
First, if the utility of the vanilla GCN is much higher than the

MLP model, then there is space for performance degradation
caused by ensuring privacy. We do observe a few cases where
the utility of the DP model is above the MLP baseline, and
the attack success rate at that point is relatively low, especially
under the low degree case, e.g., the DP model on twitch-RU
when € = 7. In such cases, carefully choosing an ¢ will give
the practitioner fairly good utility and a certain level of privacy
guarantee simultaneously. Second, when the performance of
the vanilla GCN only exceeds MLP by a small margin, almost
all DP models that can effectively defend against the attack
suffer tremendous utility loss. We point out that most scenarios
fall under this category, where either privacy or utility will
be sacrificed. This further substantiates the power of LINK-
TELLER. Third, when the graph structure hurts learning (e.g.,
PPI), we may avoid using the graph structure in training by
using MLP. There might exist other graph neural networks that
can achieve better performance on datasets like PPI, and ap-
plying LINKTELLER to these models are exciting future work.

Utility and privacy of low-degree nodes. As noted
in Section VI-B, DP GCN offers better protection to nodes of
low degree. A natural question is then: does better protection
imply a degradation of utility of these nodes? To answer this
question, we separate the nodes into bins by degree (e.g., 1-5,
6-10, ..., 46-50, 50-), and investigate the F1 score of nodes
in each individual bin. The results on all datasets, two DP
mechanisms, with three privacy budgets are presented in Fig-
ure 4. We can see that the utility for low-degree nodes does not
drop faster than high-degree nodes when the privacy budget
decreases, which indicates that DP GCN does not sacrifice the
utility of low-degree nodes particularly.

Discussion: EDGERAND or LAPGRAPH. We further
compare the results of the two mechanisms regarding model
utility and attack success rate. When ¢ is small, the utility of
EDGERAND and LAPGRAPH do not differ much (especially
on PPI). When ¢ is large, EDGERAND generally has better
model utility, while LAPGRAPH is more robust to LINK-
TELLER. The results for EDGERAND are incomplete for the
large scale dataset Flickr under tight privacy budgets (¢ € {1,
2,3,4}) using EDGERAND. Under these cases, the graphs
become much denser after perturbation of large magnitudes,
and we experience an OOM error using an 11 GB GPU. In
comparison, LAPGRAPH does not suffer such an issue.

VII. RELATED WORK

1) Privacy Attack on Graphs: This topic was widely
studied [32]-[35] before graph neural networks came into
play. There are mainly three types of privacy attacks on
graphs: identity disclosure, attribute disclosure, and link re-
identification [32], corresponding to different components
(nodes, node attributes, and edges) of a graph. In this paper, we
focus on edge privacy. Previous endeavors have illustrated the
feasibility of the link re-identification attack, whilst relying on
strong prior knowledge and information that arguably might
not always hold or accessible. For example, when prior knowl-
edge about the graph is available—e.g., nodes with similar
attributes or predictions are likely connected—He et al. [11]

claim that an attacker could infer links in the training graph by
applying methods such as clustering to predict connections for
nodes within the same cluster. Duddu et al. [36] show that with
access to the node embeddings trained to preserve the graph
structure, one can recover edges by analyzing predictions
based on the embeddings. Apart from the privacy attacks, there
exist other adversarial attacks on GNNs, e.g., against node
embeddings [37] and graph- and node-level classifiers [38].
Despite the promising attacks illustrated by these early en-
deavors, there is a clear need to weaken the assumptions for
more reliable, practical settings. In this paper, we thus answer:
to what extent can we recover private edges of a graph by
probing a trained blackbox GNN model without strong prior
knowledge? Could we leverage the property of influence prop-
agation among nodes in GNNs to design an effective attack?

2) Differential Privacy for Graphs: Differential pri-
vacy [18] is a notion of privacy that entails that the outputs
of the model on neighboring inputs are close. This privacy
requirement ends up obscuring the influence of any individual
training instance on the model output. There are a series of
works that examine the theoretical guarantee or the practi-
cal performance of models under differential privacy guaran-
tees [39]-[44]. Depending on the properties of the datasets,
e.g., the distinction between the distribution of members
and non-members and the underlying correlations within the
datasets, there is no trivial answer to this problem.

The extension of differential privacy to the graph setting
was first conducted in Hay et al. [45]. Since then, there has
been extensive research on computing graph statistics such as
degree distribution [45], cut queries [46], and sub-graph count-
ing queries [47] under edge or node differential privacy. These
statistics are useful for graph analysis but insufficient for train-
ing a GCN model. Thus, in this paper, to evaluate the strength
of the LINKTELLER attack, we adapt one existing algorithm
EDGERAND and propose a Laplacian mechanism LAPGRAPH
for training DP GCN models as evaluation baselines.

VIII. CONCLUSIONS

We propose the first edge re-identification attack LINK-
TELLER via influence analysis against GNNs. We also evalu-
ate LINKTELLER against differentially private GNNs trained
using an existing and a proposed DP mechanisms EDGERAND
and LAPGRAPH to understand the capability of the attack.
Extensive experiments on real-world datasets (8 for inductive
and 3 for transductive setting) demonstrate the effectiveness
of LINKTELLER in revealing private edge information, even
when there are certain privacy guarantees provided by a DP
mechanism.

We believe this work will inspire a range of future re-
search opportunities and lay down a foundation for future
explorations by providing a clear data isolation problem setup,
analysis of edge privacy, together with extensive empirical
observations and conclusions.

Acknowledgement. This work is partially supported by the
NSF grant No.1910100, NSF CNS 20-46726 CAR, NSF
TRASE (ECCS-2020289), and Amazon Research Award.

[1]

[2]

[3

=

[4

=

[5

=

[6

=

[7]

[8]
[9

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

REFERENCES

J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2015, pp. 3431-3440.

Y. Wei, X. Wang, L. Nie, X. He, R. Hong, and T.-S. Chua, “Mmgcn:
Multi-modal graph convolution network for personalized recommenda-
tion of micro-video,” in Proceedings of the 27th ACM International
Conference on Multimedia, 2019, pp. 1437-1445.

J. Zhou, C. Chen, L. Zheng, X. Zheng, B. Wu, Z. Liu, and L. Wang,
“Privacy-preserving graph neural network for node classification,” arXiv
preprint arXiv:2005.11903, 2020.

L. Zhao, Y. Song, C. Zhang, Y. Liu, P. Wang, T. Lin, M. Deng,
and H. Li, “T-gcn: A temporal graph convolutional network for
traffic prediction,” IEEE Transactions on Intelligent Transportation
Systems, vol. 21, no. 9, p. 3848-3858, Sep 2020. [Online]. Available:
http://dx.doi.org/10.1109/TITS.2019.2935152

R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and
J. Leskovec, “Graph convolutional neural networks for web-scale
recommender systems.” in KDD, Y. Guo and F. Farooq, Eds. ACM,
2018, pp. 974-983. [Online]. Available: http://dblp.uni-trier.de/db/conf/
kdd/kdd2018.html#YingHCEHL 18

J. Jiang, J. Chen, T. Gu, K. R. Choo, C. Liu, M. Yu, W. Huang, and
P. Mohapatra, “Anomaly detection with graph convolutional networks
for insider threat and fraud detection,” in MILCOM 2019 - 2019 IEEE
Military Communications Conference (MILCOM), 2019, pp. 109-114.
“Vertex ai — google cloud,” https://cloud.google.com/vertex-ai, (Ac-
cessed on 06/22/2021).

“Parlai,” https://ai.facebook.com/tools/parlai, (Accessed on 06/22/2021).

“Infosphere virtual data pipeline — ibm,” https://www.ibm.
com/products/ibm-infosphere-virtual-data-pipeline, ~ (Accessed on
06/22/2021).

J. Klicpera, A. Bojchevski, and S. Glinnemann, “Predict then propagate:
Graph neural networks meet personalized pagerank,” arXiv preprint
arXiv:1810.05997, 2018.

X. He, J. Jia, M. Backes, N. Z. Gong, and Y. Zhang,
“Stealing links from graph neural networks,” in 30th USENIX
Security Symposium (USENIX Security 21). USENIX Association,
Aug. 2021. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity21/presentation/he-xinlei

Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A
comprehensive survey on graph neural networks,” IEEE transactions on
neural networks and learning systems, 2020.

T. N. Kipf and M. Welling, “Semi-Supervised Classification with
Graph Convolutional Networks,” in Proceedings of the 5th International
Conference on Learning Representations, ser. ICLR *17, 2017. [Online].
Available: https://openreview.net/forum?id=SJU4ayYgl

W. L. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs.” in NIPS, 1. Guyon, U. von Luxburg,
S. Bengio, H. M. Wallach, R. Fergus, S. V. N. Vishwanathan,
and R. Garnett, Eds., 2017, pp. 1024-1034. [Online]. Available:
http://dblp.uni-trier.de/db/conf/nips/nips2017.html#HamiltonYL17

Y. Rong, W. Huang, T. Xu, and J. Huang, “Dropedge: Towards
deep graph convolutional networks on node classification.” in /CLR.
OpenReview.net, 2020. [Online]. Available: http://dblp.uni-trier.de/db/
conf/iclr/iclr2020.htm1#RongHXH20

H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. K. Prasanna,
“Graphsaint: Graph sampling based inductive learning method.” in
ICLR. OpenReview.net, 2020. [Online]. Available: http://dblp.uni-trier.
de/db/conf/iclr/iclr2020.html#ZengZSKP20

K. Xu, C. Li, Y. Tian, T. Sonobe, K.-i. Kawarabayashi, and S. Jegelka,
“Representation learning on graphs with jumping knowledge networks,”
in International Conference on Machine Learning. PMLR, 2018, pp.
5453-5462.

C. Dwork and A. Roth, The Algorithmic Foundations of Differential
Privacy, 2014. [Online]. Available: https://www.cis.upenn.edu/~aaroth/
Papers/privacybook.pdf

V. Karwa, S. Raskhodnikova, A. Smith, and G. Yaroslavtsev, “Private
analysis of graph structure,” ACM Trans. Database Syst., vol. 39, no. 3,
Oct. 2014. [Online]. Available: https://doi.org/10.1145/2611523

S. P. Kasiviswanathan, K. Nissim, S. Raskhodnikova, and A. Smith,
“Analyzing graphs with node differential privacy,” in Theory of Cryp-
tography Conference. Springer, 2013, pp. 457-476.

[21]

(22]

[23

[t

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

Z. Qin, T. Yu, Y. Yang, I. Khalil, X. Xiao, and K. Ren, “Generating
synthetic decentralized social graphs with local differential privacy,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, 2017, pp. 425-438.

G. Sood, clarifai: R Client for the Clarifai API, 2017, r package version
0.4.2.

“Vision ai — derive image insights via ml — cloud vision api,” https:
/lcloud.google.com/vision, (Accessed on 08/01/2021).

Y. Miille, C. Clifton, and K. Bohm, “Privacy-integrated graph clustering
through differential privacy,” CEUR Workshop Proceedings, vol. 1330,
pp. 247-254, 01 2015.

A. Sala, X. Zhao, C. Wilson, H. Zheng, and B. Y. Zhao, “Sharing graphs
using differentially private graph models,” in Proceedings of the 2011
ACM SIGCOMM conference on Internet measurement conference, 2011,
pp. 81-98.

Y. Wang and X. Wu, “Preserving differential privacy in degree-
correlation based graph generation,” vol. 6, no. 2, p. 127-145, Aug.
2013.

Q. Xiao, R. Chen, and K.-L. Tan, “Differentially private network data
release via structural inference,” in Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discovery and data
mining, 2014, pp. 911-920.

S. Brunet, S. Canard, S. Gambs, and B. Olivier, “Novel differentially
private mechanisms for graphs.” IACR Cryptology ePrint Archive,
vol. 2016, p. 745, 2016. [Online]. Available: http://dblp.uni-trier.de/db/
journals/iacr/iacr2016.html#BrunetCGO16

B. Rozemberczki, C. Allen, and R. Sarkar, “Multi-scale attributed node
embedding,” 2019.

P. Flach and M. Kull, “Precision-recall-gain curves: Pr analysis
done right,” in Advances in Neural Information Processing
Systems, C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and
R. Garnett, Eds., vol. 28. Curran Associates, Inc., 2015, pp. 838-
846. [Online]. Available: https://proceedings.neurips.cc/paper/2015/file/
33e8075e9970de0cfead55afd4644bb2-Paper.pdf

P. Velickovi¢, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Ben-
gio, “Graph attention networks,” arXiv preprint arXiv:1710.10903, 2017.
E. Zheleva and L. Getoor, “Preserving the privacy of sensitive relation-
ships in graph data,” in Proceedings of the First SIGKDD International
Workshop on Privacy, Security, and Trust in KDD (PinKDD 2007), ser.
Lecture Notes in Computer Science, vol. 4890. Springer, March 2007,
pp. 153-171.

M. Hay, G. Miklau, D. Jensen, P. Weis, and S. Srivastava, “Anonymizing
social networks,” University of Massachusetts Amherst, Tech. Rep. 07-
19, March 2007.

L. Zhang and W. Zhang, “Edge anonymity in social network graphs.” in
CSE (4). IEEE Computer Society, 2009, pp. 1-8. [Online]. Available:
http://dblp.uni-trier.de/db/conf/cse/cse2009-4.html#ZhangZ09

A. M. Fard, K. Wang, and P. S. Yu, “Limiting link disclosure in social
network analysis through subgraph-wise perturbation.” in EDBT, E. A.
Rundensteiner, V. Markl, I. Manolescu, S. Amer-Yahia, F. Naumann,
and I. Ari, Eds. ACM, 2012, pp. 109-119. [Online]. Available:
http://dblp.uni-trier.de/db/conf/edbt/edbt2012.html#FardWY 12

V. Duddu, A. Boutet, and V. Shejwalkar, “Quantifying privacy leakage
in graph embedding,” 2020.

A. Bojchevski and S. Giinnemann, “Adversarial attacks on node em-
beddings via graph poisoning,” in International Conference on Machine
Learning. PMLR, 2019, pp. 695-704.

H. Dai, H. Li, T. Tian, X. Huang, L. Wang, J. Zhu, and L. Song, “Ad-
versarial attack on graph structured data,” in International conference
on machine learning. PMLR, 2018, pp. 1115-1124.

N. Li, W. Qardaji, D. Su, Y. Wu, and W. Yang, “Membership privacy:
A unifying framework for privacy definitions,” in Proceedings of the
2013 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’13. New York, NY, USA: Association for
Computing Machinery, 2013, p. 889-900. [Online]. Available: https:
//doi.org/10.1145/2508859.2516686

S. Yeom, I. Giacomelli, M. Fredrikson, and S. Jha, “Privacy risk in
machine learning: Analyzing the connection to overfitting,” 2018 IEEE
31st Computer Security Foundations Symposium (CSF), pp. 268-282,
2018.

B. Jayaraman and D. Evans, “Evaluating differentially private machine
learning in practice,” in 28th USENIX Security Symposium (USENIX
Security 19). Santa Clara, CA: USENIX Association, Aug. 2019,

pp. 1895-1912. [Online]. Available: https://www.usenix.org/conference/

usenixsecurity 19/presentation/jayaraman

U. Erlingsson, I. Mironov, A. Raghunathan, and S. Song, “That which

we call private,” CoRR, vol. abs/1908.03566, 2019. [Online]. Available:

http://arxiv.org/abs/1908.03566

B. Jayaraman, L. Wang, K. Knipmeyer, Q. Gu, and D. Evans, “Revisiting

membership inference under realistic assumptions,” 2020.

T. Humphries, M. Rafuse, L. Tulloch, S. Oya, I. Goldberg, and F. Ker-

schbaum, “Differentially private learning does not bound membership

inference,” 2020.

M. Hay, C. Li, G. Miklau, and D. Jensen, “Accurate estimation of the

degree distribution of private networks,” in 2009 Ninth IEEE Interna-

tional Conference on Data Mining. 1EEE, 2009, pp. 169-178.

[46] J. Blocki, A. Blum, A. Datta, and O. Sheffet, “The johnson-lindenstrauss
transform itself preserves differential privacy,” in 2012 IEEE 53rd An-

[42]

[43]

[44]

[45]

nual Symposium on Foundations of Computer Science. 1EEE, 2012,
pp. 410-419.
[47] ——, “Differentially private data analysis of social networks via re-

stricted sensitivity,” in Proceedings of the 4th conference on Innovations
in Theoretical Computer Science, 2013, pp. 87-96.

F. D. McSherry, “Privacy integrated queries: an extensible platform
for privacy-preserving data analysis,” in Proceedings of the 2009 ACM
SIGMOD International Conference on Management of data, 2009, pp.
19-30.

[49] W. Brendel, J. Rauber, and M. Bethge, “Decision-based adversarial
attacks: Reliable attacks against black-box machine learning models,”
arXiv preprint arXiv:1712.04248, 2017.

Y. Dong, H. Su, B. Wu, Z. Li, W. Liu, T. Zhang, and J. Zhu, “Effi-
cient decision-based black-box adversarial attacks on face recognition,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019, pp. 7714-7722.

Q. Li, Z. Han, and X.-M. Wu, “Deeper insights into graph convolutional
networks for semi-supervised learning,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 32, no. 1, 2018.

(48]

[50]
[51]

APPENDIX
A. Proofs for Influence Analysis in LINKTELLER
1) Proof of Proposition 1:

Proof. Consider the 1-layer GCN, where
GCN(A, X, W) = AXW. 3)

For the simplicity of the proof, we ignore the normalization
applied to the adjacency matrix A, since it only changes the
scale of numbers in the matrix. We next calculate the influence
value of a pair of nodes against this 1-layer GCN according to
the function InfluenceValue described in Algorithm 1.

