
LINKTELLER: Recovering Private Edges from

Graph Neural Networks via Influence Analysis

Fan Wu1 Yunhui Long1 Ce Zhang2 Bo Li1

1University of Illinois at Urbana-Champaign 2ETH Zürich

{fanw6,ylong4,lbo}@illinois.edu ce.zhang@inf.ethz.ch

Abstract—Graph structured data have enabled several success-
ful applications such as recommendation systems and traffic pre-
diction, given the rich node features and edges information. How-
ever, these high-dimensional features and high-order adjacency
information are usually heterogeneous and held by different
data holders in practice. Given such vertical data partition (e.g.,
one data holder will only own either the node features or edge
information), different data holders have to develop efficient joint
training protocols rather than directly transferring data to each
other due to privacy concerns. In this paper, we focus on the edge
privacy, and consider a training scenario where the data holder
Bob with node features will first send training node features to
Alice who owns the adjacency information. Alice will then train
a graph neural network (GNN) with the joint information and
provide an inference API to Bob. During inference time, Bob is
able to provide test node features and query the API to obtain
the predictions for test nodes. Under this setting, we first propose
a privacy attack LINKTELLER via influence analysis to infer the
private edge information held by Alice via designing adversarial
queries for Bob. We then empirically show that LINKTELLER is
able to recover a significant amount of private edges in different
settings, both including inductive (8 datasets) and transductive
(3 datasets), under different graph densities, significantly outper-
forming existing baselines. To further evaluate the privacy leak-
age for edges, we adapt an existing algorithm for differentially
private graph convolutional network (DP GCN) training as well
as propose a new DP GCN mechanism LAPGRAPH based on
Laplacian mechanism to evaluate LINKTELLER. We show that
these DP GCN mechanisms are not always resilient against LINK-
TELLER empirically under mild privacy guarantees (ε > 5). Our
studies will shed light on future research towards designing more
resilient privacy-preserving GCN models; in the meantime, pro-
vide an in-depth understanding about the tradeoff between GCN
model utility and robustness against potential privacy attacks.

Index Terms—Graph Neural Networks, Edge Privacy Attack

I. INTRODUCTION

Graph neural networks (GNNs) have been widely applied

to different domains owing to their ability of modeling the

high-dimensional feature and high-order adjacency informa-

tion on both homogeneous and heterogeneous graph struc-

tured data [1]–[3]. The high-quality graph structured data have

enabled a range of successful applications, including traffic

prediction [4], recommendation systems [5], and abnormal

access detection [6]. As these applications are becoming more

and more prevalent, privacy concerns in these applications are

non-negligible given the sensitive information in the graph

data. Thus, undesirable outcomes may arise due to lack of

understanding of the models and application scenarios.

1 0 1 0
<latexit sha1_base64="W6OcAxBQ47l0WKtxKbyOLQysyzM=">AAAB6nicbVDLSgNBEOz1GeMr6lGRwSB4CruC6DHoxWOC5gFJCLOT3mTI7OwyMyuEJUePXjwo4tWPyHd48xv8CSePgyYWNBRV3XR3+bHg2rjul7O0vLK6tp7ZyG5ube/s5vb2qzpKFMMKi0Sk6j7VKLjEiuFGYD1WSENfYM3v34z92gMqzSN5bwYxtkLalTzgjBor3QVtr53LuwV3ArJIvBnJF49G5e/H41GpnftsdiKWhCgNE1TrhufGppVSZTgTOMw2E40xZX3axYalkoaoW+nk1CE5tUqHBJGyJQ2ZqL8nUhpqPQh92xlS09Pz3lj8z2skJrhqpVzGiUHJpouCRBATkfHfpMMVMiMGllCmuL2VsB5VlBmbTtaG4M2/vEiq5wXvouCWbRrXMEUGDuEEzsCDSyjCLZSgAgy68AQv8OoI59l5c96nrUvObOYA/sD5+AHehpE5</latexit>

f1

1 0 1 1
<latexit sha1_base64="+yEtm6d2/WGGkPkjs6i9i2sCxWU=">AAAB6nicbVDLSgNBEOyNrxhfUY+KDAbBU9gNiB6DXjwmaB6QLGF2MpsMmZldZmaFsOTo0YsHRbz6EfkOb36DP+HkcdDEgoaiqpvuriDmTBvX/XIyK6tr6xvZzdzW9s7uXn7/oK6jRBFaIxGPVDPAmnImac0ww2kzVhSLgNNGMLiZ+I0HqjSL5L0ZxtQXuCdZyAg2VroLO6VOvuAW3SnQMvHmpFA+Hle/H0/GlU7+s92NSCKoNIRjrVueGxs/xcowwuko1040jTEZ4B5tWSqxoNpPp6eO0JlVuiiMlC1p0FT9PZFiofVQBLZTYNPXi95E/M9rJSa88lMm48RQSWaLwoQjE6HJ36jLFCWGDy3BRDF7KyJ9rDAxNp2cDcFbfHmZ1EtF76LoVm0a1zBDFo7gFM7Bg0sowy1UoAYEevAEL/DqcOfZeXPeZ60ZZz5zCH/gfPwA4AqROg==</latexit>

f2

0 1 1 1
<latexit sha1_base64="AdS92z40HhqhdNaRBCHNogbolFw=">AAAB6nicbVDLSgNBEOyNrxhfUY+KDAbBU9hVRI9BLx4TNA9IljA7mU2GzMwuM7NCWHL06MWDIl79iHyHN7/Bn3DyOGhiQUNR1U13VxBzpo3rfjmZpeWV1bXsem5jc2t7J7+7V9NRogitkohHqhFgTTmTtGqY4bQRK4pFwGk96N+M/foDVZpF8t4MYuoL3JUsZAQbK92F7fN2vuAW3QnQIvFmpFA6HFW+H49G5Xb+s9WJSCKoNIRjrZueGxs/xcowwukw10o0jTHp4y5tWiqxoNpPJ6cO0YlVOiiMlC1p0ET9PZFiofVABLZTYNPT895Y/M9rJia88lMm48RQSaaLwoQjE6Hx36jDFCWGDyzBRDF7KyI9rDAxNp2cDcGbf3mR1M6K3kXRrdg0rmGKLBzAMZyCB5dQglsoQxUIdOEJXuDV4c6z8+a8T1szzmxmH/7A+fgB4Y6ROw==</latexit>

f3
<latexit sha1_base64="QKoadSZDyfT8lwkL6T36R5OrmJc=">AAAB6nicbVDLSgNBEOyNrxhfUY+KDAbBU9gVRY9BLx4TNA9IljA7mU2GzMwuM7NCWHL06MWDIl79iHyHN7/Bn3DyOGhiQUNR1U13VxBzpo3rfjmZpeWV1bXsem5jc2t7J7+7V9NRogitkohHqhFgTTmTtGqY4bQRK4pFwGk96N+M/foDVZpF8t4MYuoL3JUsZAQbK92F7fN2vuAW3QnQIvFmpFA6HFW+H49G5Xb+s9WJSCKoNIRjrZueGxs/xcowwukw10o0jTHp4y5tWiqxoNpPJ6cO0YlVOiiMlC1p0ET9PZFiofVABLZTYNPT895Y/M9rJia88lMm48RQSaaLwoQjE6Hx36jDFCWGDyzBRDF7KyI9rDAxNp2cDcGbf3mR1M6K3kXRrdg0rmGKLBzAMZyCB5dQglsoQxUIdOEJXuDV4c6z8+a8T1szzmxmH/7A+fgB4xKRPA==</latexit>

f4

<latexit sha1_base64="IC3iXRw3sTCyVpVg+pPmlOh4bkU=">AAAB6nicbVDLSgNBEOyNrxhfUY+KDAbBU9gVgh6DXjwmaB6QLGF2MpsMmZldZmaFsOTo0YsHRbz6EfkOb36DP+HkcdDEgoaiqpvuriDmTBvX/XIyK6tr6xvZzdzW9s7uXn7/oK6jRBFaIxGPVDPAmnImac0ww2kzVhSLgNNGMLiZ+I0HqjSL5L0ZxtQXuCdZyAg2VroLO6VOvuAW3SnQMvHmpFA+Hle/H0/GlU7+s92NSCKoNIRjrVueGxs/xcowwuko1040jTEZ4B5tWSqxoNpPp6eO0JlVuiiMlC1p0FT9PZFiofVQBLZTYNPXi95E/M9rJSa88lMm48RQSWaLwoQjE6HJ36jLFCWGDy3BRDF7KyJ9rDAxNp2cDcFbfHmZ1C+KXqnoVm0a1zBDFo7gFM7Bg0sowy1UoAYEevAEL/DqcOfZeXPeZ60ZZz5zCH/gfPwA5JaRPQ==</latexit>

f5 0 1 1 0

1 0 0 0

<latexit sha1_base64="IfXZHQFESiXHPRU1we3mxR1HU68=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMKuELQMsbFM0DwgWcLsZDYZMjuzzMwGwpJPsLFQxNbWv/AL7Gz8FiePQhMPXDiccy/33hPEnGnjul9OZm19Y3Mru53b2d3bP8gfHjW0TBShdSK5VK0Aa8qZoHXDDKetWFEcBZw2g+HN1G+OqNJMinszjqkf4b5gISPYWOlu1C118wW36M6AVom3IIXySe2bvVc+qt38Z6cnSRJRYQjHWrc9NzZ+ipVhhNNJrpNoGmMyxH3atlTgiGo/nZ06QedW6aFQKlvCoJn6eyLFkdbjKLCdETYDvexNxf+8dmLCaz9lIk4MFWS+KEw4MhJN/0Y9pigxfGwJJorZWxEZYIWJsenkbAje8surpHFZ9EpFt2bTqMAcWTiFM7gAD66gDLdQhToQ6MMDPMGzw51H58V5nbdmnMXMMfyB8/YD7p+RQw==</latexit>

v5

<latexit sha1_base64="Wq3gqmiqPwEA/sV47rvgpK1vm4g=">AAAB6nicbVC7SgNBFL0TXzG+ooKNzWAQrMKuIlqG2FgmaB6QLGF2MpsMmZ1dZmYDYckn2FgoYmvrX/gFdjZ+i5NHoYkHLhzOuZd77/FjwbVxnC+UWVldW9/Ibua2tnd29/L7B3UdJYqyGo1EpJo+0UxwyWqGG8GasWIk9AVr+IObid8YMqV5JO/NKGZeSHqSB5wSY6W7Yeeiky84RWcKvEzcOSmUjqrf/L38UenkP9vdiCYhk4YKonXLdWLjpUQZTgUb59qJZjGhA9JjLUslCZn20umpY3xqlS4OImVLGjxVf0+kJNR6FPq2MySmrxe9ifif10pMcO2lXMaJYZLOFgWJwCbCk79xlytGjRhZQqji9lZM+0QRamw6ORuCu/jyMqmfF93LolO1aZRhhiwcwwmcgQtXUIJbqEANKPTgAZ7gGQn0iF7Q66w1g+Yzh/AH6O0H65eRQQ==</latexit>

v3

<latexit sha1_base64="ycZ12AZXIUI3W7Hy2Pd04lreXLI=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuQLQMsbFM0DwgWcLsZDYZMjuzzMwGwpJPsLFQxNbWv/AL7Gz8FiePQhMPXDiccy/33hPEnGnjul9OZm19Y3Mru53b2d3bP8gfHjW0TBShdSK5VK0Aa8qZoHXDDKetWFEcBZw2g+HN1G+OqNJMinszjqkf4b5gISPYWOlu1C118wW36M6AVom3IIXySe2bvVc+qt38Z6cnSRJRYQjHWrc9NzZ+ipVhhNNJrpNoGmMyxH3atlTgiGo/nZ06QedW6aFQKlvCoJn6eyLFkdbjKLCdETYDvexNxf+8dmLCaz9lIk4MFWS+KEw4MhJN/0Y9pigxfGwJJorZWxEZYIWJsenkbAje8surpFEqepdFt2bTqMAcWTiFM7gAD66gDLdQhToQ6MMDPMGzw51H58V5nbdmnMXMMfyB8/YD6hORQA==</latexit>

v2

<latexit sha1_base64="LhPXsfkA/pxuZBTgbdB2xdzbaHA=">AAAB6nicbVDLSgNBEOz1GeMrKnjxMhgET2FXED2GePGYoHlAEsLspDcZMju7zMwGwpJP8OJBEa9e/Qu/wJsXv8XJ46CJBQ1FVTfdXX4suDau++WsrK6tb2xmtrLbO7t7+7mDw5qOEsWwyiIRqYZPNQousWq4EdiIFdLQF1j3BzcTvz5EpXkk780oxnZIe5IHnFFjpbthx+vk8m7BnYIsE29O8sXjyjd/L32UO7nPVjdiSYjSMEG1bnpubNopVYYzgeNsK9EYUzagPWxaKmmIup1OTx2TM6t0SRApW9KQqfp7IqWh1qPQt50hNX296E3E/7xmYoLrdsplnBiUbLYoSAQxEZn8TbpcITNiZAllittbCetTRZmx6WRtCN7iy8ukdlHwLgtuxaZRghkycAKncA4eXEERbqEMVWDQgwd4gmdHOI/Oi/M6a11x5jNH8AfO2w/oj5E/</latexit>

v1

<latexit sha1_base64="Exw9/90u3AJSXb+5Kx0HGhuCHwA=">AAAB6nicbVC7SgNBFL0TXzG+ooKNzWAQrMKuKFqG2FgmaB6QLGF2MpsMmZ1dZmYDYckn2FgoYmvrX/gFdjZ+i5NHoYkHLhzOuZd77/FjwbVxnC+UWVldW9/Ibua2tnd29/L7B3UdJYqyGo1EpJo+0UxwyWqGG8GasWIk9AVr+IObid8YMqV5JO/NKGZeSHqSB5wSY6W7Yeeiky84RWcKvEzcOSmUjqrf/L38UenkP9vdiCYhk4YKonXLdWLjpUQZTgUb59qJZjGhA9JjLUslCZn20umpY3xqlS4OImVLGjxVf0+kJNR6FPq2MySmrxe9ifif10pMcO2lXMaJYZLOFgWJwCbCk79xlytGjRhZQqji9lZM+0QRamw6ORuCu/jyMqmfF93LolO1aZRhhiwcwwmcgQtXUIJbqEANKPTgAZ7gGQn0iF7Q66w1g+Yzh/AH6O0H7RuRQg==</latexit>

v4

<latexit sha1_base64="IfXZHQFESiXHPRU1we3mxR1HU68=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMKuELQMsbFM0DwgWcLsZDYZMjuzzMwGwpJPsLFQxNbWv/AL7Gz8FiePQhMPXDiccy/33hPEnGnjul9OZm19Y3Mru53b2d3bP8gfHjW0TBShdSK5VK0Aa8qZoHXDDKetWFEcBZw2g+HN1G+OqNJMinszjqkf4b5gISPYWOlu1C118wW36M6AVom3IIXySe2bvVc+qt38Z6cnSRJRYQjHWrc9NzZ+ipVhhNNJrpNoGmMyxH3atlTgiGo/nZ06QedW6aFQKlvCoJn6eyLFkdbjKLCdETYDvexNxf+8dmLCaz9lIk4MFWS+KEw4MhJN/0Y9pigxfGwJJorZWxEZYIWJsenkbAje8surpHFZ9EpFt2bTqMAcWTiFM7gAD66gDLdQhToQ6MMDPMGzw51H58V5nbdmnMXMMfyB8/YD7p+RQw==</latexit>

v5

<latexit sha1_base64="Wq3gqmiqPwEA/sV47rvgpK1vm4g=">AAAB6nicbVC7SgNBFL0TXzG+ooKNzWAQrMKuIlqG2FgmaB6QLGF2MpsMmZ1dZmYDYckn2FgoYmvrX/gFdjZ+i5NHoYkHLhzOuZd77/FjwbVxnC+UWVldW9/Ibua2tnd29/L7B3UdJYqyGo1EpJo+0UxwyWqGG8GasWIk9AVr+IObid8YMqV5JO/NKGZeSHqSB5wSY6W7Yeeiky84RWcKvEzcOSmUjqrf/L38UenkP9vdiCYhk4YKonXLdWLjpUQZTgUb59qJZjGhA9JjLUslCZn20umpY3xqlS4OImVLGjxVf0+kJNR6FPq2MySmrxe9ifif10pMcO2lXMaJYZLOFgWJwCbCk79xlytGjRhZQqji9lZM+0QRamw6ORuCu/jyMqmfF93LolO1aZRhhiwcwwmcgQtXUIJbqEANKPTgAZ7gGQn0iF7Q66w1g+Yzh/AH6O0H65eRQQ==</latexit>

v3

<latexit sha1_base64="ycZ12AZXIUI3W7Hy2Pd04lreXLI=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuQLQMsbFM0DwgWcLsZDYZMjuzzMwGwpJPsLFQxNbWv/AL7Gz8FiePQhMPXDiccy/33hPEnGnjul9OZm19Y3Mru53b2d3bP8gfHjW0TBShdSK5VK0Aa8qZoHXDDKetWFEcBZw2g+HN1G+OqNJMinszjqkf4b5gISPYWOlu1C118wW36M6AVom3IIXySe2bvVc+qt38Z6cnSRJRYQjHWrc9NzZ+ipVhhNNJrpNoGmMyxH3atlTgiGo/nZ06QedW6aFQKlvCoJn6eyLFkdbjKLCdETYDvexNxf+8dmLCaz9lIk4MFWS+KEw4MhJN/0Y9pigxfGwJJorZWxEZYIWJsenkbAje8surpFEqepdFt2bTqMAcWTiFM7gAD66gDLdQhToQ6MMDPMGzw51H58V5nbdmnMXMMfyB8/YD6hORQA==</latexit>

v2

<latexit sha1_base64="LhPXsfkA/pxuZBTgbdB2xdzbaHA=">AAAB6nicbVDLSgNBEOz1GeMrKnjxMhgET2FXED2GePGYoHlAEsLspDcZMju7zMwGwpJP8OJBEa9e/Qu/wJsXv8XJ46CJBQ1FVTfdXX4suDau++WsrK6tb2xmtrLbO7t7+7mDw5qOEsWwyiIRqYZPNQousWq4EdiIFdLQF1j3BzcTvz5EpXkk780oxnZIe5IHnFFjpbthx+vk8m7BnYIsE29O8sXjyjd/L32UO7nPVjdiSYjSMEG1bnpubNopVYYzgeNsK9EYUzagPWxaKmmIup1OTx2TM6t0SRApW9KQqfp7IqWh1qPQt50hNX296E3E/7xmYoLrdsplnBiUbLYoSAQxEZn8TbpcITNiZAllittbCetTRZmx6WRtCN7iy8ukdlHwLgtuxaZRghkycAKncA4eXEERbqEMVWDQgwd4gmdHOI/Oi/M6a11x5jNH8AfO2w/oj5E/</latexit>

v1

<latexit sha1_base64="Exw9/90u3AJSXb+5Kx0HGhuCHwA=">AAAB6nicbVC7SgNBFL0TXzG+ooKNzWAQrMKuKFqG2FgmaB6QLGF2MpsMmZ1dZmYDYckn2FgoYmvrX/gFdjZ+i5NHoYkHLhzOuZd77/FjwbVxnC+UWVldW9/Ibua2tnd29/L7B3UdJYqyGo1EpJo+0UxwyWqGG8GasWIk9AVr+IObid8YMqV5JO/NKGZeSHqSB5wSY6W7Yeeiky84RWcKvEzcOSmUjqrf/L38UenkP9vdiCYhk4YKonXLdWLjpUQZTgUb59qJZjGhA9JjLUslCZn20umpY3xqlS4OImVLGjxVf0+kJNR6FPq2MySmrxe9ifif10pMcO2lXMaJYZLOFgWJwCbCk79xlytGjRhZQqji9lZM+0QRamw6ORuCu/jyMqmfF93LolO1aZRhhiwcwwmcgQtXUIJbqEANKPTgAZ7gGQn0iF7Q66w1g+Yzh/AH6O0H7RuRQg==</latexit>

v4

Data Holder Alice Data Holder Bob

queries

predictions

Fig. 1: Vertically partitioned graph data for different data holders.

In this paper, we aim at understanding the edge privacy

in applications of GNN models. We focus on one specific

scenario as training/serving GNN models in a vertically parti-

tioned graph setting. As illustrated in Figure 1, in this setting,

node features and adjacency information (edges) are isolated

or hosted by different data holders. Our interest in this setting

is inspired not only by recent academic research (e.g., Zhou et

al. [3] proposed a privacy-preserving GNN (PPGNN) mecha-

nism via homomorphic encryption under this setting) but also a

real-world industrial example we see and the potential privacy

risks it incurs. In such an example, an international Internet

company hopes to train a single GNN model jointly using

data collected by two of its subdivisions (namely, data holder

Alice and Bob). Because these subdivisions focus on different

products, their data are heterogeneous in nature. Specifically,

in this example, Alice collects user interaction (social network)

data (i.e., adjacency information), and Bob collects user be-

havior data (i.e., node features). Noticing the potential benefit

of integrating user interaction data into its predictive model,

Bob hopes to enrich the model using data collected by Alice.

Although they belong to the same company, directly copying

the user interaction data from Alice to Bob is not allowed due

to privacy concerns. Thus, Bob will first send training data

containing node features and labels to Alice, and Alice will

train a GNN model jointly with her edge information. Then

Alice will release an inference API to Bob. During inference,

Bob would send a new set of test nodes with their features to

query the API and obtain corresponding predictions. Different

users can query the API to enjoy the service from Alice. For

instance, in practice there are several ML/AI service platforms

that provide similar interactions—taking the training data from

users to train an ML model and providing inference APIs for

users to make queries with their test data—such as Vertex

AI [7] from Google Cloud, ParlAI platform [8] from Face-

book, and InfoSphere Virtual Data Pipeline [9] from IBM.

During this type of interaction, the fundamental question

is to understand the risks of edge privacy (mainly for data



holder Alice) for training and releasing a GNN inference API

on graph data, as well as possible ways to amortise such risks.

Challenges and Problem Formulation. The main motiva-

tion and challenge of the problem attributes to the hetero-

geneity of data—one data holder owns the features of users

(i.e., node features), while the other holds the “connections”

or “interactions” among users (i.e., adjacency information) as

shown in Figure 1. Inspired by this real-world example, we

abstract it into the following technical problem. Let there be n
users and A ∈ {0, 1}n×n be the adjacency information. Data

holder Alice has full access to adjacency information A while

it is kept secret from the data holder Bob. Bob interacts with

Alice during both training and inference stages.

1) Training: During training, Bob (or some other users) col-

lects (training) node features and labels for a subset of

users, forming a feature matrix X with label vector y, and

sends them to Alice. Alice then trains a GNN model using

all the node features from Bob and her collected adjacency

information A, and releases an inference API to Bob.

2) Inference: During inference, Bob collects features for an-

other (test) subset of users X ′, and sends them to Alice via

the inference API, who will run inference using the trained

GNN model, and return corresponding predictions.

Given this interaction model, we aim to ask: Whether the

inference API will leak private information of the adjacency

information to a potentially malicious user Bob indirectly?

How can we better protect the adjacency information from

privacy leakage while preserving high model utility?

Apart from this specific case, there have been similar con-

cerns from different real-world cases. For instance, the adver-

tisement department of Facebook would usually hold certain

public features of individuals (i.e., node features), and needs

to query the predictions from another department that holds

the social network connection information which is private.

Thus, how to protect the edge privacy in this setting is critical.

However, directly conducting such privacy attacks is challeng-

ing. For instance, given a large graph, naively comparing the

similarities between nodes to infer their connections is clearly

not enough. On the other hand, it is known that the trained

GNN is based on the node influence propagation [10]: If two

nodes are connected, there is a high chance that changing the

features of one would affect the prediction of the other. Thus,

we hope to address the research question: Is it possible to

design an effective edge re-identification attack against GNNs

based on the node influence information?

Different from existing work [11] which collects node pairs

with and without connections to train a model to infer the exis-

tence of an edge, in this paper, we aim to analyze and leverage

the node influence to predict potential edge connections. In

particular, we first propose an attack strategy LINKTELLER

under such a vertically data partitioned setting based on the

node influence analysis, and explore how much the private

adjacency information could be revealed from Alice via an-

swering queries from Bob. Then we will evaluate the proposed

LINKTELLER attack against both an existing and a proposed

differentially private graph convolutional network (DP GCN)

mechanisms to analyze whether the LINKTELLER could fur-

ther attack the privacy preserving GCN models. In addition,

we explore what is the safe privacy budget to choose in order

to protect the trained GCN models from being attacked by

privacy attacks such as LINKTELLER on different datasets via

extensive empirical evaluation.

Technical Contributions. In this paper, we focus on under-

standing the edge privacy risk and the strength of the privacy

protection mechanisms (e.g., DP) for vertically partitioned

graph learning. Specifically, we make following contributions.

1) We propose the first query based edge re-identification

attack LINKTELLER against GNN models by considering

the influence propagation in GNN training. We show that

it is possible to re-identify private edges effectively in a

vertically partitioned graph learning setting.

2) We explore and evaluate the proposed LINKTELLER attack

against different DP GCN mechanisms as countermeasures.

Since there is no DP GCN mechanism proposed so far,

we evaluate LINKTELLER against a standard DP strategy

EDGERAND on graph, and a proposed DP GCN approach

LAPGRAPH.

3) We provide formal privacy analysis for the two DP GCN

approaches and an upper bound for general edge re-

identification attack success rate on DP GCN mechanisms.

4) We design extensive experiments on eight datasets

under the inductive setting and three datasets under

the transductive setting to show that the proposed

LINKTELLER is able to achieve high attack precision and

recall, and significantly outperforms the random attack and

two state of the art methods. We show that both DP GCN

approaches are not always resilient against LINKTELLER

empirically under mild privacy guarantees.

5) We systematically depict the empirical tradeoff space

between (1) model utility—the quality of the trained GCN

model, and (2) privacy vulnerability—the risk of a GCN

model being successfully attacked. We carefully analyze

different regimes under which a data holder might want

to take different actions via evaluating a range of privacy

budgets, and we also analyze such tradeoff by selecting a

privacy budget via a validation dataset.

II. PRELIMINARIES

A. Graph Neural Networks

Graph Neural Networks (GNNs) [12] are commonly used

in semi-supervised node classification tasks on graphs. Given

a graph G = (V,E) with V denoting the nodes (n = |V |)
and E the edges, the adjacency matrix A ⊆ {0, 1}n×n is

a sparse matrix, where Aij = 1 denotes the existence of

an edge from node i to node j. Since Graph Convolutional

Network (GCN) [13] is one most representative class of GNN,

we next introduce GCN, which is a stack of multiple graph

convolutional layers as defined below:

H l+1 = σ(ÂH lW l), (1)





The learned model parameters are denoted as {W i}, where

W i ∈ R
di×di+1 represents the weight of the i-th layer.

During the inference stage, the data holder Bob who owns

another set of nodes from the inference graph will query the

inference API for node prediction. In particular, given a set

of inference nodes V (I) ⊆ V , Bob will send the associated

node features X(I) to the trained GNN API GBB(·, ·). Then

together with the private adjacency matrix of inference graph

AV (I) , the API from Alice will make inference on the nodes,

and following the standard commercial ML inference services

such as Clarifai [22] and Google Vision API [23], Alice will

send the logits information back to Bob as below.

GBB(V
(I), X(I)) = GNN(AV (I) , X(I), {W i}).

For ease of reference, we denote the output prediction matrix

of GBB(V
(I), X(I)) as P (I), which is of shape |V (I)| × c.

Each row of the prediction matrix corresponds to one node in

V (I), and each column corresponds to the confidence for one

class. Alice will then send P (I) back to Bob.

We discuss more on the properties of V (T ), V (I), and V .

It is worth noting that V may not necessarily be a fixed set.

New nodes and edges may arise with time elapsing, though

Alice always has an up-to-date view of the graph structure. In

this case, V (T ) can be nodes in the stale graph, and V (I) can

be the newly arisen nodes. There is also no restriction that all

nodes in V should form a connected component. Rather, V can

contain nodes in a group of graphs, as long as the grouping

makes logical and practical sense. Under this setting, V (T )

and V (I) can be the nodes of different graphs in the group.

B. Overview of the Attack

We will first introduce the capability/knowledge of the at-

tacker, and then provide overview of the attack method. During

the attack, the attacker has access to a set of node features

and their labels which are required during training. During

inference, Bob is able to query the trained API for multiple

times with the subset of nodes that are of interest. That is to

say, the attacker’s capability includes the query access to a

blackbox GNN model and the obtained prediction probability

for a set of nodes during inference. Note that the attacker has

no information about the API model except that it is a GNN

model with unknown architecture and parameters. Unlike He

et al. [11] which assumes the knowledge of partial graphs or a

shadow dataset, here, we have no such additional assumptions.

The overview of the proposed link re-identification attack

LINKTELLER is as follows. The attacker plays the role of Bob

in the interaction model (Figure 2). The goal of the attacker is

to recover the connections among the inference node entities.

Concretely, during inference, attacker Bob will query the GNN

API with a set of inference nodes. With the returned prediction

probability vectors, Bob will infer the connections between

certain pairs of nodes. The attack succeeds if the attacker can

correctly determine whether two given nodes are connected by

a link or not. We use the standard metrics precision, indicating

what fraction of pairs inferred to be connected are indeed

connected in the graph; and recall, indicating what fraction of

the connected pairs are revealed, to measure the attack success

rate. We also evaluate the AUC scores.

Intuitions: Our attack is inspired by the intuition behind

the training of a GNN model—during training, if two nodes u
and v are connected by an edge, GNN would “propagate” the

information of u to v. As a result, if there is an edge from u to

v, we would expect that changing the feature vector of u would

impact the prediction of v. Thus, if we can compute the influ-

ence of one node on the other, we could use it to guess whether

there is an edge between the two nodes: If the influence value

is “large”, we would be more confident on the existence of

an edge; if the influence value is “small”, we would be more

confident that the nodes are not directly connected. Below, we

describe a concrete algorithm to approximate such an influence

value by probing the trained GNN inference API.

C. LINKTELLER: Edge Influence Based Attack

LINKTELLER attack proceeds in two phases. First, given

a collection of nodes V (I) at the inference time and the

inference API, GBB(·, ·), the attacker tries to calcluate the

influence value between each pair of nodes in V (I). Second,

LINKTELLER then sorts all pairs of nodes by their influence

value, and predict the first m = k̂ · n(n−1)
2 node pairs with

highest influence values as “with edge” and all other pairs as

“without edge”. Here k̂ is a hyperparameter specified by the

attacker, which indicates his prior “belief” of the graph density.

We call k̂ the density belief , which is a key hyper-parameter

(details in Algorithm 1). In our experiments, we observe that

the attack performance will decrease slightly given the discrep-

ancy between estimated k̂ and ground truth k. Nevertheless,

we show that LINKTELLER remains more effective than the

state-of-the-art attacks even with inaccurate estimation for k̂.

In practice, it is also possible for attackers to further

estimate k̂ or the influence value threshold for edge re-

identification with additional knowledge. For instance, if the

attacker has partial graph information, she can either estimate

k̂, or directly calculate the influence values for known con-

nected/unconnected pairs and estimate the threshold for distin-

guishing them. More concrete descriptions of such actionable

strategies are deferred to Appendix E2, which we hope can

inspire more effective attacks as interesting future work.

Measuring Influence Values via the Inference API: Here

we describe the calculation of the influence value between a

node pair. Recall that in the interaction model, for any inquiry

involving a set of nodes and their features, the attacker Bob is

given a prediction vector for each node. With the hope of tak-

ing advantage of the prediction vectors to obtain the influence

value, we look into the structure of graph convolutional layers

and analyze the influence of an edge on its incident nodes.

We characterize the influence of one node v to the other

node u by measuring the change in the prediction for node

u when the features of the node v get reweighted. Formally,

let V (I) be the set of nodes involved in the inference stage

and X = [x>
1 , . . . , x

>
v , . . .]

> be the corresponding feature

matrix. By upweighting the features of the node v by a

small value ∆, the attacker generates a new feature matrix



X ′ = [x>
1 , . . . , (1 + ∆)x>

v , . . .]
>. The difference between the

two predictions P (I) and P ′(I) with respect to ∆ denotes

the influence of reweighting v on the prediction of all other

nodes. We define the influence matrix of v on other nodes as

Iv = lim∆→0

(
P ′(I) − P (I)

)
/∆ with size |V (I)| × c Its u-th

row ivu ∈ Iv represents the prediction influence vector of v on

u for each class dimension. Finally, we compute the `2 norm of

the corresponding influence vector as the influence value of v
on u as ‖ivu‖. Since computing the influence matrix Iv yields

the influence of one node v on all other nodes, to compute the

influence value between n2 pairs of nodes (n is the number of

nodes of interest), we only need to compute n influence matri-

ces, each for one node in the interested node set. This requires

2n forward passes of the trained network in all, which does

not constitute a significant overhead during inference time. We

report the running time of LINKTELLER in Appendix G3.