Following the notation in Algorithm 1, let the set of infer-
ence nodes be V), the node feature matrix associated with
the inference node set be X. We further denote the adjacency
matrix induced on this node set as A. Taking a pair of nodes
u, v from the set of nodes of interest V(C), we calculate the
influence value of this pair of nodes following the steps in

InfluenceMatrix:

P=Gpp(V', X)=GCN(A, X, W) = AXW,

T
X' = [m?,...,(l—&-A)xI,...,] ,

P =Gpp(V',X') = GCN(A, X', W) = AX'W,
P —P=AX — X)W = AXaAW,
where X A is a matrix of the same size as X that only contains

value in each v-th row. Specifically, the v-th row vector of XA

is equal to Az, where A is the reweighting coefficient.
We next compute the u-th row of the influence matrix I =
AXAW. We start from computing X W

XaW = [0,...,ij,...,o}TW:A[o,...,xj,...,orw

Therefore, for I defined as I = (P’ — P)/A = AXAW, its
u-th row is A,,z,W. When there is no edge between u and
v, Ayp = 0, and therefore the row vector is an all zero vector.
The influence value, which is the ¢5 norm of the row vector,
is therefore 0. O]

2) Proof of Theorem 1: We first present a lemma.

Lemma 2. Let A € {0,1}"*™ be the adjacency matrix of the

graph, H;, H! € R"*% be two hidden feature matrices of size

that differ in t; rows {r1,...,rs,} corresponding to the nodes

{vrys s on,), and W' e R9:*di+1 pe the weight matrix of

the i-th graph convolutional layer, then

(1) AH;W* and AH{Wi differ in at most t;11 rows cor-
responding to the node set |Ji', N'(vy,), where N (u)
denotes the neighbor set of node u.

(2) Further, let Hiyw = o(AH,W?') and H{ , =
o(AH{W?), then H;yy and H],, also differ in at most
tir1 rows corresponding to the node set \J;, N (vy,).

We next use Lemma 2 to help with the proof of Theorem 1.
Proof. Consider a k-layer GCN which is a stack of k graph
convolutional layers defined as below

GCN(A, X, {W'}) = A---o(Ac(AXWHW?) ... WF. (&)

Its input feature matrices are Hy = X and H) = X’ that
differ in one row; let it correspond to node . Its output feature
matrices are AHy,_1W*~! and AH] ,Wk-1,

Since Hy and H| differ only in node wu, according
to Lemma 2-(2), H; and H; differ in the rows corresponding
to A (u) (which contains nodes that are 1 hop away from u);
Hp and Hj differ in the rows corresponding to (J,, e nr(,) N (v)
(which contains nodes that are at most 2 hops away from u).
Iteratively applying Lemma 2-(2), we see that H;,_; and Hj,_,
differ in rows corresponding to nodes that are at most k — 1
hops away from u. We finally apply Lemma 2-(1) and obtain
the conclusion that AHy,_1W"*~1 and AH;_,WFk=! differ in
rows corresponding to nodes that are at most k£ hops away
from w. Thus, the influence matrix

Pa = AH, Wk — AH, W1

has at most ¢; non-zero rows corresponding to nodes that are
at most k£ hops away from wu. It thus follows that when u and
v are at least k 4+ 1 hops away, the v-th row of the influence
matrix of node is an all-zero row. Since the influence value
of w on v is the norm of the v-th row, we thus can conclude
that the influence value ||i,, || = 0. O

Finally, we complete the proof for Lemma 2.
Proof. First of all, for H; and H{ that differs in ¢; rows, it is
obvious that H; W and H/W differ in the same ¢; rows. For
simplicity, we denote H;W* as F; and HW* as F. We next
present the condition for AF; and AF to differ. Consider the
element in j-th row and k-th column of AF; and AF}, which
are Y01 Ajp(Fi)pr and -0, Ajp(F;),y. respectively. We
first note that when A;, = 0, the difference of (F;),; and
(Fi);k does not matter. Next, for all p such that A, = 1,
only when (F;)px # (F;);,;, will the difference of the product

contribute to the difference of the sum. The two points jointly
imply that, if j ¢ U;Z; N (vy,)., then (F)p = (F;),, for all k.
Thus, AF; and AF] differ in at most ¢, rows, corresponding
to the node set |J;", N(v,,). Hence we establish the first
claim.

For the second claim, we notice that the activation layer
such as ReLU used in the standard GCN [13] is point-wise
operation. Thus o(AF;) and o(AF)) cannot differ in more
rows, meaning H;; and H},, will also differ at most in the
rows corresponding to (i, N (vy,). O

B. Proofs for Privacy Guarantees of the DP mechanisms
1) Proof of Theorem 2:

Proof. Since Avm is perturbed to meet e-edge differential
privacy and other inputs (e.g., node features) in Algorithm 2
are independent of the graph structure, the DP GCN model is
e-edge differentially private due to the post-processing prop-
erty of differential privacy. O

2) Proof of Lemma 1I:

Proof. Lemma 1 extends the parallel composition property of
differential privacy [48] to edge differential privacy. The par-
allel composition property states that if My, Mo, ..., M, are
algorithms that access disjoint datasets D1, Do, ..., D,, such
that each M, satisfies ;-differential privacy, then the combi-
nation of their outputs satisfies e-differential privacy with € =
max(g1,€2,...,Em). Since the adjacency matrices Aj, Ao,

., A, have non-overlapping edges, they could be viewed as
disjoint datasets of edges. Thus, the combination of M. (A1),
M. (Az),...,M(Ay,) is e-edge differentially private. O

3) Proof of Theorem 3:

Proof. Under the transductive setting, since the same per-
turbed matrix Ay (7 is used in both training and inference, the
inference step does not leak extra graph structure information
other than that in the DP GCN model. Therefore, the inference
step is e-edge differentially private due to the post-processing
property of differential privacy. Under the inductive setting,
the perturbation method M, is applied to both Ay and
Ay). Since Ay and Ay contain non-overlapping sets
of edges, Lemma 1 guarantees -edge differential privacy of
the Inference step. O

4) Proof of Theorem 4:

Proof. By definition, EDGERAND is e-edge differentially pri-
vate iff. for all symmetric matrices A’ ~ A € A and all subsets
S C A, Inequality (2) holds.

We first note that M operates on each cell A;; indepen-
dently. Therefore, the probability of perturbing the matrix A
to get a certain output is the product of the probability of
perturbing each cell in A to match the corresponding cell in
the desired output. Let ¢ = (u,v) be the only differing edge
between A and A’. For all (i,7) # (u,v), Ajj = Aj;, so the
probability of perturbing A;; and A;; into the same value is the
same. For (u,v), however, gettlng the same outcome means
that one of A, , and A/, is changed through perturbation
while the other remains unchanged The probability of the

state change, according to Algorithm 3, is s/2. Putting the
statements together we derive

PriM(A H PrM(A ” € Sij] _ PriM(Auy) € Suy

Pr[M(A Pr[M(A};) € Sij] PrIM(A%,) € Suv]
<! ;/82/ < exp(e)

when e >1n (2 — 1), s € (0, 1]. [

5) Proof of Theorem 5:

Proof. In Algorithm 4, line 6 is ;-edge differentially private
and line 7 is e5-edge differentially private due to the differen-
tial privacy guarantee of the Laplace mechanism. Therefore,
from the composition theorem and the post-processing prop-
erty of differential privacy, we know that LAPGRAPH guaran-
tees e-edge differential privacy. O

C. Proof of Theorem 6

The work on membership privacy [39] shows that dif-
ferential privacy is a type of positive membership privacy,
which prevents the attacker from significantly improving its
confidence on a membership inference attack. Similarly, edge
differential privacy bounds an attacker’s precision in an edge
re-identification attack. In this section, we present a formal
proof for the upper bound defined in Theorem 6.

Proof. With a slight abuse of notations, we use e; to represent
Ay =1, ey to represent A,, = 0, and R to represent the
attack R¢ (v, v) where Gpp is a black-box GCN. Based
on Bayes’ theorem, we have

Prie; | Re = 1]
_ Pr{Ra =1|e1]Prlei]
" Pr[Rg =1|e1]Prlei] +Pr[Rg = 1] eo] Prleo] Q)

_ Pr[Rg =1|ei1]Prlei]

" Pr[Rg=1]ei1]Prlei] +Pr[Rg = 1|eo] (1 — Prlei])’

Without loss of generality, let G represent the set of all
GCN models. Since the attacker tries to re-identify the edges

through querying the black-box model G, we could rewrite
Pr[R¢g = 1] e1] as follows:

Pr[Rg=1]ei]= Y Pr[Re=1|G=GiPr[G=G,|eil.
Gi€6

Similarly,

Pr[Rg =1]|eo = Z Pr[Rec=1|G=G;]Pr[G = Gi|eo].

e
Therefore, to calculate the upper bound for Eq. 5, it is suffi-
cient to upper bound the following ratio for any G; € G:

Pr[G = G, | e1] Prle1]
Pr[G =G;|ei]Prlei] +Pr[G=G,|eo] (1 —Prlei])

(6)

Suppose A is the set of all possible adjacency matrices. Let
A(l), A ¢ Abe a pair of neighboring adjacency matrices
differing by edge (u, v), and Aq(}tz) =1, Au(i,) = 0. Based on the
definition of differential privacy (Definition 3), for any G; € G
and AW, AO ¢ A, we have

PriG =G| A= AY] < exp(e) Pr[G = Gi | A= AY)].

Algorithm 2: Training and inference of DP GCN

Input: perturbation method M € {EDGERAND,LAPGRAPH
}, privacy parameter ¢; node set vy,
adjacency matrix Ay (r), A (1), feature matrix X),
X and labels y*7. The subscript 7 stands for
training and () is for inference.

1 Procedure Perturbation (A (1), M, €):

2 | Ay & Me(Ayr)

3 Procedure Training (A, V(T), X(T) ¢(T)y:
4 L GCN < a trained model using Ay, (7, X(T) (1)

5
6 it VD) = V() then

7| Ayay « Ay

8 else

v | Ay Me(Ayy)

Function Inference (4, VD, xD);
| return GON(A,, (1), XD {Wi})

—
=)

Algorithm 3: Edge Randomization (EDGERAND)

Input: a symmetric matrix A, privacy parameter s, randomization
generator .
Output;: the perturbed outcome A
1 Reset A to an all-zero matrix
2 for 1 <i<j<ndo

3 x + a sample drawn from Bern(1 — s)

4 if x = 1 then

5 ‘ A;; and Aj; are set to Ay > Preservation
6 else

7 y < a sample drawn from Bern(1/2)

8 L gi]- and gji are set to y > Randomization

Therefore, for any G; € G,
Pr[G = G; | e1] < exp(e) Pr[G = G; | eo].

Since exp(e) > 1 for any positive privacy budget ¢, we also
have

Pr[G = G; | e1] < exp(e) Pr[G = G; | e1].
Therefore,
PI"[G = Gl ‘ 61]
<exp(e) - min(Pr[G = G, | eo], Pr[G = G; | e1])
<exp(e) (Pr|G = G;|e1]Prlei] + Pr[G = Gi | eo] (1 — Prlei]))
The second inequality holds because < 0Prle] < 1. There-
fore, we could compute the upper bound for the ratio in (6):
Pr[G = G; | e1] Prei]
Pr[G =G;|ei]Prlei] + Pr[G = Gi| eo] (1 — Prlei])
< exp(e) - Pre1]

Because the graph density over V(©) is k(©), by the definition
of graph density, we have Pr[e;] = k(©). Therefore,

Prle; | Re = 1] < exp(e) - k9

D. Detailed Algorithms for DP GCN

1) Algorithm for the Training and Inference of DP GCN:
Algorithm 2 presents the perturbation, training, and inference
steps in a differentially private GCN framework. V(*) and
Ay (ry represent the set of training nodes and the adjacency

Algorithm 4: Laplace Mechanism for
(LAPGRAPH)

Input: a symmetric matrix A, privacy parameter €, randomization
generator ~
Output: the perturbed outcome A
g1 + 0.01e
EQ < €E—¢€1
T < number of edges in A
T «+ T+ Lap(1/e1)
A < the upper triangular part of A
for1 <i<j<ndo
L Az‘j <~ Aij + Lap(l/ag)
> Postprocess: Keep only the largest T cells
S < the indice set for the largest 7" cells in A
9 Reset A to an all-zero matrix
10 for (¢,j) € S do
1 L A;; and Aj; are set to 1

Graphs

> Distribute privacy budget

> Get a private count

R N N

> Laplace mechanism

®

matrix of the training graph; V(!) and Ay) represent the set
of testing nodes and the adjacency matrix of the testing graph.
The DP guarantee holds for both transductive training (i.e.,
V) = vy and inductive training (i.e., V(1) #£ VD),

2) Algorithm for the DP Mechanisms: Algorithm 3 presents
the algorithm for EDGERAND. We first randomly choose the
cells to perturb and then randomly choose the target value
from {0, 1} for each cell to be perturbed.

Algorithm 4 presents the algorithm for LAPGRAPH. A small
portion of the privacy budget ¢; is used to compute the num-
ber of edges in the graph using the Laplacian mechanism,
and the remaining privacy budget €5 = ¢ — €; is used to
apply Laplacian mechanism on the entire adjacency matrix. To
preserve the degree of the original graph, the top-elements in
the perturbed adjacency matrix are set to 1 and the remaining
elements are set to 0.

E. Additional Discussions on the LINKTELLER Attack

1) Stealthiness and Alternative Detection Strategies: Our
LINKTELLER attack queries the same set of inference nodes
V) for 2n times where n = |V(C) , with the node features
of one node slightly altered in each query. This abnormal
behavior can easily distinguish LINKTELLER from a benign
user and therefore allows the detection of the attack.

In particular, we describe details of potential detection
strategies as follows. First, a defender can use validation data
to evaluate both the attack and benign query performance in
terms of the attack F1 score and query node classification
accuracy under different query limits. Then the defender could
optimize a query limit @ which decreases the attack perfor-
mance while maintaining reasonable benign query accuracy.
Such a query limit would depend on the properties of different
datasets and how safety-critical the application is. Note that
in general limiting the number of queries will not affect the
performance for a single user, while it would hurt if several
users aim to query about the same set of nodes, thus the query
limit could be made for each node. In practice, the defender
can directly flag the users who try to exceed the query limit)
for a limited set of nodes as suspicious for further inspection.

2) Estimation of the Density Belief k: In this part, we de-
scribe a few actionable strategies for the attacker given limited

knowledge of the density k& and/or strategies to improve the
accuracy of the density belief. For example, the attacker could
use some similar publicly available graphs (e.g., a similar
social network) or partial graphs to estimate k. Specifically:

(a) The attacker could estimate k based on partial graph
information. With the prior knowledge of some con-
nected/unconnected pairs, the attacker can calculate the
influence values for each known pair. Then, she can es-
timate a threshold for distinguishing the connected pairs
from the unconnected ones with high confidence, and thus
obtain the estimated density belief k.

(b) The attacker could estimate & based on the relationship
of one or a few particular nodes. The attacker can start
from an intentionally low k and increase it until an edge
is inferred for the relationship, or until the known existing
edges are inferred. The attacker then stops at this specific
k and takes it as the density belief.

(c) The attacker could estimate %k by running a link prediction
algorithm. When a partial graph is available, the attacker
can run a link prediction algorithm, e.g., training a link
prediction model, to predict all edges in the graph. Based
on the predictions, the attacker will then obtain a rough
estimate of the density belief k for use in LINKTELLER.

3) Variations of Our Attack under Different Settings: We
discuss the variations of our attack under different settings,
more specifically, different attacker’s capabilities or different
assumptions on the interaction model. We present three spe-
cific settings below.

When the attacker has additional knowledge of some edges:
The attacker’s prior knowledge on the existence of some
edges can be leveraged to improve the density belief k in our
LINKTELLER. More concretely, based on the knowledge of
some edges, the attacker can calculate their influence values.
Then, she can estimate a threshold for distinguishing the edges
from the unconnected pairs with high confidence, and then
obtain a refined estimation of the density belief k. The attack
effectiveness will subsequently be improved.

When the attacker has only partial control over a subset of
node features: In this setting, part of the feature information is
lost, and thus the accuracy of the estimation of the influence
value would be negatively impacted, leading to the decrease
of attack performance. However, how much the attack effec-
tiveness will degrade also depends on the importance of the
missing features.

When logits are not available: It is not straightforward to
adapt our LINKTELLER to handle the case where logits are
not available, which belongs to the “decision based blackbox
attack category” rather than the score based. There are a few
works [49], [50] in the image domain that perform certain
decision-based blackbox attacks. However, how to estimate
the gradient/influence value in GNNs based on decision only
remains an interesting future direction.

4) Limitations to Overcome in Adapting LINKTELLER:
First and foremost, in order to achieve high attack effective-
ness, we need to derive exact influence calculations for differ-
ent GNN structures specifically. We believe that our influence

analysis based framework has the potential to perform well on
different GNN structures with the influence value calculation
tailored to each of them. Another potential obstacle in the
adaptation is that LINKTELLER cannot deal with randomized
models, such as the aggregation over sampled neighbors in
GraphSAGE [14]. It could be an interesting future work to
take such randomness into account for influence calculation.

5) Analysis on the Performance of LINKTELLER Com-
pared with Baselines: First of all, we note that LSA2-X [11]
relies on measuring certain distances based on either pos-
teriors (of the node classification model) or node attributes
to predict the connections. However, node classification and
edge inference (i.e., privacy attack goal here) are two distinct
tasks, and node features (or posteriors) are useful for node
classification does not mean that they will be useful for edge
inference. Thus, LSA2-X which tries to provide the attacker
with different levels of node information as prior knowledge
to perform the edge re-identification attack is not effective.
On the contrary, LINKTELLER tries to analyze the influence
between nodes, which reflects the edge connection information
based on our theoretical analysis (Theorem 1) and is indeed
more effective for edge inference as we show empirically
in Table I and Table II.

We point out that, to our best knowledge, there are no
such settings where LINKTELLER may fail but other existing
approaches (e.g., LSA2-X) may succeed. The detailed reasons
are provided above. To summarize, our LINKTELLER lever-
ages the edge influence information, which is more relevant for
the task of edge re-identification attack than purely node level
information used in LSA2-X. We then discuss two specific
scenarios below.

If the model makes inferences on single nodes and not
subgraphs: In this case, LINKTELLER cannot obtain influence
information between nodes of interests, and thus the edge re-
identification performance would be less effective. Similarly
for the baselines, where they would fail to calculate the statis-
tics of a set of nodes to compare their similarity. That is
to say, if the model makes inferences on single nodes, both
LINKTELLER and baselines may fail to effectively attack,
while LINKTELLER may still outperform baselines given that
it leverages the influence value of edges explicitly.

If the inference is transductive vs. inductive: We first point
out that the inductive setting is more challenging than the
transductive setting. We then analyze the potential perfor-
mance of LINKTELLER in the transductive setting. LINK-
TELLER is naturally applicable to the transductive setting—
the attacker may happen to query the node in the training
graph. Since these nodes are involved in model training, the
influence value and the rank may be more accurate, leading to
even better attack performance. As shown in the experimental
results in Appendix G5, LINKTELLER indeed outperforms the
baselines as well in the transductive setting.

F. Details of Evaluation

1) Dataset Statistics: We provide the dataset statistics
in Table IV. The three datasets (Cora, Citeseer, and Pubmed)

TABLE 1V: Dataset statistics (“m” represents multi-label classifi-

[

cation; “s” represents single-label.)

(a) Datasets in the inductive setting

Dataset Nodes Edges Classes Features
Twitch-ES 4,648 59,382 2 (s) 3,170
Twitch-RU 4,385 37,304 2 (s) 3,170
Twitch-DE 9,498 153,138 2 (s) 3,170
Twitch-FR 6,549 112,666 2 (s) 3,170
Twitch-ENGB 7,126 35,324 2 (s) 3,170
Twitch-PTBR 1,912 31,299 2 (s) 3,170
PPI 14,755 225,270 121 (m) 50
Flickr 89,250 899,756 7 (s) 500
(b) Datasets in the transductive setting
Dataset Nodes Edges Classes Features
Cora 2,708 5,429 7 (s) 1,433
Citeseer 3,327 4,732 6 (s) 3,703
Pubmed 19,717 44,338 3 (s) 500

in the transductive setting are all citation networks. Concretely,
the nodes are documents/publications and the edges are the
citation links between them. The node features are the sparse
bag-of-words feature vectors for each document.

2) Evaluation Metrics for Model Utility: We describe how
we evaluate the utility of the trained models, including the
vanilla GCN models, two DP GCN models (EDGERAND and
LAPGRAPH), and the MLP models.

We apply slightly different evaluation metrics across
datasets given their varying properties. The twitch datasets are
for binary classification tasks on imbalanced datasets. There-
fore, we use F1 score of the rare class to measure the utility of
the trained GCN model. To compute the value, we first identify
the minority class in the dataset and then view it as the positive
class for the calculation of the F1 score. During training, we
train on twitch-ES; during inference, we evaluate the trained
model on twitch-{RU, DE, FR, ENGB, PTBR}. For PPI and
Flickr datasets where there is no significant class imbalance,
we follow previous works [14], [16] and use micro-averaged
F1 score to evaluate the classification results.

For DP GCNs particularly, in each setting, we report the
averaged results over 10 runs that use different random seeds
for noise generation.

3) Normalization Techniques: We followed Rong et al. [15]
and experimented with the techniques provided below. A is
an adjacency matrix € {0,1}"*", D = A+ I, and A is the
normalized matrix.

A=I1+D?AD'/? ©)
A=D+D)*A+D(D+1)""? ®)
A=I+D+DV*A+D(D+1)"?)

A=D+I1)""(A+1)

e FirstOrderGCN: First-order GCN (Eq. 7)

o AugNormAdj: Augmented Normalized Adjacency (Eq.
8)

e BingGeNormAdj: Augmented Normalized Adjacency
with Self-loop (Eq. 9)

e AugRWalk: Augmented Random Walk (Eq. 10)

(10)

TABLE V: Precision (%) of the random attack baseline.

Degree Dataset

RU DE FR ENGB PTBR PPI Flickr
low 1.7e-2 6.7¢-3 7.5¢-3 1.3e-2 4.5¢-2 1.8e-2 4.0e-3
UICOM" 43¢l 32e-1 5.3e-1 1.5e- 1.6 2.0e-1 1.0e-2
strained
high 14 7.5e-1 1.0 9.5e-1 34 1.2 2.6e-1

4) Search Space for the Hyper-parameters: In training the
models, we perform an extensive grid search to find the best
set of hyper-parameters. We describe the search space of the
hyper-parameters below.

« learning rate (Ir): {0.005, 0.01, 0.02, 0.04, 0.05, 0.1, 0.2}

« dropout rate: {0.05, 0.1,0.2,0.3,0.5,0.8}

o number of GCN layers: {1,2,3}

o number of hidden units: {64,128,256,512}

« normalization technique: {FirstOrderGCN, AugNor-

mAdj, BingGeNormAdj, AugRWalk}

5) Best Hyper-parameters for the Vanilla-GCN: Below, we
describe the best combinations we achieve for Vanilla-GCN
models. For twitch-ES, we use the method First-Order GCN
to normalize the input graph. We train a two-layer GCN with
the number of hidden units 256. The dropout rate is set to
0.5 and the learning rate is 0.01. The training epoch is 200
and the model converges within 200 epochs. For PPI, we use
Augmented Normalized Adjacency with Self-loop for normal-
izing the adjacency matrix and train a two-layer GCN with
the number of hidden layers 256. The dropout rate is 0.4 and
the learning rate is 0.05. The training epoch is 200 where the
model converges. For Flickr, we use Augmented Normalized
Adjacency for normalization and train a two-layer GCN with
the number of hidden layers 256. The dropout rate is 0.2 and
the learning rate is 0.0005. The number of epochs is 200 within
which the model converges.

6) Best Hyper-parameters for the Vanilla-GAT: We use 3-
layer GATs for both PPI and Flickr datasets as described
in Section V-F. For PPI, the number of heads per layer are 6, 6,
and 6 for the three layers. The hidden layer dimensions are 256
and 256. The skip connection is added. During training, we use
dropout rate of 0; test accuracy on the unseen node set is 0.66.
For Flickr, the number of heads per layer are 4, 4, and 4 for
the three layers. The hidden layer dimensions are 256 and 256.
The skip connection is added. During training, we use dropout
rate of 0.5; test accuracy on the unseen node set is 0.47.

G. More Evaluation Results

1) Results for the Random Attack Baseline: As described
in Section V-C2, for a random classifier with Bernoulli param-
eter p, given a set of instances containing a positive examples
and b negative examples, its precision is a/(a + b) and recall
is p, which are density k and belief density k, respectively.
We present the precision scores of the random classifier in Ta-
ble V. Compared with Table I, wee see that the precision of
LINKTELLER is much higher than the random attack baseline.
This reveals the significant advantage an attacker is able to
gain through querying an inference API, which may lead to
severe privacy loss. As for the recall which is equal to density

TABLE VI: Attack Performance (Precision and Recall) of LINK-
TELLER on twitch datasets, evaluated against a 3-layer GCN. Each ta-
ble corresponds to a dataset. We sample nodes of low, unconstrained,
and high degrees as our targets. Groups of rows represent different
density belief k of the attacker.

RU low unconstrained high
k precision recall precision recall precision recall
k/4 1000+ oo 330+ 28 80.8+ 42 221+ 15 839+ 21 154+ 15
k/2 846+ 00 519+ 43 651+ 21 355+ 00 729+ 11 267+ 19
k 693+ 82 8l.1+ 42 457+ 20 500+ 28 556+ 28 407+ 16
2k 407+ s0 950+ 43 277+ 18 6044+ 27 374+ 2 546+ 10
4k 2034+ 25 950+ 43 158+ 10 688+ 30 230+ 24 67.0+ 26
DE low unconstrained high
k precision recall precision recall precision recall
k/4 917+us 290+ 34 752+ ss 181+ 26 713+ 67 181+ 18
k/2 821+127 496+ 63 546+ 26 263+ 30 503+ 46 255+ 27
k 646+ 76 730+ 90 327+ 10 313+ 30 33.0+ 24 334+ 24
2k 417+ 36 889+ 79 204+ 02 389+ 26 219+ 15 4454+ 3
4k 224+ 17 9444+ 79 139+ 04 531+ 21 140+ 06 567+ 14
FR low unconstrained high
E precision recall precision recall precision recall
k/4 1000+ oo 283+ 24 854+ 56 199+ 16 879+ 38 213+ 16
k/2 1000+ oo 500+ 00 715+ 55 333+ 20 709+ 85 340+ 1s
k 783+ 24 7834+ 24 501+ 51 466+ 50 48.6+101 462+ 53
2k 417+ 24 817+ 62 291+ 21 5414+ 40 286+ 60 544+ 64
4k 208+ 12 817+ 62 163+ 12 607+ s4 166+ 20 634+ 54
ENGB low unconstrained high
k precision recall precision recall precision recall
k/4 91.7+ s 277+ 52 831+ 33 229+ 44 867+ 11 221+ o4
k/2 857+u7 470x127 6901+ s0 374+ 61 TLlx o 362+ 17
k 664+ 93 684 +is9 487+ 69 517+ 59 507+ 30 51.6+ 33
2k 460+ 75 89.0+ 44 296+ 45 627+ 6o 307+ 17 624+ 38
4k 237+ 37 916+ 31 170+ 36 709+ 34 175+ 04 T1.2+ 19
PTBR low unconstrained high
k precision recall precision recall precision recall
k/4 1000+ o0 267+ 13 808+ 47 209+ 43 867+ 19 213+ 21
k/2 91.8+ ss 486+ 57 655+ 77 333+ 53 735+ 20 362+ 34
k T1.1+ 00 743+ 40 463+ o5 46.0+ 41 535+ 23 5254+ 39
2k 413+ 13 856+ 28 302+ 74 595+ 34 3294+ 23 6444+ 4
4k 214+ 10 887+ 06 182+ 48 Tl4+3s 1901+ 15 747+ 32

TABLE VII: AUC of LINKTELLER on twitch datasets, evaluated
against a 3-layer GCN. Each column corresponds to one dataset.
Rows represent sampled nodes of varying degrees.

Degree Dataset
RU DE FR ENGB PTBR
low 1.00 £000 0.99 002 0.94 +005 1.00+000 0.98 + 000
uneon 596 £ o0 092001 0.91 002 0.97 o0 0.92 + 001
strained
high 093 o001 088 +001 0.90+001 0.95+000 0.90 + 000

belief, the number k € {k/4, k/2, k, 2k, 4k} is also extremely
small compared with LINKTELLER. To sum up, LINKTELLER
significantly outperforms the random baseline.

2) Results for a 3-layer GCN: In Section V-E in the main
paper, we mainly evaluated 2-layer GCNs. In this section, we
evaluate the performance of LINKTELLER on 3-layer GCNs
to provide a more comprehensive view of LINKTELLER’S
capability.

TABLE VIII: Running time of LINKTELLER on vanilla GCNs
corresponding to experiments in Section V. The time unit is “second”.

Dataset

ENGB PTBR PPI Flickr
128 +o0 11.2 +o01 148 +o1 30.8 +o1
129 +o1 11.0 o1 147 +o1 307 +o2
126 +o00 11.5 +o04 148 +oo 305 +o2

Degree

RU DE FR

132 +o0
134 +o1
13.0 +o2

low 125 +o0 16.1 +oi

U 124 xo1 160 o
strained

high 124 +o1 16.1 +o0

a) Model: For training the models, we follow the same
principle described in Section V-B and use the same search
space as in Appendix F4. The best combination of hyper-
parameters/configurations are described below. We use the
method First-Order GCN to normalize the input graph. The
hidden layer dimensions are 64 and 64. The dropout rate is
set to 0.5 and the learning rate is 0.01. The training epoch is
50 and the model converges. The test F1 score on twitch-{RU,
DE, FR, ENGB, PTBR} are 0.3419, 0.4698, 0.4926, 0.6027,
and 0.5198, respectively.

b) Attack Results: We present the attack results of LINK-
TELLER on the 3-layer GCN in Table VI and Table VIIL
Comparing Table VI with Table I, and Table VII with Table II,
we see that the performance of LINKTELLER on the 3-layer
GCN only drops a little. For 1-layer GCN, we know from
Proposition 1 that LINKTELLER can perform a perfect attack.
For GCNs with more than 3 layers, we did not bother to eval-
uate the attack performance since deeper GCNs suffer from
over-smoothing [51] and give poor classification results. Thus,
we can confidently conclude that LINKTELLER is a successful
attack against most practical GCN models.

3) Running Time of LINKTELLER: We report the running
time of LINKTELLER on vanilla GCNs in Table VIII, corre-
sponding to the experiments in Section V in the main paper.
As the table shows, LINKTELLER is a highly efficient attack.
On DP GCNs using EDGERAND mechanism, when the graph
becomes denser under smaller privacy budgets, one forward
pass of the network takes longer, since the cost of matrix
computation becomes larger. However, the increase of running
time reflected in the attack time is only marginal, so we omit
the running time for DP GCNs here. Overall, LINKTELLER
can efficiently and effectively attack both vanilla GCNs and
DP GCNs.

4) More Results for LINKTELLER on vanilla GCNs and
DP GCNs: First of all, we present the additional evalua-
tion results for LINKTELLER on vanilla GCNs corresponding
to Section V. The results are presented in Table IX, which are
of the same format as Table I.

Next, we show the comprehensive evaluation results on a
combination of 2 DP mechanisms (EDGERAND and LAP-
GRAPH), 10 privacy budgets (1.0,2.0,...,10.0), 3 sampling
strategies (low degree, unconstrained degree, high degree), and
5 density beliefs (k/4, k/2, k, 2k, 4k). We present the results
in Tables XIII to XXVI. The 3 subtables in each table corre-
spond to the 3 sampling strategies.

In Section VI of the main paper, we present the results for
density belief k= k. Here, we look at the results for other
inexact k values and find that similar observations hold. First,

TABLE IX: Attack Performance of LINKTELLER on addi-
tional datasets, compared with two baseline methods LSA2-{post,
attr} [11]. Each table corresponds to a dataset. We sample nodes of
low, unconstrained, and high degrees as our targets. Groups of rows
represent different density belief k of the attacker.

twitch-DE low unconstrained high
k Method precision recall precision recall precision recall
Ours 833426 2624 70 9404 13 2255 13 99.04 o4 2524 12
k/4 LSA2-post 0.0+ o0 0.0+ o0 0.0+ oo 0.0+ o0 0.1+ o2 0.0+ o1
LSA2-attr 0.0+ oo 0.0+ oo 0.4+ os 0.1+ o1 2.6+ 11 0.7+ 03
Ours 9174 ns 5524 37 9244 a1 4424 15 9694 03 4924 25
k/2 LSA2-post 0.0+ o0 0.0+ o0 0.0+ 00 0.0+ 00 0.1+ o1 0.0+ o1
LSA2-attr 0.0 + 00 0.0 + 00 0.9 + 03 0.4+ o1 2.5+ os 1.3+ os
Ours 81.84 48 9254 so 8124 66 7724 34 7924 11 8045 a1
k LSA2-post 0.0+ oo 0.0+ o0 0.0+ o0 0.0+ o0 0.0+ o0 0.0+ o1
LSA2-attr 0.0+ oo 0.0+ o0 12+ 03 1.2+ o4 1.8+ o4 1.8+ o5
Ours 4474 34 9524 67 4904 47 9314 32 4694 20 95.0- 09
2k LSA2-post 0.0+ oo 0.0+ oo 0.0+ o1 0.1+ o1 0.0+ o0 0.0+ o1
LSA2-attr 0.0+ oo 0.0+ o0 0.8+ o1 1.6 £ 02 1.4+ 03 2.8+ 08
Ours 2384 03 100.05 oo 2584 19 9815 o7 2434 11 9851 os
4k LSA2-post 0.0+ oo 0.0+ o0 0.0+ o1 02+ 02 0.0+ 00 0.0+ o1
LSA2-attr 0.0+ oo 0.0+ o0 0.7 + o1 2.7+ o4 1.1+ 02 44+ 09
twitch-ENGB low unconstrained high
i Method precision recall precision recall precision recall
Ours 10004 oo 3034 41 9264 30 2554 49 9884 05 2524 o2
k/4 LSA2-post 0.0+ o0 0.0+ oo 0.0+ oo 0.0+ oo 0.1+ o2 0.0+ oo
LSA2-attr 0.0+ oo 0.0+ o0 0.0+ o0 0.0+ o0 1.5+ o4 04+ o1
Ours 10004 oo 5424 s7 8434 s6 4564 76 9604 12 4891 o6
k/2 LSA2-post 0.0+ o0 0.0+ oo 0.0+ oo 0.0+ oo 0.1+ o1 0.0+ oo
LSA2-attr 0.0+ oo 0.0+ o0 0.3+ o4 02+ 02 1.8+ 03 09+ o1
Ours 8314 66 8404 114 6794 63 7294100 8164 27 8311 27
k LSA2-post 0.0+ o0 0.0+ o0 0.0+ 00 0.0+ 00 0.1+ 00 0.1+ o0
LSA2-attr 0.0+ oo 0.0+ oo 0.7+ 02 0.7+ o2 2.0+ o1 2.0+ o1
Ours 5074 82 9794 20 43.64 90 9124 49 4734 07 963- 13
2k LSA2-post 0.0+ oo 0.0+ oo 0.0+ o0 0.0+ o0 0.4+ o5 0.8+ 10
LSA2-attr 0.0+ o0 0.0+ o0 0.5+ 02 1.2+ o6 1.7+ 02 34+ 03
Ours 260+ 49 100.04 oo 2354 so 9734 11 2424 02 9854 os
4k LSA2-post 0.0+ oo 0.0+ o0 0.0+ o0 0.0+ o0 0.2+ 02 0.8+ 10
LSA2-attr 0.0+ oo 0.0+ o0 0.4+ 02 1.7+ 10 1.7+ o1 6.9+ 03
twitch-PTBR low unconstrained high
k Method precision recall precision recall precision recall
Ours 10002 oo 2674 13 9564 16 2514 65 9842 13 2423 o5
k/4 LSA2-post 0.0+ o0 0.0+ 00 0.0+ 00 0.0+ o0 0.0+ o1 0.0+ o0
LSA2-attr 4.6+ 33 12+ o9 47+ o9 1.2+ o4 69+ 07 1.7+ oa
Ours 990+ 15 5234 33 93.64 14 4904 20 9734 16 4792 47
k/2 LSA2-post 0.0+ o0 0.0+ oo 0.0+ oo 0.0+ oo 0.0+ o0 0.0+ oo
LSA2-attr 244+ 17 1.2+ o9 44+ os 23+ o8 63+ 10 3.0+ 03
Ours 8544 22 8924 42 7874 57 8035 131 8604 ss 8424 4o
k LSA2-post 0.0+ oo 0.0+ o0 0.0+ o0 0.0+ 00 0.0+ 00 0.0+ o0
LSA2-attr 1.2+ 09 1.2+ o9 43+ 09 4.7+ 17 6.0 + o3 59+ os
Ours 483+ 27 100.04 oo 4874 122 9574 41 5024 54 9792 o4
2k LSA2-post 0.0+ oo 0.0+ oo 0.0+ o0 0.0+ 00 24+ 17 47+ 32
LSA2-attr 0.6+ 04 1.2+ o9 38+ 03 8.0+ 24 50+ o7 9.8+ 06
Ours 2414 14 100.04 o0 2554 75 99.04 o0s 2554 28 9954 o1
4k LSA2-post 0.0+ oo 0.0+ o0 1.3+ 09 6.5+ 47 25+ 02 101+ 19
LSA2-attr 0.6 + 02 24+ o7 314+ 02 132+ 36 4.1+ 04 158+ 05