Next, we will theoretically show that the influence value

‖ivu‖ comes with a nice property for GCN models, that is,

two nodes that are at least k+1 hops away have no influence

on each other in a k-layer graph convolutional network. We

start from the simple case of a 1-layer GCN in Proposition 1.

Proposition 1 (Influence value of a 1-layer GCN). For a 1-

layer trained GCN model with parameters W , when its input

adjacency matrix is A and feature matrix is X , when there

is no edge between node u and node v, the influence value

‖ivu‖ = 0.

We omit the proof in Appendix A1 and next present a

natural extension of the above conclusion for a k-layer GCN.

Theorem 1 (Influence value for a k-layer GCN). For a k-

layer trained GCN model, when node u and node v are at

least k + 1 hops away, the influence value ‖ivu‖ = 0.

The complete proof is provided in Appendix A2. With the

guarantee provided by Proposition 1, we can identify the con-

nected pairs against a 1-layer GCN with high confidence; the

criterion is that the pair is connected if and only if the influ-

ence value is non-zero. For GCNs with more layers, though

this criterion does not directly apply, Theorem 1 can help to

rule out nodes that are k + 1 hops apart, thus eliminating

a significant number of negative examples (i.e., unconnected

pairs). Moreover, the node pairs that are directly connected

would have higher influence values, observed by studies on

local neighborhood properties [17]. Although there is no strict

guarantee that the influence values of the connected pairs

are the largest since the values also depend on the features

and the learned weights, in practice, the learned weights will

generally display a preference for connected pairs for better

label propagation, and thus the corresponding influence values

of connected pairs are larger.

IV. COUNTERMEASURES OF LINKTELLER:

DIFFERENTIALLY PRIVATE GCN

In this section, we aim to evaluate to what extent the pro-

posed LINKTELLER in Section III-B reveals the private con-

nection information effectively through a trained GCN, as well

Algorithm 1: Link Re-identification Attack (LINKTELLER)

Input: A set of nodes of interest V (C) ⊆ V (I); the associated node

features X; the inference API GBB(·, ·); density belief k̂,
reweighting scale ∆

Output: a 0/1 value for each pair of nodes, indicating the
absence/presence of edge

1 Function InfluenceMatrix(V (I), X,GBB(·, ·), v):

2 P = GBB(V (I), X)
3 X′ = [x>

1 , . . . , (1 + ∆)x>
v , . . . , ]>

4 P ′ = GBB(V (I), X′)
5 I = 1

∆
(P ′ − P )

6 return I

7

8 for each node v ∈ V (C) do

9 I ← InfluenceMatrix (V (I), X,GBB(·, ·), v)

10 for each node u ∈ V (C) do

11 iuv ← ‖I[u, :]‖ . The norm of the u-th row of I

12 Sort all iuv in a descending order
13 n← |V |

14 m← k̂ ·
n(n−1)

2
15 Assign 1 to the first m pairs, and 0 to the remaining

as the sufficient conditions of the attack, via considering differ-

ent countermeasure approaches. The most direct countermea-

sure or defense against such an attack would be a differentially

private GCN model. However, so far there is no existing work

directly training differentially private GCN models to our best

knowledge. As a result, we first revisit the general framework

and principles of developing a differentially private (DP) GCN

against such edge re-identification attacks (Section IV-A). We

then formally define the DP GCN, followed by two proposed

practical algorithms to train a DP GCN. We also discuss the

upper bound of the precision of general edge re-identification

attacks on DP GCNs. Importantly, we point out that the

theoretical guarantee of differential privacy is insufficient in

preserving both privacy and utility for a GCN. It is equally

important to empirically choose an appropriate privacy budget

to strike a better privacy-utility balance.

A. Overview of DP GCN Framework

In the following sections, we review the definition of edge

differential privacy for graph algorithms [19] and present two

practical DP GCN training algorithms via graph structure in-

put perturbation. Input perturbation for GCN is a non-trivial

problem since naively adding noise to the graph structure

would destroy the sparsity of the adjacency matrix. The loss

of sparsity greatly limits a GCN’s performance and increases

its memory and computation cost.

To preserve the sparsity of the adjacency matrix, we discuss

two approaches for GCN input perturbation: EDGERAND and

LAPGRAPH. EDGERAND adapts the idea in Mülle et al. [24]

and randomly flips each entry in the adjacency matrix ac-

cording to a Bernoulli random variable. LAPGRAPH improves

upon EDGERAND by pre-calculating the original graph density

using a small privacy budget and using that density to clip the

perturbed adjacency matrix. Compared to EDGERAND, LAP-

GRAPH preserves the sparsity of the adjacency matrix under

a small privacy budget.



Differentially Private GCN: In edge differential pri-

vacy [19], two undirected graphs are said to be neighbors if

one graph can be obtained by the other by adding/removing

one edge. Definition 2 defines the neighboring relation using

the adjacency matrix representation.

Definition 2 (Neighboring relation). Let A be the set of ad-

jacency matrices of undirected graphs. Any pair of two sym-

metric matrices A,A′ ∈ A are said to be neighbors when the

graph represented by A′ could be obtained by adding/removing

one edge from graph A, denoted as A ∼ A′. Further, we

denote the differing edge as e = A⊕A′.

Definition 3 (ε-edge differential privacy). A mechanism M
is ε-edge differentially private if for all valid matrix A ∈ A,

and A′ ∼ A, and any subset of outputs S ⊆ Range(M), the

following holds:

Pr[M(A) ∈ S] ≤ exp(ε) · Pr[M(A′) ∈ S]. (2)

The probability Pr is taken over the randomness of M.

Definition 3 formally presents the definition of ε-edge dif-

ferential privacy (ε-edge DP). It guarantees that the outputs of

a mechanism M should be indistinguishable on any pair of

neighboring input graphs differing in one edge.

Next, we apply ε-edge DP to a GCN. To protect against

link re-identification attacks, we need to guarantee that a

GCN’s inference results do not reveal the edge information

of its input graph. Specifically, in the inductive training, the

edge information of both the training graph and the inference

graph should be protected. In addition, the privacy protection

should hold even if the attacker submits an infinite number of

inference queries.

Based on the above criteria, we first perturb the graphs

before training a GCN. Since the training and the inference

steps are both post-processing on the perturbed DP graphs,

the edge information is protected for both the training and

inference graphs. Moreover, submitting more queries would

not reveal sensitive edge information.

We present the detailed algorithm of perturbation, train-

ing, and inference in a differentially private GCN framework

in Algorithm 2 in Appendix D1. First, the adjacency matrix

A is perturbed to meet the DP guarantee. Second, a DP GCN

model is trained on a subset of training nodes in the perturbed

graph. Finally, during inference, the DP GCN model is used

to predict the labels for a subset of inference nodes in the

perturbed graph. Essentially, ε-edge DP is achieved in the step

of adjacency matrix perturbation (line 1-2), and the guaran-

tee is provided by the privacy guarantee of the perturbation

mechanism. Since the same perturbed graph is used for both

the training and inference steps, making multiple inferences

would not consume additional privacy budget.

The following theorem provides differential privacy guaran-

tee for the training procedure in Algorithm 2 for GCN models.

Theorem 2 (ε-edge differentially private GCN). The DP GCN

model trained by Algorithm 2 is ε-edge differentially private

if the perturbation mechanism Mε is ε-edge differentially pri-

vate.

We omit all proofs for the DP guarantees in Appendix B.

Next, we show that the Inference step in Algorithm 2 guar-

antees ε-edge DP for edges in both the training and testing

graph (AV (T ) and AV (I) ). To prove this privacy guarantee, we

first introduce the parallel composition property of ε-edge DP.

Lemma 1 (Parallel composition of ε-edge DP). If the per-

turbation mechanism Mε is ε-edge differentially private and

A1, A2, . . . , Am are adjacency matrices with non-overlapping

edges, the combination of Mε(A1),Mε(A2), . . . ,Mε(Am) is

also ε-edge differentially private.

The following theorem guarantees differential privacy for

any inference using the DP GCN model.

Theorem 3 (ε-edge differentially private GCN inference).

The Inference step in Algorithm 2 is ε-edge differentially

private for any V (I) ⊆ V .

The above analysis of the general DP GCN framework

provides privacy guarantees for GCN models trained following

the principles in Algorithm 2. Next, we will introduce two

such concrete training mechanisms.

B. Practical DP GCN

In Algorithm 2, the perturbation step Mε takes the adjacency

matrix of the input graph and adds noise to the adjacency

matrix to guarantee ε-edge DP. In this section, we present two

practical DP mechanisms for this process.

The intuition behind perturbing the adjacency matrix is to

add enough noise in the adjacency matrix to guarantee the

indistinguishability between any pair of neighboring adjacency

matrices A and A′—the ratio of the probability of getting the

same perturbed matrix from A and A′ should be bounded by a

small constant ε. The smaller ε is, the stronger the protection

is.

In addition to the privacy requirements, the perturbed ad-

jacency matrix A′ also needs to satisfy the following two

requirements in order to be used as a training/inference graph

for DP GCN. First, for large graphs, A′ needs to preserve a

reasonable level of sparsity to avoid huge memory consump-

tion when training a GCN model. Second, each row in the

perturbed adjacency matrix A′ should represent the same node

as its corresponding row in the original adjacency matrix A.

This requirement ensures that the node features and labels can

be associated with the right graph structure information in the

perturbed adjacency matrix during training and inference.

However, the second requirement is often not satisfied by

prior work on DP synthetic graph generation [21], [25]–[28].

This line of work aims at generating graphs that share similar

statistics with the original graphs. Though the desired statistics

of the graphs are preserved, the nodes in the generated graph

and the original graph are intrinsically unrelated. Therefore,

the new DP graph structure cannot be connected with the node

features and labels to train a DP GCN model. More discussions

on prior works are provided in the related work section.



To satisfy the privacy and utility requirements for DP GCN,

we introduce two perturbation methods that directly add noise

to the adjacency matrix.

1) Edge Randomization (EDGERAND): We set out with a

discrete perturbation method proposed in Mülle et al. [24].

This algorithm was originally proposed as a pre-processing

step for DP node clustering. Since the algorithm naturally pre-

serves the sparse structure of the adjacency matrix, we adopt

it as the input perturbation algorithm for DP GCN and name

it EDGERAND. We present the algorithm for EDGERAND

in Algorithm 3 in Appendix D2. We first randomly choose

the cells to perturb and then randomly choose the target value

from {0, 1} for each cell to be perturbed.

In EDGERAND, the level of the sparsity of the perturbed

adjacency matrix is purely determined by the sampling param-

eter s, which can be conveniently controlled to adapt to the

given privacy budget ε. The relationship between s and ε is

characterized in Theorem 4.

Theorem 4. EDGERAND guarantees ε-edge DP for ε ≥
ln
(
2
s − 1

)
, s ∈ (0, 1].

EDGERAND guarantees differential privacy for the per-

turbed adjacency matrix. However, the privacy protection

comes at the cost of changing the density of the perturbed

graph. Let the density of the input graph to EDGERAND be

k, the expectation of the density of the output graph is k′ =
(1−s)k+s/2. Take ε = 1 as an example, in this case, s shall

be at least 0.5379 according to Theorem 4, and k′ is therefore

larger than 1/4. As such, when ε is small, the perturbed graph

generated by EDGERAND could have a much higher density

compared to the original one. This would increase the memory

consumption for training DP GCNs on large graphs and may

cause memory errors when the perturbed adjacency matrix

becomes too dense to fit into the memory.

2) Laplace Mechanism for Graphs (LAPGRAPH):

EDGERAND is not applicable to large graphs under small pri-

vacy budgets due to the huge memory consumption caused by

a dense adjacency matrix. Therefore, we propose LAPGRAPH

to address this problem.

The classical idea of adding Laplace noise to the private

value is also applicable to our scenario. The difference is that,

in traditional scenarios, Laplace noise is applied to entities

such as a database entry, while in our case, the private entity is

the adjacency matrix. Therefore, additional care shall be taken

to tailor the Laplace mechanism to the graph scenario.

By the definition of Laplace mechanism [18], adding a

certain amount of noise to each cell in the adjacency matrix

will lead to any two neighboring adjacency matrices being

indistinguishable. However, directly applying this mechanism

will add a huge amount of continuous noise to each cell of

the adjacency matrix, which inevitably undermines the sparse

property of the matrix. The loss of sparse property introduces

two problems: First, it drastically increases the computation

and memory cost of training a GCN. Second, adding the con-

tinuous noise in the adjacency matrix is equivalent to adding

new weighted edges between almost every pair of nodes in

the graph, which greatly impairs the utility of the adjacency

matrix and, consequently, the GCN trained on it.

To retain the sparsity, after adding noise, we only keep

the largest T cells as existing edges in the perturbed graph.

To preserve the original graph structure, we set T to be the

approximation of the number of edges in the original graph

using a small portion of the differential privacy budget. We

name the perturbation method LAPGRAPH and present the

details in Algorithm 4 in Appendix D2. The privacy guarantee

for this method is given in Theorem 5.

Compared with EDGERAND, LAPGRAPH has the advantage

of better preserving the density of the original graph, espe-

cially for large graphs and small ε. Since the number of edges

in a large graph is often orders of magnitude higher than the

sensitivity of adding/removing a single edge, it is possible to

estimate T even under a very limited privacy budget. Thus, the

density of the perturbed graph is much closer to the original

one than EDGERAND. This improvement makes it possible to

train DP GCN on large graphs under small privacy budgets

without causing memory errors.

Theorem 5. LAPGRAPH guarantees ε-edge DP.

Due to the lack of DP GCN approaches, here we focus on

the existing technique EDGERAND and the proposed LAP-

GRAPH to provide DP guarantees for GCN as countermeasures

to further evaluate the proposed attack LINKTELLER. We have

provided the formal analysis for the privacy guarantees for

EDGERAND and LAPGRAPH above, and next, we will discuss

a general upper bound of edge privacy on DP GCN models.

C. Discussion: Upper Bound of Edge Re-Identification Attack

Performance on DP GCN

As implied by ε-edge DP in Definition 3, it is generally

difficult to tell, among the two neighboring adjacency matri-

ces A and A′, which one leads to the observed prediction.

The direct consequence of the indistinguishability is that the

existence of the differing edge e = A⊕A′ cannot be inferred.

In this section, we aim to analyze the upper bound of edge

re-identification attacks against DP GCN.

Same as the attack model introduced in Section III-B, we

assume the attacker has access to a set of node features and

their labels without any knowledge about the GCN structure

and parameters.

To start with, we formalize the link re-identification attack

proposed in Section III-B as the following game between the

graph owner Alice and the attacker Bob:

1) Let V be a set of nodes and AV be the set of all possible

adjacency matrices for graphs with nodes V . First, Alice

selects an adjacency matrix A ∈ AV uniformly at random

and uses it to generate a graph.

2) Bob selects a set of training nodes V (T ) ⊆ V . He sends

V (T ) with the features and labels of V (T ) to Alice.

3) Alice then trains an ε-edge differentially private GCN

model and exposes the inference API GBB to Bob.

4) Bob selects a set of inference nodes V (I) ⊆ V and nodes of

interests V (C) ⊆ V (I). Let k(C) denote the graph density



over V (C). For each pair of nodes < u, v >∈ V (C)×V (C),

Bob launches a link re-identification attack RGBB
(u, v) to

infer whether an edge exists between nodes u and v, and

RGBB
(u, v) ∈ {0, 1}.

To obtain an upper bound for the above attack, we assume

the attacker knows the inference node density k(C). Formally,

we bound the expected precision of the link re-identification

attack R by the following theorem.

Theorem 6. The precision of RGBB
over nodes of interests

V (C) with density k(C) is upper-bounded by:

Pr
<u,v>∈V (C)×V (C)

[Auv = 1 | RGBB
(u, v) = 1] ≤ exp(ε) · k(C),

where the probability is calculated over the randomness in the

graph selection, the noise introduced by the DP GCN training,

and the selection of node pair < u, v >.

Proof Sketch. Based on Definition 3 and Bayes’ theorem,

the ratio between the posterior probability Pr[Auv = 1 |
GBB ∈ S] and the prior belief on Pr[Auv = 1] is bounded by

exp(ε). Since the precision of a random guess based on the

prior probability (i.e., the graph density) is at most k(C), the

upper bound for the precision of a link re-identification attack

on an ε-edge differentially private GCN is exp(ε) · k(C). The

complete proof is provided in Appendix C.

Although Theorem 6 provides a theoretical upper bound for

the precision of an edge re-identification attack, it may not

be sufficiently tight to provide the best privacy-utility trade-

off. For example, given a graph with 1% density, the attack

precision is bounded below 2% (i.e., no more than two times

higher than random guessing using the prior probability) if

and only if ε ≤ ln 2. However, in practice, the same empirical

protection might be achieved by a model with weaker privacy

protection (i.e., higher privacy budget) and therefore better

utility. Thus, in Section VI-B, we empirically evaluate the

privacy-utility trade-off of DP GCN across multiple datasets.

In addition to DP GCN approaches, it may also be possible

to leverage some heuristics to detect such attacks. For instance,

one may distinguish the abnormal behavior of querying the

same set of inference nodes V (I) multiple times (with the

node features of one node slightly altered in each query). The

defender could also optimize a query limit Q which decreases

the attack performance while maintaining reasonable benign

query accuracy, although there is no guarantee for such detec-

tion. More discussions on the detection strategies are deferred

to Appendix E1, and in this paper, we will focus on the DP

GCN mechanisms with privacy guarantees.

V. EVALUATION OF LINKTELLER

We evaluate the effectiveness of the LINKTELLER attack

on multiple graph datasets under various scenarios compared

with three baselines. In particular, we investigate how different

factors such as node degree affect the attack performance.

A. Datasets

We evaluate LINKTELLER on eight datasets in the induc-

tive setting and three datasets in the transductive setting (Ap-

pendix F1) and provide a brief description of the data below.

Under the inductive setting, the first dataset is the twitch

dataset [29] which is composed of 6 graphs as disjoint sets

of nodes. Each of the graphs represents a set of people in

one country; the nodes within a graph represent users in one

country, and the links represent mutual friendships between

users. The dimension of the features is the same across differ-

ent graphs and each dimension has the same semantic mean-

ing. Some sampled features include games they like, location,

and streaming habits. The task is a binary classification task

which classifies whether a streamer uses explicit language.

This dataset is proposed for transfer learning, i.e., applying the

model learned on one graph to make inferences on the other

graphs corresponding to different countries. In our evaluation,

we train the GNN model on the graph twitch-ES, and trans-

fer it to other five countries (RU, DE, FR, ENGB, PTBR).

PPI [14] and Flickr [16] are another two standard datasets

used in graph inductive learning setting. PPI is a dataset for

multi-label classification task, which aims to categorize the

function of proteins across various biological protein-protein

interaction graphs. Flickr is an evolving graph for the classifi-

cation task, which contains descriptions and common proper-

ties of images as node features. For both PPI and Flickr, we

use the standard splits for training and testing following the

previous works. Under the transductive setting, we adopt three

standard datasets (Cora, Citeseer, and Pubmed). More details

of the data can be found in Appendix F1.

B. Models

We mainly experiment with GCN models. The configu-

rations/hyperparameters include the normalization techniques

applied to the adjacency matrix, the number of hidden layers,

the number of input units, hidden units, and output units, as

well as the dropout rate. For each combination of hyperparam-

eters, we train the network to minimize the cross-entropy loss

for the intended tasks. We performed grid search to get the best

set of hyperparameters on the validation set. The search space

for the hyperparameters and the formulae for different normal-

ization techniques are provided in Appendix F. To measure

the performance of a GCN model, we follow previous work

and use F1 score for their corresponding binary classification

tasks. We leave the description of the best hyper-parameters

we achieve in Appendix F5. In addition to the 2-layer GCNs

evaluated in the main paper, in Appendix G2, we also ex-

perimented with the 3-layer GCNs and include a discussion

about GCNs of 1 layer and more than 3 layers. We conclude

that LINKTELLER is a successful attack against most practical

GCN models. In addition, we evaluate LINKTELLER on Graph

Attention Networks (GATs). The details are in Section V-F.

C. Setup of the Evaluation

In this section, we first describe the metrics we use to

evaluate the attack effectiveness of LINKTELLER. We then

present the baseline attack methods.

1) Evaluation Metrics of the attack: We use the standard

metrics: precision (the fraction of existing edges among the

pairs recognized as true by Bob) and recall (the fraction of

edges discovered by Bob over all existing edges among the



subset of nodes). We also compute the F1 score (the harmonic

mean of precision and recall). The reason we adopt the met-

ric is that our problem here (distinguishing connected pairs

from unconnected ones) is an imbalanced binary classification

problem where the minority (the connected pair) is at the core

of concern. See Appendix F2 for more details. Additionally,

for fair comparison with baselines, we follow the evaluation

in He et al. [11] and compute the AUC score.

2) Baseline Attacks: We compare LINKTELLER with two

baselines: random attack and LSA2 attacks in He et al. [11].

For the random attack, we follow the standard notion and

construct a random classifier as a Bernoulli random variable

with parameter p which predicts true if and only if the random

variable takes the value 1 [30]. Given a set of instances where

a of them are true and b are false, the precision of this classifier

is a/(a+ b) and the recall is p. In our case, a is the number

of connected pairs of nodes, while a + b is the number of

all pairs. Therefore, precision is exactly the density k of the

subset, which we formally define as k = 2m/(n(n − 1)),
where n = |V (C)| is the size of the set of interest and m is

the number of connections among the set V (C). The recall of

such a random classifier will be the density belief k̂.

We also compare LINKTELLER with the state of the art

LSA2 attacks [11]. In the paper, the authors discussed several

types of background knowledge including node attributes, par-

tial graph, and a shadow dataset for attackers. Among the com-

binations, their Attack-2 is closest to our scenario where the

attacker has only access to the target graph’s node features. We

follow their best practices, computing the correlation distance

between 1) posteriors given by the target model and 2) node

attributes, referred to as LSA2-post and LSA2-attr attacks.

D. Evaluation Protocol

Think about the paparazzi who are fanatical about exploit-

ing the connections among celebrities, or the indiscriminate

criminals that are maliciously targeted at the mass mediocre

majority, their targets are substantially different. Consequently,

the subsets they gather for attack have diverse node degree dis-

tributions. Catering to the need of evaluating our attack against

nodes of different degree distributions, we design the scenario

as follows. We consider three types of subsets that are of

potential interest to the attacker: nodes of low degree, uncon-

strained degree, and high degree. For each type, we randomly

sample a fixed number n(C) of nodes to form a subset V (C) for

evaluation. When sampling nodes of low (or high) degree, we

place a threshold value dlow (or dhigh) and sample from nodes

whose degrees are no larger than dlow (or no smaller than

dhigh). The value dlow and dhigh are chosen empirically based

on the graph. When sampling nodes of unconstrained degree,

we sample nodes from the entire test set uniformly at random.

More specifically, for all datasets, we choose n(C) =
|V (C)| = 500. For twitch datasets, to form the unconstrained

subset, we sample from each entire testing graph. For the low

degree subset and high degree subset, the threshold dlow and

dhigh are set to 5 and 10, respectively. We set the dlow value

to 10 for twitch-PTBR, since the graph is much denser with

abundant connections among a small number of nodes. For

PPI and Flickr graphs, the subsets for testing are sampled from

the testing graphs/nodes that are not involved in training. We

set dlow as 15 and dhigh as 30 for these two large graphs.

We also evaluate different density belief k̂ ∈ {k/4, k/2, k,
2k, 4k}, where k is the true density. In the experiments, we

round the density k to the closest value in its most signifi-

cant bit (e.g., 5.61e-5 rounded to 6e-5). As we will see, the

effectiveness of LINKTELLER does not heavily depend on the

exact knowledge of the density k.

E. Evaluation for LINKTELLER

We first evaluate the precision, recall, and AUC of LINK-

TELLER on eight datasets in the inductive setting, under 3 sam-

pling strategies (low, unconstrained, and high degree), using 5

density beliefs (k/4, k/2, k, 2k, 4k), compared with different

baselines. For each scenario, the reported results are averaged

over 3 runs using different random seeds for node sampling.

We report the precision, recall, and AUC results on some

datasets in Table I and Table II and the remaining datasets

in Appendix G4 due to the space limit. We leave the results of

the weak random attack baseline in Appendix G1. As a brief

summary, LINKTELLER significantly outperforms the random

attack baseline. We mainly focus on the comparison with

LSA2 attacks [11]. We show that LINKTELLER significantly

outperforms these two baselines. In Table I, LSA2-{post, attr}
fail to attack in most of the scenarios, while LINKTELLER

attains fairly high precision and recall. The AUC scores in Ta-

ble II also demonstrate the advantage of LINKTELLER. Since

the baselines LSA2-{post, attr} are only performed under

transductive setting in He et al. [11], to demonstrate the gener-

ality of LINKTELLER, we also compare with them following

the same evaluation protocol as in He et al. [11] on three

datasets in the transductive setting. The results are reported

in Appendix G5. We can see that the inductive setting is indeed

more challenging: the baselines always fail to attack in the

inductive setting while LINKTELLER is effective; the baselines

are able to re-identify some private edges in the transductive

setting, while LINKTELLER is consistently more effective.

Intuitively, the high attack effectiveness of LINKTELLER

compared to baselines is because that LSA2-{post, attr} only

leverage node-level information (posteriors or node attributes)

to perform the edge re-identification attack. Although these

node-level features can be correlated with the graph structure

in some graphs, this correlation is not guaranteed, especially in

the inductive setting. In comparison, LINKTELLER leverages

the graph-structure information inferred from the inter-node

influence in a GCN model according to Theorem 1. We defer

more detailed comparison and analysis in Appendix E5.

In addition, it is clear that given an accurate estimation

of the density (k̂ = k), LINKTELLER achieves very high

precision and recall across different node degree distributions

and datasets. It is interesting to see that even when the density

estimation is inaccurate (e.g., k̂ ∈ {k/4, k/2, 2k, 4k}), the

attack is still effective. Concretely, when the belief is smaller

(k̂ = k/2), the precision values increase in all cases; when the



TABLE I: Attack Performance (Precision and Recall) of LINK-
TELLER on different datasets, compared with two baseline methods
LSA2-{post, attr} [11]. Each table corresponds to a dataset. We
sample nodes of low, unconstrained, and high degrees as our targets.

Groups of rows represent different density belief k̂ of the attacker.

twitch-RU low unconstrained high

k̂ Method precision recall precision recall precision recall

k/4
Ours 100.0 ± 0.0 33.0 ± 2.8 95.1 ± 1.1 26.0 ± 1.0 98.9 ± 0.2 18.1 ± 1.3

LSA2-post 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.2 ± 0.3 0.0 ± 0.1

LSA2-attr 0.0 ± 0.0 0.0 ± 0.0 1.3 ± 0.5 0.4 ± 0.1 2.5 ± 1.3 0.4 ± 0.2

k/2
Ours 100.0 ± 0.0 61.3 ± 5.1 87.9 ± 0.4 48.1 ± 2.3 97.1 ± 0.3 35.6 ± 2.6

LSA2-post 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.1 ± 0.2 0.0 ± 0.1

LSA2-attr 0.0 ± 0.0 0.0 ± 0.0 1.7 ± 0.2 0.9 ± 0.1 2.5 ± 0.5 0.9 ± 0.1

k
Ours 78.7 ± 1.9 92.6 ± 5.5 71.8 ± 2.2 78.5 ± 2.4 89.7 ± 1.7 65.7 ± 3.9

LSA2-post 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.1 ± 0.1 0.0 ± 0.1

LSA2-attr 0.0 ± 0.0 0.0 ± 0.0 1.1 ± 0.1 1.2 ± 0.1 2.2 ± 0.6 1.6 ± 0.3

2k
Ours 42.7 ± 3.4 100.0 ± 0.0 43.5 ± 1.9 95.0 ± 0.5 62.9 ± 4.2 91.8 ± 1.3

LSA2-post 0.7 ± 0.9 1.8 ± 2.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.1

LSA2-attr 1.3 ± 0.9 3.2 ± 2.3 0.8 ± 0.1 1.8 ± 0.3 2.0 ± 0.3 2.8 ± 0.3

4k
Ours 21.3 ± 1.7 100.0 ± 0.0 22.5 ± 1.1 98.1 ± 0.6 33.6 ± 2.5 98.0 ± 0.4

LSA2-post 0.3 ± 0.5 1.8 ± 2.5 0.0 ± 0.0 0.1 ± 0.1 0.0 ± 0.0 0.0 ± 0.1

LSA2-attr 0.7 ± 0.5 3.2 ± 2.3 0.7 ± 0.1 3.0 ± 0.5 1.6 ± 0.3 4.6 ± 0.5

twitch-FR low unconstrained high

k̂ Method precision recall precision recall precision recall

k/4
Ours 100.0 ± 0.0 28.3 ± 2.4 97.2 ± 0.9 22.7 ± 0.6 99.4 ± 0.5 24.1 ± 2.1

LSA2-post 0.0 ± 0.0 0.0 ± 0.0 0.2 ± 0.2 0.0 ± 0.1 0.5 ± 0.2 0.1 ± 0.0

LSA2-attr 0.0 ± 0.0 0.0 ± 0.0 0.6 ± 0.4 0.1 ± 0.1 1.9 ± 0.7 0.5 ± 0.1

k/2
Ours 100.0 ± 0.0 50.0 ± 0.0 95.0 ± 1.0 44.3 ± 1.3 98.3 ± 1.0 47.7 ± 4.5

LSA2-post 0.0 ± 0.0 0.0 ± 0.0 0.1 ± 0.1 0.0 ± 0.1 0.3 ± 0.1 0.1 ± 0.0

LSA2-attr 0.0 ± 0.0 0.0 ± 0.0 0.6 ± 0.2 0.3 ± 0.1 1.4 ± 0.2 0.7 ± 0.0

k
Ours 92.5 ± 5.4 92.5 ± 5.4 84.1 ± 3.7 78.2 ± 1.9 83.2 ± 1.4 80.6 ± 6.7

LSA2-post 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.1 0.0 ± 0.1 0.1 ± 0.0 0.1 ± 0.0

LSA2-attr 0.0 ± 0.0 0.0 ± 0.0 0.8 ± 0.2 0.7 ± 0.2 1.4 ± 0.2 1.3 ± 0.1

2k
Ours 51.1 ± 1.6 100.0 ± 0.0 51.3 ± 2.1 95.3 ± 1.3 49.1 ± 2.7 94.8 ± 3.2

LSA2-post 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.1 0.1 ± 0.0 0.1 ± 0.0

LSA2-attr 1.7 ± 2.4 3.3 ± 4.7 0.8 ± 0.1 1.4 ± 0.2 1.6 ± 0.2 3.1 ± 0.3

4k
Ours 25.6 ± 0.8 100.0 ± 0.0 26.5 ± 1.1 98.3 ± 1.0 25.4 ± 1.8 97.6 ± 1.6

LSA2-post 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.1 0.0 ± 0.0 0.1 ± 0.0

LSA2-attr 0.8 ± 1.2 3.3 ± 4.7 1.0 ± 0.2 3.7 ± 0.8 1.5 ± 0.1 5.7 ± 0.1

PPI low unconstrained high

k̂ Method precision recall precision recall precision recall

k/4
Ours 100.0 ± 0.0 26.1 ± 2.2 99.5 ± 0.7 25.9 ± 2.7 99.7 ± 0.3 21.6 ± 0.8

LSA2-post 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 1.4 ± 0.6 0.3 ± 0.1

LSA2-attr 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 1.3 ± 0.7 0.3 ± 0.1

k/2
Ours 100.0 ± 0.0 47.6 ± 4.7 99.5 ± 0.8 51.5 ± 5.4 99.7 ± 0.2 43.3 ± 1.6

LSA2-post 0.0 ± 0.0 0.0 ± 0.0 0.3 ± 0.4 0.1 ± 0.2 1.6 ± 0.5 0.7 ± 0.2

LSA2-attr 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.6 ± 0.3 0.3 ± 0.1

k
Ours 98.7 ± 1.9 89.2 ± 7.9 89.5 ± 6.5 91.9 ± 3.7 98.0 ± 0.3 85.1 ± 3.2

LSA2-post 0.0 ± 0.0 0.0 ± 0.0 0.3 ± 0.2 0.3 ± 0.2 2.1 ± 0.6 1.8 ± 0.6

LSA2-attr 0.0 ± 0.0 0.0 ± 0.0 0.1 ± 0.2 0.1 ± 0.2 0.3 ± 0.2 0.3 ± 0.1

2k
Ours 56.7 ± 6.6 100.0 ± 0.0 49.0 ± 5.4 100.0 ± 0.0 57.7 ± 2.3 100.0 ± 0.0

LSA2-post 0.0 ± 0.0 0.0 ± 0.0 0.3 ± 0.2 0.5 ± 0.4 2.1 ± 0.1 3.6 ± 0.3

LSA2-attr 0.0 ± 0.0 0.0 ± 0.0 0.1 ± 0.1 0.1 ± 0.2 0.2 ± 0.1 0.3 ± 0.1

4k
Ours 28.3 ± 3.3 100.0 ± 0.0 24.5 ± 2.7 100.0 ± 0.0 28.8 ± 1.2 100.0 ± 0.0

LSA2-post 0.0 ± 0.0 0.0 ± 0.0 0.3 ± 0.1 1.3 ± 0.3 2.0 ± 0.0 7.0 ± 0.1

LSA2-attr 0.3 ± 0.5 1.1 ± 1.6 0.0 ± 0.0 0.1 ± 0.2 0.1 ± 0.0 0.3 ± 0.1

Flickr low unconstrained high

k̂ Method precision recall precision recall precision recall

k/4
Ours 83.3 ± 23.6 26.1 ± 5.5 63.9 ± 30.7 18.4 ± 9.0 14.9 ± 3.8 3.8 ± 1.3

LSA2-post 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 1.4 ± 2.0 0.4 ± 0.6

LSA2-attr 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.7 ± 1.0 0.2 ± 0.3

k/2
Ours 63.9 ± 10.4 38.3 ± 10.3 60.0 ± 22.5 29.7 ± 11.7 19.6 ± 2.8 9.9 ± 1.9

LSA2-post 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 1.8 ± 1.1 0.9 ± 0.6

LSA2-attr 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.4 ± 0.5 0.2 ± 0.3

k
Ours 51.0 ± 7.0 53.3 ± 4.7 33.8 ± 13.3 32.1 ± 13.3 18.2 ± 4.5 18.5 ± 6.1

LSA2-post 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 2.3 ± 0.7 2.3 ± 0.9

LSA2-attr 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.3 ± 0.4 0.3 ± 0.4

2k
Ours 34.5 ± 6.7 71.1 ± 15.0 27.3 ± 8.4 50.3 ± 16.8 13.3 ± 1.7 26.8 ± 5.6

LSA2-post 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 1.6 ± 0.6 3.2 ± 1.3

LSA2-attr 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.4 ± 0.4 0.8 ± 0.9

4k
Ours 21.7 ± 2.4 86.1 ± 10.4 19.8 ± 3.0 71.9 ± 10.6 9.2 ± 0.8 37.3 ± 7.1

LSA2-post 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 1.3 ± 0.3 5.3 ± 1.2

LSA2-attr 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.3 ± 0.2 1.3 ± 0.9

TABLE II: AUC of LINKTELLER comparing with two baselines
LSA2-{post, attr}. Each column corresponds to one dataset. Groups
of rows represent sampled nodes of different degrees.

Degree Method Dataset

RU DE FR ENGB PTBR PPI Flickr

low
Ours 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

LSA2-post 0.58 ± 0.04 0.58 ± 0.09 0.67 ± 0.06 0.56 ± 0.02 0.59 ± 0.01 0.70 ± 0.05 0.65 ± 0.09

LSA2-attr 0.72 ± 0.03 0.77 ± 0.08 0.82 ± 0.02 0.62 ± 0.05 0.74 ± 0.00 0.48 ± 0.08 0.62 ± 0.14

uncon-
strained

Ours 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

LSA2-post 0.51 ± 0.00 0.52 ± 0.03 0.51 ± 0.01 0.54 ± 0.01 0.51 ± 0.01 0.64 ± 0.00 0.70 ± 0.08

LSA2-attr 0.53 ± 0.03 0.51 ± 0.02 0.53 ± 0.01 0.61 ± 0.02 0.49 ± 0.01 0.48 ± 0.02 0.49 ± 0.04

high
Ours 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.01 0.99 ± 0.00 0.99 ± 0.00 1.00 ± 0.00 0.97 ± 0.00

LSA2-post 0.52 ± 0.01 0.51 ± 0.01 0.52 ± 0.01 0.54 ± 0.01 0.51 ± 0.00 0.57 ± 0.00 0.69 ± 0.01

LSA2-attr 0.46 ± 0.01 0.50 ± 0.02 0.50 ± 0.01 0.55 ± 0.01 0.46 ± 0.01 0.48 ± 0.01 0.51 ± 0.01

belief is larger (k̂ = 2k), almost all recall values are above

90% except for Flickr. Even under extremely inaccurate esti-

mations such as k̂ = k/4 (or k̂ = 4k), the precision values (or

the recall values) are mostly higher than 95%. This observation

demonstrates the generality of LINKTELLER. We notice that

LINKTELLER’s performance on Flickr is slightly poorer than

other datasets. This may be because that the trained GCN on

Flickr does not achieve good performance given its highly

sparse structure. This implies that the parameters of the trained

network on Flickr may not capture the graph structure very

well, and thus negatively influencing the attack performance.

F. Beyond GCNs: LINKTELLER on GATs

In this section, we aim to study the effectiveness of LINK-

TELLER on other GNNs. Since the rule of information prop-

agation holds almost ubiquitously in GNNs, we hypothesize

that our influence analysis based LINKTELLER can also suc-

cessfully attack other types of GNNs. We directly apply Al-

gorithm 1 on another classical model—Graph Attention Net-

works (GATs) [31], aiming to investigate the transferability of

our influence analysis based attack from GCNs.

We evaluate the attack on the two large datasets PPI and

Flickr introduced in Table IV. For both datasets, we train a 3-

layer GAT. We leave details of the architecture and hyperpa-

rameters to Appendix F6 and report the result in Table III. Al-

though LINKTELLER still significantly outperforms the base-

lines, it is less effective than that on GCNs. This is mainly due

to the different structures of GCNs and GATs, which leads to

different influence calculations for the two models (one related

to the graph convolution and the other related to the attention

mechanism). We provide more discussion on conveniently

adapting LINKTELLER to other architectures in Appendix E4.

VI. EVALUATION OF DIFFERENTIALLY PRIVATE GCN

In this section, we aim to understand the capability of

LINKTELLER attack by experimenting with potential ways

to defend against it. In particular, we examine whether it

is possible to weaken the effectiveness of LINKTELLER by

ensuring the ε-edge DP guarantee of the GCN model. We

further investigate the utility of the DP GCN models. In the

end, we demonstrate the tradeoff between privacy and utility,

which may be of interest to practitioners who wish to use DP

GCNs to defend against LINKTELLER.

In particular, we aim to evaluate the attack effectiveness of

LINKTELLER and the model utility on four types of models:

DP GCN models derived using DP mechanisms EDGERAND



TABLE III: Attack Performance (Precision and Recall) of LINK-
TELLER on GAT.

GAT, PPI low unconstrained high

k̂ Method precision recall precision recall precision recall

k/4
Ours 8.3 ± 11.8 2.1 ± 2.9 21.2 ± 9.7 5.8 ± 3.3 36.0 ± 5.6 7.8 ± 0.9

LSA2-post 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 3.4 ± 0.5 0.7 ± 0.1

LSA2-attr 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 1.3 ± 0.7 0.3 ± 0.1

k/2
Ours 14.3 ± 11.7 5.3 ± 5.3 19.5 ± 9.3 9.9 ± 4.4 26.6 ± 1.4 11.5 ± 0.1

LSA2-post 0.0 ± 0.0 0.0 ± 0.0 0.3 ± 0.4 0.1 ± 0.2 3.8 ± 0.8 1.7 ± 0.4

LSA2-attr 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.6 ± 0.3 0.3 ± 0.1

k
Ours 20.5 ± 3.6 12.5 ± 4.5 12.7 ± 6.4 12.8 ± 5.8 18.5 ± 2.1 16.0 ± 1.7

LSA2-post 0.0 ± 0.0 0.0 ± 0.0 0.4 ± 0.3 0.4 ± 0.4 3.3 ± 0.8 2.8 ± 0.6

LSA2-attr 0.0 ± 0.0 0.0 ± 0.0 0.1 ± 0.2 0.1 ± 0.2 0.3 ± 0.2 0.3 ± 0.1

2k
Ours 10.7 ± 1.9 12.5 ± 4.5 7.5 ± 3.8 15.1 ± 6.5 12.5 ± 1.0 21.7 ± 1.4

LSA2-post 0.0 ± 0.0 0.0 ± 0.0 0.5 ± 0.2 1.1 ± 0.6 3.0 ± 0.4 5.3 ± 0.5

LSA2-attr 0.0 ± 0.0 0.0 ± 0.0 0.1 ± 0.1 0.1 ± 0.2 0.2 ± 0.1 0.3 ± 0.1

4k
Ours 5.3 ± 0.9 12.5 ± 4.5 5.4 ± 1.5 21.7 ± 3.8 7.9 ± 0.7 27.5 ± 1.3

LSA2-post 0.7 ± 0.9 2.1 ± 2.9 0.9 ± 0.1 3.6 ± 0.9 2.7 ± 0.2 9.2 ± 0.5

LSA2-attr 0.3 ± 0.5 1.1 ± 1.6 0.0 ± 0.0 0.1 ± 0.2 0.1 ± 0.0 0.3 ± 0.1

GAT, Flickr low unconstrained high

k̂ Method precision recall precision recall precision recall

k/4
Ours 33.3 ± 47.1 8.3 ± 11.8 8.3 ± 11.8 2.4 ± 3.4 14.5 ± 3.2 3.6 ± 0.3

LSA2-post 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.4 ± 0.5 0.1 ± 0.1

LSA2-attr 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.7 ± 1.0 0.2 ± 0.3

k/2
Ours 16.7 ± 23.6 8.3 ± 11.8 4.8 ± 6.7 2.4 ± 3.4 7.3 ± 1.7 3.6 ± 0.3

LSA2-post 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.4 ± 0.3 0.2 ± 0.1

LSA2-attr 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.4 ± 0.5 0.2 ± 0.3

k
Ours 8.3 ± 11.8 8.3 ± 11.8 5.9 ± 4.3 5.7 ± 4.2 4.2 ± 1.0 4.2 ± 0.7

LSA2-post 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.2 ± 0.2 0.2 ± 0.1

LSA2-attr 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.3 ± 0.4 0.3 ± 0.4

2k
Ours 4.2 ± 5.9 8.3 ± 11.8 3.0 ± 2.2 5.7 ± 4.2 2.6 ± 0.6 5.1 ± 0.9

LSA2-post 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.4 ± 0.2 0.7 ± 0.4

LSA2-attr 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.4 ± 0.4 0.8 ± 0.9

4k
Ours 2.2 ± 3.1 8.3 ± 11.8 1.5 ± 1.1 5.7 ± 4.2 1.3 ± 0.3 5.1 ± 0.9

LSA2-post 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.3 ± 0.0 1.2 ± 0.2

LSA2-attr 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.3 ± 0.2 1.3 ± 0.9

and LAPGRAPH, vanilla GCN models which have no privacy

guarantee, as well as multi-layer perceptron (MLP) models

with only node features. We note that MLP can be viewed as

“perfectly” private since the edge information is not involved.

A. Datasets and Models

We use the datasets described in Section V-A. The DP

GCN models are derived using DP mechanisms EDGERAND

and LAPGRAPH under various privacy guarantees. For each

privacy budget ε, we execute the procedure outlined in Algo-

rithm 2, first getting a perturbed copy of the adjacency matrix,

then using the perturbed training graph to train a GCN. We

follow the criteria in Section V-B for parameter searching and

model training, and leave more descriptions to Appendix F4.

We provide an evaluation of the model utility, aiming to

characterize the tradeoff between model utility and the suc-

cess rate of LINKTELLER. In evaluating the utility of the DP

GCNs, we compare with two baseline models: 1) vanilla GCNs

which are expected to have higher utility, though vulnerable to

LINKTELLER as previously shown; 2) MLPs trained only on

node features which may achieve lower classification utility

but provide perfect protection of the edge information due to

the non-involvement of edge information in the model.

B. DP GCN against LINKTELLER

We validate the effectiveness of LINKTELLER under various

levels of privacy guarantees. We first provide the experimental

setup, followed by concrete results including comparisons of

the attack effectiveness of LINKTELLER on different models.

1) Experimental Setup: We inspect the effectiveness of

LINKTELLER on DP GCN using the same setup as Sec-

tion V-D. Similar to Section V-E, we use precision and recall

to evaluate the attack. For each dataset, we consider all combi-

nations of 2 DP mechanisms (EDGERAND and LAPGRAPH),

10 privacy budgets (1.0, 2.0, . . . , 10.0), 3 sampling strategies

(low, unconstrained, and high degree), and 5 density beliefs

(k/4, k/2, k, 2k, 4k). The reported result of each scenario is

averaged over 3 runs with different random seeds for sampling.

2) Evaluation Results: We leave the full evaluation results

for all scenarios in Appendix G4 and focus on density belief

k̂ = k here. In Figure 3(b), we plot the F1 score of the attack

w.r.t. DP budget ε. We see that the effectiveness of LINK-

TELLER decreases as a result of applying DP. Particularly, the

F1 score becomes almost 0 when the privacy budget ε becomes

smaller. When ε is large, however, the protection offered by

DP is limited. In these cases, LINKTELLER is able to achieve a

success rate close to that of attacking the non-private baseline.

We also note that the node degree distribution has an impact

on the performance of LINKTELLER. The trend is clear that

as the node degree increases, the attack success rate increases

substantially. Together with our previous observation in the

non-private scenario that the attack success rate does not differ

much for varying node degrees, we conclude that DP can offer

better protection to low degree nodes than high degree nodes.

We offer a simple and intuitive explanation as follows. By the

design of EDGERAND and LAPGRAPH, the perturbations in all

cells of the matrix are independent. As a result, nodes of low

degree (those incident to fewer edges) are more susceptible to

the influence, and therefore better protected by DP.

C. Model Utility Given DP Protection

We next present the evaluation of the model utility, not only

to complement the evaluation of the DP GCNs, but also to

provide insights about the tradeoff between model utility and

robustness against the LINKTELLER attack.

1) Experimental Setup: We evaluate the influence of ap-

plying DP (EDGERAND and LAPGRAPH) on the utility of

the GCN models by comparing the results with two baseline

models (a non-private vanilla GCN model and a “perfectly”

private MLP baseline). We adopt the same metric to evaluate

the utility of all four models: F1 score of the rare class for

the twitch datasets and micro-averaged F1 score for PPI and

Flickr datasets. The rationale is put in Appendix F2.

2) Evaluation Results: The figures for the model utility are

presented in Figure 3(a). We plot the change of the utility

with the increase of privacy budget of two DP mechanisms

EDGERAND and LAPGRAPH, as well as the utility of two

baseline models independent of the privacy budget. For each

privacy budget ε, the reported results are averaged over 10 runs

for different random seeds. We examine Figure 3(a) to see how

the model utility of DP methods compares with the baselines.

We first compare the performance of two baseline models:

GCN (the black horizontal line) and MLP (the red line). We

note that GCN is almost always better than MLP except on

the PPI dataset. The observation is well suited to our intuition





MLP model, then there is space for performance degradation

caused by ensuring privacy. We do observe a few cases where

the utility of the DP model is above the MLP baseline, and

the attack success rate at that point is relatively low, especially

under the low degree case, e.g., the DP model on twitch-RU

when ε = 7. In such cases, carefully choosing an ε will give

the practitioner fairly good utility and a certain level of privacy

guarantee simultaneously. Second, when the performance of

the vanilla GCN only exceeds MLP by a small margin, almost

all DP models that can effectively defend against the attack

suffer tremendous utility loss. We point out that most scenarios

fall under this category, where either privacy or utility will

be sacrificed. This further substantiates the power of LINK-

TELLER. Third, when the graph structure hurts learning (e.g.,

PPI), we may avoid using the graph structure in training by

using MLP. There might exist other graph neural networks that

can achieve better performance on datasets like PPI, and ap-

plying LINKTELLER to these models are exciting future work.

Utility and privacy of low-degree nodes. As noted

in Section VI-B, DP GCN offers better protection to nodes of

low degree. A natural question is then: does better protection

imply a degradation of utility of these nodes? To answer this

question, we separate the nodes into bins by degree (e.g., 1-5,

6-10, . . ., 46-50, 50-), and investigate the F1 score of nodes

in each individual bin. The results on all datasets, two DP

mechanisms, with three privacy budgets are presented in Fig-

ure 4. We can see that the utility for low-degree nodes does not

drop faster than high-degree nodes when the privacy budget

decreases, which indicates that DP GCN does not sacrifice the

utility of low-degree nodes particularly.

Discussion: EDGERAND or LAPGRAPH. We further

compare the results of the two mechanisms regarding model

utility and attack success rate. When ε is small, the utility of

EDGERAND and LAPGRAPH do not differ much (especially

on PPI). When ε is large, EDGERAND generally has better

model utility, while LAPGRAPH is more robust to LINK-

TELLER. The results for EDGERAND are incomplete for the

large scale dataset Flickr under tight privacy budgets (ε ∈ {1,
2, 3, 4}) using EDGERAND. Under these cases, the graphs

become much denser after perturbation of large magnitudes,

and we experience an OOM error using an 11 GB GPU. In

comparison, LAPGRAPH does not suffer such an issue.

VII. RELATED WORK

1) Privacy Attack on Graphs: This topic was widely

studied [32]–[35] before graph neural networks came into

play. There are mainly three types of privacy attacks on

graphs: identity disclosure, attribute disclosure, and link re-

identification [32], corresponding to different components

(nodes, node attributes, and edges) of a graph. In this paper, we

focus on edge privacy. Previous endeavors have illustrated the

feasibility of the link re-identification attack, whilst relying on

strong prior knowledge and information that arguably might

not always hold or accessible. For example, when prior knowl-

edge about the graph is available—e.g., nodes with similar

attributes or predictions are likely connected—He et al. [11]

claim that an attacker could infer links in the training graph by

applying methods such as clustering to predict connections for

nodes within the same cluster. Duddu et al. [36] show that with

access to the node embeddings trained to preserve the graph

structure, one can recover edges by analyzing predictions

based on the embeddings. Apart from the privacy attacks, there

exist other adversarial attacks on GNNs, e.g., against node

embeddings [37] and graph- and node-level classifiers [38].

Despite the promising attacks illustrated by these early en-

deavors, there is a clear need to weaken the assumptions for

more reliable, practical settings. In this paper, we thus answer:

to what extent can we recover private edges of a graph by

probing a trained blackbox GNN model without strong prior

knowledge? Could we leverage the property of influence prop-

agation among nodes in GNNs to design an effective attack?

2) Differential Privacy for Graphs: Differential pri-

vacy [18] is a notion of privacy that entails that the outputs

of the model on neighboring inputs are close. This privacy

requirement ends up obscuring the influence of any individual

training instance on the model output. There are a series of

works that examine the theoretical guarantee or the practi-

cal performance of models under differential privacy guaran-

tees [39]–[44]. Depending on the properties of the datasets,

e.g., the distinction between the distribution of members

and non-members and the underlying correlations within the

datasets, there is no trivial answer to this problem.

The extension of differential privacy to the graph setting

was first conducted in Hay et al. [45]. Since then, there has

been extensive research on computing graph statistics such as

degree distribution [45], cut queries [46], and sub-graph count-

ing queries [47] under edge or node differential privacy. These

statistics are useful for graph analysis but insufficient for train-

ing a GCN model. Thus, in this paper, to evaluate the strength

of the LINKTELLER attack, we adapt one existing algorithm

EDGERAND and propose a Laplacian mechanism LAPGRAPH

for training DP GCN models as evaluation baselines.

VIII. CONCLUSIONS

We propose the first edge re-identification attack LINK-

TELLER via influence analysis against GNNs. We also evalu-

ate LINKTELLER against differentially private GNNs trained

using an existing and a proposed DP mechanisms EDGERAND

and LAPGRAPH to understand the capability of the attack.

Extensive experiments on real-world datasets (8 for inductive

and 3 for transductive setting) demonstrate the effectiveness

of LINKTELLER in revealing private edge information, even

when there are certain privacy guarantees provided by a DP

mechanism.

We believe this work will inspire a range of future re-

search opportunities and lay down a foundation for future

explorations by providing a clear data isolation problem setup,

analysis of edge privacy, together with extensive empirical

observations and conclusions.

Acknowledgement. This work is partially supported by the

NSF grant No.1910100, NSF CNS 20-46726 CAR, NSF

TRASE (ECCS-2020289), and Amazon Research Award.



REFERENCES

[1] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proceedings of the IEEE conference on

computer vision and pattern recognition, 2015, pp. 3431–3440.

[2] Y. Wei, X. Wang, L. Nie, X. He, R. Hong, and T.-S. Chua, “Mmgcn:
Multi-modal graph convolution network for personalized recommenda-
tion of micro-video,” in Proceedings of the 27th ACM International

Conference on Multimedia, 2019, pp. 1437–1445.

[3] J. Zhou, C. Chen, L. Zheng, X. Zheng, B. Wu, Z. Liu, and L. Wang,
“Privacy-preserving graph neural network for node classification,” arXiv

preprint arXiv:2005.11903, 2020.

[4] L. Zhao, Y. Song, C. Zhang, Y. Liu, P. Wang, T. Lin, M. Deng,
and H. Li, “T-gcn: A temporal graph convolutional network for
traffic prediction,” IEEE Transactions on Intelligent Transportation

Systems, vol. 21, no. 9, p. 3848–3858, Sep 2020. [Online]. Available:
http://dx.doi.org/10.1109/TITS.2019.2935152

[5] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and
J. Leskovec, “Graph convolutional neural networks for web-scale
recommender systems.” in KDD, Y. Guo and F. Farooq, Eds. ACM,
2018, pp. 974–983. [Online]. Available: http://dblp.uni-trier.de/db/conf/
kdd/kdd2018.html#YingHCEHL18

[6] J. Jiang, J. Chen, T. Gu, K. R. Choo, C. Liu, M. Yu, W. Huang, and
P. Mohapatra, “Anomaly detection with graph convolutional networks
for insider threat and fraud detection,” in MILCOM 2019 - 2019 IEEE

Military Communications Conference (MILCOM), 2019, pp. 109–114.

[7] “Vertex ai — google cloud,” https://cloud.google.com/vertex-ai, (Ac-
cessed on 06/22/2021).

[8] “Parlai,” https://ai.facebook.com/tools/parlai, (Accessed on 06/22/2021).

[9] “Infosphere virtual data pipeline — ibm,” https://www.ibm.
com/products/ibm-infosphere-virtual-data-pipeline, (Accessed on
06/22/2021).

[10] J. Klicpera, A. Bojchevski, and S. Günnemann, “Predict then propagate:
Graph neural networks meet personalized pagerank,” arXiv preprint

arXiv:1810.05997, 2018.

[11] X. He, J. Jia, M. Backes, N. Z. Gong, and Y. Zhang,
“Stealing links from graph neural networks,” in 30th USENIX

Security Symposium (USENIX Security 21). USENIX Association,
Aug. 2021. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity21/presentation/he-xinlei

[12] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A
comprehensive survey on graph neural networks,” IEEE transactions on

neural networks and learning systems, 2020.

[13] T. N. Kipf and M. Welling, “Semi-Supervised Classification with
Graph Convolutional Networks,” in Proceedings of the 5th International

Conference on Learning Representations, ser. ICLR ’17, 2017. [Online].
Available: https://openreview.net/forum?id=SJU4ayYgl

[14] W. L. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs.” in NIPS, I. Guyon, U. von Luxburg,
S. Bengio, H. M. Wallach, R. Fergus, S. V. N. Vishwanathan,
and R. Garnett, Eds., 2017, pp. 1024–1034. [Online]. Available:
http://dblp.uni-trier.de/db/conf/nips/nips2017.html#HamiltonYL17

[15] Y. Rong, W. Huang, T. Xu, and J. Huang, “Dropedge: Towards
deep graph convolutional networks on node classification.” in ICLR.
OpenReview.net, 2020. [Online]. Available: http://dblp.uni-trier.de/db/
conf/iclr/iclr2020.html#RongHXH20

[16] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. K. Prasanna,
“Graphsaint: Graph sampling based inductive learning method.” in
ICLR. OpenReview.net, 2020. [Online]. Available: http://dblp.uni-trier.
de/db/conf/iclr/iclr2020.html#ZengZSKP20

[17] K. Xu, C. Li, Y. Tian, T. Sonobe, K.-i. Kawarabayashi, and S. Jegelka,
“Representation learning on graphs with jumping knowledge networks,”
in International Conference on Machine Learning. PMLR, 2018, pp.
5453–5462.

[18] C. Dwork and A. Roth, The Algorithmic Foundations of Differential

Privacy, 2014. [Online]. Available: https://www.cis.upenn.edu/∼aaroth/
Papers/privacybook.pdf

[19] V. Karwa, S. Raskhodnikova, A. Smith, and G. Yaroslavtsev, “Private
analysis of graph structure,” ACM Trans. Database Syst., vol. 39, no. 3,
Oct. 2014. [Online]. Available: https://doi.org/10.1145/2611523

[20] S. P. Kasiviswanathan, K. Nissim, S. Raskhodnikova, and A. Smith,
“Analyzing graphs with node differential privacy,” in Theory of Cryp-

tography Conference. Springer, 2013, pp. 457–476.

[21] Z. Qin, T. Yu, Y. Yang, I. Khalil, X. Xiao, and K. Ren, “Generating
synthetic decentralized social graphs with local differential privacy,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and

Communications Security, 2017, pp. 425–438.

[22] G. Sood, clarifai: R Client for the Clarifai API, 2017, r package version
0.4.2.

[23] “Vision ai — derive image insights via ml — cloud vision api,” https:
//cloud.google.com/vision, (Accessed on 08/01/2021).

[24] Y. Mülle, C. Clifton, and K. Böhm, “Privacy-integrated graph clustering
through differential privacy,” CEUR Workshop Proceedings, vol. 1330,
pp. 247–254, 01 2015.

[25] A. Sala, X. Zhao, C. Wilson, H. Zheng, and B. Y. Zhao, “Sharing graphs
using differentially private graph models,” in Proceedings of the 2011

ACM SIGCOMM conference on Internet measurement conference, 2011,
pp. 81–98.

[26] Y. Wang and X. Wu, “Preserving differential privacy in degree-
correlation based graph generation,” vol. 6, no. 2, p. 127–145, Aug.
2013.

[27] Q. Xiao, R. Chen, and K.-L. Tan, “Differentially private network data
release via structural inference,” in Proceedings of the 20th ACM

SIGKDD international conference on Knowledge discovery and data

mining, 2014, pp. 911–920.

[28] S. Brunet, S. Canard, S. Gambs, and B. Olivier, “Novel differentially
private mechanisms for graphs.” IACR Cryptology ePrint Archive,
vol. 2016, p. 745, 2016. [Online]. Available: http://dblp.uni-trier.de/db/
journals/iacr/iacr2016.html#BrunetCGO16

[29] B. Rozemberczki, C. Allen, and R. Sarkar, “Multi-scale attributed node
embedding,” 2019.

[30] P. Flach and M. Kull, “Precision-recall-gain curves: Pr analysis
done right,” in Advances in Neural Information Processing

Systems, C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and
R. Garnett, Eds., vol. 28. Curran Associates, Inc., 2015, pp. 838–
846. [Online]. Available: https://proceedings.neurips.cc/paper/2015/file/
33e8075e9970de0cfea955afd4644bb2-Paper.pdf

[31] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Ben-
gio, “Graph attention networks,” arXiv preprint arXiv:1710.10903, 2017.

[32] E. Zheleva and L. Getoor, “Preserving the privacy of sensitive relation-
ships in graph data,” in Proceedings of the First SIGKDD International

Workshop on Privacy, Security, and Trust in KDD (PinKDD 2007), ser.
Lecture Notes in Computer Science, vol. 4890. Springer, March 2007,
pp. 153–171.

[33] M. Hay, G. Miklau, D. Jensen, P. Weis, and S. Srivastava, “Anonymizing
social networks,” University of Massachusetts Amherst, Tech. Rep. 07-
19, March 2007.

[34] L. Zhang and W. Zhang, “Edge anonymity in social network graphs.” in
CSE (4). IEEE Computer Society, 2009, pp. 1–8. [Online]. Available:
http://dblp.uni-trier.de/db/conf/cse/cse2009-4.html#ZhangZ09

[35] A. M. Fard, K. Wang, and P. S. Yu, “Limiting link disclosure in social
network analysis through subgraph-wise perturbation.” in EDBT , E. A.
Rundensteiner, V. Markl, I. Manolescu, S. Amer-Yahia, F. Naumann,
and I. Ari, Eds. ACM, 2012, pp. 109–119. [Online]. Available:
http://dblp.uni-trier.de/db/conf/edbt/edbt2012.html#FardWY12

[36] V. Duddu, A. Boutet, and V. Shejwalkar, “Quantifying privacy leakage
in graph embedding,” 2020.

[37] A. Bojchevski and S. Günnemann, “Adversarial attacks on node em-
beddings via graph poisoning,” in International Conference on Machine

Learning. PMLR, 2019, pp. 695–704.

[38] H. Dai, H. Li, T. Tian, X. Huang, L. Wang, J. Zhu, and L. Song, “Ad-
versarial attack on graph structured data,” in International conference

on machine learning. PMLR, 2018, pp. 1115–1124.

[39] N. Li, W. Qardaji, D. Su, Y. Wu, and W. Yang, “Membership privacy:
A unifying framework for privacy definitions,” in Proceedings of the

2013 ACM SIGSAC Conference on Computer and Communications

Security, ser. CCS ’13. New York, NY, USA: Association for
Computing Machinery, 2013, p. 889–900. [Online]. Available: https:
//doi.org/10.1145/2508859.2516686

[40] S. Yeom, I. Giacomelli, M. Fredrikson, and S. Jha, “Privacy risk in
machine learning: Analyzing the connection to overfitting,” 2018 IEEE

31st Computer Security Foundations Symposium (CSF), pp. 268–282,
2018.

[41] B. Jayaraman and D. Evans, “Evaluating differentially private machine
learning in practice,” in 28th USENIX Security Symposium (USENIX

Security 19). Santa Clara, CA: USENIX Association, Aug. 2019,



pp. 1895–1912. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity19/presentation/jayaraman

[42] Ú. Erlingsson, I. Mironov, A. Raghunathan, and S. Song, “That which
we call private,” CoRR, vol. abs/1908.03566, 2019. [Online]. Available:
http://arxiv.org/abs/1908.03566

[43] B. Jayaraman, L. Wang, K. Knipmeyer, Q. Gu, and D. Evans, “Revisiting
membership inference under realistic assumptions,” 2020.

[44] T. Humphries, M. Rafuse, L. Tulloch, S. Oya, I. Goldberg, and F. Ker-
schbaum, “Differentially private learning does not bound membership
inference,” 2020.

[45] M. Hay, C. Li, G. Miklau, and D. Jensen, “Accurate estimation of the
degree distribution of private networks,” in 2009 Ninth IEEE Interna-

tional Conference on Data Mining. IEEE, 2009, pp. 169–178.
[46] J. Blocki, A. Blum, A. Datta, and O. Sheffet, “The johnson-lindenstrauss

transform itself preserves differential privacy,” in 2012 IEEE 53rd An-

nual Symposium on Foundations of Computer Science. IEEE, 2012,
pp. 410–419.

[47] ——, “Differentially private data analysis of social networks via re-
stricted sensitivity,” in Proceedings of the 4th conference on Innovations

in Theoretical Computer Science, 2013, pp. 87–96.
[48] F. D. McSherry, “Privacy integrated queries: an extensible platform

for privacy-preserving data analysis,” in Proceedings of the 2009 ACM

SIGMOD International Conference on Management of data, 2009, pp.
19–30.

[49] W. Brendel, J. Rauber, and M. Bethge, “Decision-based adversarial
attacks: Reliable attacks against black-box machine learning models,”
arXiv preprint arXiv:1712.04248, 2017.

[50] Y. Dong, H. Su, B. Wu, Z. Li, W. Liu, T. Zhang, and J. Zhu, “Effi-
cient decision-based black-box adversarial attacks on face recognition,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 2019, pp. 7714–7722.
[51] Q. Li, Z. Han, and X.-M. Wu, “Deeper insights into graph convolutional

networks for semi-supervised learning,” in Proceedings of the AAAI

Conference on Artificial Intelligence, vol. 32, no. 1, 2018.