the effectiveness of LINKTELLER will decrease as a result of
increasing privacy guarantee; while when the guarantee is not
sufficient (i.e., € is large), LINKTELLER is not weakened by
much. Second, DP can provide better protection to nodes of
low degrees. In addition, we note that our LINKTELLER is not
sensitive to the density belief k and achieves non-negligible
success rate for all k.

5) LINKTELLER in the Transductive Setting: In the main
paper, we mainly evaluate the performance of LINKTELLER
in the inductive setting. As analyzed in Appendix ES, in the
transductive setting, LINKTELLER is expected to achieve bet-
ter performance and retain its advantage over LSA2-X. Here,

TABLE X: Attack Performance (Precision and Recall) of LINK-
TELLER on three datasets in the transductive setting, compared with
two baseline methods LSA2-{post, attr} [11]. We follow He et
al. [11] to compose a balanced dataset containing an equal number
of connected and unconnected node pairs. Groups of rows represent
different density belief k of the attacker.

Cora Citeseer Pubmed

k Method precision recall precision recall precision recall
Ours 999+ o1 250+ oo 1000+ o0 2504 oo 10004 o0 25.04 oo
k/4 LSA2-post 967+ o2 242+ o0 988+ o1 247+ o0 899+ 02 225+ i
LSA2-feat 969+ 02 242+ 00 998+ o1 249+ 00 97.8+ 02 244+ 00
Ours 999+ 00 50.0+ oo 1000+ o0 5004 oo 10004 oo 50.04 oo
k/2 LSA2-post 94.1x 03 470+ o1 967+ oo 484+ o0 868+ o1 434+ o0
LSA2-feat 904+ o5 452+ 02 974+ o1 487+ o1 952+ o1 476+ 00
Ours 9954 o1 9954 o1 9974 o0 9974 00 9974 00 9974 00
k LSA2-post 867+ 02 867+ 02 90.1+ 02 90.1+ 02 788+ o1 788+ o1
LSA2-feat 73.6+ o1 736+ o1 809+ o1 809+ o1 824+ o1 824+ o
Ours 66.7+ o0 1000+ oo 66.7+ oo 10004 00 66.64 00 9994 oo
1.5k LSA2-post 66.0+ o0 99.1+ 00 664+ 00 996+ 00 653+ 00 98.0+ 00
LSA2-feat 599+ 02 89.8+ 02 632+ o1 947+ 02 640+ 00 96.0+ 00

TABLE XI: AUC of LINKTELLER comparing with two baselines
LSA2-{post, attr} [11] in the fransductive setting. Each column cor-
responds to one dataset. Different rows represent different methods.

Method Dataset

Pubmed

1.00 = 000
0.87 + 0.00
0.90 + 0.00

Citeseer

1.00 4 o000
0.96 + 0.00
0.89 + 0.00

Cora

1.00 5 000
0.93 + 000
0.81 + 000

Ours
LSA2-post
LSA2-attr

we aim to provide evaluations on the performance of LINK-
TELLER in the transductive setting to support the analysis.

We compare LINKTELLER to LSA2-{post, attr} [11] in the
transductive setting using three datasets (Cora, Citeseer, and
Pubmed) from their paper. We also follow the same setup (as
in their Paragraph “Datasets Configuration” in Section 5.1) to
compose the balanced set of node pairs to be attacked which
contains an equal number of connected and unconnected pairs.
We follow the hyper-parameters in Kipf er al. [13] to train the
GCN models on these datasets and then perform LINKTELLER
attack and LSA2-{post, attr} attacks on the trained models.

We report the attack performance (Precision and Recall)
in Table X and the AUC scores in Table XI. First, as a sanity
check, our results in Table XI matches the Figure 4 in He et
al. [11] on these three datasets. Second, we evaluate the den-
sity belief k only up to 1.5k in Table X, since 2k corresponds
to the case where all node pairs are predicted positive by the
attacker, leading to 50% precision and 100% recall for all
methods. Overall, as shown in the two tables, LINKTELLER
invariably outperforms LSA2-{post, attr} in the transductive
setting.

6) Choosing € on a Validation Dataset: In Section VI, we
present the model utility and attack effectiveness under a range
of € (1-10) in Figure 3, and provide corresponding discussions
regarding the tradeoff between model utility and privacy as
well as its dependencies in Section VI-C and Section VI-D.

In this part, we take on a new perspective and focus on
a practical approach for selecting the appropriate parameters
(mainly the privacy budget ¢) to train DP GCN models with
reasonable model utility—we select the parameter £ on the

TABLE XII: (a) Model utility and (b) attack effectiveness on
different models. Each column corresponds to a dataset. We consider
four types of models: vanilla GCN, MLP, EDGERAND, and LAP-
GRAPH.

(a) Model utility (F1 score)

Model Dataset
RU DE FR ENGB PTBR Flickr
vanilla GCN 0319 0551 0.404 0.601 0411 0515
MLP 0.290 0.545 0373 0.598 0.358 0.463
e="7 e=6
EDGERAND 909 & s 0.545 £ 0003 0.321 + 001 0.607 00w 0423 = o015 0.4359 = o002
LAPGRAPH c=8 c=9

0.292 £ 0011 0.546 + 0001 0.299 + 0017 0.601 + 0001 0.401 + 0010 0.467 + 0.002

(b) Attack effectiveness (F1 score) on different node degree distri-
butions

Degree Model Dataset
RU DE FR ENGB PTBR Flickr

vanilla GCN 849+ 12 868+ s1 925+ s4 8294+ 40 86.6+ 13 52.1+ s8
low EDGERAND 189 +108 44+ 63 00+ 00 190+120 329+ 25 0.0+ o0
LAPGRAPH 229+ 33 53+ 75 133+125 220+ 10 238+ 22 26.8+ 101
ncon- vanilla GCN 747+ 15 785+ 45 809+ 20 695+ 25 779+ 35 329+ 133
lico d EDGERAND 58.1+ 22 60.1+ 50 67.1+ 46 41.6+ 51 732+ 51 0.0+ o0
SIANCE | APGRAPH 59.6+ 12 59.6+ 20 671+ 20 469+ 31 684+ 55 24+ 14
vanilla GCN 758 + 23 789+ os 83.0+ 37 8224+ 34 848+ 16 183+ s2
high EDGERAND 726+ 15 765+ 18 781+ 27 823+ 15 837+ 10 169+ 29
LAPGRAPH 69.6+ 10 685+ 11 7344+ 28 680+ 17 784+ 14 157+ 26

validation dataset, and then report the final performance on the
testing set. Concretely, when selecting ¢ on the validation set,
we set a lower threshold (e.g., F1 score of the MLP model) for
the model utility, and select the smallest ¢ satisfying the con-
dition that the utility of the trained DP GCN on the validation
set is higher than the given threshold. Then, we evaluate both
the model utility and attack effectiveness under the selected ¢
on the festing set.

We report the evaluation results in Table XII. We do not
include results for the PPI dataset, since none of the DP GCN
models could attain utility higher than the MLP model. (In
fact, even the vanilla GCN model cannot match the perfor-
mance of the MLP model, which have been concretely dis-
cussed in Section VI-D.) For the twitch datasets and Flickr
dataset, we select ¢ € {1.0,2.0,...,10.0} on the validation
dataset and include the numbers in Table XII(a). Specifically,
for the twitch datasets, the model is trained on twitch-ES (with
the parameters selected on the validation set) and then directly
transferred to twitch-{RU, DE, FR, ENGB, PTBR}, so we
report only one number for all five countries.

We next discuss the conclusions from Table XII. First,
regarding the model utility in Table XII(a), with the same
constraint on model utility on the same dataset, we end up
with different ¢ for different DP mechanisms, e.g., ¢ = 6 for
EDGERAND and € =9 for LAPGRAPH on the Flickr dataset.
This implies that the level of noise that can be tolerated by
different DP mechanisms is different. Second, in terms of the
attack effectiveness in Table XII(b), the main conclusion is that
the theoretical guarantee provided by DP cannot translate into
sufficient protection against LINKTELLER while maintaining
a reasonable level of model utility. Specifically, with € = 6 for
EDGERAND and € = 9 for LAPGRAPH, the theoretical upper

bound of precision is greater than 1 for all the datasets based
on Theorem 6, which means that the DP GCN methods do not
provide any reasonable theoretical privacy protection against
LINKTELLER. However, the attack effectiveness presented
in Table XII(b) suggests that, in low degree settings, differ-
ential privacy can empirically protect against LINKTELLER
although the level of protection is heavily data-dependent,
varying a lot across different datasets and different node de-
gree distributions. Relevant discussions on the impact of node
degree distributions specifically are provided in Section VI-D.

TABLE XIII: twitch-RU (EDGERAND)

TABLE XIV: twitch-RU (LAPGRAPH)

low k=k/4 k=k/2 k=k k =2k k= 4k low k=k/4 k=k/2 k=k k =2k k= 4k
c— precision 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 e—1 precision 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0
- recall 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 - recall 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0
9 precision 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0 + 0.0 0.0+ 0.0 —9 precision 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0
&= recall 0.0+00 00+00 00+00 00+00 0000 &= recall 0.0+t00 00+00 00+00 00+00 0.0+o00
—3 precision 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 —3 precision 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0
&= recall 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 &= recall 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0
e—4a precision 0.0+ 0.0 0.0+ 0.0 1.3+ 1.0 1.3+ 1.0 1.3+ 05 e—4 precision 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.3+ 05
B recall 0.0+ 0.0 0.0+ 0.0 1.5+ 21 3.0+ 4.3 6.2+ 2. B recall 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 1.8+ 2.5
__ - precision 4.8+ 6.7 5.1+ 7.3 4.0+ 3.3 3.3+ 1.9 27+ 1.2 __ . precision 0.0+ 0.0 0.0+ 0.0 5.3+ 5.0 4.0+ 3.3 2.3+ 21
e=» recall 1.5+ 2.1 3.0+ 43 4.8+ 3.7 7.7+ 42 128+ 6.0 e=» recall 0.0+ 0.0 0.0+ 0.0 59+ 5.4 88+ 71 103+ s.
-6 precision 19.0+ 6.7 12.8 + 3.6 9.3+ 1.9 8.0+ 2.8 6.7+ 3.3 -6 precision 0.0+ 0.0 7.7+ 6.3 6.7+ 1.9 5.3+ 2.5 4.3+ 1.7
&= recall 6.2+ 2.1 77+17 11.0+£ 20 187x62 31.5+151 &= recall 0.0+ 0.0 4.5+ 3.7 T7+17 122+ 53 198+ 6.7
—7 precision 28.6 117 25.6+131 17.3+100 16.7+47 167+ 21 —7 precision 23.8 £243 20.5+131 14.7+s50 120+ 33 9.7+ 12
&= recall 95+ 39 160+ 83 20.8+11.9 399+132 78.9+1238 &€= recall 78+ 76 122+ 76 169+ 50 278+ 64 451+ 23
e—8 precision 38.1+17.8 38.5+100 387+ 75 340+ 16 207+ 1.2 e—8 precision 28.6 £20.2 25.6+ 7.3 21.3+38 21.3+4a1 163+ 3.1
B recall 128+ 6.0 240+ 79 46.1+115 803+ 82 97.0+ 2.1 B recall 93+63 154+34 248+27 497+71 759+ 96
—9 precision 71.4+11.7 56.4+ 36 57.3+50 393+19 21.3+1.7 —9 precision 42.9 +20.2 30.8+12.6 32.0+ 86 28.7+ 5. 18.0 + 2.9
&= recall 237+ 44 345+21 674+61 927+ 74 100.0+ 0.0 &= recall 140+ 62 184+69 369+ 76 66.8+s80 83.9+s09
e—=10 precision 952+ 6.7 795+ 36 733+ 1.9 42.0+33 213+ 1.7 e=10 precision 52.4+135 48.7+ 36 480+ 65 367+ 25 19.7+ 1.7
- recall 31.5+ 40 486+ 30 86.4+ 59 985+ 21 100.0+ 0.0 - recall 172+ 41 298+ 26 56.1+53 86.2+57 924+ 73
unconstrained k=k/a k=k/2 k=k k =2k k =4k unconstrained k=k/a k=k/2 k=k k =2k k=4k
-1 precision 0.7+ 01 0.6+ 0.1 1.2+ 0.4 1.6+ o6 1.5+ o5 -1 precision 1.8+ 0.7 1.8+ 0.4 1.2+ 0.2 0.9+ 01 0.7+ 01
&= recall 0.2+ 0.0 0.3+ 0.1 1.3+ 0.4 3.4+ 1.3 6.4+ 1.9 &= recall 0.5+ 0.2 1.0+ 0.2 1.3+ 0.2 2.0+ 0.3 2.9+ 0.3
—9 precision 1.1+15 2.1+ 13 23+ 12 2.1+ 07 2.1+ 06 —9 precision 3.9+ 01 31+o04 24+ 07 14+ 04 1.0+ 0.1
&= recall 03+04 12+07 25+13 45+16 9.2+ 22 €= recall 1.1+ 01 1.7+03 26+09 3.1+11 45+ 0.4
—3 precision 5.2+ 43 5.8+ 2.6 72+ 18 6.4+ 1.7 6.4+ 1.5 —3 precision 6.4+ 1.6 7.6+ 1.3 5.9+ 0.7 3.4+ 05 21+ 03
€= recall 14+ 11 3.1+ 1.3 78+ 17 138+31 278+ 5.3 &= recall 1.7+ 0.4 4.2+ o7 6.5+ 0.9 75+ 1.4 9.1+ 15
e—da precision 5.5+ 2.7 75+ 22 9.0+ 20 11.6+ 20 154+ 2.3 e—4a precision 124+ 2.6 132+ 16 13.1+ 1.5 76+ 08 4.3+ 03
B recall 1.5+ o7 4.0+ 1.0 97+ 1.7 252+ 36 669+ 7.4 B recall 34+ 06 72+07 143+19 166+21 190+ 18
—5 precision 92+ 39 124+31 21L.1+32 309+36 20.3+1.1 —5 precision 18.3+ 0.8 26.9+ 20 242+ 08 148+ 11 8.3+ 0.3
€= recall 25+ 1.0 67414 229+2s 672453 886+ 12 €= recall 5.0+ 02 147405 265+ 17 32.5+35 363+ 22
6 precision 22.1+ 45 36.2+ 44 451+ 28 365+15 21.2+ 009 -6 precision 35.5+ 34 43.0+34 39.1+13 255+1.0 144+ 04
°= recall 6.0+ 0.0 197+ 16 492+ 10 797+ 16 925+ 10 °= recall 9.7x 07 235+11 426409 556+ 26 62.9% 18
e—7 precision 55.1+ 2.4 61.9+ 2.9 557+ 32 39.8+ 15 223+ 08 e—7 precision 50.8 + 8.8 57.3+ 4.9 505+ 2.4 323+ 19 178+ 08
- recall 150+ 04 338+ 04 608+15 86.8+06 971+ 06 - recall 138+ 21 312+ 19 551+15 706+ 1.4 T77.8+ 00
c—8 precision 72.1+ 6.4 756+ 50 66.5+31 432+ 19 225+ 1.0 e—8 precision 64.7+ 7.6 658+ 3.8 57.1+23 36.5+15 197+ 08
B recall 197+ 12 413+15 726+1.2 942+ 02 983+ 01 - recall 177+ 19 359+ 06 623+02 79.7+01 858+ 02
—9 precision 87.5+ 1.9 859+ 1.7 705+ 22 435+ 17 225+ 1.0 —9 precision 71.9+ 40 727+ 30 61.6+31 393+ 18 20.7+o08
&= recall 239+ 08 470+ 11 T7.0+22 949+ 14 982+ 06 ¢ recall 196+ 09 39.7+03 673+18 85.7+05 904+ 05
e—1 precision 91.9+ 33 869+ 09 708+23 43.0x20 225+11 —1 precision 77.7+ 35 784+ 25 658+25 40.6x 1. 215+ o7
- recall 251+ 1.2 475+ 16 T7.3+20 93.7+15 98.0+ 0.7 &= recall 213+ 11 428+ 13 71.8+ 1.0 887+ 1. 93.7T+ 1.2
high k=k/a k=k/2 k=k k =2k k=4k high k=k/a E=k/2 k=k k =2k k=4k
_ precision 15.6+ 0.1 11.2+ 46 9.2+ 3.7 7.1+ 25 5.5+ 1.4 1 precision 3.6+ 05 3.3+ 1.1 2.5+ 07 20+ 0.3 1.8+ 0.2
&= recall 2.8+ 1.4 4.0+ 1.4 6.6+ 22 102+ 30 157+ 3.0 ¢ recall 0.7+ 01 1.2+ 03 1.8+ 0.4 29+ 0.2 5.3+ 03
—9 precision 223 +11.9 155+58 124+30 11.3x22 100+ 15 —9 precision 10.5 + 1.2 8.5+ 1.9 53+ 11 3.6+ 0.6 25+ 03
&= recall 40+ 1.9 5.6+ 1.7 90+ 16 164+ 21 289+ 25 &= recall 1.9+ 0.2 3.1+ 05 39+ 06 5.2+ 05 T4+ 06
3 precision 27.5+ 7.7 253+ 49 24.6+54 226+32 203+ 23 —3 precision 22.2+ 35 19.6+ 20 11.5+ 1.6 6.9+ 1.1 4.3+ 06
€= recall 50+ 1.1 92+ 13 178+ 27 329+ 26 592+ 37 €= recall 41+ o6 7.1+ 07 83+09 101+11 127+ 1.2
e—4a precision 387+ 8.9 36.9+ 59 376+ 45 394+ 34 298+ 1.9 e—4a precision 39.3+ 3.9 3844+ 34 23.6+32 133+ 1.0 8.3+ 1.1
- recall 70+13 135+ 18 274+18 574+13 869+ 2.2 - recall 72+ 04 140+ 07 172+ 13 194+ 16 24.0+ 1.7
c—5 precision 559+ 54 57.5+ 33 59.6+ 25 56.1+ 2090 322+ 24 c—5 precision 56.9+ 35 61.2+ 2.3 442+ 30 253+ 2. 145+ 1.4
- recall 102+ 07 21.0+07 436+ 17 819+ 29 93.8+ 1.2 - recall 104+ 04 224+ 08 322+ 09 36.8+ 1. 42.2 + 1.3
-6 precision 719+ 200 76.8+ 1.6 781+ 22 59.1+42 32.7+023 -6 precision 73.8+ 1.6 76.3+ 11 669+ 23 404+ 290 222+ 16
&= recall 131+ 06 281+15 571+26 862+ 1.5 954+ 038 &= recall 13.5+ 09 28.0+ 1. 489+ 1.8 589+ 05 64.6+ 0.0
e—7 precision 88.1+ 2.1 88.7+ 15 86.0+21 61.9+37 33.5+023 e—7 precision 83.9+ 1.0 851+ 12 76.9+29 50.2+35 27.0x 20
B recall 16.1+ 08 325+18 63.0+32 903+12 976+ 05 B recall 154+11 31.2+18 56.2+19 732+06 787+0.2
e—8 precision 94.0+ 0.8 93.5+ 05 884+ 1.7 634+35 33.8+22 e—8 precision 90.2+ 0.7 90.2 + o. 825+ 23 b54.T7+33 29.8+ 20
- recall 172+ 12 343+ 23 64.7+34 926+ 1.7 985+ 06 - recall 165+ 11 33.1+23 604+27 799+ 090 86.8+ 03
e—9 precision 96.8 + 0.3 95.6+ 0.8 89.0+ 1.9 63.3+ 38 33.7+ 23 ce—9 precision 93.3+ 0.3 93.0+ 05 858+ 1.7 588+ 36 31.5+ 2.1
- recall 177+ 13 350+ 24 652+33 924+ 11 984+ 05 - recall 171+ 12 3414+ 25 62.8+34 858+o0s 91.8+ 03
e = precision 97.5+ 04 963+ 03 894+ 17 628+ 42 33.5+023 e = precision 95.1+ 05 95.1+02 881+1s5 61.2+41 325+ 24
- recall 179+ 13 353+ 25 65.5+37 916+ 1.3 97.8+ 0.4 - recall 174+ 12 349+ 25 645+36 893+06 949+ 0.2

TABLE XV: twitch-DE (EDGERAND)

TABLE XVI: twitch-DE (LAPGRAPH)

low k=k/4 k=k/2 k=k k =2k k= 4k low k=k/4 k=k/2 k=k k =2k k= 4k
c— precision 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 e—1 precision 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0
- recall 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 - recall 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0
9 precision 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0 + 0.0 0.0+ 0.0 —9 precision 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0
&= recall 0.0+00 00+00 00+00 00+00 0000 &= recall 0.0+t00 00+00 00+00 00+00 0.0+o00
—3 precision 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 —3 precision 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0
&= recall 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 &= recall 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0
e—4a precision 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 e—4 precision 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0
B recall 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 B recall 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0
. precision 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 . precision 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.7+ 0.9
e=» recall 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 e=» recall 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 2.8+ 3.9
-6 precision 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 2.6+ 3.6 1.3+ 1.9 -6 precision 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 2.7+ 1.9
&= recall 0.0+00 00+00 00+o00 56+79 56+709 &= recall 0.0+00 00+00 00+o00 00+00 11.1+ 70
—7 precision 16.7+236 83+118 4.2xs50 2.2+ 31 44+ a2 —7 precision 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 2.2+ 31 6.2+ 1.7
°= recall 48+ 67 48+ 67 48+67 48+er 187+1r3 °= recall 0.0+00 00400 0.0+00 48+67 26.2+70
—3 precision 25.0 +20.4 17.9+12.7 21.7+11.8 23.2+13.6 16.7+ 5.7 -3 precision 0.0+ 0.0 0.0+ 0.0 5.1+ 7.3 88+ 2.3 73+ 25
€= recall 75+590 103+74 2421124 4921282 69.8+234 €= recall 0.0+ 0.0 0.0+ 0.0 56+ 79 187+ 46 31.0+10s8
—9 precision 41.7+31.2 31.0+ 84 358+128 329+115 227+ 1.9 —9 precision 83+11.8 4.8+ 6.7 51+ 73 13.7+s50 11.8+ 2.7
&= recall 13.1+102 187+ 46 40.1+131 69.8+234 952+ 6.7 &= recall 2.8+ 3.9 2.8+ 3.9 56+ 7.9 29.0+102 49.6+115
e—=10 precision 83.3 +23.6 66.7+236 54.0+111 444+ 42 238+ 03 e=10 precision 0.0+ 0.0 83+11.8 239+s81 2L.1+s52 1824+ 27
- recall 26.2+ 70 40.1+131 60.7+105 944+ 7.0 100.0+ 0.0 - recall 0.0+o00 56+79 27.0+90 448+103 76.6+108

unconstrained k=k/a k=k/2 k=k k =2k k =4k unconstrained k=k/a k=k/2 k=k k =2k k=4k
-1 precision 3.9+ 48 2.3+ 22 14+ 1.0 1.2+ 0.4 1.1+ 01 -1 precision 1.1+ 009 0.7+ 0.3 0.9+ 03 0.8+ 0.5 0.6+ 0.3
&= recall 1.0+ 1.2 1.2+ 1.2 14+ 1.0 2.3+ 08 4.3+ 0.6 &= recall 0.3+ 0.2 0.3+ 0.1 09+ 0.4 1.5+ o8 2.3+ 0.9
—9 precision 5.7+ 6.6 3.7+ 356 3.2+ 009 2.8+ 05 2.7+ 06 —9 precision 2.5+ 13 2.0+ 09 1.9+ 05 1.4+ 07 1.0+ 05
&= recall 14+17 18+190 31+11 54+ 07 102+ 1.7 €= recall 06+03 09+04 1.7+06 26+ 1.1 3.7+ 16
—3 precision 6.4+ 6.3 5.1+ 3.5 5.3+ 2.0 56+ 1.6 6.0+ 1.6 —3 precision 6.4+ 1.7 5.7+ 1.3 4.8+ 0.6 3.0+ o5 1.8+ 0.4
€= recall 1.6+ 1.6 25+ 1.8 5.1+ 21 105+ 26 225+ 47 &= recall 1.5+ 0.3 2.7+ 0.4 4.6+ 0.2 5.7+ 0.6 70+ 1.3
e—da precision 89+ 5.3 9.0+ 46 10.1+ 20 94+ 09 116+ 15 e—4a precision 11.0+ 1.8 12.2+ 2,6 123+ 1.5 73+ 08 4.0+ 0.6
B recall 22+ 1.4 44+ 2.5 97+ 23 179+ 08 439+ 25 B recall 26+ 04 58+ 09 11.6+ 06 13.8+ 07 151+ 1.3
—5 precision 124+ 49 165+ 20 194+ 27 233+ 11 233+ 26 —5 precision 17.4+ 3.3 21.5+ 37 26.7+31 165+ 1.0 8.6+ 0.9
&= recall 3.0+ 1.4 79+ 12 185+ 23 444+ 15 88.1+ 3.9 &= recall 42+ 09 102+16 253+16 314+ 24 325+ 21
6 precision 27.7+ 46 33.7+ 15 404+ 490 422+51 246+ 23 -6 precision 30.1+ 48 36.0+ 37 40.1+33 264+19 142+12
°= recall 6.6+ 1.2 161+ 04 383+25 799+ 48 932+ 24 °= recall 7212 172411 382+20 502+22 54.0% 23
7 precision 55.7+ 86 60.1+ 58 61.8+ 74 466+ 46 254+ 23 —7 precision 41.8+ 57 504+ 51 54.0+36 352+25 194+ 138
€= recall 13.3 + 2. 287+ 1.6 H86+ 29 883+290 964+ 1.0 = recall 100+ 1.0 24.0+12 514403 670+15 73.8+ 027
c—38 precision 73.0+ 35 771+ 24 T71.7+65 481+43 257+ 22 e—8 precision 54.3+ 3.8 61.5+ 1.8 61.2+41 402+26 21.9+1.2
B recall 175+ 18 369+ 15 68.2+29 91.3+22 975+ 1.8 B recall 13.0+ 13 295+ 1.9 582+06 765+07 833+ 18
—9 precision 84.8 + 1. 84.6+ 44 772+ 67 485+ 40 255+ 1.7 —9 precision 66.3+ 2.7 723+ 46 68.1+66 442+ 36 23.8+ 1.6
&= recall 20.3 + 1. 4044+ 11 T35+45 921+16 97.0+ 03 ¢ recall 159+ 1.0 345+04 64.7+20 840x+16 904+ 1.2
e—1 precision 88.3+ 1.5 902+ 38 802x+s56 491x+46 256+ 109 e—1 precision 73.8+ 39 780x+37 T734x72 468+34 246+ 16
- recall 211+ 11 432+15 T764+32 932+23 973+ 06 - recall 176+ 03 373+ 08 698+ 24 89.0+05 934+ 1.1

high k=k/a k=k/2 k=k k =2k k=4k high k=k/a E=k/2 k=k k =2k k=4k
_ precision 3.6+ 2.4 3.1+ 0.9 2.9+ 0.7 24+ 0.2 2.5+ 04 -1 precision 2.1+ 1.0 1.9+ o6 1.6+ 05 1.3+ 03 1.1+ 01
= recall 09+o06 16+05 30+o08 49+05 103+ 18 €= recall 05+02 1.0+03 16+o04 26x+06 4.5+04
—9 precision 7.2+ 20 6.0+ 1.1 6.0+ 0.5 59+ 0.7 5.6+ 0.7 —9 precision 5.5+ 1.3 5.2+ 04 3.2+ 0.2 2.2+ 0.0 1.6+ 0.0
&= recall 1.8+ o5 3.1+ 07 6.1+06 1214+ 1.0 22.8+ 338 &= recall 1.4+ 04 2.7+ 02 3.2+ 01 4.4+ 0.2 6.3+ 0.4
3 precision 129+ 08 11.6+ 1.4 124+ 04 13.0+01 124+ 03 —3 precision 13.7+ 1.4 127+ 03 7.6+ 0.3 4.3+ 03 2.6+ 0.2
€= recall 3.3+ 03 59+ 1.0 126+08 264+1.1 503+ 33 €= recall 3.5+ 05 6.5+ 0.5 7.8+ 0.6 87+09 106+ 1.2
e—4a precision 20.2+ 2.2 21.0+ 0.9 233+ 09 239+ 08 203+ 0.5 e—4a precision 26.1+ 1.2 26.2+ 07 154+ 1.1 8.5+ 0.5 4.8+ 0.2
- recall 52+ 07 107+10 23.7+20 486+ 39 823+ 2.7 - recall 6.6+06 133+0s5 156+04 172+ 03 195+ 04
c—5 precision 34.6+ 14 386+ 1.8 43.1+19 420+ 09 23.1+ o009 c—5 precision 389+ 200 47.1+ 17 314+18 173+ 1.2 9.5+ 0.4
- recall 88+ 07 19.7+19 438+ 39 853+38 936+ 16 - recall 9.9+ 009 24.0+20 31.8+o02 349+o07 386+ o0s
c—6 precision 525+ 1.9 59.5+ 0.9 680+ 09 447+ 20 24.0+ 1.2 c—6 precision 58.1+ 31 66.4+ 29 50.1+22 279+13 152+ 07
- recall 134+ 09 302+16 690+42 90.7+20 971+ 06 - recall 148+ 14 338+ 29 508+20 566+ 1.7 61.7+ 27
e—7 precision 75.5+ 3.3 80.0+ 16 759+ 09 458+ 17 242+ 1.2 e—7 precision 73.9+ 1.7 77.6+ 05 63.4+20 362+17 192+ 08
B recall 192+ 1.8 406+ 27 771+36 928+ 1.2 979+ 01 B recall 188+ 11 394+ 22 644+24 733+14 T7.7+1.7
c—8 precision 89.1+ 3.3 90.1+ 1.9 779+ 03 463+ 14 242+ 1.0 c—8 precision 84.5+ 1.0 852+ 13 680+ 1.5 399+ 10 21.0+ 07
- recall 227+ 19 458+ 32 T79.1+36 93.8+20 98.0+ o009 - recall 215+ 13 433+ 27 69.0+25 80.9+21 851x17
e—9 precision 95.1+ 0.3 93.0+ 1.3 784+ 07 463+ 20 24.0+ 1.2 ce—9 precision 90.7+ 1.8 88.9+ 07 T73.7+ 1.2 426+ 14 224+ 07
- recall 242+ 11 472+ 29 T795+35 938+ 08 97.0+ 01 - recall 23.1+ 1.5 451+ 23 74.7+25 864+ 16 90.6+ 1.7
e — precision 97.7+ 1.0 95.6+ 03 79.1+ 1.4 46.6+ 18 243+ 1.2 e — precision 94.0+ 0.3 92.6+ 0.7 76.1+ 1.4 444+ 109 232+ 1.1
- recall 248+ 1.0 485+ 25 80.3+290 944+ 12 983+ 04 - recall 239+ 1.2 470+ 25 T772+27 90.0+o0s8 941+ 06

TABLE XVII: twitch-FR (EDGERAND)