APPENDIX

A. Proofs for Influence Analysis in LINKTELLER

1) Proof of Proposition 1:

Proof. Consider the 1-layer GCN, where

GCN(A,X,W ) = AXW. (3)

For the simplicity of the proof, we ignore the normalization

applied to the adjacency matrix A, since it only changes the

scale of numbers in the matrix. We next calculate the influence

value of a pair of nodes against this 1-layer GCN according to

the function InfluenceValue described in Algorithm 1.
Following the notation in Algorithm 1, let the set of infer-

ence nodes be V (I), the node feature matrix associated with
the inference node set be X . We further denote the adjacency
matrix induced on this node set as A. Taking a pair of nodes
u, v from the set of nodes of interest V (C), we calculate the
influence value of this pair of nodes following the steps in
InfluenceMatrix:

P = GBB(V
I , X) = GCN(A,X,W ) = AXW,

X ′ =
[
x>
1 , . . . , (1 + ∆)x>

v , . . . ,
]>

,

P ′ = GBB(V
I , X ′) = GCN(A,X ′,W ) = AX ′W,

P ′ − P = A(X ′ −X)W = AX∆W,

where X∆ is a matrix of the same size as X that only contains

value in each v-th row. Specifically, the v-th row vector of X∆

is equal to ∆xv , where ∆ is the reweighting coefficient.
We next compute the u-th row of the influence matrix I =

AX∆W . We start from computing X∆W

X∆W =
[
0, . . . ,∆x>

v , . . . ,0
]>

W = ∆
[
0, . . . , x>

v , . . . ,0
]>

W

Therefore, for I defined as I = (P ′ − P )/∆ = AX∆W , its

u-th row is AuvxvW . When there is no edge between u and

v, Auv = 0, and therefore the row vector is an all zero vector.

The influence value, which is the `2 norm of the row vector,

is therefore 0.

2) Proof of Theorem 1: We first present a lemma.

Lemma 2. Let A ∈ {0, 1}n×n be the adjacency matrix of the

graph, Hi, H
′
i ∈ R

n×di be two hidden feature matrices of size

that differ in ti rows {r1, . . . , rti} corresponding to the nodes

{vr1 , . . . , vrti }, and W i ∈ R
di×di+1 be the weight matrix of

the i-th graph convolutional layer, then

(1) AHiW
i and AH ′

iW
i differ in at most ti+1 rows cor-

responding to the node set
⋃ti

l=1 N (vrl), where N (u)
denotes the neighbor set of node u.

(2) Further, let Hi+1 = σ(AHiW
i) and H ′

i+1 =
σ(AH ′

iW
i), then Hi+1 and H ′

i+1 also differ in at most

ti+1 rows corresponding to the node set
⋃ti

l=1 N (vrl).

We next use Lemma 2 to help with the proof of Theorem 1.

Proof. Consider a k-layer GCN which is a stack of k graph
convolutional layers defined as below

GCN(A,X, {W i}) = A · · ·σ(Aσ(AXW 1)W 2) · · ·W k. (4)

Its input feature matrices are H0 = X and H ′
0 = X ′ that

differ in one row; let it correspond to node u. Its output feature

matrices are AHk−1W
k−1 and AH ′

k−1W
k−1.

Since H0 and H ′
0 differ only in node u, according

to Lemma 2-(2), H1 and H ′
1 differ in the rows corresponding

to N (u) (which contains nodes that are 1 hop away from u);

H2 and H ′
2 differ in the rows corresponding to

⋃
v∈N (u) N (v)

(which contains nodes that are at most 2 hops away from u).

Iteratively applying Lemma 2-(2), we see that Hk−1 and H ′
k−1

differ in rows corresponding to nodes that are at most k − 1
hops away from u. We finally apply Lemma 2-(1) and obtain

the conclusion that AHk−1W
k−1 and AH ′

k−1W
k−1 differ in

rows corresponding to nodes that are at most k hops away

from u. Thus, the influence matrix

P∆ = AH ′
k−1W

k−1 −AHk−1W
k−1

has at most tk non-zero rows corresponding to nodes that are

at most k hops away from u. It thus follows that when u and

v are at least k + 1 hops away, the v-th row of the influence

matrix of node u is an all-zero row. Since the influence value

of u on v is the norm of the v-th row, we thus can conclude

that the influence value ‖ivu‖ = 0.

Finally, we complete the proof for Lemma 2.

Proof. First of all, for Hi and H ′
i that differs in ti rows, it is

obvious that HiW
i and H ′

iW
i differ in the same ti rows. For

simplicity, we denote HiW
i as Fi and H ′

iW
i as F ′

i . We next

present the condition for AFi and AF ′
i to differ. Consider the

element in j-th row and k-th column of AFi and AF ′
i , which

are
∑n

p=1 Ajp(Fi)pk and
∑n

p=1 Ajp(Fi)
′
pk, respectively. We

first note that when Ajp = 0, the difference of (Fi)pk and

(Fi)
′
pk does not matter. Next, for all p such that Ajp = 1,

only when (Fi)pk 6= (Fi)
′
pk will the difference of the product



contribute to the difference of the sum. The two points jointly

imply that, if j /∈
⋃ti

l=1 N (vrl), then (Fi)pk = (Fi)
′
pk for all k.

Thus, AFi and AF ′
i differ in at most ti+1 rows, corresponding

to the node set
⋃ti

l=1 N (vrl). Hence we establish the first

claim.

For the second claim, we notice that the activation layer

such as ReLU used in the standard GCN [13] is point-wise

operation. Thus σ(AFi) and σ(AF ′
i ) cannot differ in more

rows, meaning Hi+1 and H ′
i+1 will also differ at most in the

rows corresponding to
⋃ti

l=1 N (vrl).

B. Proofs for Privacy Guarantees of the DP mechanisms
1) Proof of Theorem 2:

Proof. Since ÃV (T ) is perturbed to meet ε-edge differential

privacy and other inputs (e.g., node features) in Algorithm 2

are independent of the graph structure, the DP GCN model is

ε-edge differentially private due to the post-processing prop-

erty of differential privacy.

2) Proof of Lemma 1:

Proof. Lemma 1 extends the parallel composition property of

differential privacy [48] to edge differential privacy. The par-

allel composition property states that if M1,M2, . . . ,Mm are

algorithms that access disjoint datasets D1, D2, . . . , Dm such

that each Mi satisfies εi-differential privacy, then the combi-

nation of their outputs satisfies ε-differential privacy with ε =
max(ε1, ε2, . . . , εm). Since the adjacency matrices A1, A2,
. . . , Am have non-overlapping edges, they could be viewed as

disjoint datasets of edges. Thus, the combination of Mε(A1),
Mε(A2), . . . ,Mε(Am) is ε-edge differentially private.

3) Proof of Theorem 3:

Proof. Under the transductive setting, since the same per-

turbed matrix ÃV (T ) is used in both training and inference, the

inference step does not leak extra graph structure information

other than that in the DP GCN model. Therefore, the inference

step is ε-edge differentially private due to the post-processing

property of differential privacy. Under the inductive setting,

the perturbation method Mε is applied to both AV (T ) and

AV (I) . Since AV (T ) and AV (I) contain non-overlapping sets

of edges, Lemma 1 guarantees ε-edge differential privacy of

the Inference step.

4) Proof of Theorem 4:

Proof. By definition, EDGERAND is ε-edge differentially pri-

vate iff. for all symmetric matrices A′ ∼ A ∈ A and all subsets

S ⊆ A, Inequality (2) holds.
We first note that M operates on each cell Aij indepen-

dently. Therefore, the probability of perturbing the matrix A
to get a certain output is the product of the probability of
perturbing each cell in A to match the corresponding cell in
the desired output. Let e = (u, v) be the only differing edge
between A and A′. For all (i, j) 6= (u, v), Aij = A′

ij , so the

probability of perturbing Aij and A′
ij into the same value is the

same. For (u, v), however, getting the same outcome means
that one of Au,v and A′

uv is changed through perturbation
while the other remains unchanged. The probability of the

state change, according to Algorithm 3, is s/2. Putting the
statements together, we derive

Pr[M(A) ∈ S]

Pr[M(A′) ∈ S]
=

∏

i,j

Pr[M(Aij) ∈ Sij ]

Pr[M(A′
ij) ∈ Sij ]

=
Pr[M(Auv) ∈ Suv]

Pr[M(A′
uv) ∈ Suv]

≤
1− s/2

s/2
≤ exp(ε)

when ε ≥ ln
(
2
s
− 1

)
, s ∈ (0, 1].

5) Proof of Theorem 5:

Proof. In Algorithm 4, line 6 is ε1-edge differentially private

and line 7 is ε2-edge differentially private due to the differen-

tial privacy guarantee of the Laplace mechanism. Therefore,

from the composition theorem and the post-processing prop-

erty of differential privacy, we know that LAPGRAPH guaran-

tees ε-edge differential privacy.

C. Proof of Theorem 6

The work on membership privacy [39] shows that dif-

ferential privacy is a type of positive membership privacy,

which prevents the attacker from significantly improving its

confidence on a membership inference attack. Similarly, edge

differential privacy bounds an attacker’s precision in an edge

re-identification attack. In this section, we present a formal

proof for the upper bound defined in Theorem 6.

Proof. With a slight abuse of notations, we use e1 to represent
Auv = 1, e0 to represent Auv = 0, and RG to represent the
attack RGBB

(u, v) where GBB is a black-box GCN. Based
on Bayes’ theorem, we have

Pr [e1 | RG = 1]

=
Pr [RG = 1 | e1] Pr [e1]

Pr [RG = 1 | e1] Pr [e1] + Pr [RG = 1 | e0] Pr [e0]

=
Pr [RG = 1 | e1] Pr [e1]

Pr [RG = 1 | e1] Pr [e1] + Pr [RG = 1 | e0] (1− Pr [e1])
.

(5)

Without loss of generality, let G represent the set of all
GCN models. Since the attacker tries to re-identify the edges
through querying the black-box model G, we could rewrite
Pr [RG = 1 | e1] as follows:

Pr [RG = 1 | e1] =
∑

Gi∈G

Pr [RG = 1 |G = Gi] Pr [G = Gi | e1] .

Similarly,

Pr [RG = 1 | e0] =
∑

Gi∈G

Pr [RG = 1 |G = Gi] Pr [G = Gi | e0] .

Therefore, to calculate the upper bound for Eq. 5, it is suffi-

cient to upper bound the following ratio for any Gi ∈ G:

Pr [G = Gi | e1] Pr [e1]

Pr [G = Gi | e1] Pr [e1] + Pr [G = Gi | e0] (1− Pr [e1])
. (6)

Suppose A is the set of all possible adjacency matrices. Let
A(1), A(0) ∈ A be a pair of neighboring adjacency matrices

differing by edge (u, v), and A
(1)
uv = 1, A

(0)
uv = 0. Based on the

definition of differential privacy (Definition 3), for any Gi ∈ G
and A(1), A(0) ∈ A, we have

Pr[G = Gi |A = A(1)] ≤ exp(ε) Pr[G = Gi |A = A(0)].



Algorithm 2: Training and inference of DP GCN

Input: perturbation method M ∈ {EDGERAND,LAPGRAPH

}, privacy parameter ε; node set V (T ), V (I),

adjacency matrix AV (T ) , AV (I) , feature matrix X(T ),

X(I), and labels y(T ). The subscript (T ) stands for

training and (I) is for inference.
1 Procedure Perturbation(AV (T ) , M , ε):

2 ÃV (T ) ←Mε(AV (T ) )

3 Procedure Training(Ã, V (T ), X(T ), y(T )):

4 GCN ← a trained model using ÃV (T ) , X(T ), y(T )

5

6 if V (T ) = V (I) then

7 ÃV (I) ← ÃV (T )

8 else

9 ÃV (I) ←Mε(AV (I) )

10 Function Inference(Ã, V (I), X(I)):

11 return GCN(ÃV (I) , X(I), {W i})

Algorithm 3: Edge Randomization (EDGERAND)

Input: a symmetric matrix A, privacy parameter s, randomization
generator

Output: the perturbed outcome Ã
1 Reset Ã to an all-zero matrix
2 for 1 ≤ i < j ≤ n do
3 x← a sample drawn from Bern(1− s)
4 if x = 1 then

5 Ãij and Ãji are set to Aij . Preservation

6 else

7 y ← a sample drawn from Bern(1/2)

8 Ãij and Ãji are set to y . Randomization

Therefore, for any Gi ∈ G,

Pr[G = Gi | e1] ≤ exp(ε) Pr[G = Gi | e0].

Since exp(ε) > 1 for any positive privacy budget ε, we also
have

Pr[G = Gi | e1] ≤ exp(ε) Pr[G = Gi | e1].

Therefore,

Pr[G = Gi | e1]

≤ exp(ε) ·min(Pr[G = Gi | e0],Pr[G = Gi | e1])

≤ exp(ε) (Pr [G = Gi | e1] Pr [e1] + Pr [G = Gi | e0] (1− Pr [e1]))

The second inequality holds because ≤ 0Pr[e] ≤ 1. There-
fore, we could compute the upper bound for the ratio in (6):

Pr [G = Gi | e1] Pr [e1]

Pr [G = Gi | e1] Pr [e1] + Pr [G = Gi | e0] (1− Pr [e1])

≤ exp(ε) · Pr [e1]

Because the graph density over V (C) is k(C), by the definition
of graph density, we have Pr [e1] = k(C). Therefore,

Pr [e1 | RG = 1] ≤ exp(ε) · k(C)

D. Detailed Algorithms for DP GCN

1) Algorithm for the Training and Inference of DP GCN:

Algorithm 2 presents the perturbation, training, and inference

steps in a differentially private GCN framework. V (T ) and

AV (T ) represent the set of training nodes and the adjacency

Algorithm 4: Laplace Mechanism for Graphs

(LAPGRAPH)

Input: a symmetric matrix A, privacy parameter ε, randomization
generator

Output: the perturbed outcome Ã
1 ε1 ← 0.01ε . Distribute privacy budget

2 ε2 ← ε− ε1
3 T ← number of edges in A
4 T ← T + Lap(1/ε1) . Get a private count

5 A← the upper triangular part of A
6 for 1 ≤ i < j ≤ n do

7 Aij ← Aij + Lap(1/ε2) . Laplace mechanism

. Postprocess: Keep only the largest T cells

8 S ← the indice set for the largest T cells in A

9 Reset Ã to an all-zero matrix
10 for (i, j) ∈ S do

11 Ãij and Ãji are set to 1

matrix of the training graph; V (I) and AV (I) represent the set

of testing nodes and the adjacency matrix of the testing graph.

The DP guarantee holds for both transductive training (i.e.,

V (T ) = V (I)) and inductive training (i.e., V (T ) 6= V (I)).

2) Algorithm for the DP Mechanisms: Algorithm 3 presents

the algorithm for EDGERAND. We first randomly choose the

cells to perturb and then randomly choose the target value

from {0, 1} for each cell to be perturbed.

Algorithm 4 presents the algorithm for LAPGRAPH. A small

portion of the privacy budget ε1 is used to compute the num-

ber of edges in the graph using the Laplacian mechanism,

and the remaining privacy budget ε2 = ε − ε1 is used to

apply Laplacian mechanism on the entire adjacency matrix. To

preserve the degree of the original graph, the top-elements in

the perturbed adjacency matrix are set to 1 and the remaining

elements are set to 0.

E. Additional Discussions on the LINKTELLER Attack

1) Stealthiness and Alternative Detection Strategies: Our

LINKTELLER attack queries the same set of inference nodes

V (I) for 2n times where n =
∣∣V (C)

∣∣, with the node features

of one node slightly altered in each query. This abnormal

behavior can easily distinguish LINKTELLER from a benign

user and therefore allows the detection of the attack.

In particular, we describe details of potential detection

strategies as follows. First, a defender can use validation data

to evaluate both the attack and benign query performance in

terms of the attack F1 score and query node classification

accuracy under different query limits. Then the defender could

optimize a query limit Q which decreases the attack perfor-

mance while maintaining reasonable benign query accuracy.

Such a query limit would depend on the properties of different

datasets and how safety-critical the application is. Note that

in general limiting the number of queries will not affect the

performance for a single user, while it would hurt if several

users aim to query about the same set of nodes, thus the query

limit could be made for each node. In practice, the defender

can directly flag the users who try to exceed the query limit Q
for a limited set of nodes as suspicious for further inspection.

2) Estimation of the Density Belief k̂: In this part, we de-

scribe a few actionable strategies for the attacker given limited



knowledge of the density k and/or strategies to improve the

accuracy of the density belief. For example, the attacker could

use some similar publicly available graphs (e.g., a similar

social network) or partial graphs to estimate k. Specifically:

(a) The attacker could estimate k based on partial graph

information. With the prior knowledge of some con-

nected/unconnected pairs, the attacker can calculate the

influence values for each known pair. Then, she can es-

timate a threshold for distinguishing the connected pairs

from the unconnected ones with high confidence, and thus

obtain the estimated density belief k̂.

(b) The attacker could estimate k based on the relationship

of one or a few particular nodes. The attacker can start

from an intentionally low k̂ and increase it until an edge

is inferred for the relationship, or until the known existing

edges are inferred. The attacker then stops at this specific

k̂ and takes it as the density belief.

(c) The attacker could estimate k by running a link prediction

algorithm. When a partial graph is available, the attacker

can run a link prediction algorithm, e.g., training a link

prediction model, to predict all edges in the graph. Based

on the predictions, the attacker will then obtain a rough

estimate of the density belief k̂ for use in LINKTELLER.

3) Variations of Our Attack under Different Settings: We

discuss the variations of our attack under different settings,

more specifically, different attacker’s capabilities or different

assumptions on the interaction model. We present three spe-

cific settings below.

When the attacker has additional knowledge of some edges:

The attacker’s prior knowledge on the existence of some

edges can be leveraged to improve the density belief k̂ in our

LINKTELLER. More concretely, based on the knowledge of

some edges, the attacker can calculate their influence values.

Then, she can estimate a threshold for distinguishing the edges

from the unconnected pairs with high confidence, and then

obtain a refined estimation of the density belief k̂. The attack

effectiveness will subsequently be improved.

When the attacker has only partial control over a subset of

node features: In this setting, part of the feature information is

lost, and thus the accuracy of the estimation of the influence

value would be negatively impacted, leading to the decrease

of attack performance. However, how much the attack effec-

tiveness will degrade also depends on the importance of the

missing features.

When logits are not available: It is not straightforward to

adapt our LINKTELLER to handle the case where logits are

not available, which belongs to the “decision based blackbox

attack category” rather than the score based. There are a few

works [49], [50] in the image domain that perform certain

decision-based blackbox attacks. However, how to estimate

the gradient/influence value in GNNs based on decision only

remains an interesting future direction.
4) Limitations to Overcome in Adapting LINKTELLER:

First and foremost, in order to achieve high attack effective-

ness, we need to derive exact influence calculations for differ-

ent GNN structures specifically. We believe that our influence

analysis based framework has the potential to perform well on

different GNN structures with the influence value calculation

tailored to each of them. Another potential obstacle in the

adaptation is that LINKTELLER cannot deal with randomized

models, such as the aggregation over sampled neighbors in

GraphSAGE [14]. It could be an interesting future work to

take such randomness into account for influence calculation.

5) Analysis on the Performance of LINKTELLER Com-

pared with Baselines: First of all, we note that LSA2-X [11]

relies on measuring certain distances based on either pos-

teriors (of the node classification model) or node attributes

to predict the connections. However, node classification and

edge inference (i.e., privacy attack goal here) are two distinct

tasks, and node features (or posteriors) are useful for node

classification does not mean that they will be useful for edge

inference. Thus, LSA2-X which tries to provide the attacker

with different levels of node information as prior knowledge

to perform the edge re-identification attack is not effective.

On the contrary, LINKTELLER tries to analyze the influence

between nodes, which reflects the edge connection information

based on our theoretical analysis (Theorem 1) and is indeed

more effective for edge inference as we show empirically

in Table I and Table II.

We point out that, to our best knowledge, there are no

such settings where LINKTELLER may fail but other existing

approaches (e.g., LSA2-X) may succeed. The detailed reasons

are provided above. To summarize, our LINKTELLER lever-

ages the edge influence information, which is more relevant for

the task of edge re-identification attack than purely node level

information used in LSA2-X. We then discuss two specific

scenarios below.

If the model makes inferences on single nodes and not

subgraphs: In this case, LINKTELLER cannot obtain influence

information between nodes of interests, and thus the edge re-

identification performance would be less effective. Similarly

for the baselines, where they would fail to calculate the statis-

tics of a set of nodes to compare their similarity. That is

to say, if the model makes inferences on single nodes, both

LINKTELLER and baselines may fail to effectively attack,

while LINKTELLER may still outperform baselines given that

it leverages the influence value of edges explicitly.

If the inference is transductive vs. inductive: We first point

out that the inductive setting is more challenging than the

transductive setting. We then analyze the potential perfor-

mance of LINKTELLER in the transductive setting. LINK-

TELLER is naturally applicable to the transductive setting–

the attacker may happen to query the node in the training

graph. Since these nodes are involved in model training, the

influence value and the rank may be more accurate, leading to

even better attack performance. As shown in the experimental

results in Appendix G5, LINKTELLER indeed outperforms the

baselines as well in the transductive setting.

F. Details of Evaluation

1) Dataset Statistics: We provide the dataset statistics

in Table IV. The three datasets (Cora, Citeseer, and Pubmed)



TABLE IV: Dataset statistics (“m” represents multi-label classifi-
cation; “s” represents single-label.)

(a) Datasets in the inductive setting

Dataset Nodes Edges Classes Features

Twitch-ES 4,648 59,382 2 (s) 3,170
Twitch-RU 4,385 37,304 2 (s) 3,170
Twitch-DE 9,498 153,138 2 (s) 3,170
Twitch-FR 6,549 112,666 2 (s) 3,170
Twitch-ENGB 7,126 35,324 2 (s) 3,170
Twitch-PTBR 1,912 31,299 2 (s) 3,170

PPI 14,755 225,270 121 (m) 50
Flickr 89,250 899,756 7 (s) 500

(b) Datasets in the transductive setting

Dataset Nodes Edges Classes Features

Cora 2,708 5,429 7 (s) 1,433
Citeseer 3,327 4,732 6 (s) 3,703
Pubmed 19,717 44,338 3 (s) 500

in the transductive setting are all citation networks. Concretely,

the nodes are documents/publications and the edges are the

citation links between them. The node features are the sparse

bag-of-words feature vectors for each document.

2) Evaluation Metrics for Model Utility: We describe how

we evaluate the utility of the trained models, including the

vanilla GCN models, two DP GCN models (EDGERAND and

LAPGRAPH), and the MLP models.

We apply slightly different evaluation metrics across

datasets given their varying properties. The twitch datasets are

for binary classification tasks on imbalanced datasets. There-

fore, we use F1 score of the rare class to measure the utility of

the trained GCN model. To compute the value, we first identify

the minority class in the dataset and then view it as the positive

class for the calculation of the F1 score. During training, we

train on twitch-ES; during inference, we evaluate the trained

model on twitch-{RU, DE, FR, ENGB, PTBR}. For PPI and

Flickr datasets where there is no significant class imbalance,

we follow previous works [14], [16] and use micro-averaged

F1 score to evaluate the classification results.

For DP GCNs particularly, in each setting, we report the

averaged results over 10 runs that use different random seeds

for noise generation.

3) Normalization Techniques: We followed Rong et al. [15]
and experimented with the techniques provided below. A is

an adjacency matrix ∈ {0, 1}n×n, D = A + I , and Â is the
normalized matrix.

Â = I +D−1/2AD−1/2
(7)

Â = (D + I)−1/2(A+ I)(D + I)−1/2
(8)

Â = I + (D + I)−1/2(A+ I)(D + I)−1/2
(9)

Â = (D + I)−1(A+ I) (10)

• FirstOrderGCN: First-order GCN (Eq. 7)

• AugNormAdj: Augmented Normalized Adjacency (Eq.

8)

• BingGeNormAdj: Augmented Normalized Adjacency

with Self-loop (Eq. 9)

• AugRWalk: Augmented Random Walk (Eq. 10)

TABLE V: Precision (%) of the random attack baseline.

Degree Dataset

RU DE FR ENGB PTBR PPI Flickr

low 1.7e-2 6.7e-3 7.5e-3 1.3e-2 4.5e-2 1.8e-2 4.0e-3
uncon-
strained

4.3e-1 3.2e-1 5.3e-1 1.5e-1 1.6 2.0e-1 1.0e-2

high 1.4 7.5e-1 1.0 9.5e-1 3.4 1.2 2.6e-1

4) Search Space for the Hyper-parameters: In training the

models, we perform an extensive grid search to find the best

set of hyper-parameters. We describe the search space of the

hyper-parameters below.

• learning rate (lr): {0.005, 0.01, 0.02, 0.04, 0.05, 0.1, 0.2}
• dropout rate: {0.05, 0.1,0.2,0.3,0.5,0.8}
• number of GCN layers: {1,2,3}
• number of hidden units: {64,128,256,512}
• normalization technique: {FirstOrderGCN, AugNor-

mAdj, BingGeNormAdj, AugRWalk}

5) Best Hyper-parameters for the Vanilla-GCN: Below, we

describe the best combinations we achieve for Vanilla-GCN

models. For twitch-ES, we use the method First-Order GCN

to normalize the input graph. We train a two-layer GCN with

the number of hidden units 256. The dropout rate is set to

0.5 and the learning rate is 0.01. The training epoch is 200

and the model converges within 200 epochs. For PPI, we use

Augmented Normalized Adjacency with Self-loop for normal-

izing the adjacency matrix and train a two-layer GCN with

the number of hidden layers 256. The dropout rate is 0.4 and

the learning rate is 0.05. The training epoch is 200 where the

model converges. For Flickr, we use Augmented Normalized

Adjacency for normalization and train a two-layer GCN with

the number of hidden layers 256. The dropout rate is 0.2 and

the learning rate is 0.0005. The number of epochs is 200 within

which the model converges.

6) Best Hyper-parameters for the Vanilla-GAT: We use 3-

layer GATs for both PPI and Flickr datasets as described

in Section V-F. For PPI, the number of heads per layer are 6, 6,

and 6 for the three layers. The hidden layer dimensions are 256

and 256. The skip connection is added. During training, we use

dropout rate of 0; test accuracy on the unseen node set is 0.66.

For Flickr, the number of heads per layer are 4, 4, and 4 for

the three layers. The hidden layer dimensions are 256 and 256.

The skip connection is added. During training, we use dropout

rate of 0.5; test accuracy on the unseen node set is 0.47.

G. More Evaluation Results

1) Results for the Random Attack Baseline: As described

in Section V-C2, for a random classifier with Bernoulli param-

eter p, given a set of instances containing a positive examples

and b negative examples, its precision is a/(a+ b) and recall

is p, which are density k and belief density k̂, respectively.

We present the precision scores of the random classifier in Ta-

ble V. Compared with Table I, wee see that the precision of

LINKTELLER is much higher than the random attack baseline.

This reveals the significant advantage an attacker is able to

gain through querying an inference API, which may lead to

severe privacy loss. As for the recall which is equal to density



TABLE VI: Attack Performance (Precision and Recall) of LINK-
TELLER on twitch datasets, evaluated against a 3-layer GCN. Each ta-
ble corresponds to a dataset. We sample nodes of low, unconstrained,
and high degrees as our targets. Groups of rows represent different

density belief k̂ of the attacker.

RU low unconstrained high

k̂ precision recall precision recall precision recall

k/4 100.0 ± 0.0 33.0 ± 2.8 80.8 ± 4.2 22.1 ± 1.5 83.9 ± 2.1 15.4 ± 1.5

k/2 84.6 ± 0.0 51.9 ± 4.3 65.1 ± 2.1 35.5 ± 0.9 72.9 ± 1.1 26.7 ± 1.9

k 69.3 ± 8.2 81.1 ± 4.2 45.7 ± 2.2 50.0 ± 2.8 55.6 ± 2.8 40.7 ± 1.6

2k 40.7 ± 5.0 95.0 ± 4.3 27.7 ± 1.8 60.4 ± 2.7 37.4 ± 2.9 54.6 ± 1.0

4k 20.3 ± 2.5 95.0 ± 4.3 15.8 ± 1.0 68.8 ± 3.0 23.0 ± 2.4 67.0 ± 2.6

DE low unconstrained high

k̂ precision recall precision recall precision recall

k/4 91.7 ± 11.8 29.0 ± 3.4 75.2 ± 5.8 18.1 ± 2.6 71.3 ± 6.7 18.1 ± 1.8

k/2 82.1 ± 12.7 49.6 ± 6.3 54.6 ± 2.6 26.3 ± 3.0 50.3 ± 4.6 25.5 ± 2.7

k 64.6 ± 7.6 73.0 ± 9.0 32.7 ± 1.0 31.3 ± 3.0 33.0 ± 2.4 33.4 ± 2.4

2k 41.7 ± 3.6 88.9 ± 7.9 20.4 ± 0.2 38.9 ± 2.6 21.9 ± 1.5 44.5 ± 3.1

4k 22.4 ± 1.7 94.4 ± 7.9 13.9 ± 0.4 53.1 ± 2.1 14.0 ± 0.6 56.7 ± 1.4

FR low unconstrained high

k̂ precision recall precision recall precision recall

k/4 100.0 ± 0.0 28.3 ± 2.4 85.4 ± 5.6 19.9 ± 1.6 87.9 ± 3.8 21.3 ± 1.6

k/2 100.0 ± 0.0 50.0 ± 0.0 71.5 ± 5.5 33.3 ± 2.9 70.9 ± 8.5 34.0 ± 1.5

k 78.3 ± 2.4 78.3 ± 2.4 50.1 ± 5.1 46.6 ± 5.0 48.6 ± 10.1 46.2 ± 5.3

2k 41.7 ± 2.4 81.7 ± 6.2 29.1 ± 2.1 54.1 ± 4.0 28.6 ± 6.0 54.4 ± 6.4

4k 20.8 ± 1.2 81.7 ± 6.2 16.3 ± 1.2 60.7 ± 5.4 16.6 ± 2.9 63.4 ± 5.4

ENGB low unconstrained high

k̂ precision recall precision recall precision recall

k/4 91.7 ± 11.8 27.7 ± 5.2 83.1 ± 3.3 22.9 ± 4.4 86.7 ± 1.1 22.1 ± 0.4

k/2 85.7 ± 11.7 47.0 ± 12.7 69.1 ± 5.0 37.4 ± 6.1 71.1 ± 3.0 36.2 ± 1.7

k 66.4 ± 9.3 68.4 ± 18.9 48.7 ± 6.9 51.7 ± 5.9 50.7 ± 3.0 51.6 ± 3.3

2k 46.0 ± 7.5 89.0 ± 4.4 29.6 ± 4.5 62.7 ± 6.9 30.7 ± 1.7 62.4 ± 3.8

4k 23.7 ± 3.7 91.6 ± 3.1 17.0 ± 3.6 70.9 ± 3.4 17.5 ± 0.4 71.2 ± 1.9

PTBR low unconstrained high

k̂ precision recall precision recall precision recall

k/4 100.0 ± 0.0 26.7 ± 1.3 80.8 ± 4.7 20.9 ± 4.3 86.7 ± 1.9 21.3 ± 2.1

k/2 91.8 ± 5.8 48.6 ± 5.7 65.5 ± 7.7 33.3 ± 5.3 73.5 ± 2.0 36.2 ± 3.4

k 71.1 ± 0.9 74.3 ± 4.0 46.3 ± 9.5 46.0 ± 4.1 53.5 ± 2.3 52.5 ± 3.9

2k 41.3 ± 1.3 85.6 ± 2.8 30.2 ± 7.4 59.5 ± 3.4 32.9 ± 2.3 64.4 ± 4.1

4k 21.4 ± 1.1 88.7 ± 0.6 18.2 ± 4.8 71.4 ± 3.5 19.1 ± 1.5 74.7 ± 3.2

TABLE VII: AUC of LINKTELLER on twitch datasets, evaluated
against a 3-layer GCN. Each column corresponds to one dataset.
Rows represent sampled nodes of varying degrees.

Degree Dataset

RU DE FR ENGB PTBR

low 1.00 ± 0.00 0.99 ± 0.02 0.94 ± 0.05 1.00 ± 0.00 0.98 ± 0.00

uncon-

strained
0.96 ± 0.01 0.92 ± 0.01 0.91 ± 0.02 0.97 ± 0.01 0.92 ± 0.01

high 0.93 ± 0.01 0.88 ± 0.01 0.90 ± 0.01 0.95 ± 0.00 0.90 ± 0.00

belief, the number k̂ ∈ {k/4, k/2, k, 2k, 4k} is also extremely

small compared with LINKTELLER. To sum up, LINKTELLER

significantly outperforms the random baseline.

2) Results for a 3-layer GCN: In Section V-E in the main

paper, we mainly evaluated 2-layer GCNs. In this section, we

evaluate the performance of LINKTELLER on 3-layer GCNs

to provide a more comprehensive view of LINKTELLER’s

capability.

TABLE VIII: Running time of LINKTELLER on vanilla GCNs
corresponding to experiments in Section V. The time unit is “second”.