TABLE XVIII: twitch-FR (LAPGRAPH)

low k=k/4 k=k/2 k=k k =2k k= 4k low k=k/4 k=k/2 k=k k =2k k= 4k
c— precision 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 e—1 precision 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0
- recall 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 - recall 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0
9 precision 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0 + 0.0 0.0+ 0.0 —9 precision 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 1.1+ 16
&= recall 0.0+00 00+00 00+00 00+00 0000 &= recall 0.0+00 00+o00 00+00 00+00 42+50
—3 precision 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 —3 precision 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 2.2+ 31 1.9+ 1.4
&= recall 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 &= recall 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 4.2+ 5.9 7.5+ 5.4
e—4a precision 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 e—4 precision 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 1.1+ 1.6
B recall 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 B recall 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 42+ 5.9
. precision 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 . precision 0.0+ 0.0 0.0+ 0.0 3.3+ a7 3.9+ 2.8 1.9+ 1.4
e=» recall 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 £=0 recall 0.0+ 0.0 0.0+ 0.0 3.3+ a7 7.5+ 5. 7.5+ 5.4
-6 precision 0.0+ 0.0 6.7+ 9.4 3.3+ a7 1.7+ 2.4 4.4+ 22 -6 precision 11.1+15.7 6.7+ 9.4 3.3+ a7 5.6+ 4.2 3.6+ 1.0
= recall 00+ 00 33+47 33+a47 33+a7 175+ 80 €= recall 33+47 33+a47 33+a7 108+s82 142+ 42
—7 precision 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 5.0+ 41 8.6+ 3.9 —7 precision 22.2+31.4 13.3+189 10.8+ 8.2 5.6+ 42 5.3+ 1.7
°= recall 0.0+00 00400 0.0+00 100+s2 342+159 °= recall 6.7+94 6.7+94 10.8+s2 108+s2 208+ 7.2
e—8 precision 0.0+ 0.0 6.7+ 9.4 6.7+ 94 156+63 192+ 1.2 e—8 precision 0.0+ 0.0 6.7+ 9.4 13.3+125 83+ 6.2 9.7+ 2.4
B recall 0.0+ 0.0 3.3+ 47 6.7+ 94 30.8+130 T75.0+ 4.1 B recall 0.0+ 0.0 3.3+ 47 133+125 16.7+125 383+103
—9 precision 389+ 7.9 283+ 85 325+35 356+75 256+ 08 —9 precision 11.1+157 6.7+ 0.4 6.7+ 9.4 13.3+103 158+ 6.6
&= recall 108+ 12 142+ 42 325+ 35 70.0+16.3 100.0+ 0.0 &= recall 3.3+ a7 3.3+ a7 6.7+ 9.4 26.7+205 62.5+27.0
e—=10 precision 77.8 +15.7 80.0+16.3 T71.7+ 24 4944+ 34 256+ 08 e=10 precision 0.0+ 0.0 6.7+ 904 16.7+125 2224117 20.6+ 3.4
- recall 21.7+ 24 400+ 82 T1.7+24 96.7+ 47 100.0+ 0.0 - recall 0.0+ 00 33+47 167+125 4424238 80.8+15.3
unconstrained k=k/a k=k/2 k=k k =2k k =4k unconstrained k=k/a k=k/2 k=k k =2k k=4k
-1 precision 71+ 72 3.8+ 34 2.5+ 2.0 1.8+ 1.0 1.5+ 06 -1 precision 1.8+ 03 2.1+ 04 2.0+ 0.4 1.4+ 0.2 1.1+ 0.2
&= recall 1.7+ 1.8 1.8+ 1.7 2.4+ 1.9 3.4+ 2.1 5.5+ 2.6 &= recall 0.4+ 01 1.0+ 0.2 1.9+ o5 2.7+ 0.6 4.0+ 0.8
—9 precision 9.1+ 094 54+ a8 4.5+ 3.1 3.7+ 19 3.6+ 1.3 —9 precision 3.8+ 08 4.3+ 1.4 4.1+ 009 2.7+ 03 1.6+ 0.3
&= recall 22+ 23 26+24 43zx31 6.9+ 390 13.5+ 5.3 €= recall 09+02 20+o07 38+10 50+o06 6.0+ 1.2
—3 precision 11.2+103 9.1+ 6.1 8.1+ 4.2 9.1+ 28 9.6+ 2.7 —3 precision 7.5+ 08 7.7+ 22 10.0+ o8 6.1+ 0.1 3.4+ 02
€= recall 27+ 25 4.3+ 3.0 77+43 170+57 359+11.2 &= recall 1.8+ 0.2 3.6+ 1.2 93+ 1.1 114+ 04 127+ 00
e—da precision 15.0 +12.7 16.7+ 54 17.0+ 49 187+ 40 183+ 28 e—4a precision 15.1+ 5.6 17.9+ 48 18.6+ 2.8 12.2+ 0.4 6.6+ 02
- recall 3.6+ 3.1 78+ 28 160+ 50 35.0+s82 682+11.7 B recall 3.6+ 15 84+ 25 174+32 228+ 13 245+1.7
—5 precision 21.0+101 23.9+ 76 29.1+65 36.0+35 245+ 08 —5 precision 23.5+ 9.0 29.0+ 72 35.7+31 229+ 05 123+ 03
&= recall 50+ 26 11.3+£39 273+70 672+86 91.0+ 3.0 &= recall 55+ 23 13.6+£38 333+40 426+ 1.4 457+ 1.9
6 precision 41.5+ 6.2 479+ 63 bH7.7+46 464+ 18 255+ 009 -6 precision 35.8+ 84 47.0+6.6 51.3+41 334+04 180+ 02
°= recall 9.7+ 18 224+ 37 538+ 60 86.4+35 949+ 19 °= recall 84x23 220+3s 478+50 621x16 67.2%25
7 precision 63.2+ 41 68.1+ 38 69.6+ 38 489+ 17 259+ 07 —7 precision 52.8+ 6.5 62.3+ 6.0 626+ 32 40.1+ 09 214+ 06
€= recall 148+ 1.3 318+ 28 648+53 909+ 25 964+ 009 = recall 124+ 19 291+ 36 584+42 T47+18 797+ 1.8
c—38 precision 83.1+ 3.9 84.0+ 35 76.8+32 49.8+ 19 26.1+ 0.9 c—38 precision 66.9+ 5.0 73.3+ 45 69.6+ 28 438+ 18 23.6+ 0.7
B recall 194+ 14 392+ 25 715+ 2 925+ 1.2 972+ 06 B recall 157+ 18 342+ 31 648+34 8l5+15 876+ 16
—9 precision 90.4+ 1.2 91.5+ 0.0 822+ 39 51.0+ 24 263+ 1.0 —9 precision 781+ 42 8L.1+ 19 741+ 1.2 469+ 13 246+ 08
€= recall 211+ 08 426411 T76.5+ 23 948+ 17 978+ o7 € recall 183+ 1.6 37.84 21 69.0+s1 87.3+22 916+ 12
e—1 precision 94.6+ 03 926+ 13 824x27 5l.1x19 266x009 e—1 precision 853+ 14 859+ 19 T73x20 482x+16 253+ 07
- recall 221+ 08 432+ 13 76.7+16 949+ 090 988+ 04 - recall 199+ 10 401+ 21 720+ 27 89.7+ 22 94.0+ o7
high k=k/a k=k/2 k=k k =2k k=4k high k=k/a E=k/2 k=k k =2k k=4k
_ precision 4.6+ 42 3.7+ 24 3.4+ 09 3.2+ 1.0 3.2+ 05 -1 precision 3.0+ 1.0 324+ 1.2 2.7+ 0.7 24+ 03 1.7+ 0.2
&= recall 1.1+ 1 1.8+ 1.2 3.3+ 1.0 6.4+ 24 125+ 209 &= recall 0.7+ 0.2 1.5+ 0.4 2.6 + 0.4 4.5+ 0.4 6.6+ 0.2
—9 precision 8.7+ 2.4 8.5+ 25 8.5+ 3.2 81+ 24 7.7+ 1.2 —9 precision 7.8+ 0.6 84+ 09 5.3+ 0.7 3.5+ 06 26+ 03
&= recall 2.1+ o7 42+ 1.5 85+ 37 159+s59 30.1+6.6 &= recall 1.9+ o0 4.1+ 0.2 5.1+ 0.2 6.7+ 0.5 9.8+ 05
e—3 precision 149+ 16 183+ 1.0 192+ 02 182+ 04 168+ 05 e—3 precision 16.3+ 1.2 173+ 08 10.8+ 1.4 6.2+ 0.8 3.9+ 04
B recall 3.6+ 05 88+ 05 186+ 15 353+28 650+ 5.1 B recall 3.9+ 03 83+04 103+04 11.8+05 148+ 02
e—4 precision 31.8+ 3.0 326+ 22 322+ 04 329+03 219+ 05 e—4 precision 30.2+ 06 339+ 14 229+17 129+ 1.3 74+ 06
- recall 78+ 13 158+19 31.2+23 63.7+s56 84.7+56.4 - recall 73+07 164+0s8 221+06 247+05 285+ 04
c—5 precision 453+ 25 49.6+ 41 539+ 1.1 442+ 14 240+ 1. c—5 precision 47.0+ 1.9 54.0+ 24 426+ 26 23.7+21 13.0+ 1.1
- recall 11.0+ 15 2424+ 38 523+55 855451 926+ 43 - recall 114+ 11 262+ 27 41.1+12 455+ 05 50.0+ 1.4
-6 precision 65.0 + 1. 71.7+ 02 748+ 19 468+ 22 246+ 13 -6 precision 679+ 2.5 731+ 09 600+09 339+18 184+ 1.2
&= recall 15.7 + 1. 348+ 290 T725+67 90.3+37 95.0+ 34 &= recall 165+ 1.8 354+ 31 581+41 654+23 709+
e—7 precision 804+ 2.6 845+ 26 795+ 1.1 486+ 29 253+ 1.9 e—7 precision 79.8+ 38 834+ 17 T7l4+20 41.0+£32 21.6+1s5
B recall 195+ 20 410+ 39 770+58 936+26 974+ 1.4 B recall 193+ 19 404+ 33 690+41 789+ 1.0 832+ 1.5
e—8 precision 92.3+ 2.3 928+ 1.2 80.5+ 1.3 484+ 27 252+ 1.7 e—8 precision 87.7+ 2.0 89.5+ 1.6 T4.7+15 43.7+25 228+ 15
- recall 223+ 1.8 450+ 37 T779+s55 933+31 97.0+ 2.1 - recall 213+ 20 434+ 39 T24+s55 842+25 88.0+ 21
e—9 precision 97.1+ 1.2 96.0+ 1.0 842+ 1.4 49.0+ 27 254+ 1.9 ce—9 precision 91.5+ 2.1 91.9+ 14 780+ 1.0 46.0+ 24 238+ 1.5
- recall 235+ 21 465+42 8l6+e62 946+31 978+ 12 - recall 221+18 446+42 7T57+73 887+31 917+ 23
e — precision 98.0+ 0.8 97.2+ 08 849+ 1.1 49.2+ 209 253+ 1.8 e — precision 95.0+ 0.9 93.9+ 15 802+ 06 46.7+25 244+ 16
- recall 237+ 21 471+ 43 822+66 94.8+290 975+ 18 - recall 230+ 20 455+ 45 T7.7+60 90.1+30 939+ 21

TABLE XIX: twitch-ENGB (EDGERAND)

TABLE XX: twitch-ENGB (LAPGRAPH)

low k=k/4 k=k/2 k=k k =2k k= 4k low k=k/4 k=k/2 k=k k =2k k= 4k
_ precision 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 e—1 precision 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0
= recall 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 - recall 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0
9 precision 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0 + 0.0 0.0+ 0.0 PR precision 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0
&= recall 0.0+00 00+00 00+00 00+00 0000 - recall 0.0+t00 00+00 00+00 00+00 0.0+o00
—3 precision 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 e—3 precision 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0
&= recall 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 - recall 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0
—4 precision 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.7+ 0.9 23+ 1.2 e—4 precision 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0
= recall 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 1.7+ 2.4 84+ 3.1 B recall 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0
__ - precision 83+118 48+ 6.7 2.6 + 3.6 3.3+ 0.9 5.0+ 0.8 __ . precision 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.7+ 0.9 0.3+ 05
e=» recall 21+ 209 21+ 29 2.1+ 29 6.3+ 1.1 19.7+ 40 e=» recall 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 1.7+ 2.4 1.7+ 2.4
-6 precision 13.1+102 1944+ 65 182+ 35 14.7+ 1.0 9.7+ 1.2 -6 precision 83+11.8 4.8+ 6.7 5.2+ 3.7 6.0+ 1.6 3.7+ 05
&= recall 42+ 32 105+ 37 185+ 44 29.8+s7 39.5+12.3 €= recall 21+290 21+20 54+a1 122+a2 143+13
—7 precision 13.1+102 220+ 59 184x+101 160+33 140+ 33 e—7 precision 13.1+102 121+121 7.8+ 63 8.7+ 25 9.0+ 22
&= recall 3.8+ 27 11.7+30 20.1+142 32.7+12.3 584 +24.2 - recall 38+ 27 58451 75+54 164+ 17 344+ 28
_g precision 56.0 +13.8 46.5 +12.8 37.7+ 5.4 33.3+ 38 20.7+ 0.9 e—8 precision 38.1+16.8 36.3+ 93 221+15 21.3+19 153+ 34
€= recall 169+ 45 26.1+ 98 395+123 67.7+189 81.9+132 B recall 11.0+ 44 189+ 33 223+ 26 425+ 81 588+ 36
—9 precision 60.7 +10.5 58.6+ 2.1 54.6+ 1.0 41.3+ 1.9 26.0+ 4.9 —9 precision 51.2+19.0 46.2+ 8.0 352+ 62 28.0+ 0.0 173+ 3.4
&= recall 180+ 19 319+62 559+108 819+132 100.0+ 0.0 &= recall 152+ 57 248+ 49 369+130 559+108 66.8+ 3.7
—10 precision 83.3+11.8 82.8+ 41 741+ 34 46.7+68 260+ 409 e=10 precision 47.6+ 3.4 41.8+103 404+ 88 353+66 21.0+ 3.7
= recall 256+ 6.9 446+ 52 T75.6+140 90.7+ 6.7 100.0+ 0.0 - recall 143+ 13 23.0+s6 423+160 69.2+127 81.1+ 3.3
unconstrained k=k/4 k=k/2 k=k k =2k k =4k unconstrained o= k4 = k)2 b=k b= 2k b= ak
e=1 predsﬁm éii Lo 8§i o 8?i 04 gg = Or’ ggi o -1 precision 0.5+ 0.7 0.3+ 0.4 0.1+ 0.2 0.2+ 0.2 0.2+ 02
reca 05 OE 04 x 05 ox 12 cE LS &= recall 0.2+ 0.2 0.2+ 0.2 0.2+ 0.2 0.5+ 0.4 1.0+ 1.0
e=2 precis;;)n éi = l'f égi 0 1§i o8 (I)Si 0-2 gZI Tz PR precision 1.1+15 0.5+ 08 0.4+ 06 0.3+ 0.4 0.3+ 01
reed w08 : 06 . os : o :) - recall 0.3+ 05 0.3+ 05 0.5+ 0.7 0.7+ 0.9 1.2+ 06
e=3 prcci.sﬁ)n 88 xo00 82 + 1§i 09 égi 06 é?i 0'? e—3 precision 3.7+ 27 2.7+ 0.7 2.1+ 08 1.3+ 06 0.8+ 03
reca DE 00 OE 0T . tt . L8 . +0 - recall 09+ 06 14+ 04 2.1+ 04 25+ 07 3.4+ 009
. .] -
c=g Pecon Bleeo LOsaT B2ias BFiao ADE1 T preisin 53115 Glias 49:1s 30:12 L8ioo
reca LEoT DE 1 O 19 Sl xes B recall 14+ 04 344+ 1.7 5.2+ 1.8 6.0+ 1.7 T4+ 1.8
e=s Pecsion 3Tsos ABxaa Blaor Jl2raiz 130+ a0 _ 5 prcsin 11650 125556 120:27 Tdzis 4312
reea SEO04 SoEod FAER6 S90E 7o BROES €= recall 3.0+16 6.9+3s 129+s7 158+s7 18.1% 12
e=6 meis;fn 1Z?i 22 13(5)i ll)j gggi :j 213 i 139'79 zgii Z'j c—6 precision 21.0+ 39 24.7+s52 21.5+15 148+ 14 89+ 15
reea S0 e : : cEe - recall 5.8+ 15 13.7+45 237462 3L7+s0 37530
e="7 prcci.sﬁ)n 322 * 3.0 3?2 o0 ig}l * 4T gggi 8 Zégi 3'2 —7 precision 34.8+ 6.1 34.3+ 37 33.5+05 232434 13.8+ 3.0
reca wE 2 O 6T kil . it . o7 = recall 99+ 33 192+55 36.7+83 490+ 50 575+ 26
=8 premys;;m T(SSAQL +46 g?lll +20 ggg + 32 g?g + 03 Sigi 53 e—8 precision 46.3+ 1.8 49.2+ 23 45.7+ 28 31.0+ 49 176+ 44
reca g Sk 0+ 10.0 DE9r oE2s B recall 13.0+ 32 27.0+s59 495+91 654+63 728+ 1.0
c=g Preckion ;Ig 27 ;;8 Ero 0loE oo g;'g BT Ao _ o prcsin 642:c7 64diar 527:1s 356es 199 as
reea oEas 2900 BhAr1R0 OH9+ 69 To0E 2 € recall 17.4+ 26 352475 57.3+113 T45+ 40 822+ 17
e=10 meis;fn ;?gi 1':1 Z;Zi 4 23;i 58 gggi ?'4 32}1 *59 —1 precision 758+ 42 71.8+ 34 61.2+49 400x79 219+57
S SEas fhnETe pUowios SvoEsE HmE e °= recall 2094 41 393+ s2 659+105 83.8%4as 903+ 04
high k=k/4 k=k/2 k=k k =2k k =4k
high k=k/4 k=k/2 k=k kE=2k k =4k
_ precision 4.2+ 0.9 4.1+ 1.2 4.0+ 1.5 3.0+ 08 29+ 05 '8 / /
&= recall 1.1+ 0.2 21+ o6 41+ 15 6.0+ 1.7 119+ 2.1 e—1 precision 1.7+ 04 1.2+ 03 1.1+ 03 09+ 0.2 04+ 01
all 4 . . . 1.1 . 1. K 1. .
—9 precision 6.1+ 2.1 7.2+ 209 7.0+ 1.6 6.7+ o7 6.0+ 0.6 reed 0.4+ oa 0.6+ o * 0 T 08 T o3
&= recall 1.5+ 05 3.7+ 15 71+16 13.7+14 244+ 22 c—9 precision 3.2+ 05 20+ 04 1.5+ 0.2 1.1+ 0.2 0.6+ 0.1
- 0.8 1.0+ o. 1.6 + 0.2 2.3+ 0. 2.3 :
3 precision 199+ 53 186+ 15 17.0+09 168+ 06 152+ 06 recall Gl 02 £02 £03 03
&= recall 51+ 1.3 95+ 07 173+09 343+10 619+ 22 e—3 precision 9.3+ 21 54+ 1.2 3.4+ 08 2.2+ 04 1.1x+o2
B . .5 2.8 . 3. . 4.5 . 4. .
_, precision 29.7:s7 295:22 312:17 318:16 214 os reeall | 24+ 0 oo 35%os £o7 ASEor
€= recall 76+09 150+ 10 31.8+16 649+32 87.3+16 e—4a precision 24.7+ 2.5 13.24 1.4 7.9+ 08 5.1+ 05 3.1+ 09
- all 10. K: 12.5 + 3.
_ s precision 48.0:20 515:17 55714 44.6: 06 23602 recd 63«06 67xo07 80xo7 105+00 il
&= recall 122+ 06 262+ 1.0 56.7+13 908+ 1.2 96.2+ 05 c—5 precision 50.1+ 1.4 30.9+ 13 174+ 1.0 105+ 1.0 6.3+ 0.3
- all 12. . 15. . 17. . 21.4 . 25. .
6 precision 71.9+ 31 756+ 33 769+ 23 465+ 05 241+ 0.2 recd 8+ 03 58+ 0.6 TTE 00 10 5T 1
&= recall 183+ 09 385+ 1.8 T784+24 94.7+1.0 981+ 0.7 c—6 precision 76.0+ 1.2 61.0+ 0.6 352+ 05 199+ 05 11.9+ 0.4
- . 2 31 4 358+ 04 405+ 08 483 5
—7 precision 88.2+ 33 89.8+ 13 81.5+16 472+ 06 243+ 0.1 recall 194+ 02 311+ o4 x04 £08 e
&€= recall 225+ 08 457+ 07 831x+14 960+09 989+ o056 e—7 precision 88.3+ 1.5 83.3+ 19 563+ 1.2 3l4+oo 173+ 05
- . 3 42, 0 574+ 1. 34. . 70.: .
_g precsion 94dii1s 935:10 80.0%23 47.0%07 243% 0. el 225% 035 4252 10 £ro 640x1s 7037
€= recall 240+ 05 476+ 07 8l5+22 958+ 11 98.8+ 02 c—38 precision 93.0+ 0.7 89.7+ 1.9 673+ 1.7 379+ 08 202+ 0.5
- all 23. . 45. . 68.6 77.2 3 821 .
_g precsion 974:o0> 950ios 812:2> 475:o0s 24302 reca 37+01 457+ 10 il il il
&= recall 248+ 02 484+ 05 82.T7+22 96.7+ 1.4 98.8+ 04 c—9 precision 96.0+ 1.4 925+ 05 733+ 1.7 41.9+ 08 21.9+ 03
- 2 24.4 . 47.1 . 4.
_ precision 984+ 1.0 96.1+ 1.0 81.7+20 475+ 05 243+ 0.1 recall * 04 Tleos TAT+1e 85.3+14 890+ 10
€= recall 25.1+ 03 490+ 06 83.2+21 96.7+07 99.0+ 0.2 _ precision 973+ 0.6 942+ 1.0 T773+22 443+ 04 229+ 02
€= recall 248+ 02 480+ 04 788+ 21 90.3+06 93.3+ 06