Degree Dataset

RU DE FR ENGB PTBR PPI Flickr

low 12.5 ± 0.0 16.1 ± 0.1 13.2 ± 0.0 12.8 ± 0.0 11.2 ± 0.1 14.8 ± 0.1 30.8 ± 0.1

uncon-

strained
12.4 ± 0.1 16.0 ± 0.1 13.4 ± 0.1 12.9 ± 0.1 11.0 ± 0.1 14.7 ± 0.1 30.7 ± 0.2

high 12.4 ± 0.1 16.1 ± 0.0 13.0 ± 0.2 12.6 ± 0.0 11.5 ± 0.4 14.8 ± 0.0 30.5 ± 0.2

a) Model: For training the models, we follow the same

principle described in Section V-B and use the same search

space as in Appendix F4. The best combination of hyper-

parameters/configurations are described below. We use the

method First-Order GCN to normalize the input graph. The

hidden layer dimensions are 64 and 64. The dropout rate is

set to 0.5 and the learning rate is 0.01. The training epoch is

50 and the model converges. The test F1 score on twitch-{RU,

DE, FR, ENGB, PTBR} are 0.3419, 0.4698, 0.4926, 0.6027,

and 0.5198, respectively.

b) Attack Results: We present the attack results of LINK-

TELLER on the 3-layer GCN in Table VI and Table VII.

Comparing Table VI with Table I, and Table VII with Table II,

we see that the performance of LINKTELLER on the 3-layer

GCN only drops a little. For 1-layer GCN, we know from

Proposition 1 that LINKTELLER can perform a perfect attack.

For GCNs with more than 3 layers, we did not bother to eval-

uate the attack performance since deeper GCNs suffer from

over-smoothing [51] and give poor classification results. Thus,

we can confidently conclude that LINKTELLER is a successful

attack against most practical GCN models.

3) Running Time of LINKTELLER: We report the running

time of LINKTELLER on vanilla GCNs in Table VIII, corre-

sponding to the experiments in Section V in the main paper.

As the table shows, LINKTELLER is a highly efficient attack.

On DP GCNs using EDGERAND mechanism, when the graph

becomes denser under smaller privacy budgets, one forward

pass of the network takes longer, since the cost of matrix

computation becomes larger. However, the increase of running

time reflected in the attack time is only marginal, so we omit

the running time for DP GCNs here. Overall, LINKTELLER

can efficiently and effectively attack both vanilla GCNs and

DP GCNs.

4) More Results for LINKTELLER on vanilla GCNs and

DP GCNs: First of all, we present the additional evalua-

tion results for LINKTELLER on vanilla GCNs corresponding

to Section V. The results are presented in Table IX, which are

of the same format as Table I.

Next, we show the comprehensive evaluation results on a

combination of 2 DP mechanisms (EDGERAND and LAP-

GRAPH), 10 privacy budgets (1.0, 2.0, . . . , 10.0), 3 sampling

strategies (low degree, unconstrained degree, high degree), and

5 density beliefs (k/4, k/2, k, 2k, 4k). We present the results

in Tables XIII to XXVI. The 3 subtables in each table corre-

spond to the 3 sampling strategies.

In Section VI of the main paper, we present the results for

density belief k̂ = k. Here, we look at the results for other

inexact k̂ values and find that similar observations hold. First,



TABLE IX: Attack Performance of LINKTELLER on addi-
tional datasets, compared with two baseline methods LSA2-{post,
attr} [11]. Each table corresponds to a dataset. We sample nodes of
low, unconstrained, and high degrees as our targets. Groups of rows

represent different density belief k̂ of the attacker.

twitch-DE low unconstrained high

k̂ Method precision recall precision recall precision recall

k/4
Ours 83.3 ± 23.6 26.2 ± 7.0 94.0 ± 1.3 22.5 ± 1.3 99.0 ± 0.4 25.2 ± 1.2

LSA2-post 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.1 ± 0.2 0.0 ± 0.1

LSA2-attr 0.0 ± 0.0 0.0 ± 0.0 0.4 ± 0.5 0.1 ± 0.1 2.6 ± 1.1 0.7 ± 0.3

k/2
Ours 91.7 ± 11.8 55.2 ± 3.7 92.4 ± 4.1 44.2 ± 1.6 96.9 ± 0.3 49.2 ± 2.5

LSA2-post 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.1 ± 0.1 0.0 ± 0.1

LSA2-attr 0.0 ± 0.0 0.0 ± 0.0 0.9 ± 0.3 0.4 ± 0.1 2.5 ± 0.8 1.3 ± 0.5

k
Ours 81.8 ± 4.8 92.5 ± 5.9 81.2 ± 6.6 77.2 ± 3.4 79.2 ± 1.1 80.4 ± 3.1

LSA2-post 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.1

LSA2-attr 0.0 ± 0.0 0.0 ± 0.0 1.2 ± 0.3 1.2 ± 0.4 1.8 ± 0.4 1.8 ± 0.5

2k
Ours 44.7 ± 3.4 95.2 ± 6.7 49.0 ± 4.7 93.1 ± 3.2 46.9 ± 2.0 95.0 ± 0.9

LSA2-post 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.1 0.1 ± 0.1 0.0 ± 0.0 0.0 ± 0.1

LSA2-attr 0.0 ± 0.0 0.0 ± 0.0 0.8 ± 0.1 1.6 ± 0.2 1.4 ± 0.3 2.8 ± 0.8

4k
Ours 23.8 ± 0.3 100.0 ± 0.0 25.8 ± 1.9 98.1 ± 0.7 24.3 ± 1.1 98.5 ± 0.5

LSA2-post 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.1 0.2 ± 0.2 0.0 ± 0.0 0.0 ± 0.1

LSA2-attr 0.0 ± 0.0 0.0 ± 0.0 0.7 ± 0.1 2.7 ± 0.4 1.1 ± 0.2 4.4 ± 0.9

twitch-ENGB low unconstrained high

k̂ Method precision recall precision recall precision recall

k/4
Ours 100.0 ± 0.0 30.3 ± 4.1 92.6 ± 3.0 25.5 ± 4.9 98.8 ± 0.5 25.2 ± 0.2

LSA2-post 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.1 ± 0.2 0.0 ± 0.0

LSA2-attr 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 1.5 ± 0.4 0.4 ± 0.1

k/2
Ours 100.0 ± 0.0 54.2 ± 8.7 84.3 ± 5.6 45.6 ± 7.6 96.0 ± 1.2 48.9 ± 0.6

LSA2-post 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.1 ± 0.1 0.0 ± 0.0

LSA2-attr 0.0 ± 0.0 0.0 ± 0.0 0.3 ± 0.4 0.2 ± 0.2 1.8 ± 0.3 0.9 ± 0.1

k
Ours 83.1 ± 6.6 84.0 ± 11.4 67.9 ± 6.3 72.9 ± 10.9 81.6 ± 2.7 83.1 ± 2.7

LSA2-post 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.1 ± 0.0 0.1 ± 0.0

LSA2-attr 0.0 ± 0.0 0.0 ± 0.0 0.7 ± 0.2 0.7 ± 0.2 2.0 ± 0.1 2.0 ± 0.1

2k
Ours 50.7 ± 8.2 97.9 ± 2.9 43.6 ± 9.0 91.2 ± 4.9 47.3 ± 0.7 96.3 ± 1.3

LSA2-post 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.4 ± 0.5 0.8 ± 1.0

LSA2-attr 0.0 ± 0.0 0.0 ± 0.0 0.5 ± 0.2 1.2 ± 0.6 1.7 ± 0.2 3.4 ± 0.3

4k
Ours 26.0 ± 4.9 100.0 ± 0.0 23.5 ± 5.9 97.3 ± 1.1 24.2 ± 0.2 98.5 ± 0.5

LSA2-post 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.2 ± 0.2 0.8 ± 1.0

LSA2-attr 0.0 ± 0.0 0.0 ± 0.0 0.4 ± 0.2 1.7 ± 1.0 1.7 ± 0.1 6.9 ± 0.3

twitch-PTBR low unconstrained high

k̂ Method precision recall precision recall precision recall

k/4
Ours 100.0 ± 0.0 26.7 ± 1.3 95.6 ± 1.6 25.1 ± 6.5 98.4 ± 1.3 24.2 ± 2.5

LSA2-post 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.1 0.0 ± 0.0

LSA2-attr 4.6 ± 3.3 1.2 ± 0.9 4.7 ± 0.9 1.2 ± 0.4 6.9 ± 0.7 1.7 ± 0.1

k/2
Ours 99.0 ± 1.5 52.3 ± 3.3 93.6 ± 1.4 49.0 ± 12.0 97.3 ± 1.6 47.9 ± 4.7

LSA2-post 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

LSA2-attr 2.4 ± 1.7 1.2 ± 0.9 4.4 ± 0.8 2.3 ± 0.8 6.3 ± 1.0 3.0 ± 0.3

k
Ours 85.4 ± 2.2 89.2 ± 4.2 78.7 ± 8.7 80.3 ± 13.1 86.0 ± 5.8 84.2 ± 4.0

LSA2-post 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

LSA2-attr 1.2 ± 0.9 1.2 ± 0.9 4.3 ± 0.9 4.7 ± 1.7 6.0 ± 0.8 5.9 ± 0.5

2k
Ours 48.3 ± 2.7 100.0 ± 0.0 48.7 ± 12.2 95.7 ± 4.1 50.2 ± 5.4 97.9 ± 0.4

LSA2-post 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 2.4 ± 1.7 4.7 ± 3.2

LSA2-attr 0.6 ± 0.4 1.2 ± 0.9 3.8 ± 0.3 8.0 ± 2.4 5.0 ± 0.7 9.8 ± 0.6

4k
Ours 24.1 ± 1.4 100.0 ± 0.0 25.5 ± 7.5 99.0 ± 0.6 25.5 ± 2.8 99.5 ± 0.1

LSA2-post 0.0 ± 0.0 0.0 ± 0.0 1.3 ± 0.9 6.5 ± 4.7 2.5 ± 0.2 10.1 ± 1.9

LSA2-attr 0.6 ± 0.2 2.4 ± 0.7 3.1 ± 0.2 13.2 ± 3.6 4.1 ± 0.4 15.8 ± 0.5

the effectiveness of LINKTELLER will decrease as a result of

increasing privacy guarantee; while when the guarantee is not

sufficient (i.e., ε is large), LINKTELLER is not weakened by

much. Second, DP can provide better protection to nodes of

low degrees. In addition, we note that our LINKTELLER is not

sensitive to the density belief k̂ and achieves non-negligible

success rate for all k̂.

5) LINKTELLER in the Transductive Setting: In the main

paper, we mainly evaluate the performance of LINKTELLER

in the inductive setting. As analyzed in Appendix E5, in the

transductive setting, LINKTELLER is expected to achieve bet-

ter performance and retain its advantage over LSA2-X. Here,

TABLE X: Attack Performance (Precision and Recall) of LINK-

TELLER on three datasets in the transductive setting, compared with

two baseline methods LSA2-{post, attr} [11]. We follow He et

al. [11] to compose a balanced dataset containing an equal number

of connected and unconnected node pairs. Groups of rows represent

different density belief k̂ of the attacker.

Cora Citeseer Pubmed

k̂ Method precision recall precision recall precision recall

k/4
Ours 99.9 ± 0.1 25.0 ± 0.0 100.0 ± 0.0 25.0 ± 0.0 100.0 ± 0.0 25.0 ± 0.0

LSA2-post 96.7 ± 0.2 24.2 ± 0.0 98.8 ± 0.1 24.7 ± 0.0 89.9 ± 0.2 22.5 ± 0.1

LSA2-feat 96.9 ± 0.2 24.2 ± 0.0 99.8 ± 0.1 24.9 ± 0.0 97.8 ± 0.2 24.4 ± 0.0

k/2
Ours 99.9 ± 0.0 50.0 ± 0.0 100.0 ± 0.0 50.0 ± 0.0 100.0 ± 0.0 50.0 ± 0.0

LSA2-post 94.1 ± 0.3 47.0 ± 0.1 96.7 ± 0.0 48.4 ± 0.0 86.8 ± 0.1 43.4 ± 0.0

LSA2-feat 90.4 ± 0.5 45.2 ± 0.2 97.4 ± 0.1 48.7 ± 0.1 95.2 ± 0.1 47.6 ± 0.0

k
Ours 99.5 ± 0.1 99.5 ± 0.1 99.7 ± 0.0 99.7 ± 0.0 99.7 ± 0.0 99.7 ± 0.0

LSA2-post 86.7 ± 0.2 86.7 ± 0.2 90.1 ± 0.2 90.1 ± 0.2 78.8 ± 0.1 78.8 ± 0.1

LSA2-feat 73.6 ± 0.1 73.6 ± 0.1 80.9 ± 0.1 80.9 ± 0.1 82.4 ± 0.1 82.4 ± 0.1

1.5k
Ours 66.7 ± 0.0 100.0 ± 0.0 66.7 ± 0.0 100.0 ± 0.0 66.6 ± 0.0 99.9 ± 0.0

LSA2-post 66.0 ± 0.0 99.1 ± 0.0 66.4 ± 0.0 99.6 ± 0.0 65.3 ± 0.0 98.0 ± 0.0

LSA2-feat 59.9 ± 0.2 89.8 ± 0.2 63.2 ± 0.1 94.7 ± 0.2 64.0 ± 0.0 96.0 ± 0.0

TABLE XI: AUC of LINKTELLER comparing with two baselines

LSA2-{post, attr} [11] in the transductive setting. Each column cor-

responds to one dataset. Different rows represent different methods.

Method Dataset

Cora Citeseer Pubmed

Ours 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

LSA2-post 0.93 ± 0.00 0.96 ± 0.00 0.87 ± 0.00

LSA2-attr 0.81 ± 0.00 0.89 ± 0.00 0.90 ± 0.00

we aim to provide evaluations on the performance of LINK-

TELLER in the transductive setting to support the analysis.

We compare LINKTELLER to LSA2-{post, attr} [11] in the

transductive setting using three datasets (Cora, Citeseer, and

Pubmed) from their paper. We also follow the same setup (as

in their Paragraph “Datasets Configuration” in Section 5.1) to

compose the balanced set of node pairs to be attacked which

contains an equal number of connected and unconnected pairs.

We follow the hyper-parameters in Kipf et al. [13] to train the

GCN models on these datasets and then perform LINKTELLER

attack and LSA2-{post, attr} attacks on the trained models.

We report the attack performance (Precision and Recall)

in Table X and the AUC scores in Table XI. First, as a sanity

check, our results in Table XI matches the Figure 4 in He et

al. [11] on these three datasets. Second, we evaluate the den-

sity belief k̂ only up to 1.5k in Table X, since 2k corresponds

to the case where all node pairs are predicted positive by the

attacker, leading to 50% precision and 100% recall for all

methods. Overall, as shown in the two tables, LINKTELLER

invariably outperforms LSA2-{post, attr} in the transductive

setting.

6) Choosing ε on a Validation Dataset: In Section VI, we

present the model utility and attack effectiveness under a range

of ε (1-10) in Figure 3, and provide corresponding discussions

regarding the tradeoff between model utility and privacy as

well as its dependencies in Section VI-C and Section VI-D.

In this part, we take on a new perspective and focus on

a practical approach for selecting the appropriate parameters

(mainly the privacy budget ε) to train DP GCN models with

reasonable model utility–we select the parameter ε on the



TABLE XII: (a) Model utility and (b) attack effectiveness on

different models. Each column corresponds to a dataset. We consider

four types of models: vanilla GCN, MLP, EDGERAND, and LAP-

GRAPH.

(a) Model utility (F1 score)

Model Dataset

RU DE FR ENGB PTBR Flickr

vanilla GCN 0.319 0.551 0.404 0.601 0.411 0.515

MLP 0.290 0.545 0.373 0.598 0.358 0.463

EDGERAND
ε = 7 ε = 6

0.299 ± 0.006 0.545 ± 0.003 0.321 ± 0.027 0.607 ± 0.000 0.423 ± 0.018 0.459 ± 0.002

LAPGRAPH
ε = 8 ε = 9

0.292 ± 0.011 0.546 ± 0.001 0.299 ± 0.017 0.601 ± 0.001 0.401 ± 0.010 0.467 ± 0.002

(b) Attack effectiveness (F1 score) on different node degree distri-
butions

Degree Model Dataset

RU DE FR ENGB PTBR Flickr

low
vanilla GCN 84.9 ± 1.2 86.8 ± 5.1 92.5 ± 5.4 82.9 ± 4.9 86.6 ± 1.3 52.1 ± 5.8

EDGERAND 18.9 ± 10.8 4.4 ± 6.3 0.0 ± 0.0 19.0 ± 12.0 32.9 ± 2.5 0.0 ± 0.0

LAPGRAPH 22.9 ± 3.3 5.3 ± 7.5 13.3 ± 12.5 22.0 ± 1.0 23.8 ± 2.2 26.8 ± 10.1

uncon-
strained

vanilla GCN 74.7 ± 1.5 78.5 ± 4.5 80.9 ± 2.0 69.5 ± 2.5 77.9 ± 3.5 32.9 ± 13.3

EDGERAND 58.1 ± 2.2 60.1 ± 5.0 67.1 ± 4.6 41.6 ± 8.1 73.2 ± 5.1 0.0 ± 0.0

LAPGRAPH 59.6 ± 1.2 59.6 ± 2.0 67.1 ± 2.9 46.9 ± 3.7 68.4 ± 5.8 2.4 ± 3.4

high
vanilla GCN 75.8 ± 2.3 78.9 ± 0.8 83.0 ± 3.7 82.2 ± 3.4 84.8 ± 1.6 18.3 ± 5.2

EDGERAND 72.6 ± 1.5 76.5 ± 1.8 78.1 ± 2.7 82.3 ± 1.5 83.7 ± 1.0 16.9 ± 2.9

LAPGRAPH 69.6 ± 1.0 68.5 ± 1.1 73.4 ± 2.8 68.0 ± 1.7 78.4 ± 1.4 15.7 ± 2.6

validation dataset, and then report the final performance on the

testing set. Concretely, when selecting ε on the validation set,

we set a lower threshold (e.g., F1 score of the MLP model) for

the model utility, and select the smallest ε satisfying the con-

dition that the utility of the trained DP GCN on the validation

set is higher than the given threshold. Then, we evaluate both

the model utility and attack effectiveness under the selected ε
on the testing set.

We report the evaluation results in Table XII. We do not

include results for the PPI dataset, since none of the DP GCN

models could attain utility higher than the MLP model. (In

fact, even the vanilla GCN model cannot match the perfor-

mance of the MLP model, which have been concretely dis-

cussed in Section VI-D.) For the twitch datasets and Flickr

dataset, we select ε ∈ {1.0, 2.0, . . . , 10.0} on the validation

dataset and include the numbers in Table XII(a). Specifically,

for the twitch datasets, the model is trained on twitch-ES (with

the parameters selected on the validation set) and then directly

transferred to twitch-{RU, DE, FR, ENGB, PTBR}, so we

report only one number for all five countries.

We next discuss the conclusions from Table XII. First,

regarding the model utility in Table XII(a), with the same

constraint on model utility on the same dataset, we end up

with different ε for different DP mechanisms, e.g., ε = 6 for

EDGERAND and ε = 9 for LAPGRAPH on the Flickr dataset.

This implies that the level of noise that can be tolerated by

different DP mechanisms is different. Second, in terms of the

attack effectiveness in Table XII(b), the main conclusion is that

the theoretical guarantee provided by DP cannot translate into

sufficient protection against LINKTELLER while maintaining

a reasonable level of model utility. Specifically, with ε = 6 for

EDGERAND and ε = 9 for LAPGRAPH, the theoretical upper

bound of precision is greater than 1 for all the datasets based

on Theorem 6, which means that the DP GCN methods do not

provide any reasonable theoretical privacy protection against

LINKTELLER. However, the attack effectiveness presented

in Table XII(b) suggests that, in low degree settings, differ-

ential privacy can empirically protect against LINKTELLER

although the level of protection is heavily data-dependent,

varying a lot across different datasets and different node de-

gree distributions. Relevant discussions on the impact of node

degree distributions specifically are provided in Section VI-D.



TABLE XIII: twitch-RU (EDGERAND)

low k̂ = k/4 k̂ = k/2 k̂ = k k̂ = 2k k̂ = 4k

ε = 1
precision 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

recall 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

ε = 2
precision 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

recall 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

ε = 3
precision 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

recall 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

ε = 4
precision 0.0 ± 0.0 0.0 ± 0.0 1.3 ± 1.9 1.3 ± 1.9 1.3 ± 0.5

recall 0.0 ± 0.0 0.0 ± 0.0 1.5 ± 2.1 3.0 ± 4.3 6.2 ± 2.1

ε = 5
precision 4.8 ± 6.7 5.1 ± 7.3 4.0 ± 3.3 3.3 ± 1.9 2.7 ± 1.2

recall 1.5 ± 2.1 3.0 ± 4.3 4.8 ± 3.7 7.7 ± 4.2 12.8 ± 6.0

ε = 6
precision 19.0 ± 6.7 12.8 ± 3.6 9.3 ± 1.9 8.0 ± 2.8 6.7 ± 3.3

recall 6.2 ± 2.1 7.7 ± 1.7 11.0 ± 2.0 18.7 ± 6.2 31.5 ± 15.1

ε = 7
precision 28.6 ± 11.7 25.6 ± 13.1 17.3 ± 10.0 16.7 ± 4.7 16.7 ± 2.1

recall 9.5 ± 3.9 16.0 ± 8.3 20.8 ± 11.9 39.9 ± 13.2 78.9 ± 12.8

ε = 8
precision 38.1 ± 17.8 38.5 ± 10.9 38.7 ± 7.5 34.0 ± 1.6 20.7 ± 1.2

recall 12.8 ± 6.0 24.0 ± 7.9 46.1 ± 11.5 80.3 ± 8.2 97.0 ± 2.1

ε = 9
precision 71.4 ± 11.7 56.4 ± 3.6 57.3 ± 5.0 39.3 ± 1.9 21.3 ± 1.7

recall 23.7 ± 4.4 34.5 ± 2.1 67.4 ± 6.1 92.7 ± 7.4 100.0± 0.0

ε = 10
precision 95.2 ± 6.7 79.5 ± 3.6 73.3 ± 1.9 42.0 ± 3.3 21.3 ± 1.7

recall 31.5 ± 4.0 48.6 ± 3.0 86.4 ± 5.9 98.5 ± 2.1 100.0± 0.0

unconstrained k̂ = k/4 k̂ = k/2 k̂ = k k̂ = 2k k̂ = 4k

ε = 1
precision 0.7 ± 0.1 0.6 ± 0.1 1.2 ± 0.4 1.6 ± 0.6 1.5 ± 0.5

recall 0.2 ± 0.0 0.3 ± 0.1 1.3 ± 0.4 3.4 ± 1.3 6.4 ± 1.9

ε = 2
precision 1.1 ± 1.5 2.1 ± 1.3 2.3 ± 1.2 2.1 ± 0.7 2.1 ± 0.6

recall 0.3 ± 0.4 1.2 ± 0.7 2.5 ± 1.3 4.5 ± 1.6 9.2 ± 2.2

ε = 3
precision 5.2 ± 4.3 5.8 ± 2.6 7.2 ± 1.8 6.4 ± 1.7 6.4 ± 1.5

recall 1.4 ± 1.1 3.1 ± 1.3 7.8 ± 1.7 13.8 ± 3.1 27.8 ± 5.3

ε = 4
precision 5.5 ± 2.7 7.5 ± 2.2 9.0 ± 2.0 11.6 ± 2.0 15.4 ± 2.3

recall 1.5 ± 0.7 4.0 ± 1.0 9.7 ± 1.7 25.2 ± 3.6 66.9 ± 7.4

ε = 5
precision 9.2 ± 3.9 12.4 ± 3.1 21.1 ± 3.2 30.9 ± 3.6 20.3 ± 1.1

recall 2.5 ± 1.0 6.7 ± 1.4 22.9 ± 2.8 67.2 ± 5.3 88.6 ± 1.2

ε = 6
precision 22.1 ± 4.5 36.2 ± 4.4 45.1 ± 2.8 36.5 ± 1.5 21.2 ± 0.9

recall 6.0 ± 0.9 19.7 ± 1.6 49.2 ± 1.0 79.7 ± 1.6 92.5 ± 1.0

ε = 7
precision 55.1 ± 2.4 61.9 ± 2.9 55.7 ± 3.2 39.8 ± 1.5 22.3 ± 0.8

recall 15.0 ± 0.4 33.8 ± 0.4 60.8 ± 1.5 86.8 ± 0.6 97.1 ± 0.6

ε = 8
precision 72.1 ± 6.4 75.6 ± 5.0 66.5 ± 3.1 43.2 ± 1.9 22.5 ± 1.0

recall 19.7 ± 1.2 41.3 ± 1.5 72.6 ± 1.2 94.2 ± 0.2 98.3 ± 0.1

ε = 9
precision 87.5 ± 1.9 85.9 ± 1.7 70.5 ± 2.2 43.5 ± 1.7 22.5 ± 1.0

recall 23.9 ± 0.8 47.0 ± 1.1 77.0 ± 2.2 94.9 ± 1.4 98.2 ± 0.6

ε = 10
precision 91.9 ± 3.3 86.9 ± 0.9 70.8 ± 2.3 43.0 ± 2.0 22.5 ± 1.1

recall 25.1 ± 1.2 47.5 ± 1.6 77.3 ± 2.0 93.7 ± 1.5 98.0 ± 0.7

high k̂ = k/4 k̂ = k/2 k̂ = k k̂ = 2k k̂ = 4k

ε = 1
precision 15.6 ± 9.1 11.2 ± 4.6 9.2 ± 3.7 7.1 ± 2.5 5.5 ± 1.4

recall 2.8 ± 1.4 4.0 ± 1.4 6.6 ± 2.2 10.2 ± 3.0 15.7 ± 3.0

ε = 2
precision 22.3 ± 11.9 15.5 ± 5.8 12.4 ± 3.0 11.3 ± 2.2 10.0 ± 1.5

recall 4.0 ± 1.9 5.6 ± 1.7 9.0 ± 1.6 16.4 ± 2.1 28.9 ± 2.5

ε = 3
precision 27.5 ± 7.7 25.3 ± 4.9 24.6 ± 5.4 22.6 ± 3.2 20.3 ± 2.3

recall 5.0 ± 1.1 9.2 ± 1.3 17.8 ± 2.7 32.9 ± 2.6 59.2 ± 3.7

ε = 4
precision 38.7 ± 8.9 36.9 ± 5.9 37.6 ± 4.5 39.4 ± 3.4 29.8 ± 1.9

recall 7.0 ± 1.3 13.5 ± 1.8 27.4 ± 1.8 57.4 ± 1.3 86.9 ± 2.2

ε = 5
precision 55.9 ± 5.4 57.5 ± 3.3 59.6 ± 2.5 56.1 ± 2.9 32.2 ± 2.4

recall 10.2 ± 0.7 21.0 ± 0.7 43.6 ± 1.7 81.9 ± 2.9 93.8 ± 1.2

ε = 6
precision 71.9 ± 2.9 76.8 ± 1.6 78.1 ± 2.2 59.1 ± 4.2 32.7 ± 2.3

recall 13.1 ± 0.6 28.1 ± 1.5 57.1 ± 2.6 86.2 ± 1.5 95.4 ± 0.8

ε = 7
precision 88.1 ± 2.1 88.7 ± 1.5 86.0 ± 2.1 61.9 ± 3.7 33.5 ± 2.3

recall 16.1 ± 0.8 32.5 ± 1.8 63.0 ± 3.2 90.3 ± 1.2 97.6 ± 0.5

ε = 8
precision 94.0 ± 0.8 93.5 ± 0.5 88.4 ± 1.7 63.4 ± 3.5 33.8 ± 2.2

recall 17.2 ± 1.2 34.3 ± 2.3 64.7 ± 3.4 92.6 ± 1.7 98.5 ± 0.6

ε = 9
precision 96.8 ± 0.3 95.6 ± 0.8 89.0 ± 1.9 63.3 ± 3.8 33.7 ± 2.3

recall 17.7 ± 1.3 35.0 ± 2.4 65.2 ± 3.3 92.4 ± 1.1 98.4 ± 0.5

ε = 10
precision 97.5 ± 0.4 96.3 ± 0.3 89.4 ± 1.7 62.8 ± 4.2 33.5 ± 2.3

recall 17.9 ± 1.3 35.3 ± 2.5 65.5 ± 3.7 91.6 ± 1.3 97.8 ± 0.4

TABLE XIV: twitch-RU (LAPGRAPH)

low k̂ = k/4 k̂ = k/2 k̂ = k k̂ = 2k k̂ = 4k

ε = 1
precision 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

recall 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

ε = 2
precision 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

recall 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

ε = 3
precision 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

recall 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

ε = 4
precision 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.3 ± 0.5

recall 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 1.8 ± 2.5

ε = 5
precision 0.0 ± 0.0 0.0 ± 0.0 5.3 ± 5.0 4.0 ± 3.3 2.3 ± 2.1

recall 0.0 ± 0.0 0.0 ± 0.0 5.9 ± 5.4 8.8 ± 7.1 10.3 ± 8.9

ε = 6
precision 0.0 ± 0.0 7.7 ± 6.3 6.7 ± 1.9 5.3 ± 2.5 4.3 ± 1.7

recall 0.0 ± 0.0 4.5 ± 3.7 7.7 ± 1.7 12.2 ± 5.3 19.8 ± 6.7

ε = 7
precision 23.8 ± 24.3 20.5 ± 13.1 14.7 ± 5.0 12.0 ± 3.3 9.7 ± 1.2

recall 7.8 ± 7.6 12.2 ± 7.6 16.9 ± 5.0 27.8 ± 6.4 45.1 ± 2.3

ε = 8
precision 28.6 ± 20.2 25.6 ± 7.3 21.3 ± 3.8 21.3 ± 4.1 16.3 ± 3.1

recall 9.3 ± 6.3 15.4 ± 3.4 24.8 ± 2.7 49.7 ± 7.1 75.9 ± 9.6

ε = 9
precision 42.9 ± 20.2 30.8 ± 12.6 32.0 ± 8.6 28.7 ± 5.0 18.0 ± 2.9

recall 14.0 ± 6.2 18.4 ± 6.9 36.9 ± 7.6 66.8 ± 8.0 83.9 ± 8.9

ε = 10
precision 52.4 ± 13.5 48.7 ± 3.6 48.0 ± 6.5 36.7 ± 2.5 19.7 ± 1.7

recall 17.2 ± 4.1 29.8 ± 2.6 56.1 ± 5.3 86.2 ± 5.7 92.4 ± 7.3

unconstrained k̂ = k/4 k̂ = k/2 k̂ = k k̂ = 2k k̂ = 4k

ε = 1
precision 1.8 ± 0.7 1.8 ± 0.4 1.2 ± 0.2 0.9 ± 0.1 0.7 ± 0.1

recall 0.5 ± 0.2 1.0 ± 0.2 1.3 ± 0.2 2.0 ± 0.3 2.9 ± 0.3

ε = 2
precision 3.9 ± 0.1 3.1 ± 0.4 2.4 ± 0.7 1.4 ± 0.4 1.0 ± 0.1

recall 1.1 ± 0.1 1.7 ± 0.3 2.6 ± 0.9 3.1 ± 1.1 4.5 ± 0.4

ε = 3
precision 6.4 ± 1.6 7.6 ± 1.3 5.9 ± 0.7 3.4 ± 0.5 2.1 ± 0.3

recall 1.7 ± 0.4 4.2 ± 0.7 6.5 ± 0.9 7.5 ± 1.4 9.1 ± 1.5

ε = 4
precision 12.4 ± 2.6 13.2 ± 1.6 13.1 ± 1.5 7.6 ± 0.8 4.3 ± 0.3

recall 3.4 ± 0.6 7.2 ± 0.7 14.3 ± 1.9 16.6 ± 2.1 19.0 ± 1.8

ε = 5
precision 18.3 ± 0.8 26.9 ± 2.0 24.2 ± 0.8 14.8 ± 1.1 8.3 ± 0.3

recall 5.0 ± 0.2 14.7 ± 0.5 26.5 ± 1.7 32.5 ± 3.5 36.3 ± 2.2

ε = 6
precision 35.5 ± 3.4 43.0 ± 3.4 39.1 ± 1.3 25.5 ± 1.0 14.4 ± 0.4

recall 9.7 ± 0.7 23.5 ± 1.1 42.6 ± 0.9 55.6 ± 2.6 62.9 ± 1.8

ε = 7
precision 50.8 ± 8.8 57.3 ± 4.9 50.5 ± 2.4 32.3 ± 1.9 17.8 ± 0.8

recall 13.8 ± 2.1 31.2 ± 1.9 55.1 ± 1.5 70.6 ± 1.4 77.8 ± 0.9

ε = 8
precision 64.7 ± 7.6 65.8 ± 3.8 57.1 ± 2.3 36.5 ± 1.5 19.7 ± 0.8

recall 17.7 ± 1.9 35.9 ± 0.6 62.3 ± 0.2 79.7 ± 0.1 85.8 ± 0.2

ε = 9
precision 71.9 ± 4.0 72.7 ± 3.0 61.6 ± 3.1 39.3 ± 1.8 20.7 ± 0.8

recall 19.6 ± 0.9 39.7 ± 0.3 67.3 ± 1.8 85.7 ± 0.5 90.4 ± 0.5

ε = 10
precision 77.7 ± 3.5 78.4 ± 2.5 65.8 ± 2.5 40.6 ± 1.3 21.5 ± 0.7

recall 21.3 ± 1.1 42.8 ± 1.3 71.8 ± 1.0 88.7 ± 1.0 93.7 ± 1.2

high k̂ = k/4 k̂ = k/2 k̂ = k k̂ = 2k k̂ = 4k

ε = 1
precision 3.6 ± 0.5 3.3 ± 1.1 2.5 ± 0.7 2.0 ± 0.3 1.8 ± 0.2

recall 0.7 ± 0.1 1.2 ± 0.3 1.8 ± 0.4 2.9 ± 0.2 5.3 ± 0.3

ε = 2
precision 10.5 ± 1.2 8.5 ± 1.9 5.3 ± 1.1 3.6 ± 0.6 2.5 ± 0.3

recall 1.9 ± 0.2 3.1 ± 0.5 3.9 ± 0.6 5.2 ± 0.5 7.4 ± 0.6

ε = 3
precision 22.2 ± 3.5 19.6 ± 2.0 11.5 ± 1.6 6.9 ± 1.1 4.3 ± 0.6

recall 4.1 ± 0.6 7.1 ± 0.7 8.3 ± 0.9 10.1 ± 1.1 12.7 ± 1.2

ε = 4
precision 39.3 ± 3.9 38.4 ± 3.4 23.6 ± 3.2 13.3 ± 1.9 8.3 ± 1.1

recall 7.2 ± 0.4 14.0 ± 0.7 17.2 ± 1.3 19.4 ± 1.6 24.0 ± 1.7

ε = 5
precision 56.9 ± 3.5 61.2 ± 2.3 44.2 ± 3.9 25.3 ± 2.3 14.5 ± 1.4

recall 10.4 ± 0.4 22.4 ± 0.8 32.2 ± 0.9 36.8 ± 1.0 42.2 ± 1.3

ε = 6
precision 73.8 ± 1.6 76.3 ± 1.1 66.9 ± 2.3 40.4 ± 2.9 22.2 ± 1.6

recall 13.5 ± 0.9 28.0 ± 1.7 48.9 ± 1.8 58.9 ± 0.5 64.6 ± 0.0

ε = 7
precision 83.9 ± 1.0 85.1 ± 1.2 76.9 ± 2.9 50.2 ± 3.5 27.0 ± 2.0

recall 15.4 ± 1.1 31.2 ± 1.8 56.2 ± 1.9 73.2 ± 0.6 78.7 ± 0.2

ε = 8
precision 90.2 ± 0.7 90.2 ± 0.2 82.5 ± 2.3 54.7 ± 3.3 29.8 ± 2.0

recall 16.5 ± 1.1 33.1 ± 2.3 60.4 ± 2.7 79.9 ± 0.9 86.8 ± 0.3

ε = 9
precision 93.3 ± 0.3 93.0 ± 0.5 85.8 ± 1.7 58.8 ± 3.6 31.5 ± 2.1

recall 17.1 ± 1.2 34.1 ± 2.5 62.8 ± 3.4 85.8 ± 0.8 91.8 ± 0.3

ε = 10
precision 95.1 ± 0.5 95.1 ± 0.2 88.1 ± 1.5 61.2 ± 4.1 32.5 ± 2.4

recall 17.4 ± 1.2 34.9 ± 2.5 64.5 ± 3.6 89.3 ± 0.6 94.9 ± 0.2



TABLE XV: twitch-DE (EDGERAND)

low k̂ = k/4 k̂ = k/2 k̂ = k k̂ = 2k k̂ = 4k

ε = 1
precision 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

recall 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

ε = 2
precision 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

recall 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

ε = 3
precision 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

recall 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

ε = 4
precision 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

recall 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

ε = 5
precision 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

recall 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

ε = 6
precision 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 2.6 ± 3.6 1.3 ± 1.9

recall 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 5.6 ± 7.9 5.6 ± 7.9

ε = 7
precision 16.7 ± 23.6 8.3 ± 11.8 4.2 ± 5.9 2.2 ± 3.1 4.4 ± 4.2

recall 4.8 ± 6.7 4.8 ± 6.7 4.8 ± 6.7 4.8 ± 6.7 18.7 ± 17.3

ε = 8
precision 25.0 ± 20.4 17.9 ± 12.7 21.7 ± 11.8 23.2 ± 13.6 16.7 ± 5.7

recall 7.5 ± 5.9 10.3 ± 7.4 24.2 ± 12.4 49.2 ± 28.2 69.8 ± 23.4

ε = 9
precision 41.7 ± 31.2 31.0 ± 8.4 35.8 ± 12.8 32.9 ± 11.5 22.7 ± 1.9

recall 13.1 ± 10.2 18.7 ± 4.6 40.1 ± 13.1 69.8 ± 23.4 95.2 ± 6.7

ε = 10
precision 83.3 ± 23.6 66.7 ± 23.6 54.0 ± 11.1 44.4 ± 4.2 23.8 ± 0.3

recall 26.2 ± 7.0 40.1 ± 13.1 60.7 ± 10.5 94.4 ± 7.9 100.0± 0.0

unconstrained k̂ = k/4 k̂ = k/2 k̂ = k k̂ = 2k k̂ = 4k

ε = 1
precision 3.9 ± 4.8 2.3 ± 2.2 1.4 ± 1.0 1.2 ± 0.4 1.1 ± 0.1

recall 1.0 ± 1.2 1.2 ± 1.2 1.4 ± 1.0 2.3 ± 0.8 4.3 ± 0.6

ε = 2
precision 5.7 ± 6.6 3.7 ± 3.6 3.2 ± 0.9 2.8 ± 0.5 2.7 ± 0.6

recall 1.4 ± 1.7 1.8 ± 1.9 3.1 ± 1.1 5.4 ± 0.7 10.2 ± 1.7

ε = 3
precision 6.4 ± 6.3 5.1 ± 3.5 5.3 ± 2.0 5.6 ± 1.6 6.0 ± 1.6

recall 1.6 ± 1.6 2.5 ± 1.8 5.1 ± 2.1 10.5 ± 2.6 22.5 ± 4.7

ε = 4
precision 8.9 ± 5.3 9.0 ± 4.6 10.1 ± 2.0 9.4 ± 0.9 11.6 ± 1.5

recall 2.2 ± 1.4 4.4 ± 2.5 9.7 ± 2.3 17.9 ± 0.8 43.9 ± 2.5

ε = 5
precision 12.4 ± 4.9 16.5 ± 2.0 19.4 ± 2.7 23.3 ± 1.1 23.3 ± 2.6

recall 3.0 ± 1.4 7.9 ± 1.2 18.5 ± 2.3 44.4 ± 1.5 88.1 ± 3.9

ε = 6
precision 27.7 ± 4.6 33.7 ± 1.5 40.4 ± 4.9 42.2 ± 5.1 24.6 ± 2.3

recall 6.6 ± 1.2 16.1 ± 0.4 38.3 ± 2.5 79.9 ± 4.8 93.2 ± 2.4

ε = 7
precision 55.7 ± 8.6 60.1 ± 5.8 61.8 ± 7.4 46.6 ± 4.6 25.4 ± 2.3

recall 13.3 ± 2.3 28.7 ± 1.6 58.6 ± 2.9 88.3 ± 2.9 96.4 ± 1.9

ε = 8
precision 73.0 ± 3.5 77.1 ± 2.4 71.7 ± 6.5 48.1 ± 4.3 25.7 ± 2.2

recall 17.5 ± 1.8 36.9 ± 1.5 68.2 ± 2.9 91.3 ± 2.2 97.5 ± 1.8

ε = 9
precision 84.8 ± 1.8 84.6 ± 4.4 77.2 ± 6.7 48.5 ± 4.0 25.5 ± 1.7

recall 20.3 ± 1.0 40.4 ± 1.1 73.5 ± 4.5 92.1 ± 1.6 97.0 ± 0.3

ε = 10
precision 88.3 ± 1.5 90.2 ± 3.8 80.2 ± 5.6 49.1 ± 4.6 25.6 ± 1.9

recall 21.1 ± 1.1 43.2 ± 1.5 76.4 ± 3.2 93.2 ± 2.3 97.3 ± 0.6

high k̂ = k/4 k̂ = k/2 k̂ = k k̂ = 2k k̂ = 4k

ε = 1
precision 3.6 ± 2.4 3.1 ± 0.9 2.9 ± 0.7 2.4 ± 0.2 2.5 ± 0.4

recall 0.9 ± 0.6 1.6 ± 0.5 3.0 ± 0.8 4.9 ± 0.5 10.3 ± 1.8

ε = 2
precision 7.2 ± 2.0 6.0 ± 1.1 6.0 ± 0.5 5.9 ± 0.7 5.6 ± 0.7

recall 1.8 ± 0.5 3.1 ± 0.7 6.1 ± 0.6 12.1 ± 1.9 22.8 ± 3.8

ε = 3
precision 12.9 ± 0.8 11.6 ± 1.4 12.4 ± 0.4 13.0 ± 0.1 12.4 ± 0.3

recall 3.3 ± 0.3 5.9 ± 1.0 12.6 ± 0.8 26.4 ± 1.1 50.3 ± 3.8

ε = 4
precision 20.2 ± 2.2 21.0 ± 0.9 23.3 ± 0.9 23.9 ± 0.8 20.3 ± 0.5

recall 5.2 ± 0.7 10.7 ± 1.0 23.7 ± 2.0 48.6 ± 3.9 82.3 ± 2.7

ε = 5
precision 34.6 ± 1.4 38.6 ± 1.8 43.1 ± 1.9 42.0 ± 0.9 23.1 ± 0.9

recall 8.8 ± 0.7 19.7 ± 1.9 43.8 ± 3.9 85.3 ± 3.8 93.6 ± 1.6

ε = 6
precision 52.5 ± 1.9 59.5 ± 0.9 68.0 ± 0.9 44.7 ± 2.0 24.0 ± 1.2

recall 13.4 ± 0.9 30.2 ± 1.6 69.0 ± 4.2 90.7 ± 2.0 97.1 ± 0.6

ε = 7
precision 75.5 ± 3.3 80.0 ± 1.6 75.9 ± 0.9 45.8 ± 1.7 24.2 ± 1.2

recall 19.2 ± 1.8 40.6 ± 2.7 77.1 ± 3.6 92.8 ± 1.2 97.9 ± 0.1

ε = 8
precision 89.1 ± 3.3 90.1 ± 1.9 77.9 ± 0.3 46.3 ± 1.4 24.2 ± 1.0

recall 22.7 ± 1.9 45.8 ± 3.2 79.1 ± 3.6 93.8 ± 2.0 98.0 ± 0.9

ε = 9
precision 95.1 ± 0.3 93.0 ± 1.3 78.4 ± 0.7 46.3 ± 2.0 24.0 ± 1.2

recall 24.2 ± 1.1 47.2 ± 2.9 79.5 ± 3.5 93.8 ± 0.8 97.0 ± 0.1

ε = 10
precision 97.7 ± 1.0 95.6 ± 0.3 79.1 ± 1.4 46.6 ± 1.8 24.3 ± 1.2

recall 24.8 ± 1.0 48.5 ± 2.5 80.3 ± 2.9 94.4 ± 1.2 98.3 ± 0.4

TABLE XVI: twitch-DE (LAPGRAPH)

low k̂ = k/4 k̂ = k/2 k̂ = k k̂ = 2k k̂ = 4k

ε = 1
precision 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

recall 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

ε = 2
precision 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

recall 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

ε = 3
precision 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

recall 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

ε = 4
precision 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

recall 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

ε = 5
precision 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.7 ± 0.9

recall 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 2.8 ± 3.9

ε = 6
precision 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 2.7 ± 1.9

recall 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 11.1 ± 7.9

ε = 7
precision 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 2.2 ± 3.1 6.2 ± 1.7

recall 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 4.8 ± 6.7 26.2 ± 7.0

ε = 8
precision 0.0 ± 0.0 0.0 ± 0.0 5.1 ± 7.3 8.8 ± 2.3 7.3 ± 2.5

recall 0.0 ± 0.0 0.0 ± 0.0 5.6 ± 7.9 18.7 ± 4.6 31.0 ± 10.8

ε = 9
precision 8.3 ± 11.8 4.8 ± 6.7 5.1 ± 7.3 13.7 ± 5.0 11.8 ± 2.7

recall 2.8 ± 3.9 2.8 ± 3.9 5.6 ± 7.9 29.0 ± 10.2 49.6 ± 11.5

ε = 10
precision 0.0 ± 0.0 8.3 ± 11.8 23.9 ± 8.1 21.1 ± 5.2 18.2 ± 2.7

recall 0.0 ± 0.0 5.6 ± 7.9 27.0 ± 9.0 44.8 ± 10.3 76.6 ± 10.8

unconstrained k̂ = k/4 k̂ = k/2 k̂ = k k̂ = 2k k̂ = 4k

ε = 1
precision 1.1 ± 0.9 0.7 ± 0.3 0.9 ± 0.3 0.8 ± 0.5 0.6 ± 0.3

recall 0.3 ± 0.2 0.3 ± 0.1 0.9 ± 0.4 1.5 ± 0.8 2.3 ± 0.9

ε = 2
precision 2.5 ± 1.3 2.0 ± 0.9 1.9 ± 0.8 1.4 ± 0.7 1.0 ± 0.5

recall 0.6 ± 0.3 0.9 ± 0.4 1.7 ± 0.6 2.6 ± 1.1 3.7 ± 1.6

ε = 3
precision 6.4 ± 1.7 5.7 ± 1.3 4.8 ± 0.6 3.0 ± 0.5 1.8 ± 0.4

recall 1.5 ± 0.3 2.7 ± 0.4 4.6 ± 0.2 5.7 ± 0.6 7.0 ± 1.3

ε = 4
precision 11.0 ± 1.8 12.2 ± 2.6 12.3 ± 1.5 7.3 ± 0.8 4.0 ± 0.6

recall 2.6 ± 0.4 5.8 ± 0.9 11.6 ± 0.6 13.8 ± 0.7 15.1 ± 1.3

ε = 5
precision 17.4 ± 3.3 21.5 ± 3.7 26.7 ± 3.1 16.5 ± 1.9 8.6 ± 0.9

recall 4.2 ± 0.9 10.2 ± 1.6 25.3 ± 1.6 31.4 ± 2.4 32.5 ± 2.1

ε = 6
precision 30.1 ± 4.8 36.0 ± 3.7 40.1 ± 3.3 26.4 ± 1.9 14.2 ± 1.2

recall 7.2 ± 1.2 17.2 ± 1.1 38.2 ± 2.0 50.2 ± 2.2 54.0 ± 2.3

ε = 7
precision 41.8 ± 5.7 50.4 ± 5.1 54.0 ± 3.6 35.2 ± 2.5 19.4 ± 1.8

recall 10.0 ± 1.0 24.0 ± 1.2 51.4 ± 0.3 67.0 ± 1.5 73.8 ± 2.7

ε = 8
precision 54.3 ± 3.8 61.5 ± 1.8 61.2 ± 4.1 40.2 ± 2.6 21.9 ± 1.2

recall 13.0 ± 1.3 29.5 ± 1.9 58.2 ± 0.6 76.5 ± 0.7 83.3 ± 1.8

ε = 9
precision 66.3 ± 2.7 72.3 ± 4.6 68.1 ± 6.6 44.2 ± 3.6 23.8 ± 1.6

recall 15.9 ± 1.0 34.5 ± 0.4 64.7 ± 2.0 84.0 ± 1.6 90.4 ± 1.2

ε = 10
precision 73.8 ± 3.9 78.0 ± 3.7 73.4 ± 7.2 46.8 ± 3.4 24.6 ± 1.6

recall 17.6 ± 0.3 37.3 ± 0.8 69.8 ± 2.4 89.0 ± 0.5 93.4 ± 1.1

high k̂ = k/4 k̂ = k/2 k̂ = k k̂ = 2k k̂ = 4k

ε = 1
precision 2.1 ± 1.0 1.9 ± 0.6 1.6 ± 0.5 1.3 ± 0.3 1.1 ± 0.1

recall 0.5 ± 0.2 1.0 ± 0.3 1.6 ± 0.4 2.6 ± 0.6 4.5 ± 0.4

ε = 2
precision 5.5 ± 1.3 5.2 ± 0.4 3.2 ± 0.2 2.2 ± 0.0 1.6 ± 0.0

recall 1.4 ± 0.4 2.7 ± 0.2 3.2 ± 0.1 4.4 ± 0.2 6.3 ± 0.4

ε = 3
precision 13.7 ± 1.4 12.7 ± 0.3 7.6 ± 0.3 4.3 ± 0.3 2.6 ± 0.2

recall 3.5 ± 0.5 6.5 ± 0.5 7.8 ± 0.6 8.7 ± 0.9 10.6 ± 1.2

ε = 4
precision 26.1 ± 1.2 26.2 ± 0.7 15.4 ± 1.1 8.5 ± 0.5 4.8 ± 0.2

recall 6.6 ± 0.6 13.3 ± 0.5 15.6 ± 0.4 17.2 ± 0.3 19.5 ± 0.4

ε = 5
precision 38.9 ± 2.0 47.1 ± 1.7 31.4 ± 1.8 17.3 ± 1.2 9.5 ± 0.4

recall 9.9 ± 0.9 24.0 ± 2.0 31.8 ± 0.2 34.9 ± 0.7 38.6 ± 0.8

ε = 6
precision 58.1 ± 3.1 66.4 ± 2.9 50.1 ± 2.2 27.9 ± 1.3 15.2 ± 0.7

recall 14.8 ± 1.4 33.8 ± 2.9 50.8 ± 2.0 56.6 ± 1.7 61.7 ± 2.7

ε = 7
precision 73.9 ± 1.7 77.6 ± 0.5 63.4 ± 2.0 36.2 ± 1.7 19.2 ± 0.8

recall 18.8 ± 1.1 39.4 ± 2.2 64.4 ± 2.4 73.3 ± 1.4 77.7 ± 1.7

ε = 8
precision 84.5 ± 1.0 85.2 ± 1.3 68.0 ± 1.5 39.9 ± 1.0 21.0 ± 0.7

recall 21.5 ± 1.3 43.3 ± 2.7 69.0 ± 2.5 80.9 ± 2.1 85.1 ± 1.7

ε = 9
precision 90.7 ± 1.8 88.9 ± 0.7 73.7 ± 1.2 42.6 ± 1.4 22.4 ± 0.7

recall 23.1 ± 1.5 45.1 ± 2.3 74.7 ± 2.5 86.4 ± 1.6 90.6 ± 1.7

ε = 10
precision 94.0 ± 0.3 92.6 ± 0.7 76.1 ± 1.4 44.4 ± 1.9 23.2 ± 1.1

recall 23.9 ± 1.2 47.0 ± 2.5 77.2 ± 2.7 90.0 ± 0.8 94.1 ± 0.6



TABLE XVII: twitch-FR (EDGERAND)

low k̂ = k/4 k̂ = k/2 k̂ = k k̂ = 2k k̂ = 4k

ε = 1
precision 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

recall 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

ε = 2
precision 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

recall 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

ε = 3
precision 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

recall 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

ε = 4
precision 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

recall 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

ε = 5
precision 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

recall 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

ε = 6
precision 0.0 ± 0.0 6.7 ± 9.4 3.3 ± 4.7 1.7 ± 2.4 4.4 ± 2.2

recall 0.0 ± 0.0 3.3 ± 4.7 3.3 ± 4.7 3.3 ± 4.7 17.5 ± 8.9

ε = 7
precision 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 5.0 ± 4.1 8.6 ± 3.9

recall 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 10.0 ± 8.2 34.2 ± 15.9

ε = 8
precision 0.0 ± 0.0 6.7 ± 9.4 6.7 ± 9.4 15.6 ± 6.3 19.2 ± 1.2

recall 0.0 ± 0.0 3.3 ± 4.7 6.7 ± 9.4 30.8 ± 13.0 75.0 ± 4.1

ε = 9
precision 38.9 ± 7.9 28.3 ± 8.5 32.5 ± 3.5 35.6 ± 7.5 25.6 ± 0.8

recall 10.8 ± 1.2 14.2 ± 4.2 32.5 ± 3.5 70.0 ± 16.3 100.0± 0.0

ε = 10
precision 77.8 ± 15.7 80.0 ± 16.3 71.7 ± 2.4 49.4 ± 3.4 25.6 ± 0.8

recall 21.7 ± 2.4 40.0 ± 8.2 71.7 ± 2.4 96.7 ± 4.7 100.0± 0.0

unconstrained k̂ = k/4 k̂ = k/2 k̂ = k k̂ = 2k k̂ = 4k

ε = 1
precision 7.1 ± 7.2 3.8 ± 3.4 2.5 ± 2.0 1.8 ± 1.0 1.5 ± 0.6

recall 1.7 ± 1.8 1.8 ± 1.7 2.4 ± 1.9 3.4 ± 2.1 5.5 ± 2.6

ε = 2
precision 9.1 ± 9.4 5.4 ± 4.8 4.5 ± 3.1 3.7 ± 1.9 3.6 ± 1.3

recall 2.2 ± 2.3 2.6 ± 2.4 4.3 ± 3.1 6.9 ± 3.9 13.5 ± 5.3

ε = 3
precision 11.2 ± 10.3 9.1 ± 6.1 8.1 ± 4.2 9.1 ± 2.8 9.6 ± 2.7

recall 2.7 ± 2.5 4.3 ± 3.0 7.7 ± 4.3 17.0 ± 5.7 35.9 ± 11.2

ε = 4
precision 15.0 ± 12.7 16.7 ± 5.4 17.0 ± 4.9 18.7 ± 4.0 18.3 ± 2.8

recall 3.6 ± 3.1 7.8 ± 2.8 16.0 ± 5.0 35.0 ± 8.2 68.2 ± 11.7

ε = 5
precision 21.0 ± 10.1 23.9 ± 7.6 29.1 ± 6.5 36.0 ± 3.5 24.5 ± 0.8

recall 5.0 ± 2.6 11.3 ± 3.9 27.3 ± 7.0 67.2 ± 8.6 91.0 ± 3.0

ε = 6
precision 41.5 ± 6.2 47.9 ± 6.3 57.7 ± 4.6 46.4 ± 1.8 25.5 ± 0.9

recall 9.7 ± 1.8 22.4 ± 3.7 53.8 ± 6.0 86.4 ± 3.5 94.9 ± 1.9

ε = 7
precision 63.2 ± 4.1 68.1 ± 3.8 69.6 ± 3.8 48.9 ± 1.7 25.9 ± 0.7

recall 14.8 ± 1.3 31.8 ± 2.8 64.8 ± 5.3 90.9 ± 2.5 96.4 ± 0.9

ε = 8
precision 83.1 ± 3.9 84.0 ± 3.5 76.8 ± 3.2 49.8 ± 1.9 26.1 ± 0.9

recall 19.4 ± 1.4 39.2 ± 2.5 71.5 ± 2.5 92.5 ± 1.2 97.2 ± 0.6

ε = 9
precision 90.4 ± 1.2 91.5 ± 0.9 82.2 ± 3.9 51.0 ± 2.4 26.3 ± 1.0

recall 21.1 ± 0.8 42.6 ± 1.1 76.5 ± 2.3 94.8 ± 1.7 97.8 ± 0.7

ε = 10
precision 94.6 ± 0.3 92.6 ± 1.3 82.4 ± 2.7 51.1 ± 1.9 26.6 ± 0.9

recall 22.1 ± 0.8 43.2 ± 1.3 76.7 ± 1.6 94.9 ± 0.9 98.8 ± 0.4

high k̂ = k/4 k̂ = k/2 k̂ = k k̂ = 2k k̂ = 4k

ε = 1
precision 4.6 ± 4.2 3.7 ± 2.4 3.4 ± 0.9 3.2 ± 1.0 3.2 ± 0.5

recall 1.1 ± 1.1 1.8 ± 1.2 3.3 ± 1.0 6.4 ± 2.4 12.5 ± 2.9

ε = 2
precision 8.7 ± 2.4 8.5 ± 2.5 8.5 ± 3.2 8.1 ± 2.4 7.7 ± 1.2

recall 2.1 ± 0.7 4.2 ± 1.5 8.5 ± 3.7 15.9 ± 5.9 30.1 ± 6.6

ε = 3
precision 14.9 ± 1.6 18.3 ± 1.0 19.2 ± 0.2 18.2 ± 0.4 16.8 ± 0.5

recall 3.6 ± 0.5 8.8 ± 0.5 18.6 ± 1.5 35.3 ± 2.8 65.0 ± 5.1

ε = 4
precision 31.8 ± 3.0 32.6 ± 2.2 32.2 ± 0.4 32.9 ± 0.3 21.9 ± 0.5

recall 7.8 ± 1.3 15.8 ± 1.9 31.2 ± 2.3 63.7 ± 5.6 84.7 ± 6.4

ε = 5
precision 45.3 ± 2.5 49.6 ± 4.1 53.9 ± 1.1 44.2 ± 1.4 24.0 ± 1.1

recall 11.0 ± 1.5 24.2 ± 3.8 52.3 ± 5.5 85.5 ± 5.1 92.6 ± 4.3

ε = 6
precision 65.0 ± 1.6 71.7 ± 0.2 74.8 ± 1.9 46.8 ± 2.2 24.6 ± 1.3

recall 15.7 ± 1.4 34.8 ± 2.9 72.5 ± 6.7 90.3 ± 3.7 95.0 ± 3.4

ε = 7
precision 80.4 ± 2.6 84.5 ± 2.6 79.5 ± 1.1 48.6 ± 2.9 25.3 ± 1.9

recall 19.5 ± 2.0 41.0 ± 3.9 77.0 ± 5.8 93.6 ± 2.6 97.4 ± 1.4

ε = 8
precision 92.3 ± 2.3 92.8 ± 1.2 80.5 ± 1.3 48.4 ± 2.7 25.2 ± 1.7

recall 22.3 ± 1.8 45.0 ± 3.7 77.9 ± 5.5 93.3 ± 3.1 97.0 ± 2.1

ε = 9
precision 97.1 ± 1.2 96.0 ± 1.0 84.2 ± 1.4 49.0 ± 2.7 25.4 ± 1.9

recall 23.5 ± 2.1 46.5 ± 4.2 81.6 ± 6.2 94.6 ± 3.1 97.8 ± 1.2

ε = 10
precision 98.0 ± 0.8 97.2 ± 0.8 84.9 ± 1.1 49.2 ± 2.9 25.3 ± 1.8

recall 23.7 ± 2.1 47.1 ± 4.3 82.2 ± 6.6 94.8 ± 2.9 97.5 ± 1.8

TABLE XVIII: twitch-FR (LAPGRAPH)

low k̂ = k/4 k̂ = k/2 k̂ = k k̂ = 2k k̂ = 4k

ε = 1
precision 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

recall 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

ε = 2
precision 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 1.1 ± 1.6

recall 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 4.2 ± 5.9

ε = 3
precision 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 2.2 ± 3.1 1.9 ± 1.4

recall 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 4.2 ± 5.9 7.5 ± 5.4

ε = 4
precision 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 1.1 ± 1.6

recall 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 4.2 ± 5.9

ε = 5
precision 0.0 ± 0.0 0.0 ± 0.0 3.3 ± 4.7 3.9 ± 2.8 1.9 ± 1.4

recall 0.0 ± 0.0 0.0 ± 0.0 3.3 ± 4.7 7.5 ± 5.4 7.5 ± 5.4

ε = 6
precision 11.1 ± 15.7 6.7 ± 9.4 3.3 ± 4.7 5.6 ± 4.2 3.6 ± 1.0

recall 3.3 ± 4.7 3.3 ± 4.7 3.3 ± 4.7 10.8 ± 8.2 14.2 ± 4.2

ε = 7
precision 22.2 ± 31.4 13.3 ± 18.9 10.8 ± 8.2 5.6 ± 4.2 5.3 ± 1.7

recall 6.7 ± 9.4 6.7 ± 9.4 10.8 ± 8.2 10.8 ± 8.2 20.8 ± 7.2

ε = 8
precision 0.0 ± 0.0 6.7 ± 9.4 13.3 ± 12.5 8.3 ± 6.2 9.7 ± 2.4

recall 0.0 ± 0.0 3.3 ± 4.7 13.3 ± 12.5 16.7 ± 12.5 38.3 ± 10.3

ε = 9
precision 11.1 ± 15.7 6.7 ± 9.4 6.7 ± 9.4 13.3 ± 10.3 15.8 ± 6.6

recall 3.3 ± 4.7 3.3 ± 4.7 6.7 ± 9.4 26.7 ± 20.5 62.5 ± 27.0

ε = 10
precision 0.0 ± 0.0 6.7 ± 9.4 16.7 ± 12.5 22.2 ± 11.7 20.6 ± 3.4

recall 0.0 ± 0.0 3.3 ± 4.7 16.7 ± 12.5 44.2 ± 23.8 80.8 ± 15.3

unconstrained k̂ = k/4 k̂ = k/2 k̂ = k k̂ = 2k k̂ = 4k

ε = 1
precision 1.8 ± 0.3 2.1 ± 0.4 2.0 ± 0.4 1.4 ± 0.2 1.1 ± 0.2

recall 0.4 ± 0.1 1.0 ± 0.2 1.9 ± 0.5 2.7 ± 0.6 4.0 ± 0.8

ε = 2
precision 3.8 ± 0.8 4.3 ± 1.4 4.1 ± 0.9 2.7 ± 0.3 1.6 ± 0.3

recall 0.9 ± 0.2 2.0 ± 0.7 3.8 ± 1.0 5.0 ± 0.6 6.0 ± 1.2

ε = 3
precision 7.5 ± 0.8 7.7 ± 2.2 10.0 ± 0.8 6.1 ± 0.1 3.4 ± 0.2

recall 1.8 ± 0.2 3.6 ± 1.2 9.3 ± 1.1 11.4 ± 0.4 12.7 ± 0.9

ε = 4
precision 15.1 ± 5.6 17.9 ± 4.8 18.6 ± 2.8 12.2 ± 0.4 6.6 ± 0.2

recall 3.6 ± 1.5 8.4 ± 2.5 17.4 ± 3.2 22.8 ± 1.3 24.5 ± 1.7

ε = 5
precision 23.5 ± 9.0 29.0 ± 7.2 35.7 ± 3.1 22.9 ± 0.5 12.3 ± 0.3

recall 5.5 ± 2.3 13.6 ± 3.8 33.3 ± 4.0 42.6 ± 1.4 45.7 ± 1.9

ε = 6
precision 35.8 ± 8.4 47.0 ± 6.6 51.3 ± 4.1 33.4 ± 0.4 18.0 ± 0.2

recall 8.4 ± 2.3 22.0 ± 3.8 47.8 ± 5.0 62.1 ± 1.6 67.2 ± 2.5

ε = 7
precision 52.8 ± 6.5 62.3 ± 6.0 62.6 ± 3.2 40.1 ± 0.9 21.4 ± 0.6

recall 12.4 ± 1.9 29.1 ± 3.6 58.4 ± 4.2 74.7 ± 1.8 79.7 ± 1.8

ε = 8
precision 66.9 ± 5.9 73.3 ± 4.5 69.6 ± 2.8 43.8 ± 1.8 23.6 ± 0.7

recall 15.7 ± 1.8 34.2 ± 3.1 64.8 ± 3.4 81.5 ± 1.5 87.6 ± 1.6

ε = 9
precision 78.1 ± 4.2 81.1 ± 1.9 74.1 ± 1.2 46.9 ± 1.3 24.6 ± 0.8

recall 18.3 ± 1.6 37.8 ± 2.1 69.0 ± 3.1 87.3 ± 2.2 91.6 ± 1.2

ε = 10
precision 85.3 ± 1.4 85.9 ± 1.9 77.3 ± 2.0 48.2 ± 1.6 25.3 ± 0.7

recall 19.9 ± 1.0 40.1 ± 2.1 72.0 ± 2.7 89.7 ± 2.2 94.0 ± 0.7

high k̂ = k/4 k̂ = k/2 k̂ = k k̂ = 2k k̂ = 4k

ε = 1
precision 3.0 ± 1.0 3.2 ± 1.2 2.7 ± 0.7 2.4 ± 0.3 1.7 ± 0.2

recall 0.7 ± 0.2 1.5 ± 0.4 2.6 ± 0.4 4.5 ± 0.4 6.6 ± 0.2

ε = 2
precision 7.8 ± 0.6 8.4 ± 0.9 5.3 ± 0.7 3.5 ± 0.6 2.6 ± 0.3

recall 1.9 ± 0.0 4.1 ± 0.2 5.1 ± 0.2 6.7 ± 0.5 9.8 ± 0.5

ε = 3
precision 16.3 ± 1.2 17.3 ± 0.8 10.8 ± 1.4 6.2 ± 0.8 3.9 ± 0.4

recall 3.9 ± 0.3 8.3 ± 0.4 10.3 ± 0.4 11.8 ± 0.5 14.8 ± 0.2

ε = 4
precision 30.2 ± 0.6 33.9 ± 1.4 22.9 ± 1.7 12.9 ± 1.3 7.4 ± 0.6

recall 7.3 ± 0.7 16.4 ± 0.8 22.1 ± 0.6 24.7 ± 0.5 28.5 ± 0.4

ε = 5
precision 47.0 ± 1.9 54.0 ± 2.4 42.6 ± 2.6 23.7 ± 2.1 13.0 ± 1.1

recall 11.4 ± 1.1 26.2 ± 2.7 41.1 ± 1.2 45.5 ± 0.5 50.0 ± 1.4

ε = 6
precision 67.9 ± 2.5 73.1 ± 0.9 60.0 ± 0.9 33.9 ± 1.8 18.4 ± 1.2

recall 16.5 ± 1.8 35.4 ± 3.1 58.1 ± 4.1 65.4 ± 2.3 70.9 ± 1.7

ε = 7
precision 79.8 ± 3.8 83.4 ± 1.7 71.4 ± 2.0 41.0 ± 3.2 21.6 ± 1.5

recall 19.3 ± 1.9 40.4 ± 3.3 69.0 ± 4.1 78.9 ± 1.0 83.2 ± 1.5

ε = 8
precision 87.7 ± 2.9 89.5 ± 1.6 74.7 ± 1.5 43.7 ± 2.5 22.8 ± 1.5

recall 21.3 ± 2.0 43.4 ± 3.9 72.4 ± 5.5 84.2 ± 2.5 88.0 ± 2.1

ε = 9
precision 91.5 ± 2.1 91.9 ± 1.4 78.0 ± 1.0 46.0 ± 2.4 23.8 ± 1.5

recall 22.1 ± 1.8 44.6 ± 4.2 75.7 ± 7.3 88.7 ± 3.1 91.7 ± 2.3

ε = 10
precision 95.0 ± 0.9 93.9 ± 1.5 80.2 ± 0.6 46.7 ± 2.5 24.4 ± 1.6

recall 23.0 ± 2.0 45.5 ± 4.5 77.7 ± 6.0 90.1 ± 3.0 93.9 ± 2.1



TABLE XIX: twitch-ENGB (EDGERAND)