TABLE XXI: twitch-PTBR (EDGERAND) TABLE XXII: twitch-PTBR (LAPGRAPH)

low k=k/4 k=k/2 k=k k =2k k= 4k low k=k/4 k=k/2 k=k k =2k k= 4k
c— precision 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 e—1 precision 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.3+ 0.2
- recall 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 - recall 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 1.1+ o038
9 precision 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.3+ 05 0.3+ 05 —9 precision 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.5+ 0.4 0.5+ 0.4
&= recall 00+00 00+00 00+o00 0.6+009 1.3+ 1.8 &= recall 0.0+00 00+00 0.0xo00 11+ 08 23+ 16
—3 precision 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.3+ 05 0.2+ 02 —3 precision 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.3+ 02
&= recall 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.6+ 0.9 0.6+ 0.9 &= recall 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 1.1+ o038
e—4 precision 0.0+ 0.0 1.3+ 1.9 0.7+ 0.9 1.2+ 009 2.0+ 06 e—4 precision 2.1+ 20 1.0+ 15 2.3+ 0.7 2.7+ 1.0 1.8+ 05
B recall 0.0+ 0.0 0.6+ 0.9 0.6 + 0.9 24+ 1.7 83+ 22 B recall 0.6+ 0.8 0.6+ 0.8 24+ 08 54+ 1.8 72+ 18
__ . Dprecision 0.0+ 0.0 2.1+ 15 4.3 + 2.7 4.1+ 15 5.1+ 0.1 __ - precision 4.6 + 3.3 34+ 26 24+ 1.7 4.0+ o7 4.3+ 05
e=» recall 0.0+ 0.0 1.1+ o8 4.3+ 25 84+26 214+15 e=» recall 1.2+ 09 1.8+ 1.4 254+ 1.7 83+16 179+ 24
-6 precision 139+ 69 13.7+30 13.0+ 1.0 13.8+ 21 142+ 1.2 -6 precision 6.7+ 0.7 6.8+ 08 102+ 07 10.2+ 0.9 8.9+ 0.1
°= recall 3.6+ 1.6 7.2+ 15 13.6+ 17 289455 591+ 7s °= recall 1.8+ 01 3.6+02 10.7+00 213%s0 368=17
—7 precision 404+ 65 31.2+26 322x16 289x22 23.1x13 —7 precision 22.8+ 57 17.1+21 150x22 144+17 139=x 009
&= recall 108+ 16 165+ 22 338+35 603+73 959+ 07 &= recall 6.0+ 1.2 90+ 05 155+14 301+s51 581+ses
_g precision 60.1+ 2.7 53.5+ 3.9 59.7+ 07 453+ 13 241+ 1.4 _3 precision 274+ 82 242+ 57 233+20 225+39 19.7+16
€= recall 16.1+ 1.0 284+3s8 623+33 939+ 26 100.0+ 0.0 €= recall 7T2+19 126+21 244+26 471+102 822+105
—9 precision 77.7+ 2.6 80.8+ 0.6 69.8+ 23 474+ 26 239+ 15 —9 precision 223+ 2.6 27.0+ 1.4 272+ 21 301+15 219+ 02
&= recall 208+ 1.2 427+ 31 T73.0+63 982+01 989+ 0s &= recall 59+ 06 143+07 284+30 628+64 909+ 45
e—=10 precision 90.7+ 43 91.1+ 26 79.6+ 1.3 471+ 22 241+ 1.4 e=10 precision 409+ 9.5 39.7+ 31 39.0+ 29 393+ 19 23.1+o0.7
- recall 243+ 23 481+35 831+s1 976+ 1.0 100.0+ 0.0 - recall 108+ 20 208+ 04 408+ 46 81.8+ 75 957+ 25

unconstrained k=k/a k=k/2 k=k k =2k k =4k unconstrained k=k/a k=k/2 k=k k =2k k=4k
-1 precision 5.2+ 23 3.4+ 1.0 3.4+ 1.2 3.6+ 1.0 4.0+ 0.8 -1 precision 6.1+ 0.8 5.0+ 0.3 4.2+ 04 3.6+ 0.6 2.9+ 03
&= recall 1.4+ o8 1.8+ o8 3.8+ 1.9 80+ 35 175+ 6.9 &= recall 1.6+ 03 2.6 + 0.6 4.4+ 1.0 74+11 121+ 27
—9 precision 73+ 16 6.9+ 21 73+ 15 89+01 101+ 05 —9 precision 12.0+ 1.8 11.0+ 0.9 9.6+ 0.7 72+ 12 4.8+ 0.6
&= recall 20+07 38+17 80+32 186+46 420+ o7 €= recall 31+o06 56+11 101+26 144+10 19.6+ 3.2
—3 precision 11.5+ 2.1 157+ 1.2 183+ 02 204+ 10 177+ 1.3 —3 precision 186+ 1.3 198+ 11 198+ 12 141+ 33 85+ 1.6
€= recall 3.1+ 1.2 83+ 24 192+48 4294112 73.3+150 &= recall 48+ 1.1 105+ 290 20.8+s52 279+ 19 33.8+ 35
o4 Drecision 245+ 44 288+ 14 345+36 330+21 226+ 48 o4 Drecision 25,0+ 18 332+3s 338+290 239+s55 13.7+33
- recall 6.7+ 26 153+ 43 37.0+11.9 70.0+19.9 89.6+ 6.9 - recall 6.7+ 20 179+ 59 356+ 97 473+30 541+ 30
—5 precision 41.3+ 6.0 494+ 49 519+ 28 405+ 57 24.0+ 6.1 —5 precision 41.3+ 0.9 49.7+ 42 479+ 28 328+ 68 185+ 45
&= recall 112+ 39 265+ 84 54.9+155 81.9+11.2 94.1+ 3.9 &= recall 109+ 2.0 26.5+ 8.1 49.7+108 653+ 52 T73.0+ 38
6 precision 66.0+ 5.5 70.8+ 3.7 65.7+ 28 455+96 251+ 7.0 -6 precision 55.2+ 6.3 62.6+ 40 586+ 40 39.0+090 21.7+5.7
°= recall 17.7+ 5.5 37.6+108 68.2+150 904+ 70 97.8+ 1.7 °= recall 14.9% 49 333+ 07 605+123 770+ 47 84.9% 2s
7 precision 84.4+ 2.3 83.7+ 20 73.6+63 47.7+110 254+ 7.4 —7 precision 66.6 + 6.5 T71.8+ 51 66.0+ 51 428+103 23.1+s6.2
€= recall 222+ 58 44.0+11.3 75.6+140 93.8+ 42 98.7+ 08 = recall 178+ 56 382+111 6794131 844+ 44 904+ 2.4
c—8 precision 92.0+ 1.3 909+ 1.7 771+ 84 482+118 253+ 73 e—8 precision 75.1+ 49 780+ 34 68.6+51 446+105 24.0+ 6.6
B recall 241+ 59 475+115 786+129 948+ 46 98.7+ 11 B recall 200+ 5.8 41.2+11.0 70.7+140 88.1+s51 93.9+ 22
—9 precision 954+ 1.4 932+ 11 T84+ 81 487 +1222 254+ 74 —9 precision 81.5+ 5.5 84.1+ 33 73.2+57 46.0+104 24.7+ 6.9
€= recall 251+ 65 4894122 801136 95.6+ a1 989+ 09 €= recall 217+ 65 4454122 7531143 90.9+ 58 96.2+ 1.6
e—1 precision 95.6+ 0.8 93.7+ 13 783+ 90 487x+124 254+ 74 =10 precision 87.2+ 22 882+15 758+ 74 471x115 249+ 70
- recall 251+ 64 49.1+121 79.8+128 955+ 38 99.0+ 0.9 - recall 23.0+ 61 464+120 T7.6+136 92.7+46 969+ 16

high k=k/a k=k/2 k=k k =2k k=4k high k=k/a E=k/2 k=k k =2k k=4k
_ precision 5.2+ 2.3 34+ 10 3.4+ 1.2 3.6+ 1.0 4.0+ 0.8 -1 precision 10.3 + 0.9 9.1+ 01 8.3+ 05 6.8+ 0.4 54+ 05
= recall 14+o0s8 18+0s8 38+19 80+a3s5 17.5+ 5609 €= recall 25+ 02 45+06 81lxo7 133+13 21.0+ 22
—9 precision 7.3+ 16 6.9+ 2.1 73+ 15 89+01 101+ o0 —9 precision 21.8+ 1.4 19.9+ 08 14.7+ 07 104+ o5 7.6+ 0.6
= recall 2.0+ 07 3.8+ 17 80432 186+46 420+ 07 = recall 54404 9.8+09 145+ 1.0 204+ 17 297+ 383
3 precision 11.5+ 2.1 157+ 12 183+ 02 204+1.0 17.7+13 —3 precision 40.2+ 2.8 37.8+ 22 287+21 180+15 113+ 1.0
€= recall 31+ 1.2 83+ 24 192+48 4291112 73.3+1509 €= recall 98+ 06 185+15 280+1.3 352+ 1.2 443+ 1.0
e—4a precision 24.5+ 4.4 28.8+ 14 345+ 36 33.0+ 21 226+ 48 e—4a precision 53.9+ 1.3 584+ 15 484+ 49 282+ 28 163+ 1.5
- recall 6.7+ 26 153+ 43 37.0+11.9 70.0+19.9 89.6+ 6.9 - recall 132+ 12 287+28 472+10 549+ 13 63.7+ 16
5 precision 41.3+ 6.0 494+ 49 519+ 28 405+s57 24.0+ 6.1 —5 precision 70.0+ 06 732+ 14 64.0+52 373+37 205+ 20
= recall 112+ 39 265484 5494155 81.9+11.2 941z 30 = recall 172+ 1.8 360436 625+21 727+13 799z 16
c—6 precision 66.0+ 5.5 70.8+ 3.7 65.7+ 28 455+ 96 25.1+ 7.0 c—6 precision 79.9+ 1.1 82.0+ 1.7 742+ 57 429+ 43 2294+ 24
- recall 177+ 55 376+108 682+150 904+ 70 978+ 1.7 - recall 197+ 22 404+ 39 725+ 27 836+ 1.0 89.2+ 00
e—7 precision 84.4+ 23 83.7+20 73.6+63 47.7+110 254+ 7.4 e—7 precision 86.8+ 0.7 89.1+ 07 80.0+ 59 46.0+50 24.0+ 26
B recall 222+ 58 44.0+11.3 75.6+140 93.8+ 42 98.7+ 08 B recall 214+ 23 439+ 48 7T82+33 89.6+03 93.7+o03
c—8 precision 92.0+ 1.3 90.9+ 1.7 771+ 84 4824118 253+ 7.3 c—8 precision 89.8+ 1.5 90.6+ 2.1 79.5+ 5.4 475+ 50 24.6+ 2.7
- recall 241+ 59 475+115 78.6+120 948+ 46 98.7+ 1.1 - recall 221+ 23 446+ 41 T7.8+36 925+06 959+ 04
e—9 precision 954+ 1.4 932+ 11 T84+ 81 487 +1222 2544+ 74 ce—9 precision 93.5+ 1.3 9444+ 12 83.5+59 485+ 51 250+ 2.7
- recall 25.1+ 65 489+122 80.1+136 956+ 41 989+ 00 - recall 23.0+ 23 465+ 47 81.6+ 37 946+ 07 973+ 0.2
e — precision 95.6+ 0.8 93.7+ 1.3 783+ 9.0 4874124 254+ 7.4 e — precision 954+ 09 95.8+ 1.0 855+ 6.3 495+ 53 252+ 28

recall 251+ 6.4 4914121 T79.8+128 955+ 38 99.0+ 0.9 10 recall 235+ 25 4724+ 49 83.6+37 964+04 983+ 01

TABLE XXIII: PPI (EDGERAND)

TABLE XXIV: PPI (LAPGRAPH)

low k=k/4 k=k/2 k=k k =2k k =4k low ic:k/4]ACZIC/Z =k i — 2k b= 4k
e — precision 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 precision 0.0+ 00 0.0+ 00 0.0+ 00 0.0+ 00 0.0+ 00
recall 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 e=1 rocall 0.0+ o0 0.0 00 0.0+ 00 0.0 00 0.0+ 00
e=2 prre:ci:;i)n 88i 82 88i EZ 88i 22 ggi Zg 88i ZE c—2 precision 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.3+ 0.5
: : : - recall 0.0+00 00+00 00+00 00+o00 1.1+ 16
e=3 pr:;i;fn ggi 2'z 88i g'g 881 22 88i 2'2 ggi 2'z e—3 precision 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.3+ o5
. : . : . .) . : . - recall 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 1.1+ 16
e=4 precision 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 precision 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0
recall 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0 + 0.0 0.0+ 0.0 e=4 recall 0.0 00 0.0+ 0.0 0.0+ 0.0 0.0% 0.0 0.0 00
c—5 precision 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 1.0+ o8 precision 0.0+ 00 0.0+ 00 0.0+ 00 07 o9 134 12
recall 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 3.7+ 28 e=5 rocall 0.0+ 00 0.0 00 0.0 00 111 16 48 40
e=6 pr::::fn 88i 82 88i EZ g;i zz ggi z; 1éii 131'16 c—6 precision 0.0+ 0.0 0.0+ 0.0 1.3+ 1.9 4.0+ 16 5.0+ 0.8
. . : . . . : . : . - recall 0.0+ 00 0.0+ 00 11+16 69+ 26 180+ 3.9
e="T prre:i:ﬁm KILZSLI 2; gé i TZ ;Zi 2; ;;g i 17:3 é?g i 267'07 e—7 precision 0.0+ 0.0 5.1+ 3.6 6.7+ 6.8 80+ 33 13.0+ 45
recall 0.0+ 0.0 2.5+ 1.8 6.0+ 58 145+61 46.8+16.7
e=28 pre:ii?n lggi 131;17 ?;lgi jz gggi 2'0 ggzi 270‘47 Szgi ;g e—8 precision 48+ 6.7 15441206 14.7+132 180+ 71 19.0+ 5.7