low k̂ = k/4 k̂ = k/2 k̂ = k k̂ = 2k k̂ = 4k

ε = 1
precision 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

recall 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

ε = 2
precision 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

recall 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

ε = 3
precision 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

recall 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

ε = 4
precision 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.7 ± 0.9 2.3 ± 1.2

recall 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 1.7 ± 2.4 8.4 ± 3.1

ε = 5
precision 8.3 ± 11.8 4.8 ± 6.7 2.6 ± 3.6 3.3 ± 0.9 5.0 ± 0.8

recall 2.1 ± 2.9 2.1 ± 2.9 2.1 ± 2.9 6.3 ± 1.1 19.7 ± 4.0

ε = 6
precision 13.1 ± 10.2 19.4 ± 6.5 18.2 ± 3.5 14.7 ± 1.9 9.7 ± 1.2

recall 4.2 ± 3.2 10.5 ± 3.7 18.5 ± 4.4 29.8 ± 8.7 39.5 ± 12.3

ε = 7
precision 13.1 ± 10.2 22.0 ± 5.9 18.4 ± 10.1 16.0 ± 3.3 14.0 ± 3.3

recall 3.8 ± 2.7 11.7 ± 3.0 20.1 ± 14.2 32.7 ± 12.3 58.4 ± 24.2

ε = 8
precision 56.0 ± 13.8 46.5 ± 12.8 37.7 ± 5.4 33.3 ± 3.8 20.7 ± 0.9

recall 16.9 ± 4.5 26.1 ± 9.8 39.5 ± 12.3 67.7 ± 18.9 81.9 ± 13.2

ε = 9
precision 60.7 ± 10.5 58.6 ± 2.1 54.6 ± 1.0 41.3 ± 1.9 26.0 ± 4.9

recall 18.0 ± 1.9 31.9 ± 6.2 55.9 ± 10.8 81.9 ± 13.2 100.0± 0.0

ε = 10
precision 83.3 ± 11.8 82.8 ± 4.1 74.1 ± 3.4 46.7 ± 6.8 26.0 ± 4.9

recall 25.6 ± 6.9 44.6 ± 5.2 75.6 ± 14.0 90.7 ± 6.7 100.0± 0.0

unconstrained k̂ = k/4 k̂ = k/2 k̂ = k k̂ = 2k k̂ = 4k

ε = 1
precision 1.1 ± 1.5 0.8 ± 0.7 0.5 ± 0.4 0.6 ± 0.5 0.4 ± 0.4

recall 0.4 ± 0.5 0.5 ± 0.4 0.7 ± 0.5 1.5 ± 1.2 2.2 ± 1.8

ε = 2
precision 1.1 ± 1.5 1.3 ± 1.0 1.3 ± 0.8 0.9 ± 0.2 0.7 ± 0.2

recall 0.3 ± 0.5 0.7 ± 0.6 1.3 ± 0.5 1.9 ± 0.4 3.3 ± 1.3

ε = 3
precision 0.0 ± 0.0 0.8 ± 1.1 1.2 ± 0.9 1.5 ± 0.6 1.9 ± 0.8

recall 0.0 ± 0.0 0.5 ± 0.7 1.5 ± 1.1 3.6 ± 1.8 8.7 ± 4.5

ε = 4
precision 2.1 ± 2.0 1.6 ± 1.7 3.2 ± 1.3 3.3 ± 1.0 4.5 ± 1.1

recall 0.7 ± 0.7 1.0 ± 1.1 3.8 ± 1.9 7.8 ± 3.4 20.7 ± 8.3

ε = 5
precision 3.7 ± 0.8 4.8 ± 1.1 8.1 ± 0.7 11.2 ± 1.2 13.5 ± 3.0

recall 1.1 ± 0.4 2.5 ± 0.1 9.1 ± 2.6 25.1 ± 7.9 61.8 ± 24.3

ε = 6
precision 15.2 ± 2.6 16.5 ± 0.9 22.9 ± 3.2 27.2 ± 3.7 20.1 ± 3.8

recall 4.1 ± 0.3 9.0 ± 1.7 25.9 ± 8.7 61.2 ± 19.9 84.3 ± 6.4

ε = 7
precision 30.5 ± 3.0 38.3 ± 5.0 40.1 ± 4.7 34.3 ± 3.8 21.2 ± 4.2

recall 8.3 ± 1.2 21.6 ± 6.7 44.4 ± 12.3 73.3 ± 9.8 88.6 ± 5.7

ε = 8
precision 58.4 ± 4.6 56.4 ± 2.0 52.3 ± 3.2 38.4 ± 5.3 22.7 ± 5.3

recall 16.2 ± 3.9 31.1 ± 7.4 56.5 ± 10.0 81.6 ± 9.1 94.3 ± 2.8

ε = 9
precision 77.9 ± 2.7 71.3 ± 2.9 61.3 ± 3.6 41.8 ± 7.7 23.1 ± 5.6

recall 21.5 ± 4.3 39.0 ± 8.6 66.4 ± 12.0 87.9 ± 6.9 95.6 ± 2.1

ε = 10
precision 79.5 ± 1.4 77.9 ± 3.4 64.7 ± 5.8 42.7 ± 9.4 23.1 ± 5.9

recall 21.9 ± 4.5 42.4 ± 7.9 69.5 ± 10.9 89.0 ± 5.2 95.4 ± 3.0

high k̂ = k/4 k̂ = k/2 k̂ = k k̂ = 2k k̂ = 4k

ε = 1
precision 4.2 ± 0.9 4.1 ± 1.2 4.0 ± 1.5 3.0 ± 0.8 2.9 ± 0.5

recall 1.1 ± 0.2 2.1 ± 0.6 4.1 ± 1.5 6.0 ± 1.7 11.9 ± 2.1

ε = 2
precision 6.1 ± 2.1 7.2 ± 2.9 7.0 ± 1.6 6.7 ± 0.7 6.0 ± 0.6

recall 1.5 ± 0.5 3.7 ± 1.5 7.1 ± 1.6 13.7 ± 1.4 24.4 ± 2.2

ε = 3
precision 19.9 ± 5.3 18.6 ± 1.5 17.0 ± 0.9 16.8 ± 0.6 15.2 ± 0.6

recall 5.1 ± 1.3 9.5 ± 0.7 17.3 ± 0.9 34.3 ± 1.0 61.9 ± 2.2

ε = 4
precision 29.7 ± 3.7 29.5 ± 2.2 31.2 ± 1.7 31.8 ± 1.6 21.4 ± 0.3

recall 7.6 ± 0.9 15.0 ± 1.0 31.8 ± 1.6 64.9 ± 3.2 87.3 ± 1.6

ε = 5
precision 48.0 ± 2.0 51.5 ± 1.7 55.7 ± 1.4 44.6 ± 0.6 23.6 ± 0.2

recall 12.2 ± 0.6 26.2 ± 1.0 56.7 ± 1.3 90.8 ± 1.2 96.2 ± 0.5

ε = 6
precision 71.9 ± 3.1 75.6 ± 3.3 76.9 ± 2.3 46.5 ± 0.5 24.1 ± 0.2

recall 18.3 ± 0.9 38.5 ± 1.8 78.4 ± 2.4 94.7 ± 1.0 98.1 ± 0.7

ε = 7
precision 88.2 ± 3.3 89.8 ± 1.3 81.5 ± 1.6 47.2 ± 0.6 24.3 ± 0.1

recall 22.5 ± 0.8 45.7 ± 0.7 83.1 ± 1.4 96.0 ± 0.9 98.9 ± 0.6

ε = 8
precision 94.4 ± 1.6 93.5 ± 1.0 80.0 ± 2.3 47.0 ± 0.7 24.3 ± 0.1

recall 24.0 ± 0.5 47.6 ± 0.7 81.5 ± 2.2 95.8 ± 1.1 98.8 ± 0.2

ε = 9
precision 97.4 ± 0.2 95.1 ± 0.8 81.2 ± 2.2 47.5 ± 0.8 24.3 ± 0.2

recall 24.8 ± 0.2 48.4 ± 0.5 82.7 ± 2.2 96.7 ± 1.4 98.8 ± 0.4

ε = 10
precision 98.4 ± 1.0 96.1 ± 1.0 81.7 ± 2.0 47.5 ± 0.5 24.3 ± 0.1

recall 25.1 ± 0.3 49.0 ± 0.6 83.2 ± 2.1 96.7 ± 0.7 99.0 ± 0.2

TABLE XX: twitch-ENGB (LAPGRAPH)

low k̂ = k/4 k̂ = k/2 k̂ = k k̂ = 2k k̂ = 4k

ε = 1
precision 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

recall 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

ε = 2
precision 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

recall 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

ε = 3
precision 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

recall 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

ε = 4
precision 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

recall 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

ε = 5
precision 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.7 ± 0.9 0.3 ± 0.5

recall 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 1.7 ± 2.4 1.7 ± 2.4

ε = 6
precision 8.3 ± 11.8 4.8 ± 6.7 5.2 ± 3.7 6.0 ± 1.6 3.7 ± 0.5

recall 2.1 ± 2.9 2.1 ± 2.9 5.4 ± 4.1 12.2 ± 4.2 14.3 ± 1.3

ε = 7
precision 13.1 ± 10.2 12.1 ± 12.1 7.8 ± 6.3 8.7 ± 2.5 9.0 ± 2.2

recall 3.8 ± 2.7 5.8 ± 5.1 7.5 ± 5.4 16.4 ± 1.7 34.4 ± 2.8

ε = 8
precision 38.1 ± 16.8 36.3 ± 9.3 22.1 ± 1.5 21.3 ± 1.9 15.3 ± 3.4

recall 11.0 ± 4.4 18.9 ± 3.3 22.3 ± 2.6 42.5 ± 8.1 58.8 ± 3.6

ε = 9
precision 51.2 ± 19.0 46.2 ± 8.0 35.2 ± 6.2 28.0 ± 0.0 17.3 ± 3.4

recall 15.2 ± 5.7 24.8 ± 4.9 36.9 ± 13.0 55.9 ± 10.8 66.8 ± 3.7

ε = 10
precision 47.6 ± 3.4 41.8 ± 10.3 40.4 ± 8.8 35.3 ± 6.6 21.0 ± 3.7

recall 14.3 ± 1.3 23.0 ± 8.6 42.3 ± 16.0 69.2 ± 12.7 81.1 ± 3.3

unconstrained k̂ = k/4 k̂ = k/2 k̂ = k k̂ = 2k k̂ = 4k

ε = 1
precision 0.5 ± 0.7 0.3 ± 0.4 0.1 ± 0.2 0.2 ± 0.2 0.2 ± 0.2

recall 0.2 ± 0.2 0.2 ± 0.2 0.2 ± 0.2 0.5 ± 0.4 1.0 ± 1.0

ε = 2
precision 1.1 ± 1.5 0.5 ± 0.8 0.4 ± 0.6 0.3 ± 0.4 0.3 ± 0.1

recall 0.3 ± 0.5 0.3 ± 0.5 0.5 ± 0.7 0.7 ± 0.9 1.2 ± 0.6

ε = 3
precision 3.7 ± 2.7 2.7 ± 0.7 2.1 ± 0.8 1.3 ± 0.6 0.8 ± 0.3

recall 0.9 ± 0.6 1.4 ± 0.4 2.1 ± 0.4 2.5 ± 0.7 3.4 ± 0.9

ε = 4
precision 5.3 ± 1.5 6.1 ± 2.5 4.9 ± 1.5 3.0 ± 1.2 1.8 ± 0.6

recall 1.4 ± 0.4 3.4 ± 1.7 5.2 ± 1.8 6.0 ± 1.7 7.4 ± 1.8

ε = 5
precision 11.6 ± 5.9 12.5 ± 5.6 12.0 ± 2.7 7.4 ± 1.6 4.3 ± 1.2

recall 3.0 ± 1.6 6.9 ± 3.8 12.9 ± 3.7 15.8 ± 3.7 18.1 ± 4.2

ε = 6
precision 21.0 ± 3.9 24.7 ± 5.2 21.5 ± 1.5 14.8 ± 1.4 8.9 ± 1.5

recall 5.8 ± 1.5 13.7 ± 4.5 23.7 ± 6.2 31.7 ± 5.0 37.5 ± 3.9

ε = 7
precision 34.8 ± 6.1 34.3 ± 3.7 33.5 ± 0.5 23.2 ± 3.4 13.8 ± 3.0

recall 9.9 ± 3.3 19.2 ± 5.5 36.7 ± 8.3 49.0 ± 5.0 57.5 ± 2.6

ε = 8
precision 46.3 ± 1.8 49.2 ± 2.3 45.7 ± 2.8 31.0 ± 4.9 17.6 ± 4.4

recall 13.0 ± 3.2 27.0 ± 5.9 49.5 ± 9.1 65.4 ± 6.3 72.8 ± 1.0

ε = 9
precision 64.2 ± 6.7 64.4 ± 2.7 52.7 ± 1.8 35.6 ± 6.8 19.9 ± 4.8

recall 17.4 ± 2.6 35.2 ± 7.5 57.3 ± 11.3 74.5 ± 4.6 82.2 ± 1.7

ε = 10
precision 75.8 ± 4.2 71.8 ± 3.4 61.2 ± 4.9 40.0 ± 7.9 21.9 ± 5.7

recall 20.9 ± 4.1 39.3 ± 8.2 65.9 ± 10.5 83.8 ± 4.8 90.3 ± 0.4

high k̂ = k/4 k̂ = k/2 k̂ = k k̂ = 2k k̂ = 4k

ε = 1
precision 1.7 ± 0.4 1.2 ± 0.3 1.1 ± 0.3 0.9 ± 0.2 0.4 ± 0.1

recall 0.4 ± 0.1 0.6 ± 0.1 1.1 ± 0.4 1.7 ± 0.3 1.7 ± 0.3

ε = 2
precision 3.2 ± 0.5 2.0 ± 0.4 1.5 ± 0.2 1.1 ± 0.2 0.6 ± 0.1

recall 0.8 ± 0.1 1.0 ± 0.2 1.6 ± 0.2 2.3 ± 0.3 2.3 ± 0.3

ε = 3
precision 9.3 ± 2.1 5.4 ± 1.2 3.4 ± 0.8 2.2 ± 0.4 1.1 ± 0.2

recall 2.4 ± 0.5 2.8 ± 0.6 3.5 ± 0.8 4.5 ± 0.7 4.5 ± 0.7

ε = 4
precision 24.7 ± 2.5 13.2 ± 1.4 7.9 ± 0.8 5.1 ± 0.5 3.1 ± 0.9

recall 6.3 ± 0.6 6.7 ± 0.7 8.0 ± 0.7 10.5 ± 0.9 12.5 ± 3.6

ε = 5
precision 50.1 ± 1.4 30.9 ± 1.3 17.4 ± 1.0 10.5 ± 1.0 6.3 ± 0.3

recall 12.8 ± 0.3 15.8 ± 0.6 17.7 ± 0.9 21.4 ± 1.9 25.7 ± 1.3

ε = 6
precision 76.0 ± 1.2 61.0 ± 0.6 35.2 ± 0.5 19.9 ± 0.5 11.9 ± 0.4

recall 19.4 ± 0.2 31.1 ± 0.4 35.8 ± 0.4 40.5 ± 0.8 48.3 ± 1.6

ε = 7
precision 88.3 ± 1.5 83.3 ± 1.9 56.3 ± 1.2 31.4 ± 0.9 17.3 ± 0.5

recall 22.5 ± 0.3 42.5 ± 1.0 57.4 ± 1.0 64.0 ± 1.5 70.3 ± 1.7

ε = 8
precision 93.0 ± 0.7 89.7 ± 1.9 67.3 ± 1.7 37.9 ± 0.8 20.2 ± 0.5

recall 23.7 ± 0.1 45.7 ± 1.0 68.6 ± 1.6 77.2 ± 1.3 82.1 ± 1.6

ε = 9
precision 96.0 ± 1.4 92.5 ± 0.5 73.3 ± 1.7 41.9 ± 0.8 21.9 ± 0.3

recall 24.4 ± 0.4 47.1 ± 0.3 74.7 ± 1.6 85.3 ± 1.4 89.0 ± 1.0

ε = 10
precision 97.3 ± 0.6 94.2 ± 1.0 77.3 ± 2.2 44.3 ± 0.4 22.9 ± 0.2

recall 24.8 ± 0.2 48.0 ± 0.4 78.8 ± 2.1 90.3 ± 0.6 93.3 ± 0.6



TABLE XXI: twitch-PTBR (EDGERAND)

low k̂ = k/4 k̂ = k/2 k̂ = k k̂ = 2k k̂ = 4k

ε = 1
precision 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

recall 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

ε = 2
precision 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.3 ± 0.5 0.3 ± 0.5

recall 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.6 ± 0.9 1.3 ± 1.8

ε = 3
precision 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.3 ± 0.5 0.2 ± 0.2

recall 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.6 ± 0.9 0.6 ± 0.9

ε = 4
precision 0.0 ± 0.0 1.3 ± 1.9 0.7 ± 0.9 1.2 ± 0.9 2.0 ± 0.6

recall 0.0 ± 0.0 0.6 ± 0.9 0.6 ± 0.9 2.4 ± 1.7 8.3 ± 2.2

ε = 5
precision 0.0 ± 0.0 2.1 ± 1.5 4.3 ± 2.7 4.1 ± 1.5 5.1 ± 0.1

recall 0.0 ± 0.0 1.1 ± 0.8 4.3 ± 2.5 8.4 ± 2.6 21.4 ± 1.5

ε = 6
precision 13.9 ± 6.9 13.7 ± 3.0 13.0 ± 1.0 13.8 ± 2.1 14.2 ± 1.2

recall 3.6 ± 1.6 7.2 ± 1.5 13.6 ± 1.7 28.9 ± 5.5 59.1 ± 7.8

ε = 7
precision 40.4 ± 6.5 31.2 ± 2.6 32.2 ± 1.6 28.9 ± 2.2 23.1 ± 1.3

recall 10.8 ± 1.6 16.5 ± 2.2 33.8 ± 3.5 60.3 ± 7.3 95.9 ± 0.7

ε = 8
precision 60.1 ± 2.7 53.5 ± 3.9 59.7 ± 0.7 45.3 ± 1.3 24.1 ± 1.4

recall 16.1 ± 1.0 28.4 ± 3.8 62.3 ± 3.3 93.9 ± 2.6 100.0± 0.0

ε = 9
precision 77.7 ± 2.6 80.8 ± 0.6 69.8 ± 2.3 47.4 ± 2.6 23.9 ± 1.5

recall 20.8 ± 1.2 42.7 ± 3.1 73.0 ± 6.3 98.2 ± 0.1 98.9 ± 0.8

ε = 10
precision 90.7 ± 4.3 91.1 ± 2.6 79.6 ± 1.3 47.1 ± 2.2 24.1 ± 1.4

recall 24.3 ± 2.3 48.1 ± 3.5 83.1 ± 5.1 97.6 ± 1.0 100.0± 0.0

unconstrained k̂ = k/4 k̂ = k/2 k̂ = k k̂ = 2k k̂ = 4k

ε = 1
precision 5.2 ± 2.3 3.4 ± 1.0 3.4 ± 1.2 3.6 ± 1.0 4.0 ± 0.8

recall 1.4 ± 0.8 1.8 ± 0.8 3.8 ± 1.9 8.0 ± 3.5 17.5 ± 6.9

ε = 2
precision 7.3 ± 1.6 6.9 ± 2.1 7.3 ± 1.5 8.9 ± 0.1 10.1 ± 0.5

recall 2.0 ± 0.7 3.8 ± 1.7 8.0 ± 3.2 18.6 ± 4.6 42.0 ± 9.7

ε = 3
precision 11.5 ± 2.1 15.7 ± 1.2 18.3 ± 0.2 20.4 ± 1.0 17.7 ± 1.3

recall 3.1 ± 1.2 8.3 ± 2.4 19.2 ± 4.8 42.9 ± 11.2 73.3 ± 15.9

ε = 4
precision 24.5 ± 4.4 28.8 ± 1.4 34.5 ± 3.6 33.0 ± 2.1 22.6 ± 4.8

recall 6.7 ± 2.6 15.3 ± 4.3 37.0 ± 11.9 70.0 ± 19.9 89.6 ± 6.9

ε = 5
precision 41.3 ± 6.0 49.4 ± 4.9 51.9 ± 2.8 40.5 ± 5.7 24.0 ± 6.1

recall 11.2 ± 3.9 26.5 ± 8.4 54.9 ± 15.5 81.9 ± 11.2 94.1 ± 3.9

ε = 6
precision 66.0 ± 5.5 70.8 ± 3.7 65.7 ± 2.8 45.5 ± 9.6 25.1 ± 7.0

recall 17.7 ± 5.5 37.6 ± 10.8 68.2 ± 15.0 90.4 ± 7.0 97.8 ± 1.7

ε = 7
precision 84.4 ± 2.3 83.7 ± 2.0 73.6 ± 6.3 47.7 ± 11.9 25.4 ± 7.4

recall 22.2 ± 5.8 44.0 ± 11.3 75.6 ± 14.0 93.8 ± 4.2 98.7 ± 0.8

ε = 8
precision 92.0 ± 1.3 90.9 ± 1.7 77.1 ± 8.4 48.2 ± 11.8 25.3 ± 7.3

recall 24.1 ± 5.9 47.5 ± 11.5 78.6 ± 12.9 94.8 ± 4.6 98.7 ± 1.1

ε = 9
precision 95.4 ± 1.4 93.2 ± 1.1 78.4 ± 8.1 48.7 ± 12.2 25.4 ± 7.4

recall 25.1 ± 6.5 48.9 ± 12.2 80.1 ± 13.6 95.6 ± 4.1 98.9 ± 0.9

ε = 10
precision 95.6 ± 0.8 93.7 ± 1.3 78.3 ± 9.0 48.7 ± 12.4 25.4 ± 7.4

recall 25.1 ± 6.4 49.1 ± 12.1 79.8 ± 12.8 95.5 ± 3.8 99.0 ± 0.9

high k̂ = k/4 k̂ = k/2 k̂ = k k̂ = 2k k̂ = 4k

ε = 1
precision 5.2 ± 2.3 3.4 ± 1.0 3.4 ± 1.2 3.6 ± 1.0 4.0 ± 0.8

recall 1.4 ± 0.8 1.8 ± 0.8 3.8 ± 1.9 8.0 ± 3.5 17.5 ± 6.9

ε = 2
precision 7.3 ± 1.6 6.9 ± 2.1 7.3 ± 1.5 8.9 ± 0.1 10.1 ± 0.5

recall 2.0 ± 0.7 3.8 ± 1.7 8.0 ± 3.2 18.6 ± 4.6 42.0 ± 9.7

ε = 3
precision 11.5 ± 2.1 15.7 ± 1.2 18.3 ± 0.2 20.4 ± 1.0 17.7 ± 1.3

recall 3.1 ± 1.2 8.3 ± 2.4 19.2 ± 4.8 42.9 ± 11.2 73.3 ± 15.9

ε = 4
precision 24.5 ± 4.4 28.8 ± 1.4 34.5 ± 3.6 33.0 ± 2.1 22.6 ± 4.8

recall 6.7 ± 2.6 15.3 ± 4.3 37.0 ± 11.9 70.0 ± 19.9 89.6 ± 6.9

ε = 5
precision 41.3 ± 6.0 49.4 ± 4.9 51.9 ± 2.8 40.5 ± 5.7 24.0 ± 6.1

recall 11.2 ± 3.9 26.5 ± 8.4 54.9 ± 15.5 81.9 ± 11.2 94.1 ± 3.9

ε = 6
precision 66.0 ± 5.5 70.8 ± 3.7 65.7 ± 2.8 45.5 ± 9.6 25.1 ± 7.0

recall 17.7 ± 5.5 37.6 ± 10.8 68.2 ± 15.0 90.4 ± 7.0 97.8 ± 1.7

ε = 7
precision 84.4 ± 2.3 83.7 ± 2.0 73.6 ± 6.3 47.7 ± 11.9 25.4 ± 7.4

recall 22.2 ± 5.8 44.0 ± 11.3 75.6 ± 14.0 93.8 ± 4.2 98.7 ± 0.8

ε = 8
precision 92.0 ± 1.3 90.9 ± 1.7 77.1 ± 8.4 48.2 ± 11.8 25.3 ± 7.3

recall 24.1 ± 5.9 47.5 ± 11.5 78.6 ± 12.9 94.8 ± 4.6 98.7 ± 1.1

ε = 9
precision 95.4 ± 1.4 93.2 ± 1.1 78.4 ± 8.1 48.7 ± 12.2 25.4 ± 7.4

recall 25.1 ± 6.5 48.9 ± 12.2 80.1 ± 13.6 95.6 ± 4.1 98.9 ± 0.9

ε = 10
precision 95.6 ± 0.8 93.7 ± 1.3 78.3 ± 9.0 48.7 ± 12.4 25.4 ± 7.4

recall 25.1 ± 6.4 49.1 ± 12.1 79.8 ± 12.8 95.5 ± 3.8 99.0 ± 0.9

TABLE XXII: twitch-PTBR (LAPGRAPH)

low k̂ = k/4 k̂ = k/2 k̂ = k k̂ = 2k k̂ = 4k

ε = 1
precision 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.3 ± 0.2

recall 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 1.1 ± 0.8

ε = 2
precision 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.5 ± 0.4 0.5 ± 0.4

recall 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 1.1 ± 0.8 2.3 ± 1.6

ε = 3
precision 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.3 ± 0.2

recall 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 1.1 ± 0.8

ε = 4
precision 2.1 ± 2.9 1.0 ± 1.5 2.3 ± 0.7 2.7 ± 1.0 1.8 ± 0.5

recall 0.6 ± 0.8 0.6 ± 0.8 2.4 ± 0.8 5.4 ± 1.8 7.2 ± 1.8

ε = 5
precision 4.6 ± 3.3 3.4 ± 2.6 2.4 ± 1.7 4.0 ± 0.7 4.3 ± 0.5

recall 1.2 ± 0.9 1.8 ± 1.4 2.5 ± 1.7 8.3 ± 1.6 17.9 ± 2.4

ε = 6
precision 6.7 ± 0.7 6.8 ± 0.8 10.2 ± 0.7 10.2 ± 0.9 8.9 ± 0.1

recall 1.8 ± 0.1 3.6 ± 0.2 10.7 ± 0.9 21.3 ± 3.0 36.8 ± 1.7

ε = 7
precision 22.8 ± 5.7 17.1 ± 2.1 15.0 ± 2.2 14.4 ± 1.7 13.9 ± 0.9

recall 6.0 ± 1.2 9.0 ± 0.5 15.5 ± 1.4 30.1 ± 5.1 58.1 ± 6.8

ε = 8
precision 27.4 ± 8.2 24.2 ± 5.7 23.3 ± 2.0 22.5 ± 3.9 19.7 ± 1.6

recall 7.2 ± 1.9 12.6 ± 2.1 24.4 ± 2.6 47.1 ± 10.2 82.2 ± 10.5

ε = 9
precision 22.3 ± 2.6 27.0 ± 1.4 27.2 ± 2.1 30.1 ± 1.5 21.9 ± 0.2

recall 5.9 ± 0.6 14.3 ± 0.7 28.4 ± 3.0 62.8 ± 6.4 90.9 ± 4.5

ε = 10
precision 40.9 ± 9.5 39.7 ± 3.1 39.0 ± 2.9 39.3 ± 1.9 23.1 ± 0.7

recall 10.8 ± 2.0 20.8 ± 0.4 40.8 ± 4.6 81.8 ± 7.5 95.7 ± 2.5

unconstrained k̂ = k/4 k̂ = k/2 k̂ = k k̂ = 2k k̂ = 4k

ε = 1
precision 6.1 ± 0.8 5.0 ± 0.3 4.2 ± 0.4 3.6 ± 0.6 2.9 ± 0.3

recall 1.6 ± 0.3 2.6 ± 0.6 4.4 ± 1.0 7.4 ± 1.1 12.1 ± 2.7

ε = 2
precision 12.0 ± 1.8 11.0 ± 0.9 9.6 ± 0.7 7.2 ± 1.2 4.8 ± 0.6

recall 3.1 ± 0.6 5.6 ± 1.1 10.1 ± 2.6 14.4 ± 1.9 19.6 ± 3.2

ε = 3
precision 18.6 ± 1.3 19.8 ± 1.1 19.8 ± 1.2 14.1 ± 3.3 8.5 ± 1.6

recall 4.8 ± 1.1 10.5 ± 2.9 20.8 ± 5.2 27.9 ± 1.9 33.8 ± 3.5

ε = 4
precision 25.0 ± 1.8 33.2 ± 3.8 33.8 ± 2.9 23.9 ± 5.5 13.7 ± 3.3

recall 6.7 ± 2.0 17.9 ± 5.9 35.6 ± 9.7 47.3 ± 3.0 54.1 ± 3.0

ε = 5
precision 41.3 ± 0.9 49.7 ± 4.2 47.9 ± 2.8 32.8 ± 6.8 18.5 ± 4.5

recall 10.9 ± 2.9 26.5 ± 8.1 49.7 ± 10.8 65.3 ± 5.2 73.0 ± 3.8

ε = 6
precision 55.2 ± 6.3 62.6 ± 4.0 58.6 ± 4.0 39.0 ± 9.0 21.7 ± 5.7

recall 14.9 ± 4.9 33.3 ± 9.7 60.5 ± 12.3 77.0 ± 4.7 84.9 ± 2.8

ε = 7
precision 66.6 ± 6.5 71.8 ± 5.1 66.0 ± 5.1 42.8 ± 10.3 23.1 ± 6.2

recall 17.8 ± 5.6 38.2 ± 11.1 67.9 ± 13.1 84.4 ± 4.4 90.4 ± 2.4

ε = 8
precision 75.1 ± 4.9 78.0 ± 3.4 68.6 ± 5.1 44.6 ± 10.5 24.0 ± 6.6

recall 20.0 ± 5.8 41.2 ± 11.0 70.7 ± 14.0 88.1 ± 5.1 93.9 ± 2.2

ε = 9
precision 81.5 ± 5.5 84.1 ± 3.3 73.2 ± 5.7 46.0 ± 10.4 24.7 ± 6.9

recall 21.7 ± 6.5 44.5 ± 12.2 75.3 ± 14.3 90.9 ± 5.8 96.2 ± 1.6

ε = 10
precision 87.2 ± 2.2 88.2 ± 1.5 75.8 ± 7.4 47.1 ± 11.5 24.9 ± 7.0

recall 23.0 ± 6.1 46.4 ± 12.0 77.6 ± 13.6 92.7 ± 4.6 96.9 ± 1.6

high k̂ = k/4 k̂ = k/2 k̂ = k k̂ = 2k k̂ = 4k

ε = 1
precision 10.3 ± 0.9 9.1 ± 0.1 8.3 ± 0.5 6.8 ± 0.4 5.4 ± 0.5

recall 2.5 ± 0.2 4.5 ± 0.6 8.1 ± 0.7 13.3 ± 1.3 21.0 ± 2.2

ε = 2
precision 21.8 ± 1.4 19.9 ± 0.8 14.7 ± 0.7 10.4 ± 0.5 7.6 ± 0.6

recall 5.4 ± 0.4 9.8 ± 0.9 14.5 ± 1.0 20.4 ± 1.7 29.7 ± 3.3

ε = 3
precision 40.2 ± 2.8 37.8 ± 2.2 28.7 ± 2.1 18.0 ± 1.5 11.3 ± 1.0

recall 9.8 ± 0.6 18.5 ± 1.5 28.0 ± 1.3 35.2 ± 1.2 44.3 ± 1.9

ε = 4
precision 53.9 ± 1.3 58.4 ± 1.5 48.4 ± 4.9 28.2 ± 2.8 16.3 ± 1.5

recall 13.2 ± 1.2 28.7 ± 2.8 47.2 ± 1.0 54.9 ± 1.3 63.7 ± 1.6

ε = 5
precision 70.0 ± 0.6 73.2 ± 1.4 64.0 ± 5.2 37.3 ± 3.7 20.5 ± 2.0

recall 17.2 ± 1.8 36.0 ± 3.6 62.5 ± 2.1 72.7 ± 1.3 79.9 ± 1.6

ε = 6
precision 79.9 ± 1.1 82.0 ± 1.7 74.2 ± 5.7 42.9 ± 4.3 22.9 ± 2.4

recall 19.7 ± 2.2 40.4 ± 3.9 72.5 ± 2.7 83.6 ± 1.0 89.2 ± 0.9

ε = 7
precision 86.8 ± 0.7 89.1 ± 0.7 80.0 ± 5.9 46.0 ± 5.0 24.0 ± 2.6

recall 21.4 ± 2.3 43.9 ± 4.8 78.2 ± 3.3 89.6 ± 0.3 93.7 ± 0.3

ε = 8
precision 89.8 ± 1.5 90.6 ± 2.1 79.5 ± 5.4 47.5 ± 5.0 24.6 ± 2.7

recall 22.1 ± 2.3 44.6 ± 4.1 77.8 ± 3.6 92.5 ± 0.6 95.9 ± 0.4

ε = 9
precision 93.5 ± 1.3 94.4 ± 1.2 83.5 ± 5.9 48.5 ± 5.1 25.0 ± 2.7

recall 23.0 ± 2.3 46.5 ± 4.7 81.6 ± 3.7 94.6 ± 0.7 97.3 ± 0.2

ε = 10
precision 95.4 ± 0.9 95.8 ± 1.0 85.5 ± 6.3 49.5 ± 5.3 25.2 ± 2.8

recall 23.5 ± 2.5 47.2 ± 4.9 83.6 ± 3.7 96.4 ± 0.4 98.3 ± 0.1



TABLE XXIII: PPI (EDGERAND)

low k̂ = k/4 k̂ = k/2 k̂ = k k̂ = 2k k̂ = 4k

ε = 1
precision 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

recall 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

ε = 2
precision 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

recall 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

ε = 3
precision 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

recall 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

ε = 4
precision 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

recall 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

ε = 5
precision 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 1.0 ± 0.8

recall 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 3.7 ± 2.8

ε = 6
precision 0.0 ± 0.0 0.0 ± 0.0 2.7 ± 3.8 3.3 ± 2.5 4.3 ± 3.1

recall 0.0 ± 0.0 0.0 ± 0.0 2.8 ± 3.9 6.2 ± 4.5 16.4 ± 11.6

ε = 7
precision 4.8 ± 6.7 5.1 ± 3.6 7.9 ± 3.3 14.7 ± 7.5 15.3 ± 6.6

recall 1.4 ± 2.0 2.5 ± 1.8 7.4 ± 3.8 27.5 ± 15.3 57.0 ± 27.7

ε = 8
precision 14.3 ± 11.7 24.9 ± 6.8 26.4 ± 4.0 32.7 ± 7.4 27.7 ± 2.6

recall 3.9 ± 3.4 12.0 ± 4.0 24.3 ± 6.5 60.1 ± 20.7 97.9 ± 2.9

ε = 9
precision 51.2 ± 19.4 55.3 ± 15.3 54.1 ± 7.4 52.7 ± 4.1 28.3 ± 3.3

recall 13.4 ± 5.1 26.1 ± 6.5 48.9 ± 8.1 93.8 ± 8.8 100.0± 0.0

ε = 10
precision 59.5 ± 8.9 77.7 ± 5.4 78.9 ± 4.1 56.7 ± 6.6 28.3 ± 3.3

recall 15.7 ± 3.7 37.2 ± 6.3 71.1 ± 5.8 100.0± 0.0 100.0± 0.0

unconstrained k̂ = k/4 k̂ = k/2 k̂ = k k̂ = 2k k̂ = 4k

ε = 1
precision 0.0 ± 0.0 0.5 ± 0.8 0.4 ± 0.3 0.5 ± 0.2 0.6 ± 0.2

recall 0.0 ± 0.0 0.2 ± 0.3 0.4 ± 0.3 1.1 ± 0.5 2.5 ± 0.6

ε = 2
precision 1.6 ± 2.2 1.6 ± 1.1 1.6 ± 0.7 1.6 ± 0.7 1.1 ± 0.4

recall 0.5 ± 0.7 0.9 ± 0.7 1.7 ± 0.8 3.4 ± 2.0 4.7 ± 1.7

ε = 3
precision 3.7 ± 2.0 4.5 ± 1.6 4.0 ± 1.6 3.3 ± 1.1 3.2 ± 0.7

recall 1.0 ± 0.6 2.4 ± 1.1 4.3 ± 2.1 6.7 ± 2.2 12.8 ± 1.7

ε = 4
precision 8.5 ± 2.0 6.4 ± 2.6 6.9 ± 1.5 7.4 ± 1.3 6.6 ± 1.5

recall 2.3 ± 0.8 3.4 ± 1.7 7.2 ± 1.7 15.1 ± 1.8 26.7 ± 3.3

ε = 5
precision 9.5 ± 3.4 12.3 ± 2.3 12.5 ± 3.0 12.5 ± 2.1 19.1 ± 1.1

recall 2.6 ± 1.2 6.4 ± 1.8 12.8 ± 2.4 25.5 ± 3.0 78.4 ± 4.5

ε = 6
precision 20.1 ± 5.8 20.8 ± 6.0 24.9 ± 1.6 41.5 ± 2.8 24.4 ± 2.7

recall 5.2 ± 1.4 10.6 ± 2.4 25.8 ± 2.9 85.7 ± 9.9 99.7 ± 0.2

ε = 7
precision 33.3 ± 5.6 42.9 ± 5.1 59.7 ± 3.9 48.8 ± 5.5 24.4 ± 2.7

recall 8.5 ± 0.7 21.9 ± 0.7 61.5 ± 3.8 99.7 ± 0.2 99.7 ± 0.2

ε = 8
precision 54.5 ± 6.5 70.1 ± 4.0 78.0 ± 2.8 48.8 ± 5.5 24.4 ± 2.7

recall 14.3 ± 3.0 36.4 ± 5.4 80.5 ± 6.9 99.7 ± 0.2 99.7 ± 0.2

ε = 9
precision 82.5 ± 3.4 88.3 ± 0.4 85.7 ± 4.4 49.0 ± 5.4 24.5 ± 2.7

recall 21.6 ± 3.2 45.7 ± 5.1 88.3 ± 5.4 100.0± 0.0 100.0± 0.0

ε = 10
precision 90.5 ± 2.2 93.3 ± 1.0 87.9 ± 5.6 49.0 ± 5.4 24.5 ± 2.7

recall 23.7 ± 3.2 48.4 ± 5.7 90.4 ± 4.3 100.0± 0.0 100.0± 0.0

high k̂ = k/4 k̂ = k/2 k̂ = k k̂ = 2k k̂ = 4k

ε = 1
precision 2.5 ± 1.1 2.2 ± 0.6 2.6 ± 0.2 3.0 ± 0.2 3.2 ± 0.1

recall 0.5 ± 0.2 0.9 ± 0.3 2.3 ± 0.1 5.2 ± 0.2 11.1 ± 0.7

ε = 2
precision 8.0 ± 2.0 8.5 ± 1.7 8.1 ± 1.0 8.1 ± 0.6 7.9 ± 0.4

recall 1.7 ± 0.4 3.7 ± 0.6 7.0 ± 0.6 14.0 ± 0.5 27.4 ± 0.2

ε = 3
precision 19.2 ± 3.3 19.6 ± 0.9 18.9 ± 1.1 18.0 ± 1.2 18.0 ± 0.6

recall 4.2 ± 0.6 8.5 ± 0.2 16.3 ± 0.6 31.1 ± 1.0 62.3 ± 0.5

ε = 4
precision 38.9 ± 1.7 38.8 ± 1.6 36.6 ± 1.4 35.5 ± 0.8 28.3 ± 1.1

recall 8.4 ± 0.3 16.8 ± 0.4 31.8 ± 0.6 61.6 ± 1.5 98.3 ± 0.1

ε = 5
precision 59.8 ± 1.8 58.1 ± 0.9 58.6 ± 0.4 57.3 ± 2.3 28.7 ± 1.2

recall 13.0 ± 0.5 25.2 ± 0.7 50.9 ± 1.7 99.4 ± 0.1 99.6 ± 0.1

ε = 6
precision 77.1 ± 2.1 77.3 ± 1.5 79.4 ± 1.3 57.6 ± 2.4 28.8 ± 1.2

recall 16.7 ± 0.7 33.6 ± 1.4 69.0 ± 2.2 99.9 ± 0.1 99.9 ± 0.1

ε = 7
precision 89.3 ± 2.4 90.0 ± 1.2 91.6 ± 1.2 57.7 ± 2.3 28.8 ± 1.2

recall 19.4 ± 0.7 39.1 ± 1.4 79.6 ± 3.1 100.0± 0.0 100.0± 0.0

ε = 8
precision 95.4 ± 1.3 96.0 ± 1.0 95.7 ± 0.7 57.7 ± 2.3 28.8 ± 1.2

recall 20.7 ± 0.7 41.7 ± 1.4 83.1 ± 3.1 100.0± 0.0 100.0± 0.0

ε = 9
precision 97.2 ± 0.4 97.9 ± 0.3 97.0 ± 0.2 57.7 ± 2.3 28.8 ± 1.2

recall 21.1 ± 0.9 42.5 ± 1.8 84.3 ± 3.4 100.0± 0.0 100.0± 0.0

ε = 10
precision 99.0 ± 0.5 99.1 ± 0.1 97.6 ± 0.2 57.7 ± 2.3 28.8 ± 1.2

recall 21.5 ± 0.8 43.1 ± 1.7 84.8 ± 3.2 100.0± 0.0 100.0± 0.0

TABLE XXIV: PPI (LAPGRAPH)

low k̂ = k/4 k̂ = k/2 k̂ = k k̂ = 2k k̂ = 4k

ε = 1
precision 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

recall 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

ε = 2
precision 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.3 ± 0.5

recall 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 1.1 ± 1.6

ε = 3
precision 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.3 ± 0.5

recall 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 1.1 ± 1.6

ε = 4
precision 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

recall 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

ε = 5
precision 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.7 ± 0.9 1.3 ± 1.2

recall 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 1.1 ± 1.6 4.8 ± 4.2

ε = 6
precision 0.0 ± 0.0 0.0 ± 0.0 1.3 ± 1.9 4.0 ± 1.6 5.0 ± 0.8

recall 0.0 ± 0.0 0.0 ± 0.0 1.1 ± 1.6 6.9 ± 2.6 18.0 ± 3.9

ε = 7
precision 0.0 ± 0.0 5.1 ± 3.6 6.7 ± 6.8 8.0 ± 3.3 13.0 ± 4.5

recall 0.0 ± 0.0 2.5 ± 1.8 6.0 ± 5.8 14.5 ± 6.1 46.8 ± 16.7

ε = 8
precision 4.8 ± 6.7 15.4 ± 12.6 14.7 ± 13.2 18.0 ± 7.1 19.0 ± 5.7

recall 1.4 ± 2.0 7.4 ± 5.7 13.4 ± 11.3 33.2 ± 14.8 68.8 ± 22.5

ε = 9
precision 4.8 ± 6.7 12.8 ± 9.6 21.3 ± 15.4 29.3 ± 12.3 23.7 ± 2.4

recall 1.4 ± 2.0 6.2 ± 4.5 20.1 ± 14.2 54.5 ± 25.9 84.5 ± 11.2

ε = 10
precision 17.9 ± 5.1 32.6 ± 4.2 39.7 ± 11.7 42.7 ± 8.2 27.0 ± 4.1

recall 4.6 ± 1.2 15.5 ± 2.1 36.7 ± 13.2 77.1 ± 19.2 94.9 ± 3.6

unconstrained k̂ = k/4 k̂ = k/2 k̂ = k k̂ = 2k k̂ = 4k

ε = 1
precision 1.1 ± 0.7 0.5 ± 0.4 0.7 ± 0.2 0.5 ± 0.1 0.5 ± 0.2

recall 0.3 ± 0.2 0.3 ± 0.2 0.7 ± 0.1 0.9 ± 0.1 2.0 ± 0.5

ε = 2
precision 2.6 ± 2.7 1.6 ± 1.3 1.9 ± 1.1 1.1 ± 0.5 0.6 ± 0.3

recall 0.6 ± 0.6 0.8 ± 0.6 1.8 ± 1.1 2.2 ± 1.0 2.5 ± 1.1

ε = 3
precision 2.6 ± 1.5 2.9 ± 1.0 3.7 ± 1.8 2.5 ± 1.1 1.2 ± 0.6

recall 0.7 ± 0.3 1.5 ± 0.4 3.8 ± 1.8 4.9 ± 2.2 4.9 ± 2.2

ε = 4
precision 7.9 ± 3.9 6.7 ± 2.6 9.7 ± 2.4 5.8 ± 1.7 3.0 ± 0.9

recall 2.0 ± 0.8 3.3 ± 1.0 9.8 ± 1.6 11.7 ± 2.9 12.1 ± 2.9

ε = 5
precision 10.1 ± 1.5 14.1 ± 3.3 20.4 ± 3.5 12.4 ± 1.7 6.5 ± 1.0

recall 2.6 ± 0.5 7.2 ± 1.4 20.9 ± 2.6 25.2 ± 2.1 26.6 ± 1.6

ε = 6
precision 19.0 ± 0.0 24.0 ± 3.5 38.3 ± 4.7 23.3 ± 3.7 12.3 ± 2.3

recall 5.0 ± 0.6 12.5 ± 2.7 39.3 ± 3.4 47.4 ± 3.0 49.9 ± 4.5

ε = 7
precision 30.2 ± 5.6 42.4 ± 8.5 56.9 ± 4.7 33.0 ± 4.9 17.3 ± 2.7

recall 8.0 ± 2.4 22.2 ± 6.5 58.5 ± 2.2 67.1 ± 2.9 70.1 ± 3.5

ε = 8
precision 49.2 ± 5.9 61.9 ± 5.9 69.3 ± 5.4 39.1 ± 5.1 19.9 ± 2.7

recall 13.0 ± 2.9 32.1 ± 4.9 71.2 ± 2.4 79.8 ± 1.8 81.2 ± 1.9

ε = 9
precision 63.5 ± 7.2 74.4 ± 4.1 76.1 ± 5.5 43.4 ± 5.9 22.2 ± 3.0

recall 16.7 ± 3.6 38.5 ± 4.6 78.2 ± 3.1 88.4 ± 2.3 90.6 ± 2.2

ε = 10
precision 79.9 ± 3.0 84.8 ± 1.7 81.5 ± 5.1 45.5 ± 5.6 23.1 ± 2.9

recall 20.9 ± 3.1 43.9 ± 5.0 83.8 ± 4.3 92.8 ± 1.3 94.3 ± 1.3

high k̂ = k/4 k̂ = k/2 k̂ = k k̂ = 2k k̂ = 4k

ε = 1
precision 2.4 ± 0.5 2.0 ± 0.5 1.5 ± 0.4 1.4 ± 0.1 1.3 ± 0.1

recall 0.5 ± 0.1 0.9 ± 0.2 1.3 ± 0.3 2.5 ± 0.1 4.6 ± 0.2

ε = 2
precision 6.3 ± 1.5 3.8 ± 0.9 2.6 ± 0.5 1.8 ± 0.3 1.6 ± 0.2

recall 1.4 ± 0.3 1.6 ± 0.4 2.2 ± 0.4 3.1 ± 0.5 5.7 ± 0.7

ε = 3
precision 17.0 ± 3.4 9.1 ± 1.8 5.5 ± 0.9 3.6 ± 0.6 2.5 ± 0.3

recall 3.7 ± 0.6 3.9 ± 0.7 4.7 ± 0.6 6.1 ± 0.8 8.6 ± 1.0

ε = 4
precision 35.9 ± 3.2 23.5 ± 2.3 13.1 ± 1.5 7.6 ± 0.7 5.0 ± 0.6

recall 7.8 ± 0.5 10.2 ± 0.7 11.3 ± 0.8 13.2 ± 0.8 17.1 ± 1.6

ε = 5
precision 56.8 ± 0.4 53.5 ± 2.8 29.1 ± 1.7 17.1 ± 0.8 10.7 ± 0.5

recall 12.3 ± 0.4 23.2 ± 0.3 25.3 ± 0.6 29.7 ± 0.5 37.2 ± 0.5

ε = 6
precision 74.8 ± 0.3 79.2 ± 0.9 55.8 ± 1.7 31.7 ± 0.9 18.3 ± 0.8

recall 16.2 ± 0.6 34.4 ± 1.5 48.4 ± 0.6 54.9 ± 0.8 63.4 ± 0.8

ε = 7
precision 86.6 ± 1.2 88.8 ± 0.4 79.8 ± 3.8 43.1 ± 2.2 23.4 ± 1.1

recall 18.8 ± 1.0 38.6 ± 1.6 69.2 ± 1.0 74.7 ± 1.1 81.0 ± 0.6

ε = 8
precision 92.5 ± 1.1 93.2 ± 0.8 90.1 ± 2.3 49.1 ± 2.3 26.0 ± 1.2

recall 20.1 ± 1.0 40.5 ± 1.6 78.2 ± 1.5 85.2 ± 0.7 90.0 ± 0.5

ε = 9
precision 95.9 ± 0.7 96.4 ± 0.5 94.3 ± 0.7 52.8 ± 2.4 27.3 ± 1.3

recall 20.8 ± 0.9 41.9 ± 1.8 81.9 ± 2.8 91.5 ± 0.6 94.7 ± 0.8

ε = 10
precision 97.4 ± 0.3 97.8 ± 0.3 95.5 ± 0.2 54.6 ± 2.2 27.8 ± 1.2

recall 21.2 ± 0.8 42.5 ± 1.8 82.9 ± 3.1 94.6 ± 0.2 96.5 ± 0.2



TABLE XXV: Flickr (EDGERAND)

low k̂ = k/4 k̂ = k/2 k̂ = k k̂ = 2k k̂ = 4k

ε = 5
precision 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

recall 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

ε = 6
precision 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 2.6 ± 3.6 1.3 ± 1.9

recall 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 5.6 ± 7.9 5.6 ± 7.9

ε = 7
precision 16.7 ± 23.6 8.3 ± 11.8 4.8 ± 6.7 2.6 ± 3.6 1.3 ± 1.9

recall 5.6 ± 7.9 5.6 ± 7.9 5.6 ± 7.9 5.6 ± 7.9 5.6 ± 7.9

ε = 8
precision 16.7 ± 23.6 8.3 ± 11.8 4.8 ± 6.7 8.5 ± 6.4 4.3 ± 3.3

recall 5.6 ± 7.9 5.6 ± 7.9 5.6 ± 7.9 17.8 ± 13.7 17.8 ± 13.7

ε = 9
precision 33.3 ± 47.1 16.7 ± 23.6 28.1 ± 15.7 20.1 ± 3.9 10.4 ± 2.2

recall 8.3 ± 11.8 8.3 ± 11.8 28.9 ± 15.0 41.1 ± 6.8 41.1 ± 6.8

ε = 10
precision 66.7 ± 47.1 38.9 ± 28.3 37.9 ± 15.7 19.3 ± 7.7 12.9 ± 5.5

recall 24.4 ± 17.5 24.4 ± 17.5 39.4 ± 14.9 39.4 ± 14.9 51.7 ± 22.5

unconstrained k̂ = k/4 k̂ = k/2 k̂ = k k̂ = 2k k̂ = 4k

ε = 5
precision 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

recall 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

ε = 6
precision 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 1.3 ± 1.9 0.7 ± 0.9

recall 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 2.2 ± 3.1 2.2 ± 3.1

ε = 7
precision 0.0 ± 0.0 0.0 ± 0.0 2.6 ± 3.6 2.7 ± 1.9 1.3 ± 0.9

recall 0.0 ± 0.0 0.0 ± 0.0 2.4 ± 3.4 4.6 ± 3.3 4.6 ± 3.3

ε = 8
precision 0.0 ± 0.0 4.8 ± 6.7 2.6 ± 3.6 4.0 ± 5.7 3.5 ± 1.8

recall 0.0 ± 0.0 2.4 ± 3.4 2.4 ± 3.4 7.1 ± 10.1 12.7 ± 6.3

ε = 9
precision 8.3 ± 11.8 9.5 ± 6.7 13.6 ± 2.5 11.3 ± 0.9 7.2 ± 0.8

recall 2.2 ± 3.1 4.6 ± 3.3 12.5 ± 1.8 20.5 ± 0.7 26.2 ± 4.4

ε = 10
precision 27.8 ± 3.9 21.0 ± 5.9 17.7 ± 9.3 18.0 ± 10.7 11.0 ± 3.7

recall 7.9 ± 1.5 10.3 ± 3.1 17.0 ± 9.7 34.1 ± 21.8 41.0 ± 16.4

high k̂ = k/4 k̂ = k/2 k̂ = k k̂ = 2k k̂ = 4k

ε = 5
precision 14.9 ± 4.9 9.8 ± 3.2 6.1 ± 1.8 4.1 ± 0.6 2.6 ± 0.3

recall 3.9 ± 1.6 5.1 ± 2.1 6.3 ± 2.4 8.2 ± 2.0 10.6 ± 2.0

ε = 6
precision 32.4 ± 4.2 26.8 ± 3.3 16.8 ± 2.1 11.0 ± 1.4 7.2 ± 0.5

recall 8.2 ± 1.7 13.6 ± 3.0 17.1 ± 3.8 22.2 ± 5.1 29.1 ± 4.7

ε = 7
precision 38.1 ± 1.7 34.7 ± 2.6 23.3 ± 3.7 15.7 ± 1.8 9.9 ± 0.7

recall 9.6 ± 1.4 17.6 ± 3.0 23.7 ± 5.9 31.5 ± 5.7 39.8 ± 6.4

ε = 8
precision 34.5 ± 3.1 35.2 ± 2.9 25.6 ± 2.8 16.5 ± 1.9 10.5 ± 0.4

recall 8.8 ± 1.7 17.9 ± 3.3 25.8 ± 4.7 33.4 ± 6.4 42.3 ± 5.5

ε = 9
precision 24.6 ± 3.8 32.0 ± 5.4 24.2 ± 2.9 14.9 ± 1.4 9.7 ± 0.5

recall 6.3 ± 1.6 16.4 ± 4.4 24.5 ± 5.0 30.0 ± 5.3 38.9 ± 5.3

ε = 10
precision 19.6 ± 4.2 25.3 ± 6.2 20.6 ± 3.1 14.4 ± 2.1 9.7 ± 0.9

recall 5.0 ± 1.5 13.0 ± 4.4 20.9 ± 5.0 29.0 ± 6.5 39.1 ± 7.5

TABLE XXVI: Flickr (LAPGRAPH)

low k̂ = k/4 k̂ = k/2 k̂ = k k̂ = 2k k̂ = 4k

ε = 1
precision 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

recall 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

ε = 2
precision 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

recall 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

ε = 3
precision 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

recall 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

ε = 4
precision 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

recall 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

ε = 5
precision 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

recall 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

ε = 6
precision 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

recall 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

ε = 7
precision 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

recall 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

ε = 8
precision 0.0 ± 0.0 0.0 ± 0.0 6.7 ± 9.4 3.3 ± 4.7 6.1 ± 5.5

recall 0.0 ± 0.0 0.0 ± 0.0 6.7 ± 9.4 6.7 ± 9.4 23.3 ± 20.5

ε = 9
precision 0.0 ± 0.0 11.1 ± 15.7 26.4 ± 10.5 13.4 ± 5.1 6.9 ± 2.5

recall 0.0 ± 0.0 6.7 ± 9.4 27.2 ± 9.7 27.2 ± 9.7 27.2 ± 9.7

ε = 10
precision 0.0 ± 0.0 11.1 ± 15.7 16.2 ± 12.0 21.9 ± 7.2 14.8 ± 1.1

recall 0.0 ± 0.0 6.7 ± 9.4 17.8 ± 13.7 45.0 ± 14.7 58.9 ± 6.8

unconstrained k̂ = k/4 k̂ = k/2 k̂ = k k̂ = 2k k̂ = 4k

ε = 1
precision 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

recall 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

ε = 2
precision 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

recall 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

ε = 3
precision 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

recall 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

ε = 4
precision 0.0 ± 0.0 4.8 ± 6.7 2.6 ± 3.6 1.3 ± 1.9 0.7 ± 0.9

recall 0.0 ± 0.0 2.2 ± 3.1 2.2 ± 3.1 2.2 ± 3.1 2.2 ± 3.1

ε = 5
precision 0.0 ± 0.0 0.0 ± 0.0 2.6 ± 3.6 1.3 ± 1.9 1.3 ± 0.9

recall 0.0 ± 0.0 0.0 ± 0.0 2.2 ± 3.1 2.2 ± 3.1 4.6 ± 3.3

ε = 6
precision 0.0 ± 0.0 4.8 ± 6.7 2.6 ± 3.6 1.3 ± 1.9 1.3 ± 0.9

recall 0.0 ± 0.0 2.2 ± 3.1 2.2 ± 3.1 2.2 ± 3.1 4.6 ± 3.3

ε = 7
precision 0.0 ± 0.0 0.0 ± 0.0 2.6 ± 3.6 4.0 ± 3.3 2.0 ± 1.6

recall 0.0 ± 0.0 0.0 ± 0.0 2.2 ± 3.1 6.8 ± 5.4 6.8 ± 5.4

ε = 8
precision 0.0 ± 0.0 0.0 ± 0.0 2.6 ± 3.6 5.3 ± 5.0 3.3 ± 2.5

recall 0.0 ± 0.0 0.0 ± 0.0 2.2 ± 3.1 9.0 ± 8.3 11.4 ± 8.4

ε = 9
precision 8.3 ± 11.8 4.8 ± 6.7 2.6 ± 3.6 5.3 ± 5.0 4.0 ± 3.3

recall 2.2 ± 3.1 2.2 ± 3.1 2.2 ± 3.1 9.4 ± 9.0 14.0 ± 11.7

ε = 10
precision 19.4 ± 14.2 16.2 ± 12.0 14.4 ± 5.1 10.0 ± 1.6 7.0 ± 3.6

recall 5.6 ± 4.2 7.8 ± 5.7 13.5 ± 5.3 18.3 ± 3.5 25.4 ± 12.6

high k̂ = k/4 k̂ = k/2 k̂ = k k̂ = 2k k̂ = 4k

ε = 1
precision 0.4 ± 0.5 0.2 ± 0.3 0.1 ± 0.1 0.0 ± 0.1 0.0 ± 0.0

recall 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1

ε = 2
precision 0.4 ± 0.5 0.2 ± 0.3 0.1 ± 0.1 0.0 ± 0.1 0.0 ± 0.0

recall 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1

ε = 3
precision 0.4 ± 0.5 0.2 ± 0.3 0.1 ± 0.1 0.0 ± 0.1 0.0 ± 0.0

recall 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1

ε = 4
precision 1.6 ± 1.3 1.0 ± 0.9 0.6 ± 0.5 0.3 ± 0.2 0.2 ± 0.1

recall 0.4 ± 0.4 0.5 ± 0.5 0.6 ± 0.5 0.6 ± 0.5 0.6 ± 0.5

ε = 5
precision 3.5 ± 1.3 2.0 ± 0.9 1.2 ± 0.5 0.6 ± 0.3 0.3 ± 0.1

recall 0.9 ± 0.4 1.0 ± 0.5 1.2 ± 0.5 1.2 ± 0.5 1.2 ± 0.5

ε = 6
precision 11.5 ± 0.9 7.9 ± 0.5 5.0 ± 0.7 2.5 ± 0.4 1.3 ± 0.2

recall 2.9 ± 0.5 4.0 ± 0.7 5.0 ± 0.3 5.0 ± 0.3 5.0 ± 0.3

ε = 7
precision 18.2 ± 2.2 14.8 ± 0.7 11.4 ± 1.4 7.6 ± 1.2 3.9 ± 0.7

recall 4.6 ± 0.9 7.4 ± 0.8 11.6 ± 2.5 15.0 ± 1.2 15.2 ± 1.3

ε = 8
precision 19.6 ± 0.7 16.9 ± 0.6 14.1 ± 1.1 11.9 ± 0.8 9.0 ± 1.1

recall 4.9 ± 0.4 8.5 ± 1.3 14.2 ± 2.2 24.0 ± 3.3 35.7 ± 2.1

ε = 9
precision 15.9 ± 1.7 17.8 ± 3.2 15.6 ± 1.7 12.9 ± 1.3 10.6 ± 1.0

recall 4.0 ± 0.7 9.1 ± 2.5 15.9 ± 3.4 26.2 ± 5.4 43.1 ± 8.5

ε = 10
precision 14.5 ± 3.3 19.7 ± 3.7 16.9 ± 2.1 13.1 ± 1.4 10.8 ± 1.0

recall 3.7 ± 1.1 10.0 ± 2.5 17.1 ± 3.4 26.5 ± 5.5 43.6 ± 8.1


	Introduction
	Preliminaries
	Graph Neural Networks
	Differential Privacy

	LinkTeller: Link Re-identification Attack
	Interaction Model between Data Holders
	Overview of the Attack
	LinkTeller: Edge Influence Based Attack

	Countermeasures of LinkTeller: Differentially Private GCN
	Overview of DP GCN Framework
	Practical DP GCN
	Edge Randomization (EdgeRand)
	Laplace Mechanism for Graphs (LapGraph)

	Discussion: Upper Bound of Edge Re-Identification Attack Performance on DP GCN

	Evaluation of LinkTeller
	Datasets
	Models
	Setup of the Evaluation
	Evaluation Metrics of the attack
	Baseline Attacks

	Evaluation Protocol
	Evaluation for LinkTeller
	Beyond GCNs: LinkTeller on GATs

	Evaluation of Differentially Private GCN
	Datasets and Models
	DP GCN against LinkTeller
	Experimental Setup
	Evaluation Results

	Model Utility Given DP Protection
	Experimental Setup
	Evaluation Results

	Tradeoff between Model Utility and Privacy

	Related Work
	Privacy Attack on Graphs
	Differential Privacy for Graphs


	Conclusions
	References
	Appendix
	Proofs for Influence Analysis in LinkTeller
	Proof of Proposition 1
	Proof of Theorem 1

	Proofs for Privacy Guarantees of the DP mechanisms
	Proof of Theorem 2
	Proof of Lemma 1
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 5

	Proof of Theorem 6
	Detailed Algorithms for DP GCN
	Algorithm for the Training and Inference of DP GCN
	Algorithm for the DP Mechanisms

	Additional Discussions on the LinkTeller Attack
	Stealthiness and Alternative Detection Strategies
	Estimation of the Density Belief 
	Variations of Our Attack under Different Settings
	Limitations to Overcome in Adapting LinkTeller
	Analysis on the Performance of LinkTeller Compared with Baselines

	Details of Evaluation
	Dataset Statistics
	Evaluation Metrics for Model Utility
	Normalization Techniques
	Search Space for the Hyper-parameters
	Best Hyper-parameters for the Vanilla-GCN
	Best Hyper-parameters for the Vanilla-GAT

	More Evaluation Results
	Results for the Random Attack Baseline
	Results for a 3-layer GCN
	Running Time of LinkTeller
	More Results for LinkTeller on vanilla GCNs and DP GCNs
	LinkTeller in the Transductive Setting
	Choosing  on a Validation Dataset