Treca5 =

recall 14+ 20 74+ 57 134+11.3 33.2+148 688+225
c—g precsion 5122104 55.3+155 SAlsva 527+a1 283+ s precision 4.8+ 6.7 128+ 0.6 21341154 20341123 2374 2.4
recall 134+ 51 261+65 489+s81 93.8+s8s8 100.0+ 0.0 e=9 rocall 144 250 62445 201i140 5A5+ose 845119
e=1 precisii)n ?g?i é'g ;;;i 54 ;f? + a1 150%70i 6.6 12080'30i 3. —10 precision 179+ 5.1 32.6+ 42 39.7+11.7 427+ 82 27.0+ 4.1
reca EeT L 6s ot ox 00 o 00 &= recall 46+12 155+£21 36.7+132 771x102 9494+ 36

unconstrained k=k/4 k=k/2 k=k =2k k = 4k unconstrained k=k/a k=k/2 k=k k =2k k=4k
e—1 precision 0.0+ 0.0 0.5+ 0.8 04+ 0.3 0.5+ 0.2 0.6+ 0.2 precision 11107 05+ o4 0.7+ 02 0.5+ o1 05+ 02
recall 0.0+ 0.0 0.2+ 03 04+ 0.3 1.1+ 05 25+ 06 e=1 recall 0.3+ 02 03+ 0o 0.7+ o1 0.9+ o1 20z 05

precision 1.6+ 2.2 1.6+ 11 1.6 + 0.7 1.6 + 0.7 1.1+ 0.4 . N § R N
e=2 recall 0.5+ 0.7 09+ o7 1.7+ o8 3.4+ 20 4.7+ 1.7 e=2 pr:ccclii;m ggi zz (l)gi ;2 1;i :: %%i (1)2 ggi ??
e=3 pr:ecci:ﬁ)n i’gi ?)2 ;lii 1? igi ;? gii ;; 13§i 'i: e—3 precision 26+ 15 29+ 1.0 3.7+ 1.8 25+ 1.1 1.2+ 06
.) . .) .) .) - recall 0.7+ 0.3 1.5+ 0.4 3.8+ 1.8 49+ 2.2 4.9+ 2.2
- -)] o B
e=q Pebon BOokzo BAkee [9iao TdEna S0Ere o, pueison T9:a0 67r20 97i24 58+17 3.0% 00
|) |) . : .) .) B recall 20+ o8 3.3+ 10 98+ 16 11.7+ 2090 1214+ 29
e=5 precision 95+ 34 1234+ 23 125+ 30 125+21 191+ 1.1 precision 101+ 15 141+ 33 204+ 85 124+ 1.7 6.5+ 1.0
recall 26+ 1.2 64+ 1.8 128+ 24 255+30 784+ 45 e=5 recall 26+ 05 794 14 209+ 26 252+ 21 26.6+ 16
e=6 pr:;‘;ifn Qg;i i"j ?ggi 2: gggi ;z ;é?i :j 33??& i; c—6 precision 19.0+ 0.0 24.0+ 35 383+ 47 233+37 123+ 23
.) | : . | .) -) - recall 50+ 06 125+ 2. 393+ 34 474+ 30 499+ 45
e="T7 pr:ecci:ﬁ)n 3§§i f)i ;fgi z; Z?gi 22 gg?i zz ggéi ?)': e—7 precision 30.2 + 5. 424+ 85 569+ 47 33.0+40 173+ 27
|) | : . i .) .) - recall 8.0+ 2. 222+ 65 BH8b+22 67.1+20 70.1+ 35
e [- -

c—g Procdion 545+6s T01+ao 7T80L2s d88+ss 24dsor precision 49.2+ 5.0 619+ 50 693+ 54 391451 1994 27
recall 143+ 30 364+ 54 805+69 99.7+02 99.7+ 02 e=28 recall 13.0% 20 321+ 40 712+ 24 798+ 1s 8l2+ 1o
e — precision 825+ 3.4 88.3+ 04 85.7+ 44 49.0+ 54 245+ 2.7 precision 635+ 72 TAdt a1 761+ 55 434+ 50 222+ 50
recall 216+ 32 45.7+ 51 88.3+ 54 100.0+ 0.0 100.0+ 0.0 e=9 recall 167+ 56 385+ 46 T892+ 51 884+ 25 90.6+ 20
e=10 meis;fn gg?i 22 igii 10 ggii 5.6 ﬁ%%i o 120%%i 2 —1 precision 79.9+ 30 848+ 17 81.5+51 455+s56 23.1+ 209
reca fEoe fOAEeT HAxas ROE 00 OO 00 °= recall 20.9+ 31 439+ 50 838+ 43 928+ 13 943+ 13

high k=k/a k=k/2 k= =2k k= 4k high E=k/da k=k/2 E=k k =2k b =4k
£= prree(.;:i;;m ggi ll); ggi Zi ggi ZT ggi 22 1??i 2; e=1 precision 24+ 05 2.0+ 0.5 1.5+ 0.4 1.4+ 01 1.3+ 01
. . : . . : : : : . - recall 0.5+ 0.1 0.9+ 0.2 1.3+ 03 25+ 01 4.6+ 0.2

_ precision 8.0+ 2.0 8.5+ 1.7 8.1+ 1.0 8.1+ 0.6 7.9+ 0.4 . r

£=2 recall 1.7+ 0.4 3.7+ 0.6 7.0+ 06 140+ 05 274+ 02 e=2 prre:cl:i;m ?Zi 32 ?gi EZ ;gi Z; é?i Z? égi Zj
e=3 pr:ecgzilon 1Z§i ;2 1ggi Ez ﬁgi ;; il’j(l]i i; éggi Z‘(j e—3 precision 17.0 + 3.4 9.1+ 1.8 5.5+ 0.9 3.6+ 0.6 25+ 0.3
. . : . . .) . | ° B recall 3.7+ 06 3.9+ 07 4.7+ 0.6 6.1+ 0.8 8.6+ 1.0
e—4 precision 38.9+ 1.7 388+ 16 366+ 1.4 355+ 08 283+ 11 precision 359+ 82 235+ 23 1314 15 76+ 07 50 0.6
recall 84+ 03 168+ 04 31.8+06 616+ 1.5 983+ 01 e=4 recall 78+ 05 102+ 07 1134 os 1324 os 171+ 1.6
e=5 precision 5,9'8 #1s B81koo S86xo0a BT+ z2s 28Tz precision 56.8+ 0.4 53.5+ 28 29.1+17 171+ 08 107+ 05
recall 13.0+ 05 252+ 07 509+ 1.7 994+ 01 99.6+ 01 e=5 recall 1234 04 2324 058 2534 06 297+ 05 372+ o5

e=6 pr:::;;m I’g;i i; ;;gi 1? Zggi ;Z g;gi z: gggi :)j c—6 precision 74.8+ 0.3 79.2+ 09 558+ 1.7 317+ 09 183+ 0.

.) | : . : .) |) - recall 162+ 06 344+15 484+ 06 549+ 08 634+0
e="7 pr:ecjzi;m ?gii z: gg(l)i 1'4 ?égi ;f 150%%i i; 1208080i [l)‘i o7 Dprecision 86.6+ 1.2 888+ 04 79.8+3s8 43.1+22 234+11
|) .) . : .) .) B recall 188+ 10 386+16 692+1.0 747+11 810+ o6
e—8 precision 954+ 1.3 96.0+ 1.0 9:5.71 07 BH7.7+23 288+ 1.2 precision 925+ 11 932+ 05 901+ 25 491+ 25 260+ 12
recall 20.7+ 07 41.7+ 1.4 83.1+ 31 100.0+ 0.0 100.0+ 0.0 e=28 recall 201+ 10 405+ 16 7824 15 8524 07 9004 os
e—9 precision 97.2+ 0.4 97.9+ 0.3 97.9 +02 b57.7+23 288+ 12 precision 95.9+ 07 964+ 05 943+ 07 528+ 24 273+ 13
recall 21.1+ 09 425+ 1.8 84.3+ 3.4 100.0+ 0.0 100.0+ 0.0 e=9 recall 208+ 0.0 41.94 1 819+ 28 915+ 06 947+ os
e=1 prec‘is;;m g?g x05 Zg} +o01 zzg xo02 15070'70i 28 120%80i 12 _ precision 974+ 0.3 97.8+ 03 955+ 02 54.6+ 22 278+ 1.2
reca oEo0s AT CAO+ s UUE 00 OO 00 °= recall 21.2+ 0.8 425+ 1s 829+ 31 946+ 02 96.5+ 0.2

TABLE XXVI: Flickr (LAPGRAPH)

low k=k/4 k=k/2 k=k k =2k k= 4k
o1 Dprecision 0.0+00 00+00 00+00 00+00 0.0+00
- recall 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0
—9 precision 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0
&= recall 0.0+t00 00+00 00+00 00+00 0.0+o00
—3 precision 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0
&= recall 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0
e—4 precision 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0
B recall 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0
TABLE XXV: Flickr (EDGERAND) o Precision 0.0+t00 00+o00 00+00 00+00 0.0+00
recall 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0
e e kem ke ems MO goru n deen guen ohew
e=5 prree(.;:i:;;)n 88i 82 ggi ZZ 88i 22 ggi Zg 88i 22 e—7 precision 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0
’ . ’ . ’ : : : ’ . - recall 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0
e=6 prre;i;;m ggi :z 88i 2'2 881 2’2 ggi :2 ézi ;Z e—8 precision 0.0+ 0.0 0.0+ 0.0 6.7+ 9.4 3.3+ 47 6.1+ 5.5
.) | : .) . - | - B recall 0.0+ 0.0 0.0+ 0.0 6.7+ 9.4 6.7+ 94 23.3+205
e=7 Peeson 10Taae BAiue ABier 20sse LBEro T pweison 00:00 Illiir 264iw05 134551 69% a5
.) . - . : .) .) - recall 0.0+ 0.0 6.7+ 94 272+0907 272+097 272+ 07
e=28 pr;ccizifn lggi 273'96 ggi 171'98 gg i 3; 15;2 i f;i 1$gi]3:7 e=10 precision 0.0+ 00 11.1+1s7 16241200 219+ 72 148+ 1.1
: . : . : . : . : . - recall 0.0+o00 6.7+94 17.8+137 45.0+147 589+ 68
. precision 33.3 +47.1 16.7+23.6 28.1+157 20.1+ 39 104+ 2.2
- recall 83+11.8 83+11.8 289+150 41.1+e6s8 411+ 6.8 unconstrained k=k/4 E=k/2 b=k k= 2k k= 4k
o — 10 DPrecision 66.7 +47.1 38.9+283 37.9+157 193+77 129+ 55 o precision 0.0+ 00 00+o00 0.0+o00 00+00 0.0=+o00
recall 244 +175 244 +175 394+149 394+149 5174225 - recall 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0
T S S ey T T TR R T E ST R
e=5 prre;i;;m ggi 2'g 88i 2'2 ggi :2 ggi 22 ggi g'g e—3 precision 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0
.) .) . : .) .) - recall 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0
coo T B Sbrer 0 3T G e 00ew e 26ee Lo 0T
.) |) .) . = . = B recall 0.0+ 0.0 2.2+ 31 224 31 22+ 3.1 2.2+ 31
e=7 Pein BOE00 OObo0 DOroe RIEro LS00 T pweson 00:o00 0000 260 13:1s 1300
|) | = .) - recall 0.0+ 0.0 0.0+ 0.0 2.2+ 31 2.2+ 3.1 4.6+ 3.3
e=8 pr::cizi;:n 88i ZE 3ii jz Sii :Z é(l) i 13[;71 1§?i ;'z c—6 precision 0.0+ 0.0 4.8 + 6.7 2.6 + 3.6 1.3+ 1.0 1.3+ 0.9
. . : . . . : . : ; - recall 0.0+ 00 224+ 31 2.2+ 3.1 2.2+ 3.1 4.6+ 3.3
e=9 prre;i;;m ggi 131‘18 Zzi :; fggi TZ ;égi zi 2(7)§:it Z'j e—7 precision 0.0+ 0.0 0.0+ 0.0 2.6+ 3.6 4.0+ 3.3 20+ 16
.) | : . : .) |) - recall 0.0+ 0.0 0.0+ 0.0 2.2+ 31 6.8+ 5.4 6.8+ 5.4
e= prf:;;lon QZSi j? ?égi Z? 1;gi zi :132(1] i ;g; legi 13;4 c—38 precision 0.0+ 0.0 0.0+ 0.0 2.6+ 3.6 5.3+ 5.0 3.3+ 25
. > | . . _ . _ | B recall 0.0+ 0.0 0.0+ 0.0 224 31 90+ 83 114+ 84
high k=k/4 k=k/2 b=k b= 2k k= 4k _ o brecision 83+11.8 4.8+ 6.7 2.6 + 3.6 5.3+ 5.0 4.0+ 3.3
=9 recall 2.2+ 3.1 2.2+ 3.1 2.2+ 3.1 94+ 90 140+11.7
- precision 14.9 + 4.9 9.8+ 3.2 6.1+ 1.8 4.1+ o6 2.6+ 0.3
€=9 recall 39+ 16 51+ 2.1 6.3+ 2.4 82+ 20 106+ 2.0 e—1 precision 19.4+14.2 16.2+12.0 144+ 51 100+ 1.6 7.0+ 3.6
recall 5.6+ 4.2 78+ 57 135+53 183+35 2544126
-6 precision 324+ 42 26.8+ 33 168+ 21 11.0+ 1.4 72+ 05
&= recall 82+ 17 136+30 171+38 222+s51 291+ a7 high = k4 k)2 P b= ok b— ok
precision 38.1+ 1.7 347+ 26 233+37 157+ 138 99+ o7 . - i
ST7 Trell 96:14 17600 287i00 3l5iar 398:ea e=1 PSn O4dos DEEes Gokor 000 DO 0o
precision 34.5+ 31 352+ 29 256+ 28 165+ 19 105+ 04 .
e=28 PO - p - _ precision 0.4+ o.s 0.2+ 0.3 0.1+ 0.1 0.0+ 0.1 0.0+ 0.0
recall 88+ 17 179+ 33 258+ 47 334+64 423+5.5 e=2 recall 01+ o 0l o1 014 on 014 on 01+ o
246+ 38 320+ 54 242+290 149+ 1.4 9.7+ 05 -
e =9 Precsion precision 04+ 05 0.2+ 0.3 0.1+ 0.1 0.0+ 0.1 0.0+ 0.0
recall 63+16 164+44 245+50 300+s53 389+s3 e=3 recall 01+ oa 0l o1 0l o1 0.1% o1 01 o1
- P [3 - p 5 9
= prfeci;;m 1ggi ‘llf ?ggi jj gggi f; ;géi Zi BSIi :j e—4a precision 1.6+ 1.3 1.0+ 0.9 0.6+ 0.5 0.3+ 0.2 0.2+ 01
. > : . . =) ° . ° - recall 0.4+ 04 0.5+ 0.5 0.6 + 0.5 0.6 + 0.5 0.6 + 0.5
c—5 precision 3.5+ 1.3 2.0+ 0.9 1.2+ 05 0.6 + 0.3 0.3+ 01
- recall 0.9+ 0.4 1.0+ o5 1.2+ 05 1.2+ 05 1.2+ 05
c—6 precision 11.5 + 0.9 79+ 05 5.0+ 0.7 25+ 04 1.3+ 0.2
- recall 29+ 05 4.0+ o.7 5.0+ 0.3 5.0+ 0.3 5.0+ 0.3
e—7 precision 182+ 22 148+ 07 114+ 1.4 7.6+ 1.2 3.9+ 07
B recall 4.6+ 0.9 74+08 11.6+25 150+12 152+ 13
e—8 precision 19.6+ 0.7 169+ 06 14.1+ 1.1 11.9+ o8 9.0+ 1.1
- recall 4.9+ 0.4 85+ 13 142+ 22 24.0+33 357+ 21
ce—9 precision 159+ 1.7 17.8+ 32 156+ 1.7 129+ 13 10.6+ 1.0
- recall 40+07 91+25 159+34 262+54 43.1+3s5
e — precision 14.5+ 3.3 19.7+ 37 169+ 21 131+ 14 108+ 1.0
- recall 37+11 100+ 25 171+ 34 265+55 43.6+ 8.1

	Introduction
	Preliminaries
	Graph Neural Networks
	Differential Privacy

	LinkTeller: Link Re-identification Attack
	Interaction Model between Data Holders
	Overview of the Attack
	LinkTeller: Edge Influence Based Attack

	Countermeasures of LinkTeller: Differentially Private GCN
	Overview of DP GCN Framework
	Practical DP GCN
	Edge Randomization (EdgeRand)
	Laplace Mechanism for Graphs (LapGraph)

	Discussion: Upper Bound of Edge Re-Identification Attack Performance on DP GCN

	Evaluation of LinkTeller
	Datasets
	Models
	Setup of the Evaluation
	Evaluation Metrics of the attack
	Baseline Attacks

	Evaluation Protocol
	Evaluation for LinkTeller
	Beyond GCNs: LinkTeller on GATs

	Evaluation of Differentially Private GCN
	Datasets and Models
	DP GCN against LinkTeller
	Experimental Setup
	Evaluation Results

	Model Utility Given DP Protection
	Experimental Setup
	Evaluation Results

	Tradeoff between Model Utility and Privacy

	Related Work
	Privacy Attack on Graphs
	Differential Privacy for Graphs

	Conclusions
	References
	Appendix
	Proofs for Influence Analysis in LinkTeller
	Proof of Proposition 1
	Proof of Theorem 1

	Proofs for Privacy Guarantees of the DP mechanisms
	Proof of Theorem 2
	Proof of Lemma 1
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 5

	Proof of Theorem 6
	Detailed Algorithms for DP GCN
	Algorithm for the Training and Inference of DP GCN
	Algorithm for the DP Mechanisms

	Additional Discussions on the LinkTeller Attack
	Stealthiness and Alternative Detection Strategies
	Estimation of the Density Belief
	Variations of Our Attack under Different Settings
	Limitations to Overcome in Adapting LinkTeller
	Analysis on the Performance of LinkTeller Compared with Baselines

	Details of Evaluation
	Dataset Statistics
	Evaluation Metrics for Model Utility
	Normalization Techniques
	Search Space for the Hyper-parameters
	Best Hyper-parameters for the Vanilla-GCN
	Best Hyper-parameters for the Vanilla-GAT

	More Evaluation Results
	Results for the Random Attack Baseline
	Results for a 3-layer GCN
	Running Time of LinkTeller
	More Results for LinkTeller on vanilla GCNs and DP GCNs
	LinkTeller in the Transductive Setting
	Choosing on a Validation Dataset

